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A Distributed Information Divergence Estimation
over Data Streams
Emmanuelle Anceaume and Yann Busnel

Abstract—In this paper, we consider the setting of large scale distributed systems, in which each node needs to quickly process

a huge amount of data received in the form of a stream that may have been tampered with by an adversary. In this situation, a

fundamental problem is how to detect and quantify the amount of work performed by the adversary. To address this issue, we propose

a novel algorithm AnKLe for estimating the Kullback-Leibler divergence of an observed stream compared with the expected one. AnKLe

combines sampling techniques and information-theoretic methods. It is very efficient, both in terms of space and time complexities, and

requires only a single pass over the data stream. We show that AnKLe is an (ε, δ)-approximation algorithm with a space complexity

Õ
(
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ε
+ 1

ε
2

)
bits in “most” cases, and Õ

(
1
ε
+ n−ε

−1

ε
2

)
otherwise, where n is the number of distinct data items in a stream. Moreover,

we propose a distributed version of AnKLe that requires at most O (rℓ (logn+ 1)) bits of communication between the ℓ participating

nodes, where r is number of rounds of the algorithm. Experimental results show that the estimation provided by AnKLe remains

accurate even for different adversarial settings for which the quality of other methods dramatically decreases.

Index Terms—Data Stream; Kullback-Leibler Divergence; Randomized approximation algorithm; Byzantine Adversary; Performance

Analysis



1 INTRODUCTION

The main objective of this paper is the online estima-
tion of the similarity between observed data streams
and expected (i.e. idealized) ones in order to detect in
real time the presence of intrusions in network traffic.
More precisely, we propose a distributed algorithm that
approximates with guaranteed error bounds in a single
pass and with both a small amount of storage memory
and processing capacity, the relative entropy between
massive and high frequency distributed sequences of
data. This works perfectly fits the IP network traffic
context, however it could be applied to any other data
issued from distributed applications such as sensors
readings. The problem of detecting changes in a data
stream is similar to the problem of identifying patterns
that do not conform to the expected behavior, which has
been an active area of research for many decades. A com-
prehensive survey of these techniques, their advantages
and their drawbacks is given in [1]. A common feature
of these techniques is their space complexity and their
computational cost, as they rely on full space algorithms
for analyzing their data.
Given our settings — the real time monitoring of
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network traffic with little capacities in terms of storage
and processing — relying on full space algorithms for
analyzing input data is not feasible. In contrast, two
main approaches exist to monitor in real time massive
data streams. The first one consists in regularly sampling
the input streams so that only a limited amount of data
items is locally kept [2], [3], [4]. This allows to exactly
compute functions on these samples. However, accuracy
of this computation fully depends on the volume of
data that has been sampled and their locations in the
stream. Worse, an adversary may easily take advantage
of the sampling policy to hide its attacks among packets
that are not sampled, or in a way that prevents its
“malicious” packets to be correlated. In contrast, the
streaming approach consists in scanning each piece of
data of the input stream on the fly, and in locally keeping
only compact synopses or sketches that contain the most
important information about data items. This approach
enables to derive some data streams statistic with guar-
anteed error bounds without making any assumptions
on the order in which data items are received at nodes
(i.e., data items ordering can be manipulated by an om-
nipotent adversary [5]). Most of the research done so far
with this approach has focused on computing functions
or statistic measures with error ε using poly(1/ε, logn)
space where n is the domain size of the data items.
These include the computation of the number of different
data items in a given stream [6], [7], [8], the frequency
moments [9], the most frequent data items [9], [10], or
the entropy of the stream [11], [12]. Note that in [13],
the authors propose a characterization of the information
divergences that are not sketchable. They have proven
that any distance that has not “norm-like” properties is
not sketchable.
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On the other hand, very few works have tackled the
distributed streaming model, also called the functional
monitoring problem [14], which combines features of
both the streaming model and communication com-
plexity models. As in the streaming model, the input
data is read on the fly, and processed with a minimum
workspace and time. In the communication complexity
model, each node receives an input data stream, per-
forms some local computation, and communicates only
with a coordinator who wishes to continuously compute
or estimate a given function of the union of all the
input streams. The challenging issue in this model is
for the coordinator to compute the given function by
minimizing the number of communicated bits [14], [15],
[16]. Cormode et al. [14] pioneer the formal study of
functions in this model by focusing on the estimation
of the first three frequency moments F0, F1 and F2 [9].
Arackaparambil et al. [15] consider the empirical entropy
estimation [9] and improve the work of Cormode by
providing lower bounds on the frequency moments, and
finally distributed algorithms for counting at any time t
the number of items that have been received by a set
of nodes from the inception of their streams have been
proposed in [17], [18].
In this paper, we go a step further by present-

ing a distributed algorithm that approximates the
relative entropy among ℓ data streams by using

O
(
logn+ 1

ε2
+
(

1
ε
+ logm
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δ

)
(logn+ logm)

)
bits of

space for each ℓ nodes, and ℓ+1 floats for the coordinator,
where n is the number of distinct items, and m is the
largest data stream observed at one of the ℓ nodes.
This distributed algorithm relies on an estimator called
AnKLe proposed in a previous work [19], [20]. AnKLe
estimates the Kullback-Leibler (KL) divergence between
a stream and a uniform one streams. This divergence
can be viewed as an extension of the Shannon entropy
and is often referred to as the relative entropy [21].
Finally, we guarantee that the number of bits exchanged
between the nodes in the system is upper bounded by
O(rℓ(log n + 1)). To the best of our knowledge, such a
work has never been done so far.
The paper is organized as follows. First, Section 2

describes the system model and some background on in-
formation theory. Section 3 presents the buildings blocks
of our algorithm AnKLe, while Section 4 analyses its
quality. Section 5 extends AnKLe to a distributed setting
and evaluates its quality. In Section 6, we empirically
evaluate the accuracy of the estimation provided by
AnKLe. Finally, we conclude in Section 7. For space con-
straint reasons, extended related work on the estimation
of the relative entropy of data streams is presented in
the companion paper [22].

2 MODEL AND BACKGROUND

2.1 Model

We present the computation model under which we
analyze our algorithms and derive lower and upper

bounds. We consider a set of ℓ nodes S(1), . . . , S(ℓ) such
that each node S(i) receives a large sequence σ(i) of
TCP/IP packets [23] modeled as data items or symbols
u, v, w, . . . drawn from a large universe N . For a given
stream σ(i), i ∈ {1, .., ℓ}, we denote by n(i) the number
of distinct items that appear in σ(i) and by m(i) the size
of σ(i), that is the number of items in it1. Items arrive
regularly and quickly, and due to memory constraints
(i.e., nodes can locally store only a small amount of
information with respect to the size of their input stream
and perform simple operations on them), items must be
processed sequentially and in an online manner. Nodes
cannot communicate among each other. On the other
hand, there exists a specific node, called coordinator, with
which each node may communicate. We assume that
communication is instantaneous. We refer the reader
to [24] for a detailed description of data streaming
models and algorithms.
Model of the Adversary: We suppose that the ad-

versary is omnipotent in the sense that it may actively
tamper with the data stream of any node by observing,
inserting, dropping or re-ordering items of their input
stream. We suppose that the algorithm used by a node
to estimate the divergence is public knowledge (i.e., to
avoid some kind of security by obscurity), however the
adversary has not access to the local random values
generated during the algorithm (e.g., the random choice
of hash functions from a collection of 2-universal hash
functions, see Section 3).

2.2 Preliminaries

We first present notations (summarized in Table 1) and
background on data streams analysis that make this
paper self-contained. Note that some of these notations
are formally defined in the remaining of the paper.

2.2.1 Entropy

Intuitively, the entropy is a measure of the randomness
of a data stream σ. The entropy Hσ is minimum (i.e.,
equal to zero) when all the items in the stream are the
same, and it reaches its maximum when all the items
in the stream are distinct. Specifically, we have Hσ =
−
∑

u∈N pu log pu, where for each u ∈ N , pu = mu/m
with mu representing the number of times the value u
appears in the stream σ, and m =

∑
u∈N mu being the

size of the stream. Thereafter, we will denote by ”log”
the logarithm in base 2, and by convention, we pose
0 log 0 = 0. Without loss of generality, we assume that
items are ordered so that m1 ≥ m2 ≥ . . . ≥ mn. Note
that the number of times mu item u appears in a stream
is commonly called the frequency of item u. The norm
of the entropy is defined as FH =

∑
u∈N mu logmu.

1. Note that when a single stream is considered, notations σ(i) , n(i)

and m(i) are simply denoted σ, n and m, which will be the case up
to Section 5.
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2.2.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [25], also called
the relative entropy, is a robust metric for measuring the
statistical difference between two data streams. The KL-
divergence is a member of a larger class of distances
known as the Ali-Silvey distances [26]. Given two prob-
ability distributions p and q on N , the KL-divergence
between p and q is defined as the expected value of the
likelihood ratio with respect to q:

D(p||q) =
∑

u∈N

pu log
pu
qu

= H(p, q)−H(p),

where H(p) = −
∑

pu log pu is the (empirical) entropy of
p and H(p, q) = −

∑
pu log qu is the cross entropy of p

and q. As we use a logarithm in base 2, the divergence
is measured in bits. It is zero if and only if p = q.
Let p(U) be the uniform distribution corresponding to a
uniform stream, and q be the probability distribution cor-
responding to the input stream. In the rest of this paper
we consider D(q||p(U)) as a measure of the divergence
between the current stream and the ideal one.

2.2.3 Frequency Moments

Frequency moments are important statistical tools that
have been introduced by Alon et al. [9]. Computing
frequency moments Fk allows to quantify the amount of
skew in a data stream. For each k ≥ 0, the k-th frequency
moment Fk of σ is defined as Fk =

∑
u∈N mk

u. Among
the remarkable moments, F0, F1 and ”F∞” represent
respectively the number of distinct elements in σ, the
size of σ, and the most frequent item in σ [7].

2.2.4 2-universal Hash Functions

In the following, we intensively use hash functions ran-
domly picked from a 2-universal hash functions family.
A collection H of hash functions h : {1, . . . ,M} →
{0, . . . ,M ′} is said to be 2-universal if for every two
different items x, y ∈ [M ], Ph∈H{h(x) = h(y)} ≤ 1

M ′
,

which is the probability of collision obtained if the hash
function assigned truly random values to any x ∈ [M ].

2.2.5 Randomized (ε, δ)-approximation Algorithm

A randomized algorithm A is said to be an (ε, δ)-
approximation of a function φ on σ if for any sequence
of items in the input stream σ, A outputs φ̂ such that
P{| φ̂ − φ |> εφ} < δ, where ε, δ > 0 are given as
parameters of the algorithm.

3 DETECTING ADVERSARIAL BEHAVIORS VIA

THE KL-DIVERGENCE ESTIMATION

3.1 Building Blocks

We describe three algorithms that form the build-
ing blocks of the AnKLe (Attack-tolerant eNhanced
Kullback-Leibler divergence Estimator) algorithm. All
these algorithms have been designed in the stream data
model (cf. Section 2.1). For self-containment reasons, we
briefly review these building blocks and describe their
theoretical guarantees.

Notation Meaning

ℓ Number of data streams in the system (Sec-
tion 2.1)

S(i) Site at which σ(i) is received (Section 2.1)
σ(i) Input stream (Section 2.1)
m(i) Size of stream σ(i) (Section 2.1)
n(i) Number of distinct data items in σ(i) (Section 2.1)
N Domain of data items (Section 2.1)

u, v, . . . Data items of N (Section 2.1)

m
(i)
u Number of occurrences of data item u in σ(i)

(Section 2.2)
H Collection of 2-universal hash functions (Sec-

tion 2.2)
ε, δ Quality parameters of the approximation algo-

rithms (Section 2.2)
p, q Probability distributions (Section 2.2)
p(U) Uniform probability distribution (Section 2.2)
Fk Frequency moments of a stream (Section 2.2)

H(p) Entropy of distribution p (Section 2.2)
FH Norm of the entropy (Section 2.2)
Hσ Entropy of a stream σ (Section 2.2)

H(p, q) Cross entropy of p relative to q (Section 2.2)
D(p||q) Divergence of Kullback-Leibler between p and q

(Section 2.2)
M1, . . . ,Mκ Register used in the LogLog algorithm (see Sec-

tion 3.1.2)
X,Xs Estimators used in AnKLe algorithm (Section 3.2)

κ, c, s1, s2, k Parameters of the AnKLe algorithm (Section 3.2)
K Set of the most frequent data items in a stream

(Section 4)
F s
H Norm of the entropy of the sparse data items’

sub-stream (Section 4)
Y
F̂

Estimator of the norm of the entropy on frequent
data items (Section 4)

Ys Estimator of the norm of the entropy on sparse
data items (Section 4)

D̂i Estimator of D(q
σ
(i) ||p(U)) (Section 5)

r Number of rounds in the distributed algorithm
(Section 5)

Table 1

List of symbols and notations

3.1.1 Estimating the kth Moment of a Stream

The AnKLe algorithm adopts the structure of the method
proposed by Alon et al. [9] (called in the following the
AMS algorithm), to approximate the KL-divergence of a
stream. The AMS algorithm estimates the k-th frequency
moment of a stream as follows. It computes a basic
estimator which takes the form of a random variable X
whose mean value is exactly equal to the kth frequency
moment of a stream and whose variance is very small.
Specifically, X is defined as X = m(gk− (g−1)k), where
g is the exact number of times element v appears in the
stream from a uniformly and randomly chosen position p
(we have ap = v) in the stream onwards. To improve the
accuracy of the estimation, several independent basic es-
timators are computed on the stream (specifically s1×s2
basic estimators Xij , for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2,
for s1 × s2 positions uniformly chosen at random in
the stream σ), and the final estimator Y is set to be
Y = median1≤j≤s2 (1/s1

∑s1
i=1 Xij) .

Theorem 1 ([9]) For any ε, δ ∈ (0, 1), if s1≥
V ar[X ]/(ε2E[X ]2) and s2 = 4 log(1/δ), then Y is a (ε, δ)-
approximation of E[X ], i.e., P{| E[X ]− Y |> εE[X ]} < δ.
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3.1.2 Estimating the Number of Items

The problem of estimating the number of distinct ele-
ments has received a lot of attention in the data stream
model. First, the seminal work of Flajolet et al [7] has
shown that it is possible to compute such an estimate us-
ing only logarithmic space in n by relying on properties
of hash functions. Afterwards, follow-up enhancements
have improved the quality of F0 [8], [6], [27]. A com-
prehensive survey describing the literature on distinct
elements in the data stream model is presented by
Gibbons in [28]. The Durand and Flajolet algorithm [27]
(referred to as the LogLog algorithm in the following)
and described in Figure 1 computes an estimation F̂0

of the number of distinct items F0 (denoted as n in
this paper) in a stream. This algorithm builds upon the
approaches proposed in [7] and [9]. Briefly, it maintains
a collection of κ registers M1, . . .Mκ, where κ a power
of 2. It uses also a hash function h(.) that maps each
distinct item read from the stream to i with probability
2−(i+1), where i ∈ [0, L] and L is typically equal to 32.
For each stream item v, the log2 κ least significant bits
of h(v) are used to select one of the k registers Mi,
and the maximum between the remaining L − log2 κ
bits of h(v) and Mi are used as the value of Mi. Once
all the items of the stream have been read, then the
arithmetic mean 1

κ

∑k

j=1 Mj approximates log2(n/κ) plus
an additive bias. The estimate of n returned by the
LogLog algorithm is F̂0 = ακκ2

1
κ

∑
Mj , where ακ is

a constant derived by the analysis [27] which allows
to correct the systematic bias of the arithmetic mean
in the asymptotic limit. Kane et al. [8] improve this
algorithm by assuming a truly random hash function
and κ-wise independent hash functions, which provides
the following estimation quality.

Theorem 2 ([8]) For any ε, their algorithm outputs F̂0 such
that P{|F̂0 − F0| > ε} < δ where δ = 2/3. The worst-case
running time for each input symbol is O(1), and the total
space required by the algorithm is O(1/ε2+logn) bits, which
makes this algorithm optimal.

3.1.3 Determining the Most Frequent Identifiers

The problem of determining the c most frequent items
in a stream has also been studied extensively in the data
stream literature. Thereafter, we describe a deterministic
algorithm that outputs items that occur more than m

c
in

a stream. This algorithm, due to Misra and Gries [29],
maintains c counters such that for each counter, its key
is the item read from the stream and its value is related
to the frequency of items. Initially, all the counters are
set to (–, 0). Afterwards, when an item is read from the
stream, if that item has already a counter associated to
it, then this counter is incremented. If this is not the case
and if there are still free counters available, then one of
these free counters is allocated to this new item and its
value is set to 1. Otherwise, all the allocated counters are
decremented by one, and if after this operation some
of them are equal to 0 then their keys are erased and

Figure 1. LogLog algorithm
Input: An input stream σ; precision parameter κ;
Output: Estimate F̂0 in σ

Pick one 2-universal hash function h : [1..N ] → [L];1

κ registers Mj = 0 with κ > 64 a power of 2;2

ακ = 0.39701;3

for ai ∈ σ do4

v = ai;5

x = h(v) mod κ;6

b=the largest r ≥ 0 such that the r rightmost bits in7

⌊h(v)/κ⌋ are all 0;
Mx = max(Mx, b);8

return F̂0 = ακκ2
1
κ

∑
κ
j=1 Mj ;9

Figure 2. Misra-Gries algorithm
Input: An input stream σ; a precision parameter c;
Output: The c most frequent items in σ and an estimate of their

frequency
for j ∈ [0. . c] do A[j] ← (⊥,⊥);1

for ai ∈ σ do2

v = ai;3

if ∃u such that the item of A[u] is s then increment the4

count value of A[u];
else5

if ∃u′ such that A[u′] = (⊥,⊥) then6

A[u′] = (v, 1)7

else for i = 1 to c do8

Decrement the count of A[i];9

if the count value of A[i] = 0 then10

A[i] = (⊥,⊥)11

return A;12

the counters are released. The pseudo-code of the Misra
Gries algorithm is presented in Figure 2.

Theorem 3 ([29]) The Misra and Gries algorithm with
parameter c returns for any item u an estimate m̂u such that
mu−

m
c
≤ m̂u ≤ mu with O(c(logm+ logn)) bits of space.

3.2 The AnKLe algorithm

This section presents AnKLe, the algorithm we pro-
pose for computing the KL-divergence of a stream. Our
starting point is the re-writing of the KL-divergence as
follows. From Definition 1, we have

D(qσ ||p
(U)) =

n∑

i=1

qi log (qi)−

n∑

i=1

qi log
(
p
(U)
i

)

= log(n)− log(m) +
1

m

n∑

i=1

mi log (mi) . (1)

Thus estimating the KL-divergence amounts in (i)
estimating the number of distinct items in the stream (i.e.,
F0) in order to obtain a good approximation of log(n),
and (ii) estimating

∑n

i=1 mi log (mi), which corresponds
to the norm of the entropy FH . While the first point is
solved by relying on the KNW [8] algorithm, the second
point is tackled by extending the approach proposed by
Alon et al. [9] to deal with arbitrary distributions of items
in the input stream.
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Figure 3. AnKLe Algorithm
Input: An input stream σ of length m, k (number of frequent

items), κ (see Figure 1), c (see Figure 2), s1, s2 (see
Section 3.1.1)

Output: Estimation of D(qσ||p(U))
Choose s1 × s2 random integers in [1. .m];1

for u1 ∈ [0. . s1], u2 ∈ [0. . s2] do S[u1, u2] ← (⊥,⊥);2

for aj ∈ σ do3

v = aj ;4

Task T1 :5

F̂0 ← Algorithm in Fig. 1 (KNW [8]) fed with v;6

Task T2 :7

F̂ ← Algorithm in Fig. 2 (Misra-Gries [29]) fed with v;8

Task T3 :9

forall entries i of matrix S such that (si, ri) *= (⊥,⊥) do10

if si = v then ri ← ri + 1;11

if j is one the s1 × s2 random integers then12

assign (v, 1) to the first unused entry of S;13

F̂ ← the k most frequent items (si, ri) of F̂ and such that ri > e;14

forall entries i of matrix S do15

if (si,−) ∈ F̂ then (si, ri) ← (si,−) ;16

else (si, ri) ← (si,m (ri log ri − (ri − 1) log(ri − 1)));17

YS ← median1≤j≤s2

(
1
s1

∑s1
i=1 Sij

)
;18

Y
F̂

←
∑

(si,ri)∈F̂
ri log ri;19

p ← 1−max

(
0,

min
(
Ys, YF̂

)
−m

10 ·m

)
;

20

return D̂ = log F̂0 − logm+ p

m

(
YS + Y

F̂

)
;21

The pseudo-code of AnKLe is presented in Figure 3
and consists of two phases. The first one (lines 3–13) is
executed upon reception of the items of the stream, while
the second one (lines 14–21) is run when m items have
been read from the stream. The first phase is composed
of three tasks (T1, T2 and T3), executed in parallel.
Task T1 (line 5) estimates the number of distinct items
present in the stream, Task T2 (line 7) identifies the k
most frequent items in the stream, and Task T3 samples
random items in the stream in order to compute their
exact frequency. Specifically, Task T3 (lines 9–13) consists
in running a sampling estimator X on the stream. The
basic estimator X = Xi,j is designed so that its mean
value is equal to the norm of the entropy FH and its
variance is small. More precisely, we have

X = m(g log g − (g − 1) log(g − 1)), (2)

where g is the random variable representing the number
of occurrences of an item ℓ in the stream. This item ℓ is
such that its position j in the stream is a random number
in [m]. The random variable g counts the number of
times ℓ appears in the stream from position j onwards.
Formally, g is defined as g =| {j : j ≥ ℓ, aj = aℓ} | .
We can show as done in [9], [12], that the estimator X

is unbiased (i.e., its expectation is equal to FH ), i.e.,

E[X ] =
1

m

n∑

i=1

mi∑

j=1

m(j log j − (j − 1) log(j − 1)) = FH . (3)

To improve the accuracy of the estimation, s1×s2 such
basic estimators Xij (for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2)

are used, each one sampling a random position in the
stream. From the implementation point of view, tracking
these estimators consists in storing s1 × s2 counters,
each one counting the number of occurrences of an item
whose position has been randomly chosen in the stream.
When item u is read from the input stream, if u has
already one or more counters assigned to it then all these
counters are incremented. In addition, if the position at
which u has been read in the stream is one of the chosen
locations, then a counter is assigned to u, and its value is
set to 1. Thus for each of these “tracked” items, an exact
count of their frequency is continuously maintained
starting from a random position in the stream.
The post-processing phase of AnKLe algorithm esti-

mates the KL-divergence of the input stream according
to Relation (1). This phase is executed when m items
have been read from the input stream. In this work,
we suppose that m is a parameter of the algorithm,
however by using techniques proposed in Chakrabarti
et al. [11] we can extend our solution to streams whose
size is a priori unknown. To accurately estimate the
KL-divergence of the stream, one needs to cope with
patterns in which a small number of items occur with
a very high frequency with respect to the other items.
When such patterns occur, the basic estimator X alone is
unable to compute the norm of the entropy in bounded
space [11]. Indeed, by analogy of the calculation per-
formed in [9], the variance of the estimator grows with
the norm of the entropy. We extend [11] method to deal
with any stream distribution in order to guarantee that
whatever the strategy of the adversary, the error on
the estimation is kept small (as shown in Section 6).
Specifically, the estimator X is computed on unfrequent
items (cf. lines 14–18) as done in Relation (3), while the
contribution of highly frequent items on the norm of
the entropy is directly computed as

∑
(si,ri)∈F̂

ri log ri

(cf. lines 19). The set F̂ represents the set of highly
frequent items dynamically computed in Task T2. Finally,
to prevent some of the items to appear in both terms, we
weight the contribution of both terms by p (cf. line 21).

4 ANALYSIS

In this section, we analyze the properties of the AnKLe
algorithm given in Figure 3. This analysis is split into
three phases. We first evaluate the quality of Y

F̂
through

Lemma 5, we then evaluate the quality of YS through
Lemmata 6 and 7, and finally derive the quality of
AnKLe algorithm by combining the previous results
with the one of [8] with Lemma 8.
In order to state the main theorem, we introduce the

following notations. LetK be the set of the most frequent
items i that satisfy m̂i > e (if any) returned at line 12 in
Figure 3. Let ns and ms be respectively defined as ns =
n−|K| and ms = m−

∑
k∈K mk. Parameter ns represents

the number of “sparse” items (i.e., the remaining items
of the stream after having removed the most frequent
ones as identified by Task T2 and after the execution
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of line 14). In the same way, ms represents the size of
the sub-stream in the original stream occupied by these
sparse items. Finally, the norm of the entropy of this sub-
stream is denoted by F s

H .

Theorem 4 For any δ and ε such that 1/3 < δ < 1 and
0 < ε < 1

2 , and for any constant ∆ > 0, the AnKLe algorithm
gives an (ε, δ)-approximation of the KL-divergence, using

O

(
logn+

1

ε2
+

(
1

ε
+

µ

ε2
log

1

δ

)
(log n+ logm)

)

bits of space where µ = (logm + log e − 1) if F s
H ≥ m2

∆ms
,

and µ = (n− 1
ε
− 1) otherwise.

In particular, taking ∆ to be a constant, we get a
poly-logarithmic space algorithm that works on streams
whose F s

H is not “too small”. Note that this is the case
for most of the streams, as Task T2 aims at removing
the most frequent items, raising then the norm of the
entropy of the sparse sub-stream.

Proof: The first part of the proof is directly derived
from Lemma 8. Regarding the space complexity of An-
KLe, it is given by the sum of the complexity of each Task
T1, T2 and T3 added up with the space required for the
post-processing phase, which is O(1). From respectively
[8], [9], [29], we get that the space complexity of AnKLe
is O (CKNW + CMG + CAMS), where:





CKNW = O
(
logn+ 1

ε2

)
[8]

CMG = O (c(logn+ logm)) [9]
CAMS = O (s1s2(logn+ logm)) [29].

Lemmata 5 and 6, and the hypotheses on c, s1 and s2
presented in Equation 4 end the proof.
We now show a series of results that prove Lem-

mata 5, 6 and 8.

4.1 Evaluation of Y
F̂

The following lemma computes the quality of Y
F̂
.

Lemma 5 For any ε > 0, we have P{|Y
F̂
−YF | > εYF } = 0,

where Y
F̂
is defined at line 17 in Figure 3.

Proof: The proof combines the proof presented
in [29] and the fact that c > k counters are used. For
space constraint reasons, the proof is presented in the
companion paper [22].

4.2 Evaluation of Ys

Let Xs be the same estimator as X (which has been
defined in Section 3.2), but Xs is defined only on sparse
items in the stream. From a derivation similar to the one
used in Relation (1), Xs is an unbiased estimator of F s

H .

Lemma 6 ∀ε, δ > 0, it exists s1 and s2 such that

P{|Ys − F s
H | > εF s

H} < δ.

Proof: For space constraint reasons, the proof is
presented in [22].
We now derive a relation between E[Xs] and V [Xs]

to deduce an estimation on the size of s1.

Lemma 7 Let us consider the sub-stream ms populated by

sparse items. Then, for any constant ∆ > 0 if F s
H ≥ m2

∆ms

then

V [Xs] ≤ ∆(logm+ log e − 1)E[Xs]2,

otherwise

V [Xs] ≤ (ns − 1)E[Xs]2.

Proof: For space constraint reasons, the proof is
presented in [22].

4.3 Evaluation of D̂

As |K| < 1/ε, we are now able to explicitly give the
value of all the parameters of tasks T2 and T3:




c = O

(
1

ε

)

s1 =





O

(
logm+ log e− 1

ε2

)
if F s

H ≥ m2

∆ms

O

(
ns − 1

ε2

)
otherwise

s2 = O

(
log

1

δ

)

(4)

Using these values, we have the necessary material
to derive the global quality of AnKLe. First of all, by
linearity of expectation, the random variable D̂ is an
unbiased estimator of D(qσ||p

(U)), given by Equation 1.

Lemma 8 Given ε > 0 and δ > 1
3 , we have

P

{
|D̂ −D(qσ||p

(U))| > εD(qσ||p
(U))

}
< δ.

Proof: Let δ′ = δ − 1
3 . Then we have δ′ > 0.

Combining the independence of Ys and Y
F̂
and Lem-

mata 5 and 6, we have:

P{|Ys + Y
F̂
− E[Ys + Y

F̂
]| > εE[Ys + Y

F̂
]}

≤ P{|Ys − E[Ys]| > εE[Ys]}

+ P{|Y
F̂
− E[Y

F̂
]| > εE[Y

F̂
]}

< δ′

By definition of D(qσ ||p
(U)) in Relation 1 and D̂ in

AnKLe algorithm at line 21, we have :

P{|D̂ −D(qσ||p
(U))| > εD(qσ||p

(U))]}

≤ P{| log F̂0 − logF0| > ε logF0}

+ P

{
1

m
|F̂H − FH | >

ε

m
E[FH ]

}

≤
1

3
+ P

{
1

m
|F̂H − FH | >

ε

m
E[FH ]

}
(from [8])

≤
1

3
+ P

{
|Ys + Y

F̂
− E[Ys + Y

F̂
]| > εE[Ys + Y

F̂
]
}

<
1

3
+ δ′ = δ

that concludes the proof.
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5 DISTRIBUTED APPROXIMATION ALGORITHM

In this section, we propose an algorithm that computes
the KL-divergence among a set of ℓ distributed data
streams with respect to the expected one, so that the
number of bits communicated between the ℓ sites and
the coordinator is minimized. This amounts for the
coordinator to compute an approximation of the global
KL-divergence composed by the joint distribution of
ℓ data streams. Specifically, let X = {X1, X2, . . . , Xℓ}
be the random vector representing the set of discrete
independent random variables X1, . . . , Xℓ describing re-
spectively the streams σ1, . . . ,σℓ. As the KL-divergence
is additive for independent distributions, if each node
Si computes locally an estimation D̂σi

using AnKLe, we
have D̂ =

∑
1≤i≤ℓ

D̂σi
.

A simple motivating application that would benefit
from our distributed algorithm is the node sampling
application. Suppose that the ℓ sites of a large scale
and dynamic system are in charge of locally running a
uniform node sampling service2, and locally feed AnKLe
with the continuous stream σ′

i of identifiers generated
by their node sampling service. By doing so each site Si

continuously estimates the KL-divergence D̂σ′

i
of σ′

i to
detect any deviation from a uniform stream. Indeed, in
absence of malicious behaviors D̂σ′

i
should be close to 0

as any node of the system has the same probability to be
output by the uniform node sampling service. Now, in
presence of attacks, the adversary may judiciously bias
the ℓ input streams σ1, . . . ,σℓ so that for each site Si, D̂σ′

i

remains small enough not to be considered locally as an
attack. On the other hand, by periodically aggregating
D̂σ′

1
, . . . , D̂σ′

ℓ
, the coordinator can quickly detect whether

the cumulated D̂σ′

i
exceeds some given threshold, and

if this is the case informs the ℓ sites to temporarily
stop using their sampling service until D̂ shrinks to an
acceptable value.
Our algorithm proceeds in rounds until all the data

streams have been read in their entirety. In the following,
we denote the substream of σi received by Si during the

round r by σ
(r)
i , and the cardinal of this substream by

dr. Specifically, in a bootstrap phase corresponding to
round r = 1 of the algorithm, each site Si computes a
first estimation of the KL-divergence D̂σi

of the received
data stream σi as described in Algorithm 3. Once node
Si has received d1 data items (where d1 should typically
be set to 100 [15]), then node Si sends its first estimation
D̂

σ
(1)
i

to the coordinator, and starts a new round r = 2.

Upon receipt of D̂
σ
(1)
i

from any Si, the coordinator asks

all the ℓ − 1 other nodes Sj to send their own sketch

D̂
σ
(1)
j

. Once the coordinator has received all D̂
σ
(1)
i

, for

1 ≤ i ≤ ℓ, it sets ∀i ∈ [ℓ], D̂σi
← D̂

σ
(1)
i

and computes

D̂ =
∑

1≤i≤ℓ
D̂σi

.

2. A uniform node sampling service run at site Si continuously
outputs the identifier of a random node that belongs to Si input stream
σi, which is made of the nodes ids exchanged within the system.

At round r > 1, each node Si updates its estimation

D̂
σ
(r)
i

with the sequence of data streams received since

the beginning of round r. Let dr = 2dr−1 be an upper
bound on the number of received items during round
r. When node Si has received dr data items since the
beginning of round r, it sends its current estimation

D̂
σ
(r)
i

to the coordinator and starts a new round r + 1.

Note that during round r, Si regularly compares D̂
σ
(r)
i

with D̂
σ
(r−1)
i

to detect whether significant variations in

the stream have occurred before having received dr
items. This allows to inform the coordinator as quickly
as possible that some attack might be undergoing. Upon

receipt of the first D̂
σ
(r)
i

from any Si, the coordinator asks

all the ℓ − 1 other nodes Sj to send it back their own

D̂
σ
(r)
j

. The coordinator locally updates the ℓ estimations

and the global estimated divergence value. The commu-
nication flows between the ℓ sites and the coordinator is
illustrated in the companion paper [22].

Theorem 9 The distributed AnKLe algorithm gives an (ε, δ)-
approximation of the KL-divergence between ℓ distributed
input streams.

Proof: The statement of this theorem directly derives
from Theorem 4 and the fact that the KL-divergence is
additive for independent distributions.

Lemma 10 The distributed AnKLe algorithm gives an ap-
proximation of the global KL-divergence, using

O

(
logn+

1

ε2
+

(
1

ε
+

µ

ε2
log

1

δ

)
(logn+ logm)

)

bits of space for each ℓ nodes, and O (logn(ℓ+ 1)) bits of
space for the coordinator, where µ = (logm + log e − 1) if

F s
H ≥ m2

∆ms
, and µ = (n− 1

ε
− 1) otherwise.

Proof: The statement of this theorem directly derives
from Theorem 4 and the fact that the coordinator main-
tains ℓ memory slots to store each estimation of all the
ℓ nodes plus the global estimation itself. Each of these
slots requires O(log n) bits of space as the maximum
value of the relative entropy with respect to the uniform
distribution is logn+ (n− 1) logm [30].

Lemma 11 The distributed AnKLe algorithm gives an
approximation of the global KL-divergence D̂ by sending
O (rℓ (logn+ 1)) bits, where r is the number of rounds and
n is the number of distinct items in all streams.

Proof: Suppose that the number of rounds of the
algorithm is equal to r. An upper bound of the number
of bits sent by any node during round r is given by the
size of its local estimation of the KL-divergence, which
is logn (cf. Lemma 10). Finally, at the end of each round,
the coordinator sends 1 bit to at most ℓ− 1 nodes.

6 PERFORMANCE ANALYSIS

In this section, we evaluate the accuracy of AnKLe by
comparing its estimation with the exact value of the
KL-divergence computed between the observed input
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Figure 4. Comparison between the exact value of the KL-divergence and its estimations computed with AnKLe, AMS and CCM.

stream and the uniform one. We also compare AnKLe
with the estimator-based algorithms of Alon et al. [9] and
Chakrabarti et al. [11]. In the former case, the original
estimator computes the k-th frequency moment of a
stream, while in the latter case, the original estimator
measures the entropy of a stream. We have adapted
both algorithms to compute, instead, the norm of the
entropy. We have fed these algorithms with both real-
world data sets and synthetic traces. Real data give a
realistic representation of some existing systems, while
the latter ones allow to capture phenomenon which may
be difficult to obtain from real-world traces, and thus
allow to check the robustness of our metric. Real data
have been downloaded from the repository of Internet
network traffic [31]. Two of them represent two weeks
logs of HTTP requests to the Internet service provider
ClarkNet WWW server – ClarkNet is a full Internet
access provider for the Metro Baltimore-Washington DC
area – the other two ones contain two months of HTTP
requests to the NASA Kennedy Space Center WWW
server, and the last one represents seven months of
HTTP requests to the WWW server of the University
of Saskatchewan, Canada. In the following these data
sets will be respectively referred to as ClarkNet, NASA,
and Saskatchewan traces. Table 2 presents some statistics
of these data traces, in terms of stream size (cf. “#
items”), number of distinct items in each stream (cf. “#
distinct items”) and the number of occurrences of the
most frequent item (cf. “max. freq.”). Note that all these
benchmarks share a Zipfian behavior, with a lower α

parameter for Saskatchwan.

Consider now the distributions of synthetic traces. All

Data trace # items (m) # distinct items (n) max. freq.

NASA (July) 1,891,715 81,983 17,572
NASA (August) 1,569,898 75,058 6,530
ClarkNet (August) 1,654,929 90,516 6,075
ClarkNet (September) 1,673,794 94,787 7,239
Saskatchewan 2,408,625 162,523 52,695

Table 2
Statistics of real data traces.

the generated streams have a length of m = 200, 000
items. We have tested 750 different settings of the fol-
lowing parameters: n, the number of distinct items in
the stream, s1 and s2, which are related to the size of
the estimator matrix in Task T3, and k, the number of
counters used in Task T2. For each setting, we have con-
ducted 10 trials of the same experiment and computed
the average and the standard deviation.
Except for the uniform and the zipfian-1 distributions

that respectively model an ideal stream in which each
item appears with the same frequency and a realistic one
in absence of any attacks, the other four distributions
capture different adversarial strategies. Specifically,

• the “Poisson” distribution allows to generate
streams in which the frequency of a large quantity
of items is significantly higher than the frequency
of the remaining items. This type of stream might
reflect an attack during which the adversary aims at
over-representing a large number of its own node
identifiers.

• the “Zipf-2” distribution engenders streams in
which there is a small number of highly frequent
items. This type of stream might correspond to an
eclipse attack in which the objective of the adversary
is to poison the routing tables of honest nodes.

• the “Pascal” and “Zipf-4” distributions produce
streams in which a very small number of items have
a very high frequency3. These distributions might
illustrate streams in which very few items (typically
1 to 3) are over-pushed by the adversary.

Figure 4 summarizes the results obtained for the An-
KLe, AMS and CCM estimators, averaged over 55,000
experiments (i.e. 750 different settings with 10 repeti-
tions for each setting, over 6 synthetic distributions and
1000 settings for each data set). For clarity reasons, the
average value of CCM for Zipf-1 has been cropped
in Figure 4(a) since the estimated value of the KL-
divergence by CCM is around 8.3. These results clearly

3. Pascal distribution is also known as Negative Binomial distribu-
tion.
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Figure 5. KL-divergence estimation as a function of the size of the system n.

show that AnKLe outperforms the estimator CCM for
all the distributions, even in scenario in which CCM
should excel (i.e., Zipf-4), as this corresponds to a stream
in which a very frequent item exists in the observed
stream. Compared with the AMS estimator, the results
obtained with AnKLe are for most of them better except
for the Zipf-2 distribution. But even for this specific
distribution, the standard deviation of AnKLe is four
times smaller than the one of AMS (i.e., 0.09 versus 0.36),
thus demonstrating that AnKLe provides a more robust
and stable estimation than AMS on this distribution.
Figure 4(b) confirms the relevance and efficiency of
AnKLe when fed with real traces. Whatever the input
traces, it clearly outperforms CCM and AMS estimators
in terms of both average and standard deviation. Further
results are presented in [22].

Figure 5 shows the evolution of the KL-divergence
estimation as a function of n. The x-coordinate repre-
sents the number of distinct items in the stream as a
ratio of its length m. The main observation that can
be drawn from Figure 5(a) is that the CCM estimator
behaves relatively badly in presence of a small number
of distinct items with frequency uniformly distributed
in the stream. However, its accuracy increases when
the number of distinct items increases. The other two
estimators are very close to the real value of the KL-
divergence, with a clear advantage for AnKLe. This
observation is confirmed in Figure 5(b) that corresponds
to a zoom of Figure 5(a). This figure demonstrates that
the estimation provided by AnKLe is very good. In
average, the AnKLe estimation overlaps with the real
value of the KL-divergence, contrary to AMS, and its
standard deviation remains small, for any values of n.
The evolution of the KL-divergence estimation as a func-
tion of k, and s1 are presented in [22], in particular, we
have observed that CCM is not adapted to uniform and
near uniform streams, while AMS and AnKLe provide
very good estimates for these distributions.

Figure 6 shows the KL-divergence estimation as a
function of s1 and k parameters. Several observations
can be drawn from both figures. First, regarding Fig-

ure 6(a), the robustness of CCM estimator greatly im-
proves with increasing values of s1, as the cone-shaped
curves converge for s1 > m/500. On the first hand,
the value towards which the CCM converges under-
estimates the KL-divergence. Thus, s1 has a greater
impact on CCM robustness than on its accuracy. On
the other hand, variations of s1 have not impact on
AMS robustness. This feature does not appear in AnKLe
as the weight given to Task T2 makes it preponderant
with respect to Task T3, limiting accordingly the lack
of robustness of Task T3. Finally, the main observation
drawn from Figure 6(b) is that AnKLe fully overlaps
with the exact value of the KL-divergence, which clearly
demonstrates the robustness of this estimator in presence
of any input streams. Regarding CCM, we can observe
that when the number of counters k is less than 0.1n,
then the Misra-Gries algorithm under-estimates the k
most frequent items, which degrades the estimation of
CCM. This confirms the theoretical bound of k ≥ ⌈7ε−1⌉
shown in [11]. On the other hand, variations of parame-
ter k has not impact on AMS as this estimator does not
decompose its computation according to items frequency
characteristics. More results are presented in [22] with
respect to the Poisson distribution. To summarize, exper-
iments have validated the impressive accuracy and ro-
bustness of AnKLe in presence of a very large spectrum
of distributions. This illustrates the importance of the
weighting factor applied to both terms of the estimator.

7 CONCLUSION AND FUTURE WORKS

We have proposed AnKLe, a novel algorithm for esti-
mating the KL-divergence between the observed stream
and the expected one. AnKLe is very efficient both in
terms of space and time, and requires only a single
pass over the data stream. We have characterized how
the different parameters impact the precision of the
estimation and the space complexity of AnKLe. We have
shown that AnKLe is an (ε, δ)-approximation algorithm
with a space complexity Õ

(
1
ε2

+ 1
ε

)
bits in “most” of

the cases. The distributed version of AnKLe can be used
to compare different input streams, which may reveal as
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Figure 6. KL-divergence as a function of s1 and s2 (on the left) and k (on the right) for the Pascal distribution.

an interesting ingredient to detect isolated intrusions. Fi-
nally, simulations have also shown that AnKLe performs
always better, in terms of accuracy and robustness, than
other state-of-the-art estimator-based algorithms.
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