
HAL Id: hal-00998108
https://hal.science/hal-00998108v1

Submitted on 30 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Secured Service Level Negotiation In Ubiquitous
Environments

Mohamed Aymen Chalouf, Francine Krief

To cite this version:
Mohamed Aymen Chalouf, Francine Krief. A Secured Service Level Negotiation In Ubiquitous En-
vironments. International Journal of Communication Networks and Information Security (IJCNIS),
2009, 1 (2), pp.9-18. �hal-00998108�

https://hal.science/hal-00998108v1
https://hal.archives-ouvertes.fr

 9

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

A Secured Service Level Negotiation

In Ubiquitous Environments

Mohamed Aymen Chalouf1 and Francine Krief1

1LaBRI Laboratory, University of Bordeaux,

351 cours de la Libération, F-33405 Talence Cedex, France

{chalouf, krief}@labri.fr

Abstract: The goal of the ubiquitous connectivity is to enable

mobile users to be permanently and transparently connected to the

Internet. These mobile users are often connected via wireless

networks like Wi-Fi or WiMax and consuming services that require

a high Quality of Service (QoS) level such as video on demand or

voice over IP. The wireless access to these services may make the

concerned communications vulnerable to security attacks because

of the open medium on which these access technologies are based.

Hence, in ubiquitous environments, we need to guarantee both QoS

and security for mobile users’ communications. In such an

environment, it becomes very difficult for service providers to

satisfy these users’ needs. A solution is to assign a profile to each

user in order to optimize and automate the process of service level

negotiation which enables guaranteeing QoS and security.

In this paper, we present a protocol for service level negotiation

which uses Web Services and includes both QoS and security in its

negotiation. Then, we propose to adapt it to ubiquitous

environments by basing its processing on the user profile and by

specifying collaboration with the IEEE 802.21 standard, which

manages the mobility of users and participates in the creation of

theirs profiles. After that, we provide the negotiation flow of this

protocol with security features using WSS, SSL and IPSec. Since,

these security protocols may have an impact on the negotiation

protocol performances; we will also evaluate this impact. Test

results and implementation aspects are also shown in this paper.

Keywords: quality of service, security, service level negotiation,

ubiquitous environment, user profile.

1. Introduction

To provide ubiquitous Internet, mobile terminals such as

laptops, PDAs and smart-phones are equipped with many

connection interfaces and wireless networks are widely

deployed. Thus, mobile users will be able to connect

anytime, anywhere and using different technologies

especially wireless ones. In this context, the need of security

is very increasing. This security could be introduced at

different levels by implementing security protocols such as:

RADIUS, DIAMETER, SSL/TLS, DTLS, IPSec, WEP,

WPA, WPA2, etc. On the other hand, new services such as

telephony over IP and video on demand require quality of

service guarantees. This QoS could be enabled locally, in

each domain, by the use of a QoS model such as IntServ and

DiffServ, and extended to the end-to-end level. Therefore, in

ubiquitous environments, communication will require both

QoS and security guarantees which may depend on the used

access network. In that environment, the challenge is to

simultaneously provide QoS and security for

communications of mobile users without compromising this

mobility. This will allow users to easily change of access

network for mobility reasons or because a new network,

better corresponding to their needs, becomes available. One

solution is to provide mobile users with capabilities of

dynamic negotiation of a service level including QoS and

security. In fact, a communication can involve one or more

domains. So, the mobile user must initiate a service level

negotiation with the different managers of the implied

domains in order to establish an agreement on a service level

that they will undertake to ensure it.

In this context, we had specified a negotiation protocol

which allows the dynamic negotiation of a service level

including simultaneously QoS and security. This negotiation

protocol is based on the use of the Web Services (WS)

technologies in order to provide the different negotiation

parts with interoperability. Thus, the negotiation initiation

can be easily based on the user profile, which will optimize

and automate the negotiation process. Since this protocol can

be used in order to enable service level in ubiquitous

environments for critical communications, the negotiation

flow can be attacked by malicious third party. For example,

these attacks may aim to disable security level needed by the

communication endpoints. Thus, we think that it is very

important to secure the negotiation flow especially in

ubiquitous environments where the negotiation can be

initiated by mobile users connected via wireless access

networks.

In this paper, we present a protocol which enables

negotiating a service level covering both QoS and security in

ubiquitous environments. Then, we study and implement the

security of the negotiation ensured by this protocol. Indeed,

we secure this protocol at different layers using WSS, SSL

and IPSec in order to choose the most adapted solution.

The reminder of this paper is organized as follow: section 2

introduces the negotiation of service level before describing

some results dealing with user profile. In section 3, the

architecture of a protocol for service level negotiation in

ubiquitous environments is detailed. Section 4 recalls the

architecture of Web Services and the main features of the

different protocols used in securing the negotiation protocol.

In section 5, the implementation of the negotiation protocol

is detailed. Section 6 shows test results. The last section

concludes the paper and points out perspectives of this work.

2. General context

In this section, we introduce the service level negotiation.

Then, we present some results relating to user profiles that

help us in the definition of the user profile on which the

negotiation in ubiquitous environments is based.

 10

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

2.1 Negotiation of service level

The increasing need of QoS, security and mobility requires

the dynamic negotiation of service level between users and

service providers. In fact, service offering in IP networks is

defined through a Service Level Agreement (SLA) which is

a contract between the service provider and the user. The

technical parameters of this SLA are grouped together in a

specification called Service Level Specification (SLS).

These parameters, defined in Tequila project [1] (only QoS

parameters), constitute the negotiable part of the contract

between a service provider and a client and can cover

various aspects such as QoS, security and mobility.

To guarantee an end-to-end service level, the managers of

the different domains implied in a service offer must agree

on the SLS parameters. Thus, several protocols were

proposed in order to provide dynamic service level

negotiation such as QoS-NSLP [2], COPS-SLS [3], QoS-

GSLP [4] and DSNP [5]. Generally, these protocols allow

negotiation entities to establish a service level, modify or

terminate it.

To allow service level negotiation in a self-management

environment, we have proposed a protocol that we called

SLNP (Service Level Negotiation Protocol) [6]. In such an

environment, domain managers use different technologies

whose integration is increasingly difficult and expensive. To

overcome this problem, the SLNP protocol provides domain

managers with interoperability by using Web Services

technologies. This interoperability constitutes one of the

major advantages of this negotiation protocol. Furthermore,

the negotiated SLS using SLNP is easily extensible to new

parameters because of its XML based definition.

Moreover, unlike the protocols mentioned above which

negotiate only QoS, SLNP is one of a few protocols ([7] and

[8]) which associates security to QoS to satisfy security

needs which are increasing with the wide deployment of

wireless networks. In addition, it allows SLS negotiation in

ubiquitous environments by basing the definition of the SLS

to negotiate on the user profile parameters and by

collaborating with the IEEE 802.21 standard in order to

provide users’ mobility.

2.2 User profile

A user profile is a set of data relating to a user. This notion

can be used in various contexts. For example the adaptation

of media stream defined by the MPEG-21 [9] is based on the

Usage Environment Description (UED) tool which offers

standardized description of user characteristics and

environment. This description covers four components: user,

terminal, network and environment. In this case, the defined

user profile is quite general, and the contained parameters

could be very interesting in a service level negotiation

context. Another example is the user profile defined when

specifying a “smart” interface that allows users to negotiate

QoS [10]. In this work, the needed QoS level is defined on

the basis of application needs and user characteristics.

However, SLNP combines QoS and security in its

negotiation. Therefore, other parameters relating to security

were specified for the SLS negotiation (Section 3.2.1).

3. A protocol for service level negotiation in

ubiquitous environments

In this section we describe the global architecture of SLNP.

Then, we detail its user profile based functioning that

provide users with negotiation capability in ubiquitous

environments.

 3.1 Global architecture

SLNP was defined to guarantee an end-to-end service level

negotiation in a self management environment [6]. In fact,

the managers of the different domains implied in a service

offer must agree on a SLS by the exchange of negotiation

messages (Negotiate, Revision, Modify, Notify, Release and

Response). These messages enable the establishment, the

modification and the termination of a service level. Each

message contains a SLS element specifying the negotiated

parameters: QoS and security [8] (Figure 1).

Figure 1. XML Schema for the negotiated SLS

The negotiation processing ensured by SLNP is the

following (Figure 2). USER1, which wants to communicate

with USER2, starts a negotiation by specifying the

parameters of the desired SLS. This SLS is negotiated with

the managers of the crossed domains (SE1 and SE2). During

this negotiation, SLNP messages are exchanged between

USER1 and SE2 in both directions. These messages are

generally issued by the negotiation extremities (here. USER1

and SE2), but they are processed and modified, if necessary,

by the intermediate entities (here. SE1). In order to process a

message, an entity must interact with its Resource

Management Function (RMF) that provides it with

information on resources availability and requests

admissibility. When negotiation entities agree on the

negotiated parameters, SLS is established and recorded in

SLS registries. After that, the QoS level will be guaranteed

by configuring the concerned entities (e.g. Edge Routers),

whereas security services will be offered at the network level

using IPSec [11] or at the transport layer using TLS [12] or

DTLS [13]. End-to-end security is configured by

transmitting security information to the endpoints of the

communication to secure [8]. Finally, the established SLS

can be modified or released following USER1 request. The

security impact on QoS could, in some cases, prevent the

normal course of a communication. Hence, it is very

important to consider it when negotiating both these two

aspects [8].

 11

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

Figure 2. Global architecture of SLNP

To accomplish SLS negotiation, a user must have some

expertise. On the other hand, in ubiquitous environments,

SLNP has to manage users’ mobility. Thus, to provide all

users with negotiation capability in ubiquitous environments,

negotiation process is based on the user profile and the user

mobility is managed using the IEEE 802.21 standard [14].

 3.2 User profile based negotiation

User profile is used to store information about the

communication environment: terminal, application, access

network, and user preferences. This information helps to

establish a service level and to modify it if needed. In this

part we detail the selected information constituting the user

profile on which the negotiation is based. Then, we explain

how this negotiation can be performed.

3.2.1 User profile parameters

The selected information are divided into four types:

• User preferences contain three categories: QoS, Security

and Access network. Regarding QoS, preferences are

expressed by the desired level: High, Medium or Low.

For security, user must specify if security is Mandatory,

Desired or Not-necessary. In the two first cases, this user

should select the needed services (Authentication,

Integrity, Confidentiality and No-replay) and the level of

each service (High, Medium or Low). Regarding access

networks, user preferences are expressed by selecting a

criterion for access network choice such as Technology,

Qos, Security or Cost. Then, user will specify how this

criterion is used in network choice.

• Application characteristics are essentially composed of

the Name and the Type of the application that provide the

negotiation layer with information on the minimal needed

QoS level. Since an application can have its own

security, Security information must be among these

parameters.

• Terminal capabilities contain parameters such as Screen

size and Supported codec providing indications on the

required QoS. Moreover, these capabilities include

Performance parameters (CPU and Memory) that give

information about security impact on QoS. They also

cover Security protocols and Cryptographic algorithms

which are supported by the terminal which will help on

defining security parameters to negotiate.

• Access network characteristics are composed of: an

Identifier, an Access technology, a Cost, Qos and

Security parameters. QoS parameters include Latency,

Jitter, Bandwidth and Loss-rate. While security

parameters specify the used Security protocol such as

WEP, WPA or WPA2 that can secure Wi-Fi networks.

3.2.2 SLS negotiation based on user profile

Since it uses Web Services, SLNP operates at the application

level. Negotiation layer is therefore situated at this level, and

composed of (Figure 3): Mapping and Negotiation Decision

Point (MNDP), SLS Generator (SG) and SLNP Entity (SE).

The MNDP is responsible for choosing access network and

for making negotiation decisions. These decisions are based

on user profile parameters and changes that may occur.

Then, when negotiation process should be started, the

MNDP provides SG with SLS parameters defined according

to user profile parameters. These parameters are used by the

SG in creating the SLS element to negotiate, modify or

release. Finally, the SE is composed of a client application

and a negotiation Web Service (WS). The client application

uses the obtained SLS to create the right message in order to

start the corresponding process (Establishment, Modification

or Release) by invoking the negotiation WS of the next

entity.

Figure 3. Overview of the negotiation layer

In the MNDP, the defined QoS level is adjusted taking into

account security impact. Then, if the access network QoS

can’t ensure the required QoS, then the negotiation can not

be started. In this case, if QoS level and/or security level can

be degraded, then degradation is performed. The type of

parameters to degrade (QoS, security, or both) depends only

on the strategies implemented in the MNDP. This

mechanism provides an internal negotiation, which enables

avoiding the loss of time that can be caused by rounds of

negotiations between the mobile user and the rest of the

network. When a negotiation can be started, the MNDP

transmits SLS parameters to the SG. Finally, negotiation

result is returned by the SE to the MNDP that transmits it to

the user.

When changes occur on user profile parameters, the entire

MNDP computations are restarted which can lead to the

modification of the already established SLS.

In ubiquitous environments, a user initiating a negotiation

 12

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

can be connected to Internet via a non secured wireless

access network. Thus, the negotiation flow can be attacked

by a malicious third party in order to modify the needed

service level. To overcome this problem, the SLNP signaling

flow can be protected at different levels. The decision

concerning this protection (SLNP Negotiation Security

Decision) can also be taken by the MNDP which transmits it

to the SE in order to secure the negotiation flow if required

(Figure 3). This decision is also based on the user profile

parameters. The security protocols that can be used in

providing security services for the negotiation flow are

detailed in the next section.

4. Security of Web Services

In this section, we introduce WS architecture and the

standards on which this technology is based. After that, we

describe some security protocols that can be used to provide

WS based applications with security services.

 4.1 Web Services (WS) technology

Web Services were designed to standardize exchanges on the

Internet. Indeed, they allow an application to automatically

find the needed service. The main characteristic of this

technology is the interoperability that allows applications

written in various programming languages (Java, C + +,

Visual Basic, etc.) and running on various platforms (UNIX,

Windows, etc.) to use WS to exchange data via Internet.

4.1.1 WS architecture

The WS architecture is composed of three elements: a

service provider, a service requester and a discovery

mechanism. The provider creates a service and publishes its

address (URI: Uniform Resource Identifier) in a WS

directory. Thus, this last can provide the requester with

information about the desired service (function, URI, etc.).

This allows the requester to connect to the provider in order

to acquire the service description and the call format.

4.1.2 WS standards

Web Services are based on four standards: SOAP (Simple

Object Access Protocol), WSDL (Web Service Description

Language), UDDI (Universal Description Discovery and

Integration) and XML (eXtensible Markup Language).

The SOAP protocol defines a set of rules for structuring the

exchanged messages (Call, Response or Fault). SOAP is

often associated to HTTP (Hyper Text Transfer Protocol)

protocol to achieve request/response exchanges [15].

The WSDL standard allows describing the composition of a

WS and how to access it. This includes details required to

interact with the WS like the protocol to use, the URI, the

performed operations, and the SOAP messages format [16].

To discover and locate a WS, we use a discovery mechanism

like UDDI directories which contain information about WS.

This will enable providers to register their services and

requesters to search and locate the needed services [17].

The above-mentioned standards (SOAP, WSDL and UDDI)

are based on XML. In fact, XML is used to define a

language which can be used to describe all kinds of data and

texts like SOAP messages, WSDL descriptions and UDDI

entries [18].

 4.2 Security of Web Services

Securing Web Services consists in providing security

services (authentication, confidentiality, integrity, etc.) to the

exchanged messages. This security could be introduced

between two endpoints at the transport layer (SSL/TLS) or at

the network level (IPSec). However, these two protocols

become inappropriate to secure WS based exchanges;

because these last could involve many entities where each of

them may need to access some parts of the exchanged

messages while access to other parts may be prohibited.

Hence, security standards for WS were specified (Figure 4).

4.2.1 Web Services Security (WSS) standards

WS Security (WSS) [19] allows protecting SOAP messages

with XML Security. Indeed, WSS provides confidentiality

using XML Encryption and integrity using XML Signature.

XML Signature [20] provides integrity, authenticity and non

repudiation by enabling entities to sign an entire XML

document or some parts of this document. An XML

signature is an XML document containing information on

the signing process (algorithm, key, etc.), references to the

signed parts and the signature value. To process an XML

signature, the transmitter generates a digest for each

referenced part before calculating the digital signature value

using the specified algorithms. Then the signed XML

message is formed by incorporating the signature value, the

different digests and information on used algorithms and

keys. This will allow the recipient to proceed to the

validation of this signature.

XML Encryption [21] provides confidentiality by allowing

the encryption of XML data (document, element or content

of element). The result of encryption is an XML document

containing information on the encryption process (algorithm,

key, etc.) and the encrypted data or references to these data.

The encryption of XML data requires the selection of an

algorithm and a key that will be transmitted to the pair. Then

data are serialized before their encryption using the chosen

algorithm and key. Finally, the message to transmit is formed

by adding the encrypted data or reference(s) to these data

and the information needed by the recipient for the

decryption.

Figure 4. Web Services Security standards

Relying to these two standards, WSS provides SOAP

messages with security. Indeed, it uses: XML Signature to

sign a SOAP message and to transmit the signature, and

XML Encryption to encrypt this message. WSS transmits

security information in the headers of SOAP messages, such

 13

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

as keys (encryption and signature) and security tokens

(Kerberos tickets or X509 certificates) that represent

identities and can be associated to digital signature in order

to ensure authentication of the message origin.

To secure a SOAP message, WSS defines security headers.

In fact, the header of a SOAP message can contain one or

more security headers where each of them provides security

information (signature and/or encryption) on this message to

a recipient that can be the final or an intermediary recipient.

To sign one or more elements in a SOAP message, the

security header, added by the transmitter, must include a

signature which conforms to that specified by XML

Signature. The recipient of a SOAP message must proceed to

the validation of the signature. When validation fails, a Fault

message can be delivered. Otherwise, the signature is

validated and a confirmation may be sent to the transmitter

in the header of the Response message, when this is

required.

To encrypt one or more elements of a SOAP message, the

security header must include references to the encrypted

elements and information on the used key. Then, each

element to encrypt is replaced by the equivalent encrypted

data. The recipient of a SOAP message will identify the

decryption key and the elements to decrypt. Thereafter, each

encrypted element will be decrypted. If decryption fails, then

a Fault message will be sent to the transmitter. Encryption

and decryption are performed according to XML Encryption.

4.2.2 Transport Layer Security (TLS) protocol

The TLS protocol [12] provides communication with end-to-

end security (confidentiality, authentication, integrity and

non repudiation) at the transport layer. It enables securing

TCP based applications such as Web Services because it

must rely on a reliable transport protocol (e.g. TCP). It is

composed of two sub-layers: the TLS Record Protocol at the

lower sub-layer, and four protocols (Handshake, Alert,

Change Cipher Spec and Application Data) at the upper sub-

layer (Figure 5). TLS can be used with several application

protocols like IMAP, POP3 and HTTP on which WS

exchanges are based. To be effective, the TLS protocol aims

at reducing the number of cryptographic parameters to be

negotiated by the way of two concepts: session and

connection [12].

Figure 5. TLS protocol architecture

The record protocol provides security to the higher level

protocols. Indeed, the integrity of the exchanged messages is

provided by using a Message Authentication Code (MAC)

which is computed with a hash function (SHA or MD5), and

the confidentiality is ensured by a symmetric encryption

(RC4, RC2, DES, or AES). At the higher layer, the

handshake protocol allows the communication endpoints to

agree on security parameters, to authenticate themselves and

to exchange keys. The change cipher spec allows changing

cipher specification by replacing the connection current

states by some already negotiated pending states. Finally, the

alert protocol allows an endpoint to detect an error and to

send an informative message to the other endpoint.

4.2.3 IP Security (IPSec) protocol

The IPSec protocol [11] permits protecting the traffic at the

network level. It employs a Security Association (SA) in

order to offer security services to the transported traffic.

IPSec uses two mechanisms: Authentication Header (AH)

and Encapsulating Security Payload (ESP). AH [22]

provides integrity, authentication, and optionally non

repudiation, whereas ESP [23] offers the same services and

also confidentiality. Each mechanism supports two modes:

the transport mode that protects the payload of IP datagram,

and the tunnel mode where the protection covers the IP

header.

An IPSec implementation may use three databases. The

Security Policy Database (SPD) indicates the policies

defining the treatment to apply to each traffic (Discard,

Bypass or Protect), the mechanism, the mode, the options

and the algorithms to use. The Security Association

Database (SAD) contains the SA parameters. The Peer

Authorization Database (PAD) associates the SPD to an SA

management protocol like Internet Key Exchange (IKE). The

IPSec processing for an outgoing packet is the following. If

this packet corresponds to an already created SA, then it is

treated as indicated by this SA. Otherwise, a research in the

SPD is carried out (Figure 6). If the result of this research

indicates a treatment of the type Discard or Bypass, then the

packet is treated consequently. However, if the required

treatment is Protect then the mechanism of SA management

(e.g. IKEv2 [24]) is invoked to create a new SA.

Figure 6. IPSec protocol processing

The security protocols described above can be used to secure

the WS based negotiation protocol. In the next section, we

show some implantation details as well as test results.

5. Implementation of the negotiation protocol

 5.1 Components of the negotiation layer

According to its situation in a negotiation process, an entity

can be initiator, intermediate and/or responder. When an

entity initiates a negotiation process, it needs a Client

Application (CA) that allows it to invoke the WS of the next

entity on the negotiation path. In the case of an intermediate

or a final entity, the client application will permit to notify an

 14

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

initiator in order to inform it about changes in resources

availability or about SLS violation. In addition, a negotiation

entity needs a WS containing different operations (Figure 7)

that will receive various request messages, treat them and

return the suitable answer messages. Indeed, an intermediate

or a final entity is concerned by the negotiation,

modification, release and response operations, whereas an

initial entity is concerned by the notification operation. Thus,

a negotiation entity must contain a negotiation WS and a

negotiation CA which compose what we called SE (SLNP

Entity).

Figure 7. A WSDL representation of the negotiation WS

The negotiation WS has been defined through its WSDL

description represented in Figure 7. This definition covers

the various operations and the types of input and output

messages associated to each of these operations. Indeed, the

structure of each message type has been defined through an

XML schema using the XSD (XML Schema Definition)

language [25]-[26]. Since each message contains a SLS that

specifies the negotiated service level, the generic structure of

this SLS has also been defined using XSD (Figure 1).

The negotiation CA is used by the initiator to request the

establishment or the modification of a service level by taking

the SLS element as argument. In addition, it enables the SLS

cancellation by taking its identifier as argument.

In ubiquitous environment, the negotiation process is

initiated by the user. Thus, this initial negotiation entity will

also include a MNDP and a SG which enable defining SLS

parameters and generating the corresponding SLS element.

 5.2 Implementation of the negotiation layer

In our SLNP implementation, we chose to use Tomcat of

Apache as an application server and Axis as SOAP protocol

implementation. The treatments included in: the MNDP, the

SG, the various operations of the negotiation WS and the

negotiation CA are written in Java programming language.

This choice is explained by the fact that Tomcat and Axis are

two open source projects. In addition, we dispose of two

interesting tools. The first is WSDL2Java that permits to

generate Java classes from WSDL description and the

WSSD (Web Services Deployment Descriptor) file that

facilitates the deployment of WS. The second interesting

option is the ability to view the exchanged SOAP messages

between the negotiation entities using SOAP Monitor or

TCP Monitor.

In the case of the establishment of a SLS in ubiquitous

environment, the MNDP is responsible for defining SLS

parameters on the base of the user profile parameters, when a

negotiation can be started (Figure 8). Indeed, the included

treatments are based on the user profile parameters and

cover: the access network choice, the definition of QoS

parameters, the definition of security parameters and the

impact estimation when security services are required, and

finally the definition of the needed SLS parameters when

negotiation can be started. Then the SG (SLS Generator) is

in charge of creating the corresponding SLS element.

After that, the negotiation CA of the mobile user creates a

Negotiate message with the already generated SLS. This

message is used to invoke the negotiation operation of the

next entity negotiation WS (Figure 9). After that, according

to the returned message, the mobile user will: record the

established SLS locally if the requested SLS is accepted

(Response-Ack), accept or refuse the proposed alternative

(Revision), or end the negotiation process (Response-Nack).

The SLS establishment initiated by a mobile user involves all

the negotiation parts. Indeed, the sent Negotiate message will

transit through all the intermediate entities and reach the

final entity using a recursive call to theirs negotiation

operations.

To optimize the implementation of the negotiation protocol,

a negotiation entity must contain a single negotiation

operation that may be invoked when it is an intermediate or a

final entity. Thus, the processing of this operation must

cover both these two use cases (Figure 10).

Figure 8. A general diagram of the MNDP processing

In the case of an intermediate entity, the received Negotiate

message is modified according to QoS and security

information provided by the RMF. Then this message is

transmitted in the direction of the final entity by calling the

negotiation operation of the next entity WS. The result of

this invocation (Response or Revision) will be returned to

 15

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

the caller. When it is a final entity, a decision must be taken

(accept, reject or propose an alternative) and the

corresponding message (Response-Ack, Response-Nack or

Revision) must be returned to the caller in order to transmit

it to the negotiation initiator. When the SLS is accepted, it is

recorded locally by each negotiation entity.

 5.3 Implementation of the negotiation flow security

The security services that we want to ensure for the SLNP

negotiation flow can be provided by various security

protocols at different levels of the TCP/IP protocol stack.

First, the SOAP messages exchanged during SLS negotiation

are secured using WSS which operates at the application

layer. So, we use the WSS4J library that implements the

WSS specification in the Tomcat-Axis environment. In fact,

the WSS4J API allows us to define different security

operations to apply to a SOAP message using handlers

implemented in Java. These handlers are transparent to the

WS based negotiation protocol and control the creation and

the use of secured SOAP requests and responses. The calls to

these handlers must be placed in the deployment descriptors

of WSS4J on each negotiation entity to describe the security

measures to be applied. It is very important to note that an

initial or a final entity is concerned with one set of security

properties associated to the negotiation exchange with the

next or with the previous entity, while an intermediate entity

is concerned by two sets of security properties: one for the

negotiation exchange with the previous entity and another

one for that with the next entity.

Then, to secure the negotiation flow with SSL/TLS, we

chose HTTPS because it is easily usable with the Tomcat

server.

Figure 9. A general diagram of the negotiation CA

processing

In fact, we created a connector which allows the application

server of a negotiation entity to support SSL. This requires

changing the Tomcat server configuration (server.xml) by

adding a connector that associates SSL to a port (eg. 8443)

in order to exchange securely the negotiation messages.

Then, the URI addresses, allowing each entity to call the

next one, are modified to enable the negotiation WS

invocation through the ports secured with SSL.

Finally, we secure the negotiation at the network level by

configuring IPSec on each entity. To do this, we opted for an

IPSec implementation situated at the OS kernel. Indeed, on

each entity, we installed two packages: the ipsec-tools

package is used to manage the SPD and the SAD, whereas

the racoon package implements the key management

protocol IKE which permits establishing SA between

negotiation entities. Each interaction between two adjacent

negotiation entities is secured in the two directions using two

SA.

Figure 10. A general diagram of the negotiation operation

processing

6. Tests and results

 6.1 Testbed architecture

To perform local tests, we use an IBM system equipped with

a Pentium IV, 2.5 GHZ processor and a 1GB RAM. On this

system, we configure three negotiation entities. Each entity

is composed of a negotiation WS deployed on a Tomcat

server and a negotiation CA. The interactions of each entity

with its RMF are simulated with a MySQL database. We

note that for WSS and SSL tests, the three negotiation WS

can be deployed on the same Tomcat server because each

one is identified through its URI. Whereas to test IPSec

security we have to create a virtual system for each entity

because we need IP addresses to distinguish them and to

create SA.

For each implemented security, we visualize the exchanged

messages to check its good functioning. Then, we conduct a

set of measurements of the two performances parameters of

the protocol: the messages size and the negotiation time.

 16

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

 6.2 Test and evaluation of WSS security

The WSS security impact on SLNP performances is

measured based on several scenarios that may correspond to

real needs. The identified five scenarios are represented in

Table 1.
Scenario WSS security features

S0 No security

S1 Simple authentication (username token and password)

S2 Strong authentication (encrypted username token and timestamp)

S3 Strong authentication and integrity (message signature)

S4 Strong authentication and confidentiality (message encryption)

S5 Strong authentication, integrity and confidentiality

Table 1. Various WSS security scenarios

Tests are conducted for a single round negotiation process

with well-defined SLS parameters for the request message

which is presented in Figure 11 and Figure 12 respectively in

the case of a non secured exchange and in the case of a

secured exchange following the security policy used in S3.

Figure 11. A SOAP message exchanged in the scenario S0

Figure 12. A SOAP message exchanged in the scenario S3

The size of the exchanged messages is evaluated using TCP

Monitor, while the mean negotiation time is measured on a

sample of 1000 measurements (Table 2).

Scenario Message size (Bytes) Mean negotiation time (ms)

S0 3749 66

S1 4427 82

S2 7300 151

S3 8710 205

S4 9235 164

S5 10623 217

Table 2. Impact of WSS on the protocol performances

We note that the size of SOAP messages increases when the

negotiation exchanges are secured with WSS (Figure 13.a).

This is explained by the introduction of security headers

whose size depends on the provided security services and the

mechanisms put in place. Indeed, a simple authentication

increases slightly the message size because security header

contains only the username token. However, the strong

authentication increases almost twice the size of the same

message (95%) because the security header includes all the

information required for the encryption of the username

token and the timestamp such as algorithms and keys. This

message size increases by 183% when confidentiality and

integrity are provided in addition to the strong

authentication.

The negotiation time also increases when security is

provided (Figure 13.b). This is due to security treatments

performed by the different entities such as encryption,

decryption, performing signature, validating signature, etc.

Indeed, a simple authentication increases by 30% the

negotiation time, while a strong authentication increases by

180% this time because it requires the encryption of the

username token and the timestamp elements of the security

header.

We note that the periodic peaks that can be observed on the

curves of the negotiation time measurements (Figure 13.b

and Figure 13.d) are explained by the memory management

inside the Java Virtual Machine (the garbage collector).

 6.3 WSS Security Vs SSL and IPSec Securities

In this part we compare the impact of different security

protocols on the performances of the negotiation protocol.

To check the SSL security implementation, the exchanged

messages can be viewed using the debug mode of the

Tomcat server (SOAP Monitor and TCP Monitor cannot be

used). Whereas IPSec security can be verified using

TCPdump. To measure the impact of these two security

protocol on the SLNP performances, we use the same

evaluation criteria (i.e. size of the exchanged messages

and the time spent in the negotiation) under the same

conditions (same request message, one round

negotiation, system characteristics, CPU and RAM

consumption, sample of 1000 measurements, etc.).

In order to compare performances of WSS, SSL and

IPSec (Table 3), we test security implementations with

very close security levels. That means that, with all

security protocols, we choose very similar algorithms

 17

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

for each security service.

Security

type

Security features Impact on performances

No

security

Authentication : Null

Integrity : Null

Confidentiality : Null

Message size: 4560 octets

Mean negotiation time: 238 ms

WSS

Authentication : certificates

Integrity : SHA1

Confidentiality : AES-128-CBC

Message size: 11846 octets

Mean negotiation time: 457 ms

SSL

Authentication : certificates

Integrity : SHA1

Confidentiality : AES-128-CBC

Message size: 4929 octets

Mean negotiation time: 243 ms

IPSec

Authentication : certificates

Integrity : SHA1

Confidentiality : AES-128

Message size: 5040 octets

Mean negotiation time: 267 ms

Table 3. Comparative impact of security on performances

Figure 13.c shows that the size of the exchanged packets

secured with SSL (4929 bytes) and IPSec (5040 bytes) is

very close to that of an unsecured packet (4446 bytes), and is

much less than that measured for a WSS security (11846

bytes). This can be explained by the fact that the IPSec and

SSL protocol overheads are less important than those

introduced by WSS. In addition, IPSec and SSL securities

require a negotiation phase, during which IPSec associations

and SSL connections are established, that allows the two

communication endpoints to configure security parameters

such as algorithms and keys. Whereas these security

parameters are usually transmitted or referenced in the

exchanged messages if WSS is employed.

Concerning the negotiation time (Figure 13.d), we note that

time measured for SSL (243 ms) and IPSec (267 ms) secured

negotiations is also very close to that of an unsecured one

(238 ms). However, for the same security level, this time is

equal to 457 ms when security is ensured by WSS. In fact,

the treatments required for security services (encryption,

decryption, signature computation, etc.) need more time

when they are executed at application layer than that when

they are performed at network or transport level.

For these tests, the configured IPSec security is characterized

by the use of the AH mechanism to offer integrity and the

ESP mechanism to provide confidentiality. In fact, we could

use ESP in offering these two services, but we opted for this

configuration because it is more robust. Indeed, the integrity

offered by ESP has a slightly inferior quality than provided

using AH, since it takes into account less IP header fields.

Then, it can be very interesting to measure separately the

impact of the AH and ESP mechanisms on the performances

of SLNP. The results show that, for the same integrity level,

the performances are almost similar. For example, the mean

time of negotiation secured with IPSec is equal to: 242 ms

when AH is used and 254 ms when ESP is employed.

 6.4 Negotiation time in function of entities number

The above-shown negotiation time mesurements are

performed using only three entities: initial, intermediate, and

final. Without security, these measurements show a mean

negotiation time equal to 66 ms for a single round. Since this

time will vary in function of the number of the implied

negotiation entities, we tried to evaluate this time according

to the number of negotiation entities. We found that time

spent in negotiation is proportional to the number of

negotiation entities with a factor of 35.5 (Figure 14).

Figure 14. Evolution of the negotiation time

7. Conclusion

In this paper, we have described the architecture and the

functioning of a negotiation protocol enabling QoS and

security guaranties for mobile users’ communications in

ubiquitous environments. Then we have presented some

protocols which can be used to secure WS based

applications. These protocols are then used in securing the

already introduced WS based negotiation protocol (SLNP).

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

Number of SLNP entities

A
v
e
ra

g
e
 S

L
N

P
 n

e
g
o
ti
a
ti
o
n
 t
im

e
(m

s
)

SLNP negotiation time evolution

Theoretical

Measured

Y=35.5*(X-1)

Figure 13. Impact of security on the performances of the negotiation protocol

 18

International Journal of Communication Networks and Information Security (IJCNIS) Vol. 1, No. 2, August 2009

After that, these security types were evaluated in terms of

negotiation performances (size of exchanged messages and

time spent in a negotiation process). From these tests, we

conclude that for equivalent security levels, performance of

the negotiation protocol secured with SSL or IPSec are

significantly better than those secured using WSS.

In fact, one of the main benefits of WSS is the high degree

provided granularity. Indeed, if we need to secure a SOAP

message transiting through several Web Services by keeping

confidential for some of these WS but not for others, WSS is

the ideal solution; because SSL and IPSec provide end-to-

end security. In the case of SLNP, messages are transmitted

from one entity to another and there is no need to the

granularity which can be provided by WSS. Thus, we can

use quite SSL or IPSec to secure SLNP. The use of WSS

will be allowed if the negotiation protocol performance is

not considered or if the use of SSL or IPSec is impossible.

The results presented in this paper are obtained by

conducting tests on entities involved in a single negotiation

(i.e. at a given moment, each negotiation entity has only one

request to treat). Thus, it would be very interesting, in the

future, to evaluate the scalability of our negotiation protocol.

References

[1] D. Goderis, and D Griffin, “Attributes of a service level

specification template,” IETF, draft-tequila, October

2003.

[2] S.V. Den Bosh, G. Karagiannis, and A. McDonald,

“NSLP for Quality of Service Signaling,” IETF Internet

draft, draft-ietfnsis-qos-nslp-06, February 2005.

[3] T. M. T. Nguyen, and al., “COPS-SLS: A Service Level

Negotiation Protocol for the Internet,” IEEE

Communication Magazine, pp. 158-165, May 2002

[4] Ambient Networks Consortium, “Connecting Ambient

Networks – Architecture and Protocol Design (Release

1),” Del. D 3.2, March 2005.

[5] J. C. Chen, and al., “Dynamic Service Negotiation

Protocol (DSNP) and Wireless Diffserv,” Proc. ICC,

New York, NY, pp. 1033-1038, April 2002.

[6] N. Mbarek, F. Krief, and M. A. Chalouf, “A negotiation

Protocol Using Web Services in a Self-Management

Framework,” Global Information Infrastructure

Symposium, GIIS 2007, Moroco, pp. 93-98, July 2007.

[7] S. Duflos, and al., “Considering Security and Quality of

Service in SLS to improve Policy-based Mabagement

of Multimedia services,” ICN-07, Martinique, April

2007.

[8] M. A. Chalouf, X. Delord, and F. Krief, “Introduction of

Security in the Service Level Negotiated with SLNP

Protocol,” Second IFIP International Conference on

New Technologies, Mobility ans Security, NTMS

2008, Morocco, November 2008.

[9] ISO/IEC TR21000-7:2007, “Information technology –

Multimedia Framework (MPEG-21) – Part 7: Digital

Item Adaptation”, 2007.

[10] Z. Jrad, and al., “A user assistant for QoS negotiation in

a dynamic environment using agent technology”, Proc.

WOCN-05, UAE, Mars 2005.

[11] S. Kent, and K. Seo, “RFC: Security Architecture for

Internet Protocol,” Request For Comments 4301,

December 2005.

[12] T. Dierks, and E. Rescola, “RFC: The Transport Layer

Security (TLS) Protocol Version 1.1,” Request For

Comments 4346, April 2006.

[13] E. Rescola, and N. Modadugu, “RFC: Datagram

Transport Layer security (DTLS)”, Request For

Comments 4347, April 2006.

[14] IEEE P802.21/D10.0, “Draft Standard for Local and

Metropolitan Area Networks: Media Independent

Handover Services”, LAN MAN Standards Committee

of the IEEE Computer Society, April 2008.

[15] D. Box, and al., “Simple Object Access Protocol

(SOAP) 1.2,” W3C Note, April 2007.

[16] E. Christensen, and al., “Web Services Description

Language (WSDL) 1.1,” W3C Note, March 2001.

[17] T. Bellwood, and al., “Universal Description, Discovery

and Integration (UDDI) specification,” Technical

report, OASIS Committee, July 2002.

[18] T. Bray, and al., “Extensible Markup Language (XML)

1.0 (Fifth Edition), W3C Recommendation, November

2008.

[19] A. Nadalin, and al., “Web Services Security

Specification 1.1,” OASIS Standard Specification,

OASIS Committee, February 2006.

[20] M. Bartel, and Al., “XML Signature Syntax and

Processing (Second Edition),” W3C Recommendation,

June 2008.

[21] T. Imamura, and Al., “XML Encryption Syntax and

Processing,” W3C Recommendation, December 2002.

[22] S. Kent, “RFC: IP Authentication Header,” Request For

Comments 4302, December 2005.

[23] S. Kent, “RFC: IP Encapsulating Security Payload,”

Request For Comments 4303, December 2005.

[24] C. Kaufman, “RFC: Internet Key Exchange IKEv2

Protocol,” Request For Comments 4306, December

2005.

[25] H. S. Thompson, and Al., “XML Schema Part 1:

Structures Second Edition,” W3C Recommendation,

October 2004.

[26] P. V. Biron, and Al, “XML Schema Part 2: Datatypes

second Edition,” W3C Recommendation, October

2004.

