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A model for describing the dynamics of a pure electron plasma in the presence of a population of
massive charged particles is presented. The model couples the fluid dynamics of the pure electron
plasma with the dynamics of the massive particle population, the latter being treated kinetically.
The model is shown to possess a noncanonical Hamiltonian structure and to preserve invariants
analogous to those of the two-dimensional (2D) Euler equation for an incompressible inviscid fluid,
and of the Vlasov equation. The Hamiltonian structure of the model is used to derive a set of sta-
bility conditions for rotating coherent structures of the two-species system, in the case of negatively
charged massive particles. According to these conditions, stability is attained if both the equilib-
rium distribution function of the kinetic species and the equilibrium density of the electron fluid
are monotonically decreasing functions of the corresponding single-particle energies in the rotating
frame. For radially confined equilibria near the axis, the stability condition corresponds to the
existence of a finite interval of rotation frequencies for the reference frame, with the upper bound
determined by the presence of the kinetic population.

The dynamics of single-species non-neutral plasmas
has been studied extensively in the literature [1, 2]. We
consider here the behavior of a multi-species non-neutral
plasma, and more specifically an electron plasma, sub-
ject to a uniform and constant magnetic field, and in the
presence of a population of massive negatively charged
particles.

An example of a multispecies negatively charged non-
neutral plasma is the electron-antiproton plasma used as
an intermediate step in the production of trapped antihy-
drogen [3]. The experimental investigation of the dynam-
ics of a non-neutral complex plasma, and in particular a
plasma of electrons contaminated with a small fraction
of sub-micrometric charged dust particles is the subject
of the “DuEl” project [4, 5].

Under conditions of strong magnetization of the elec-
tron component, which are typical of the experiments
performed on non-neutral plasmas confined in Penning-
Malmberg traps, a cold fluid description of the electron
dynamics is adopted, in which electron inertia as well
as temperature effects are neglected [1]. On the other
hand, the dynamics of massive charged particles occurs
on slower time scales, since their charge to mass ratio is
orders of magnitude smaller than the corresponding ra-
tio of the electrons. Moreover, at relatively low magnetic
field strengths regimes can be found where ions are only
weakly magnetized.

Under these circumstances, the simplest model to de-
scribe these multi-species systems consists of a hybrid
system which couples, through Poisson’s equation, a ki-
netic equation for the massive species with a fluid equa-
tion for the electron guiding centers. A further simplifi-
cation that can be adopted for these systems consists of
considering a 2D dynamics. For pure electron plasmas in
Penning-Malmberg traps the high-frequency longitudinal
electron motion can be averaged out for a wide range of
operational regimes, and the electron plasma dynamics

becomes isomorphic to that of a 2D incompressible invis-
cid fluid, where the fluid vorticity corresponds to the elec-
tron density and the fluid stream function to the electro-
static potential [6, 7]. A 2D multi-fluid model turns out
to be appropriate also for a cold non-relativistic electron-
ion system at high magnetic field strengths [1], while a
kinetic treatment for the dynamics of the ion population
is required at moderate values of the confining field. The
hybrid model we present here can obviously be general-
ized to account for multiple negative ion species treated
kinetically. Furthermore, the model can also be applied
to the case of a positron plasma in the presence of kinetic
populations of positive ions (see, e.g., Ref. [8]).
On the basis of the above assumptions we consider a

plasma contained in a cylindrical domain of radius a and
length Lz and we use cylindrical coordinates (r, θ, z),
with z along the constant and uniform magnetic field,
B = B0ẑ. Our model equations are then given by

∂ne

∂t
+ [φ, ne] = 0, (1)

∂f

∂t
+ v · ∇f +

[ qI
M

(

−∇φ+
v

c
×B

)

+ g

]

·
∂f

∂v
= 0, (2)

∆φ = 4π

(

ene − qI

∫

d2vf

)

. (3)

In the above system ne indicates the guiding center elec-
tron density, f(r, θ, vr, vθ) is the distribution function
of the massive particle population (integrated over vz),
φ is the electrostatic potential, −e the electron charge,
qI < 0 the charge of the massive particle, M its mass,

g = −g(sin θr̂ + cos θθ̂) the acceleration due to gravity
(the latter may become non-negligible for heavy ions), c
the speed of light and d2v = dvrdvθ the surface element
in velocity space. Finally, we defined the bracket [f, h]
between two functions f and h of the spatial variables
(r, θ) as [f, h] = (c/B0r)(∂rf∂θh− ∂θf∂rh).
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Equation (1) represents a continuity equation for the
electron guiding center density, which is advected by the
incompressible E × B flow. Equation (2) is a Vlasov
equation that governs the evolution of the massive parti-
cle population, whereas Eq. (3) is the Poisson’s equation
determining the electrostatic potential.
Equations (1)-(3) form a Hamiltonian system assuming

that boundary terms vanish when integrating by parts.
The Hamiltonian functional H and the Poisson bracket
{, } are given by

H(ne, f) =

∫

dAd2v

(

M
v2r + v2θ

2
+Mgr sin θ

)

f

−
1

8π

∫

dAφ∆φ,

(4)

and

{F,G} =

∫

dA
ne

e
[Fne

, Gne
] +

∫

dAd2vf [Ff , Gf ]v, (5)

respectively. In Eq. (5), the subscripts of F and G in-
dicate functional derivatives, whereas dA = rdrdθ is the
surface element. The bracket [f, h]v in Eq. (5) is defined
by

[f, h]v =
1

M

[

∂f

∂r

∂h

∂vr
−

∂f

∂vr

∂h

∂r
+

1

r

∂f

∂θ

∂h

∂vθ
−

1

r

∂f

∂vθ

∂h

∂θ

+

(

vθ
r

+
qIB0

Mc

)(

∂f

∂vr

∂h

∂vθ
−

∂f

∂vθ

∂h

∂vr

)]

.

(6)

Note that in Eq. (4) the Hamiltonian H is defined as an
energy per unit length. It can be easily verified that the
dynamical equations (1) and (2) are obtained from the
expression ∂χ/∂t = {χ,H} which governs the evolution
of a generic Hamiltonian system, by replacing χ with
ne and f , the Hamiltonian functional with Eq. (4), the
Poisson bracket with Eq. (5), and making use of the
Poisson’s equation (3). Note that the bracket in Eq. (5)
is the direct sum of two independent Poisson brackets,
namely those for the incompressible 2D Euler equation
[9] and for the Vlasov equation [10, 11]. Consequently it
qualifies as a Poisson bracket, and in particular it satisfies
the Jacobi identity.
This bracket possesses two independent families of

Casimir invariants, that is functionals F , such that
{F,C} = 0 for all functionals C(ne, f). These families
are given by

C1 =

∫

dAF(ne), C2 =

∫

dAd2vG(f), (7)

with F and G arbitrary functions. The invariants include,
as particular cases, the familiar invariants of the 2D Eu-
ler incompressible equations, such as the enstrophy, and
those of the Vlasov equation, such as the entropy and the
total number of particles.
We remark that further examples of Hamiltonian hy-

brid fluid-kinetic models, accounting for coupling via the

current density, or via the pressure, have been discussed
in Refs. [12–14].
The Hamiltonian structure of the model is exploited

to obtain stability conditions for equilibria of the hybrid
system (1)-(3) using the Energy-Casimir method (see,
e.g., Refs. [15–18]). We restrict the analysis to the case
of two species rotating azimuthally with the same uni-
form and constant frequency ω. Equilibria of interest are
then those which are stationary in the rotating frame. In
order to apply the Energy-Casimir method, the Hamil-
tonian structure of the model equations in the rotating
frame is required. A convenient way to accomplish this is
to look for a new set of field variables, in terms of which
the Poisson bracket keeps the same form, whereas addi-
tional contributions accounting for the change in the ref-
erence frame appear in the Hamiltonian. The advantage
of this approach is that the Casimir invariants required
for the application of the method are already available,
since they only depend on the Poisson bracket. How-
ever, this procedure is in general non trivial, because the
change to the rotating frame θ′ = θ− ωt is performed at
the level of the single-particle phase space, whereas the
Poisson bracket (5) is defined on the algebra of function-
als of the field variables.
Since the transformation of coordinates to the rotat-

ing frame is time-dependent, it is necessary to introduce
a new evolution parameter and extend the algebra of ob-
servables to the set of functionals U(ne, f, t, k), where
t is the time dynamical variable and k its canonically
conjugate variable with respect to the extended Poisson
bracket

{F,G}t = {F,G}+
∂F

∂t

∂G

∂k
−

∂G

∂t

∂F

∂k
. (8)

Consequently, we have to consider in the extended phase
space the new Hamiltonian Ht = H + k. We then look
for a new set of dynamical variables (ñe, f̃ , t̃, k̃) such that

ñe(r, θ
′) = ne(r, θ

′ + ωt), k̃ = k +W (ne, f),

f̃(r, θ′, vr, vθ) = f(r, θ′ + ωt, vr, vθ), t̃ = t,
(9)

where W (ne, f) is a functional determined by the con-
straint that the bracket (5) is invariant with respect to
the change of variables. The mapping (9) determines the
following transformation for the derivatives of the func-
tionals:

Fχ = F̃χ̃ +Wχ
∂F̃

∂k̃
,

∂F

∂k
=

∂F̃

∂k̃
,

∂F

∂t
=

∂F̃

∂t̃
+ ω

(

∫

dA
∂ñe

∂θ′
F̃ñe

+

∫

dAd2v
∂f̃

∂θ′
F̃f̃

)

,

(10)

where χ is either ne or f . Inserting the expressions (9)-
(10) into Eq. (5), the bracket turns out to be invariant if
W = ωPθe+ωPθI , where Pθe = −

∫

dA(eB0/2c)r
2ne and

PθI =
∫

dAd2v[(qIB0/2c)r
2 +Mrvθ]f . As expected, Pθe



3

and PθI correspond to the total canonical angular mo-
menta of massless electrons and of the ions, respectively.
We restrict the stability analysis to equilibria which

are independent on θ. Consequently, from now on we
consider physical situations where the gravitational force
may be neglected. This approximation also removes the
time dependence of the Hamiltonian in the new reference
frame. The assumption is valid also for heavy ions but
under microgravity conditions [19].
According to the Energy-Casimir method, equilibria

of the system correspond to extremals of the free en-
ergy functional F given by the linear combination of the
Hamiltonian with the Casimirs of the Poisson bracket.
Since we consider now a time-independent Hamiltonian
in the new reference frame, we omit the contribution of
k. For ease of notation we also drop the tilde symbol for
the new variables. Stationary equilibria in the rotating
frame therefore correspond to extremals of [1]

F = H − ωPθe − ωPθI + C1 + C2, (11)

i.e., to solutions of

Fne
= 0, Ff = 0. (12)

These are given by

F ′(ne) = −he, G′(f) = −hI , (13)

where the prime denotes the derivative with respect to
the argument of the function and where he = −eφ +
ω(eB0/2c)r

2 and hI = Mv2/2 + qIφ − ω[(qIB0/2c)r
2 +

Mrvθ] indicate the single particle energies in the rotating
frame of massless electrons and of the contaminant parti-
cles, respectively. Assuming that the arbitrary functions
F ′ and G′ are invertible, the relations (13) imply that,
at equilibrium, ne = neeq(he) and f = feq(hI), where

neeq = (−F ′)−1 and feq = (−G′)−1.
According to the Energy-Casimir method, energy sta-

bility (also called formal stability) of the equilibria ob-
tained by setting δF = 0, is guaranteed if δ2F , evaluated
for such equilibria, has a definite sign for all field varia-
tions. We recall that this type of stability implies linear
stability (see, e.g. Refs. [17, 18])
We consider field variations δne and δf periodic with

respect to θ and vanishing at r = 0 and r = a. We
also assume that δf tends to zero for vr and vθ going to
infinity. The second variation δ2F can then be computed
as

δ2F (neeq, feq) =

∫

dA

(

|∇δφ|2

8π
+ F ′′(neeq)|δne|

2

)

+

∫

dAd2vG′′(feq)|δf |
2,

where ∆δφ = 4π(eδne − qI
∫

d2vδf). The second vari-
ation of the free energy functional is then positive if
F ′′(neeq) ≥ 0 and G′′(feq) ≥ 0.

Using Eq. (13) and the relations neeq = (−F ′)−1 and

feq = (−G′)−1, a set of stability conditions is therefore
given by

dneeq

dhe
≤ 0,

dfeq
dhI

≤ 0. (14)

In the limit of single-species plasmas, the inequalities (14)
separately correspond to the stability condition for a cold
pure electron plasma equilibrium in the fluid guiding-
center description and for a kinetic equilibrium of a pop-
ulation of massive ions, respectively [1, 20, 21].
Defining n̄e(r) = neeq(he), f̄(r, vr, vθ) = feq(hI) and

n̄I(r) =
∫

d2vf̄(r, vr, vθ). Conditions (14) imply for con-
fined equilibria with monotonically decreasing density
profiles (n̄′

e(r) ≤ 0, n̄′
I(r) ≤ 0) that

ω ≥
4π

r2
c

B0

[
∫ r

0

dss(en̄e(s)− qI n̄I(s))

]

, (15)

and

ω− ≤ ω ≤ ω+, (16)

respectively, with

ω± =
ωci

2

[

1±

(

1 +
16πqI
Mω2

cir
2

∫ r

0

dss(en̄e(s)− qI n̄I(s))

)1/2
]

,

(17)
where ωci = |qI |B0/Mc is the ion cyclotron fre-
quency and use has been made of the relation φ′(r) =
(4π/r)

∫ r

0
ds(en̄e(s) − qI n̄I(s)), obtained from Eq. (3)

imposing the condition φ′(0) = 0.
Close to the axis (so that n̄e(r) ≈ n̄e(0) and n̄I(r) ≈

n̄I(0)), the reality condition for ω± corresponds to
the self-field parameter 4(ωDI + ωDe)/ωci to be less
than unity, with ωDI = 2π|qI |cn̄I(0)/B0 and ωDe =
2πecn̄e(0)/B0, the ion and electron diocotron frequen-
cies, respectively. In particular, if 4(ωDI+ωDe)/ωci ≪ 1,
the conditions (15) and (16) reduce, at the leading order,
to

ω ≥ ωDe + ωDI , (18)

ωDe + ωDI ≤ ω ≤ ωci. (19)

Clearly, the condition (18) is implied by the condition
(19). The latter relation identifies a finite range of fre-
quencies ω for which the stability condition can be sat-
isfied for confined equilibria. When the ion species acts
as a small contamination of a pure electron plasma, the
condition 4(ωDI +ωDe)/ωci ≪ 1 reduces to 4ωDe ≪ ωci,
i.e., n̄e(0) ≪ (1/8π)|qI |B

2
0/eMc2. This corresponds to

a modified Brillouin electron density limit, which de-
pends also on the charge and the mass of the contam-
inant species. In the opposite case, n̄e(0) = 0, the usual
Brillouin density limit for the negative ion species is re-
trieved, n̄I(0) ≪ (1/8π)B2

0/Mc2.
An important example of stable confined equi-

librium can be obtained from an electron den-
sity and an ion distribution function corresponding
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to neeq(he) = n̄e(0) exp(−he/κT ) and feq(hI) =
(n̄I(0)M/2πκT ) exp(−hI/κT ), respectively, where κ de-
notes the Boltzmann constant and T is a constant tem-
perature. For this case, the conditions (14) are clearly
satisfied and the confinement condition (19) follows re-
quiring n̄′

I(r) = (n̄I(0)/κT )(−ω2Mr + ω|qI |B0r/c −
|qI |φ

′) exp(−hI/κT ) to be negative. The stability and
confinement of non-neutral plasmas in thermal equilib-
rium have been discussed in Ref. [22] and confinement
conditions analogous to Eq. (19) for kinetic multi-species
thermal plasmas have been described in Ref. [1]. In the
hybrid model presented here, where the electron species
is treated as a massless fluid, for stable equilibria with
small self-field parameter the confinement condition for
the negative ion species is sufficient to guarantee the con-

finement of both species.
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Instrum. 85, 02B909 (2014).

[6] C. F. Driscoll and K. S. Fine, Phys. Fluids B 2, 1359
(1990).
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