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Abstract This paper deals with a subset of lookback options known as cliquet options.

The latter lock in the best underlying asset price over a number of prespecified dates

during the option life. The specific uses of these contracts are analyzed, as well as two

different hedging techniques. Closed form valuation formulae are provided under

standard assumptions. They are easy to implement, very efficient and accurate compared

to Monte Carlo simulation approximations.
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1 Introduction

The term « cliquet option » is ambiguous. It may refer either to a subset of the lookback

options characterized by a small number of fixing dates that are not necessarily uniformly

spaced, or to portfolios of forward start options. The latter are also known as reset strike

options or ratchet options, to avoid confusion. This paper deals with the former lookback-

type contract, that does not raise the same pricing and hedging issues as reset strike

options. Cliquet options, in this sense, are heavily traded in the markets, especially as

building blocks for many structured products. A lot of capital-guaranteed investments

provide a participation in an index based on a percentage of the best recorded index value

over a number of contractually prespecified dates. There are also a lot of equity-linked

bonds whose rate of interest is based on a similar formula.

Generally speaking, cliquet options are appealing to investors because they inherit, at

least partially, the very attractive payoff of lookback options, while rendering it both

more affordable and more flexible, thanks to the decrease in the updating frequency of the

running extremum of the underlying asset price, as well as to the possible partial and non

uniform spanning of the option life. They also have many advantages compared to other

options that allow their holders to « lock in » positive intrinsic values prior to expiry,

such as ladder or shout options. In particular, unlike ladder options, they do not cap the

greatest possible intrinsic value from the start, and they do not require their holders to

have precise anticipations on a set of target price increases in the underlying asset.

However, cliquet options raise a number of pricing and hedging issues. Dynamic hedging

is costly because of sharp delta increases during the option life and oscillations of gamma

between fixing dates. Pure static hedging is not possible. A semi-static strategy can

replicate the option payoff but it is difficult to translate it into a reliable fair price for the

option because it is heavily exposed to volatility risk. Finally, it is not easy to come up

with a convenient analytical solution of the pricing problem because of quickly increasing

dimension.

This paper attempts to address these various issues. In Section 2, the specific properties of

cliquet options are highlighted, in comparison with alternative contracts traded in the

markets such as lookback, ladder and shout options. Then, the difficulties associated with

dynamic hedging are briefly analyzed, leading to the presentation of a semi-static rollover

strategy to replicate the cliquet option payoff. In Section 3, closed form valuation

formulae are provided, first in dimension 3 and 4, then for any number of fixing dates.

The numerical implementation of these formulae is dealt with in the remainder of Section

3, while Section 4 provides a proof of some of the analytical results in Section 3.
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2 Specific properties of cliquet options

The idea of locking-in positive intrinsic values prior to the option’s expiry is embedded in

a number of European-type financial options. The type of contract that provides this

feature to its fullest extent is the lookback option, whose payoff at expiry T writes (for a

call with fixed strike) :

 
0
sup

t T
S t K



 

     

(2.1)

where  , 0,S t t  is the underlying asset and K is the strike price

Instead of taking into account only the terminal asset value, all the prices quoted from

time 0 to time T are factored in when computing the option payoff. The running

maximum of  S t is continuously and automatically updated. Taking  0K S , that

is, defining the strike price as the value of the underlying at the contract’s inception, this

contract guarantees its holder that he or she will sell the underlying at the highest in the

interval  0,T . Buying at the lowest and selling at the highest, these are the ultimate

goals of equity investors. The difficult problem of market timing, whether it be market

entry or market exit, is thus automatically solved in an optimal manner by such contracts,

that were originally valued by Conze and Viswanathan (1991).

The hi-lo option takes this idea even further, as it automatically captures the greatest

variability of the underlying asset over the option life, yielding at expiry the following

difference :

   
00

sup inf
t Tt T

S t S t
  

     

(2.2)

The main flaw of these two types of contracts is quite obvious : they are very expensive,

so that option holders are rather unlikely to reach the breakeven point and thus receive a

positive return from their investment. One simple way to lower the cost of lookback

options consists in defining a discrete updating frequency of the running maximum or

minimum. By the way, there can never be truly continuous updating in practice, even for

the most liquid traded stocks, because of the minimum time gap between two quotations

in the market, which can be very short but never arbitrarily short. It is clear that

decreasing the updating frequency to, say, one day (closing market price) or, better, one

week, will result in a lower expected value of the option and hence a lower premium.

Such contracts are called discretely monitored lookback options. They preserve the global

lookback property since there are still many equally spaced fixing dates, but not to its full

extent.
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Cliquet options are essentially a form of discretely monitored lookback options, albeit

with three differences in practice :

 there are usually few fixing dates

 the lookback period may not span the entire option life

 the fixing dates are not always equally spaced

Denoting by  1 2, , ..., nt t t the set of the n times at which positive intrinsic option values

can be locked in - these times being called the fixing dates, with

 
1 20 0 ... nt t t t T      , one can write the payoff of a cliquet call as

follows :

       1 2max , ,..., nS t S t S t K


 (2.3)

It must be pointed out that, in the markets, the term « cliquet », when applied to a call

option, is sometimes used interchangeably to refer to a ratchet option, whereby the strike

price resets at each fixing date to the prevailing stock price while at the same time locking

in the performance of the previous period, thus yielding at expiry the following payoff :

   1
0

max , 0
n

ii
i

S t S t


  
(2.4)

Compared to payoff (2.3), payoff (2.4) has no fixed strike and adds every positive

contribution up until expiry. Ratchet options are simply a portfolio of forward starting

options, hence they admit perfect static replication, unlike cliquet options (Buetow, 1999 ;

Matosek, 2008).

There are no restrictions on the location of the fixing dates over  0,T in a cliquet option

contract. In particular, they may all be concentrated in a specific subinterval of  0,T and

leave large parts of  0,T non monitored. This flexibility is valuable to investors because

it enables them to tailor the option contract to their particular anticipations or hedging

requirements, while it substantially reduces the option premium by waiving the lookback

property when it is not needed.

The specificity of cliquet options is better grasped through a short analysis of their

differences with alternative contracts that also embed a lock-in mechanism. For instance,

ladder options are contracts whereby the set of the underlying asset price levels that can

be locked in before expiry is prespecified at time zero - they are called the « rungs ».

Denoting by L the highest level or rung reached over the option life, a ladder call then

provides its holder with the following payoff :

  max , , 0S T K L K  (2.5)
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Ladder options can be valued as combinations of barrier options and vanilla options (De

Weert, 2008).

The rungs may be attained at any time prior to T , but all prices other than the rungs and

the terminal value of S will not be taken into account when computing the option payoff.

In other words, the difference with a cliquet option is two-fold : there are no fixing dates

and the maximum level that can be locked in is bounded. One advantage, as far as risk-

averse investors are concerned, is that if they set the first rung of the ladder close enough

to the spot price at the contract’s inception, they are very likely to receive a minimum

positive payoff, due to the high probability that the first rung will be attained. However,

by definition, this minimum positive payoff is low. You need to add more and more rungs

if you want the expected payoff to grow. But then, the premium of the ladder option

gradually tends to that of a lookback option. If you think that the actual realized volatility

of the underlying will be higher than the implied volatility priced by the market, then you

might want to elevate the first rung in your ladder option to lower the premium but it is

clearly risky to do so.

In contrast to a ladder option, a cliquet option does not require its holder to have precise

anticipations on a set of target price increases in the underlying asset, which is attractive

in uncertain markets or when you do not have enough expertise. Also, cliquet options do

not involve capping the greatest possible intrinsic value from the start. Such a capping

mechanism obviously does not allow to fully exploit market movements. Moreover,

unlike ladder-type contracts, cliquet options enable their holders to take advantage of

specific time-related views or constraints. For instance, if there is a strong case that the

underlying asset price will probably reach its maximum during a given subinterval of

 0,T , because of scheduled events such a public announcement liable to provide

impetus to the stock price of a company or elections likely to have a major impact on a

currency, then the investor had better locate most of the fixing dates in this specific time

area. Indeed, the shorter the lock-in period, the larger the drop in the option premium.

Ultimately, you might even be able to generate a very high payoff with a single fixing

date prior to expiry, which makes the option very affordable.

If you are uncertain about both the magnitude and the timing of the underlying asset price

increases, an alternative strategy is to turn to a shout option. The latter allows you to lock

in the intrinsic value of the option at any time prior to expiry – an action referred to as a

« shout », thus providing the following payoff at maturity (for a call):

    max , , 0S T K S t K  (2.6)

where t is the time chosen to « shout »
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A shout option is valued much the same way as an American option (Windcliff et al.,

2001). This contract is well suited to investors who wish to play a more active role during

the option life and who are not satisfied with the fact that a contract would prespecify

either the possible lock-in price levels (ladder option) or the times at which the

underlying asset price can be locked in (cliquet option). Compared to a ladder option, one

advantage is that you are not stuck at a rung : if the underlying asset price reaches the

otherwise highest prespecified rung and keeps on rising, you can wait before you shout in

order to lock in even higher levels. Also, you can lock in any positive intrinsic value

before expiry, including all those below the first rung or between two different rungs of a

ladder option. Relative to a cliquet option, the holder of a shout option is free to wait and

see how the market moves before deciding when to lock in an underlying asset price. On

the downside, this generates uncertainty as you never know when it is optimal to shout, so

that you are faced with the possibility of subsequent regrets, whereas a cliquet option

provides as many possibilities of locking in asset price levels as there are fixing dates.

Nothing theoretically rules out allowing for several « shouts » during the option life but

then the option quickly becomes more expensive than a cliquet option. Also, shout

options require steady monitoring and a lot of investors do not want to dedicate too much

of their time to manage their option position. Lastly, from the point of view of derivatives

sellers, shout options are difficult to hedge because of the unpredictability of the exercice

time. For all these reasons, cliquet options are more popular than shout options in the

markets.

As far as hedging is concerned, there are differences between the dynamics of the

delta of a cliquet call and those of a vanilla call. In general, unless the option is then

deeply out-of-the-money, the delta of a cliquet call will significantly increase in the

vicinity of a fixing date as a consequence of the lock-in mechanism. Before the first

fixing date 1t , this phenomenon is observed especially when there is little time left

before 1t and when the underlying asset is then trading near the strike. If it is then trading

far below the strike, though, the delta of the cliquet call will be quite similar to that of a

vanilla call.

If  1S t K , the holder of the cliquet call option is sure to receive at least  1S t K

at expiry. This is why the value of a cliquet call is less sensitive than that of a vanilla call

to a decline in the value of S below the level  1S t after time 1t . It will remain sensitive

to such in a decline in the value of S , still, as the latter has a negative impact on the

probability that S will reach levels above  1S t at fixing dates subsequent to 1t . But at

least, unlike a vanilla call, a decline in the value of S below the level  1S t after time 1t

has no negative impact on the probability that the option will end in-the-money at expiry.
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In the vicinity of the second fixing date, 2t , the magnitude of the delta increase will

depend on the current and past levels of the underlying. If the difference  1S t K is

positive and S is trading near the level  1S t little before 2t , then the delta increase is

sharp. If S rises above the level  1S t and the time is close to 2t , then the delta of the

cliquet call tends to 1 and the gamma drops to zero. The more volatility around the level

 1S t between 1t and 2t , the more delta oscillates, with gamma reaching a local

maximum at the level  1S t just before 2t .

The same analysis carries over to any two consecutive fixing dates. Overall, there may be

several areas of sharp delta fluctuations during the option life. These fluctuations will be

particularly pronounced when the time is near the last fixing date and the underlying asset

is trading near the latest locked-in maximum value. Thus, a delta hedging strategy may

turn out to be very costly on a long maturity option, as high transaction costs are incurred

due to the frequent rebalancing of the hedging portfolio. This issue is compounded when

the option is written on an asset with limited liquidity or jumpy returns, as explained by

Petrelli et al. (2008).

This is why, in practice, the sale of a cliquet option may be hedged by implementing a

semi-static rollover strategy. Assuming there are three only fixing dates, 1t , 2t , 3t and

the option expiry is 3t , the semi-static hedge of the sale of a cliquet call would proceed

as follows :

- at time zero, buy a vanilla call struck at K and expiring at 1t

- at time 1t , if  1S t K then buy a new call struck at  1S t and expiring at 2t ; if

 1S t K then buy a new call struck at K and expiring at 2t

- at time 2t , if  2S t K then buy a new call struck at  2S t and expiring at 3t ; if

 2S t K and  1S t K then buy a new call struck at K and expiring at 3t ; if

 2S t K and  1S t K then buy a new call struck at  1S t and expiring at 3t

The same procedure easily extends to a higher number of fixing dates. However, it does

not work without costs. First, the ability to implement the hedge depends on the

availability of the required options in the market, which may be a problem if the

underlying is not liquid enough or if the maturities are non-standard. Even if the required

options are traded, there are vanilla option bid-ask spreads that need to be factored in.

Besides, it is not easy to value the cost of this semi-static rollover strategy at the time the

cliquet call is sold. Indeed, it involves purchasing options in the future whose strikes are

not known at time zero and depend on future values of S . Numerical methods must be

used to approximate the value of these future contracts. Whatever numerical methods are
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used, the skew must also be taken into account to obtain a reliable price. When

 1S t K and  2S t K , both vanilla options bought at times 1t and 2t are struck

at K . To value the former at time zero, one should look at the  1 2,t t forward implied

volatility point on the volatility surface. It is important to bear in mind that the associated

skew is the  1 2,t t one, which is typically steeper than the  0 2,t t one. The farther 1t is

from 0t , the higher the chances that the  1 2,t t option will be priced at time zero using

an inappropriate skew, because there is uncertainty about the level /K S at time 1t and

about the variation in the slope of the skew curve between 0t and 1t . These problems are

compounded when it comes to the valuation of the  1 2,t t option in the semi-static

hedge. Next, when  1S t K and  2S t K , both vanilla options bought at times 1t

and 2t are struck at a level above K but they are at-the-money at the time of purchase.

Thus, the associated skew should be considered as an at-the-money forward skew, while

traders blindly pricing these options off the spot volatility surface would use a volatility

estimate that would be too low. Finally, when  1S t K and  2S t K , and when

 1S t K and  2S t K , the variation in implied volatility caused by the skew

varies according to the relative levels of  1S t and  2S t as well as on the relative

distance of 1t and 2t to the option expiry; as the skew is steeper for short term maturities

and the skew curve tends to flatten or even have an element of a smile shape for very high

strikes, the net effect on implied volatility is likely to be strongly upward when

 1S t K and  2S t K . Thus, the skew exposure is quite difficult to manage ; for

more material on this important practical issue, the reader is referred to Gatheral (2006),

who shows that pricing this kind of structure with a local volatility model tends to

underestimate the real value, relative to a stochastic volatility model, as it produces

forward skews that are too flat.

There are also issues associated with the risk management of sensitivities other than delta

and gamma, such as the vega of a cliquet option. The latter is typically higher than the

vega of a vanilla option. Indeed, the larger the volatility of the underlying, the greater the

probability to reach a new extremum on each fixing date. Moreover, as each new

extremum is locked in, the option value is not exposed to the higher chance of adverse

price movements. Another difference with the vega of a vanilla option is that the vega of

a cliquet option is at its peak when the underlying is trading near the latest extremum that

was locked in at one of the previous fixing dates, not when it is trading near the strike

price. However, one must bear in mind that the vega of a cliquet option may be a
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misleading measure of volatility risk because this is a contract whose gamma changes

sign and, as a result, vega may be small at precisely those places where sensitivity to

actual volatility is very large. This issue is discussed by Wilmott (2002), who analyzes

the implications of the fact that the point at which gamma changes sign depends on the

relative move in S from one fixing to the next.

3 Valuation formulae and numerical implementation

As pointed out in the previous section, cliquet options may be hedged by a semi-static

rollover strategy, but the latter is difficult to value at the time the option is sold.

Therefore, it would be quite convenient to be able to refer to an easily computed no-

arbitrage price formula, at least as an analytical benchmark to test more general numerical

schemes. Unfortunately, cliquet options are not easy to price by analytical methods

because of the rapidly increasing dimension of the valuation problem. To put it simply,

the more fixing dates, the higher the dimension, as measured by the required order of

numerical integration. The main problem associated with increasing dimension is that

analytical results rely on functions that are defined as multiple integrals that may not be

easily computed or that may not even be known. As a consequence of this dimension

issue, the only closed form solution that has been published so far is a formula for a

cliquet option with a single fixing date prior to expiry (Gray and Whaley, 1999) in a

standard Black-Scholes framework. Other contributions focus on numerical methods, via

either Monte Carlo simulation or a partial differential equation solver (Windcliff et al.,

2006). It must be pointed out that the classical continuity correction of Broadie et al.

(1999) used to provide an analytical approximation of the price of discretely monitored

lookback options is unfortunately quite inaccurate when there are only few fixing dates,

especially when the latter are not uniformly spaced over the option life, and it is therefore

not suited to cliquet options.

The following Proposition 1 provides a closed form solution for the no-arbitrage value,

V , of a cliquet option with expiry 3t , three fixing dates, 1t , 2t , and 3t , assuming that

the underlying asset S is driven by a geometric Brownian motion with constant volatility

s , payout rate d and risk-free interest rate r .

The following expressions will be used, with   4, , , , ,i j m n i j m n   :

 1l  if the option is a call, 1l   if the option is a put

   0ln /k K S t

        2 2/2 , /2i i i ir t r tm s m s   
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
         2 2

, ,/2 , /2j i j ii j i jr t t r t tm s m s     


   ,,i i j ii jt t ts s s s  

      , , , 1 , , ; ,
j ii i

n mj j

t tt t
i j i j i j m n

t t t t
b r r


   



Also, the function  1 2 1 2 1, , ..., ; , , ...,n n na a a q q q  ,  , 1,1 ,i ia iq     , is

defined as follows : for 1n  , n is the univariate standard gaussian cumulative

distribution function ; for 2n  , n is the bivariate standard gaussian cumulative

distribution function ; for 2n  , n is given by :

 
 

   1 2

1 2

212
11

2
1

1 21
/2 2

1

exp
2 2 1

... ...

2 1n

n

n
i ii

i i
n nn

n
i

i

x x x

a a a

x xx

dx dx dx

q

q

p q







  



         
 

 


  

(3.1)

Proposition 1 can now be stated.

Proposition 1

    0 1 2 3, , , , , , ,V S t r K t t ts d (3.2)
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 

2,3
3 1

2,3

exp rt K
m

l l
s

 
      
 
 

 

 

 

 
 

 

 

 

 

1,21 2 1
2 1 11,2

1 2 1 1,2

, ;
k k k mm m m

l l b l l
s s s s

                                       



11

   
 

 

 

 

 

 
   

1,3 2,33
03 3 1;3 2,3;1,3

3 1,3 2,3

exp , , ; ,
k

t S t
m mm

l d l l l r r
s s s

  
        
 
 

   

 

 

 

 

 
   

1,3 2,33
3 3 1;3 2,3;1,3

3 1,3 2,3

exp , , ; ,
k

rt K
m mm

l l l l r r
s s s

  
        
 
 



A proof of Proposition 1 is provided in the Appendix.

Next, Proposition 2 gives a closed form solution for the no-arbitrage value, V , of a

cliquet option with expiry 4t , and four fixing dates, 1t , 2t , 3t and 4t , under the same

assumptions as in Proposition 1.

Proposition 2

    0 1 2 3 4, , , , , , , ,V S t r K t t t ts d (3.3)

    04 1 1exp r t t t S tl d     

 

 

 

 

 

 

 

 
   

1,2 1,3 1,41
1 3 1,2;1,3 1,3;1,4

1 1,2 1,3 1,4

, , ; ,
k m m mm

l l l l r r
s s s s

                            

 4exp rt Kl   

 

 

 

 

 

 

 

 
   

1,2 1,3 1,41
1 3 1,2;1,3 1,3;1,4

1 1,2 1,3 1,4

, , ; ,
k m m mm

l l l l r r
s s s s

                            

    04 2 2exp r t t t S tl d     

 

 

 

 
 

 

 

 

 

1,21 2 1
2 1 11,2

1 2 1 1,2

, ;
k k k mm m m

l l b l l
s s s s

                                       

 

 

 

 
 

2,3 2,4
2 2,3;2,4

2,3 2,4

, ;
m m

l l r
s s

  
   
 
 

 4exp rt Kl   

 

 

 

 
 

 

 

 

 

1,21 2 1
2 1 11,2

1 2 1 1,2

, ;
k k k mm m m

l l b l l
s s s s

                                      

 

 

 

 
 

2,3 2,4
2 2,3;2,4

2,3 2,4

, ;
m m

l l r
s s

  
   
 
 

    04 3 3exp r t t t S tl d     

 

 

 

 

 

 
   

 

 

1,3 2,3 3,43
3 11;3 2,3;1,3

3 1,3 2,3 3,4

, , ; ,
k m m mm

l l l r r l
s s s s

    
        
   
   

 4exp rt Kl   
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 

 

 

 

 

 
   

 

 

1,3 2,3 3,43
3 11;3 2,3;1,3

3 1,3 2,3 3,4

, , ; ,
k m m mm

l l l r r l
s s s s

    
        
   
   

   04exp t S tl d   

 

 

 

 

 

 

 

 
     

1,4 2,4 3,44
4 1;4 2,4;1,4 3,4;2,4

4 1,4 2,4 3,4

, , , ; , ,
k m m mm

l l l l r r r
s s s s

  
     
 
 

 4exp rt Kl   

 

 

 

 

 

 

 

 
     

1,4 2,4 3,44
4 1;4 2,4;1,4 3,4;2,4

4 1,4 2,4 3,4

, , , ; , ,
k m m mm

l l l l r r r
s s s s

  
     
 
 



Proof of Proposition 2 is similar to that of Proposition 1 and is therefore omitted.

Finally, for a number of fixing dates greater than 4, the previous results can be

generalized to produce the more compact Proposition 3.

Proposition 3

    0 1, 2, , , , , , ..., nV S t r K t t ts d (3.4)

        
   

 
     

1

0
1

1

1

exp exp

exp

n

n n ni i i i
i

n

n ni i
i

S t r t t t t

K rt

d d

l

l









                                   





where :

 

 

 

 

 

 

 

 

 

       

1, 2, 1,

1, 2, 1,

1; 2, ;1, 3, ;2, 1, ; 2,

, , ,..., ;

, , ,...,

i i i ii

i i i i ii i

i i i i i i i i i

k m m mm
l l l l

s s s s

r r r r





 

  
    
   
 
   

 

 

 

 

 

 

 

 

 

       

1, 2, 1,

1, 2, 1,

1; 2, ;1, 3, ;2, 1, ; 2,

, , ,..., ;

, , ,...,

i i i ii

i i i i ii i

i i i i i i i i i

k m m mm
l l l l

s s s s

r r r r





 

  
    
   
 
   

 

 

 

 

 

 

 

     

, 1 , 2 ,

, 1 , 2 ,

, 1; , 2 , 2; , 3 , 1; ,

, ,..., ;

, ,...,

i i i i i n

i i i i i ni n i

i i i i i i i i i n i n

m m m
l l l

s s s

r r r

 

 

    

   
   

   
 
  



Although Proposition 3 nests Proposition 1 and Proposition 2, its terse formulation may

render it relatively unclear and ambiguous without the help of the fully expanded

Proposition 1 and Proposition 2, and thus it was useful to state the latter. Moreover,

Proposition 2 and Proposition 3 include dimension reductions that do not appear in the
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more compact Proposition 3, and they are therefore more efficient to use when pricing

cliquet options with three or four fixing dates.

From a numerical point of view, the valuation formulae presented in this section raise the

question of the computation of the function  . As the number of fixing dates increases,

so does the dimension of numerical integration. Fortunately, unlike lookback options,

most cliquet options traded in the markets have few fixing dates, as mentioned earlier.

Moreover, the dimension of numerical integration can be reduced by using the following

identities :

 when there are three fixing dates, the actual numerical dimension of the function 3

can be brought down from 3 to 1 by using :

 
 

2

2
2 1 1 2 3 2 2

3 1 2 3 1 2 22 2
1 2

2
exp /2

, , ; ,
2 1 1

b

x

x b x b x
b b b N N dx

q q
q q

p q q


                    


(3.5)

 when there are four fixing dates, the actual numerical dimension of the function 4

can be reduced by a factor of two by using :

 

 

2 3

2
2
2

2 2
2 3

4 1 2 3 4 1 2 3

2
1 1 2 4 3 2 3 3 2 2

2 32 2
1 3

3 2

2 1 exp
2

, , , ; , ,
2

1

1 1

b x

b

x x

x x

b b b b

b x b x x
N N dx dx

q

q

q q q
p

q q q q q

q q

 




       

 

         
          

 

(3.6)

 when there are five fixing dates, the actual numerical dimension of the function 5

can be brought down from 5 to 3 by using :

 5 51 2 3 4 1 2 3 4, , , , ; , , ,b b b b b q q q q

 

 
2 3 4

2
2 4 3 2 3 3 2 2

2 2
2 3

2 2 2
2 3 4

3/2

2 2
51 1 2 4 3 4 4 3 2 3 4 3 2 2

2 3 42 2
1 4

3 2

2

1

11 exp
2

2

1 1

1 1

x

b x xb x

b

x x

x x x

b x b x x x
N N dx dx dx

q q q q

q

q

q

p

q q q q q q q q q

q q

 

  






        



           
          

 

(3.7)

 more generally, when there are over five fixing dates, the actual numerical dimension

of the function n can always be reduced by a factor of 2 by using :
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 1 2 1 1 2 2 1, , ..., , ; , , ..., ,n nn n nb b b b q q q q  

 
 

 
 

  

2 13

2
2 22

3 2 2 1 2 22 2
2 2

2 2
2

2
2

1 1 2 1 1
2 3 12 2

1 1

2 13

1 1
exp ...

2 2 1 2 1

1 2

...
1 1

...

n

n n n
n

n n

i
i

n n n
n

n

n
b bb

xx x

x
x x x x

b x b x
N N dx dx dx

q q
q q

q p

q q

q q

 

  


 



 










           

 

       
          

 

(3.8)

The identities (3.5) – (3.8) can be obtained using tedious but straightforward algebra and

their proof is therefore omitted. The quality of numerical integration using (3.5) – (3.8)

was tested up to six fixing dates. That would be the required dimension for the valuation

of a three-year expiry cliquet option with semi-annual observation points or a six-month

expiry cliquet option with monthly observation point, for instance. The identities (3.5) –

(3.8) were implemented using a simple 16-point Gauss-Legendre quadrature rule. In

every dimension, 500 option prices were computed by means of Proposition 1,

Proposition 2 and Proposition 3, with randomly drawn parameters. The results were

compared with those obtained by a Monte Carlo simulation using antithetic variates and

the Mersenne Twister random number generator. The main findings are summarized in

Tables 1,2,3 and 4. In terms of efficiency, it always takes less than one second to compute

the option prices on an ordinary personal computer, which is very quick in absolute terms

and dramatically more efficient than simulation techniques. It must be pointed out that the

efficiency gains are even greater when it comes to the computation of the option

sensitivities or greeks. Moreover, there is a clear pattern of linear convergence of the

Monte Carlo estimates to the analytical values as more and more simulations are

performed in all the tested dimensions. This high quality of numerical integration is not

surprising, given the smoothness of the integrands in every dimension. Cases of

numerical instability might arise only for extremely high values of the correlation

coefficients inside the integrands. After a little numerical experiment, it was found that

problems were encountered for values above 99.5%. But such values would come up only

for very weird contract specifications, such a single fixing date one day before expiry on

a two-year option, and these would actually never be met in the markets. Besides,

alternative, more sophisticated quadrature rules that handle almost singular points could

then be resorted to.

Thus, in moderate dimensions, the analytical formulae provided in this paper give very

efficient and accurate numerical results, while the computational time required for a
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Monte Carlo simulation to produce reasonably precise approximations is clearly not

satisfactory for practical purposes. As more and more fixing dates are added, the quality

of a plain Gauss-Legendre implementation of (3.8) will deteriorate. One solution, then,

would be to implement an adaptive Gauss-Legendre quadrature based, for instance, on a

Kronrod rule. There is plenty of scientific software available for that matter so that it is

not necessary to know the technical details. Another, more powerful, solution is to notice

that the function  that needs to be computed in increasing dimension has the attractive

feature that it matches the special structure of Gaussian convolutions handled by the

extremely efficient Broadie-Yamamoto algorithm (Broadie and Yamamoto, 2005). Using

the latter will ensure that the above stated Proposition 3 can be implemented with

confidence in high dimensions. For evidence about the mentioned algorithm, the reader is

referred to the above cited original paper.

Table 1 Cliquet option values with three non-uniformly spaced fixing dates a

Average computational
time

Average difference
with analytical

formula

Maximum difference
with analytical

formula
Analytical formula 0.15 0 0
Monte Carlo
100,000 simulations

0.82 0.63 0.96

Monte Carlo
1,000,000 simulations

5.58 0.19 0.56

Monte Carlo
10,000,000
simulations

52.6 0.025 0.161

a : The analytical formula used is Proposition 1. The function 3 in Proposition 1 is computed

using identity (3.5) along with a 16-point Gauss-Legendre quadrature. The reported averages were
computed out of a sample of 500 theoretical option values with randomly drawn parameters. The
average computational time is measured in seconds. The average difference between the Monte
Carlo approximations and the analytical prices is reported as a percentage of the option prices. So
is the maximum difference too.
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Table 2 Cliquet option with four non-uniformly spaced fixing dates b

Average computational
time

Average difference
with analytical

formula

Maximum difference
with analytical

formula
Analytical formula 0.26 0 0
Monte Carlo
100,000 simulations

1.07 0.45 1.05

Monte Carlo
1,000,000 simulations

7.88 0.17 0.46

Monte Carlo
10,000,000
simulations

74.81 0.029 0.213

b : The analytical formula used is Proposition 2. The function 4 in Proposition 2 is computed

using identity (3.6) along with a 16-point Gauss-Legendre quadrature.

Table 3 Cliquet option with five non-uniformly spaced fixing dates c

Average computational
time

Average difference
with analytical

formula

Maximum difference
with analytical

formula
Analytical formula 0.38 0 0

Monte Carlo
100,000 simulations

1.24 0.51 0.82

Monte Carlo
1,000,000 simulations

9.85 0.22 0.63

Monte Carlo
10,000,000
simulations

95.32 0.042 0.176

c : The analytical formula used is Proposition 3. The function 5 in Proposition 3 is computed

using identity (3.7) along with a 16-point Gauss-Legendre quadrature.

Table 4 Cliquet option with six non-uniformly spaced fixing dates d

Average computational
time

Average difference
with analytical

formula

Maximum difference
with analytical

formula
Analytical formula 0.89 0 0

Monte Carlo
100,000 simulations

1.45 0.54 0.91

Monte Carlo
1,000,000 simulations

12.16 0.26 0.49

Monte Carlo
10,000,000
simulations

123.66 0.038 0.184

d : The analytical formula used is Proposition 3. The function 6 in Proposition 3 is computed

using identity (3.8) along with a 16-point Gauss-Legendre quadrature.

4 Appendix : proof of Proposition 1

The dynamics of the underlying asset S under the risk-neutral measure  are driven by

the classical geometric Brownian motion :

         dS t r S t dt S t dB td s   (4.1)
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where r is the constant riskless rate, s is the constant volatility of S , d is a constant

payout rate on S and  B t is a standard Brownian motion.

Following the risk-neutral valuation method (Harrison and Kreps, 1979 ; Harrison and

Pliska, 1981), the no-arbitrage value, at time 0t , of a cliquet call option with three fixing

dates 1t , 2t , 3t and expiry 3t , is given by :

  0 1 2 3, , , , , , ,C S t K r t t ts d

          03 1 2 3exp r t S t S t S t K S t
         

(4.2)

where
 is the expectation operator under the risk-neutral probability measure  .

Breaking down the various possible outcomes, the right-hand side of (4.2) can be

expanded as follows :

 

          

3

01 1 2 2 3 3

exp r t

S t K I S t K I S t K I S t

  

          

(4.3)

with :

          1 1 1 2 1 3, ,I S t K S t S t S t S t    (4.4)

          2 2 2 1 2 3, ,I S t K S t S t S t S t    (4.5)

          3 3 3 1 3 2, ,I S t K S t S t S t S t    (4.6)

where  is the indicator function.

Using Girsanov’s theorem, (4.3) becomes :

         10 01 3 1 1exp t r t t S t I S td    




         20 02 3 2 2exp t r t t S t I S td     




   03exp t S td  

         3 0 03 3 1 2 3expI S t rt K I I I S t     


 

(4.7)

where    1 2,  and  3 are three measures equivalent to  whose Radon-Nikodym

derivatives are given by :

 

   
2

exp , 1,2, 3
2i

i

t i i

d
t B t i

d

s
s

      






(4.8)

where t is the natural filtration of  B t

Thus, it suffices to compute the expectations of 1I , 2I and 3I under  . A classical

change of drift from  2 /2 ir tm d s   to  2 /2 ir tm d s   will provide the

same expectations under  i .

Shifting to log coordinates, the functions 1I , 2I and 3I become :
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          1 1 1 2 1 3, ,I X t k X t X t X t X t    (4.9)

          2 2 2 1 2 3, ,I X t k X t X t X t X t    (4.10)

          3 3 3 1 3 2, ,I X t k X t X t X t X t    (4.11)

Next, by definition of Brownian motion, the random variables  1X t ,

       2 1 3 1,X t X t X t X t  and    3 2X t X t can be written as follows :

 1 1 1 1X t t tm sf  (4.12)

     2 1 2 1 2 2 1X t X t t t t tm sf     (4.13)

       3 1 3 1 2 2 1 3 3 2X t X t t t t t t tm s f f       (4.14)

     3 2 3 2 3 3 2X t X t t t t tm sf     (4.15)

where 1 2,f f and 3f are three mutually independent standard normal random variables

with unit variance.

To calculate   01I S t


 , one can notice, by the independence of Brownian

increments, that the variable  1X t is independent from the variables    2 1X t X t

and    3 1X t X t . Then, using (4.12) – (4.14), a little calculus produces :

  

   

 

 

 

01

2 1 3 11 2 1
1 2

1 3 12 1 3 1

ln /
, ;

I S t

t t t tS K t t t

t t tt t t t

m mm

s s s

                  


 (4.16)

To compute   02I S t


 , one can start by expanding

      2 2 1,X t k X t X t as follows :

      2 2 1,X t k X t X t

            2 1 2 1 1, 0X t k X t k X t X t X t k        

(4.17)

Then, using the independence of the variables    3 2X t X t and    2 1X t X t ,

one can obtain :

  02I S t




 2 11 2 1 1
2 1 1

1 2 2 1 2 1

, ;
t tk t k t t k t

t t t t t t

mm m m

s s s s

                                     

 

 
3 2

1

3 2

t t

t t

m

s

       

(4.18)

Next, the expectation   03I S t


 can be expanded into integral form as follows :

  03I S t


 (4.19)



19

      
3 3

1 2 3

1 1 2 2 3 3 3 2 1, ,

x x

x x x k

X t dx X t dx X t dx dx dx dx



  

      

By the Markov property of Brownian motion, we have :

      1 1 2 2 3 3, ,X t dx X t dx X t dx  

            1 2 2 1 3 3 2X t X t dx X t X t dx X t      

    

2
1 1

3
12 1 2 2 3

1 1
exp

2
2 1 / 1 /

x t

t
t t t t

m

s
p

          

   

2 2
2 2 1 1 1 3 3 2 2 2

2 2 1 3 3 2

1 2 2 32 1 / 2 1 /

x t t x t x t t x t

t t t t t t

t t t t

m m m m

s s s s

                          

(4.20)

Then, performing the necessary calculations, one can obtain the following result :

  

 

 

 

 

03

3 1 3 23 1 3 2
3

3 3 3 13 1 3 2

, , ; 1 ,

I S t

t t t tk t t t t

t t t tt t t t

m mm

s s s

           


 (4.21)

This completes the proof for a cliquet call option with three fixing dates 1t , 2t , 3t and

expiry 3t . The same method can be applied to value cliquet options with a greater

number of fixing dates, by using the following generalization of (4.21) for 4n  :

              1 2 1, , , ...,n n n n nX X XX t k X t t X t t X t t   

 

 

 

 

 

 
1 2 1

1 2 1

1 2 3 1

1 2 2

, , ,..., ;

1 , , , ...,

n n nn n

n n n n n
n

n n n n

n n n n n

t t t t t tk t

t t t t t t t

t t t t t t t

t t t t t t t

m m mm

s s s s









    
 
          

     

(4.22)
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