
HAL Id: hal-00873626
https://hal.science/hal-00873626v1

Submitted on 16 Oct 2013 (v1), last revised 6 Nov 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Intensionally Fully-abstract Sheaf Model for pi
Clovis Eberhart, Tom Hirschowitz, Thomas Seiller

To cite this version:
Clovis Eberhart, Tom Hirschowitz, Thomas Seiller. An Intensionally Fully-abstract Sheaf Model for
pi. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), 2015, Nimègues,
Netherlands. pp.86–100, �10.4230/LIPIcs.CALCO.2015.86�. �hal-00873626v1�

https://hal.science/hal-00873626v1
https://hal.archives-ouvertes.fr

Fully-abstract concurrent games for π

Clovis Eberhart1, Tom Hirschowitz2⋆, and Thomas Seiller3⋆

1 ENS Cachan 2 CNRS and Université de Savoie 3 INRIA

Abstract. We define a semantics for Milner’s pi-calculus, with three
main novelties. First, it provides a fully-abstract model for fair testing
equivalence, whereas previous semantics covered variants of bisimilarity
and the may and must testing equivalences. Second, it is based on re-
duction semantics, whereas previous semantics were based on labelled
transition systems. Finally, it has a strong game semantical flavor in the
sense of Hyland-Ong and Nickau. Indeed, our model may both be viewed
as an innocent presheaf semantics and as a concurrent game semantics.

1 Introduction

The π-calculus [11, 37] was designed as a basic model to reason about concur-
rent programs, as the λ-calculus for functional programs. Its behavioural the-
ory features several notions of equivalence, including variants of bisimilarity,
contextually-defined congruences, and testing equivalences [8]. Its denotational
semantics has been thoroughly investigated [12, 46, 14, 13, 42, 6, 22, 7, 38]. This
paper introduces a new denotational semantics for π with three main novelties.

Fair testing equivalence First, our semantics provides a fully-abstract model
for fair testing equivalence [39, 4], whereas previous work covers variants of
bisimilarity, and the may and must testing equivalences.

Originally introduced for CCS-like calculi, fair testing equivalence reconciles
the good properties of observation congruence [36] w.r.t. divergence, and the
good properties of previous testing equivalences [8] w.r.t. choice. The idea is, as
in most testing semantics, that two processes are equivalent when they pass the
same tests. A process P passes the test T iff their parallel composition P |T never
loses the ability of playing some special ‘tick’ action, even after any reduction
sequence. Fair testing is, to our knowledge, one of the finest testing equivalences.

Cacciagrano et al. [5], beyond providing an excellent survey on fairness, adapt
the definition to π and study approximations of it. Their definition is not a
congruence, for essentially the same reason as for standard bisimilarity [45]. We
thus refine it by allowing tests to rename channels, which yields a congruence.

⋆ Partially funded by the French ANR projets blancs ‘Formal Verification of Dis-
tributed Components’ PiCoq ANR 2010 BLAN 0305 01 and ‘Realizability for clas-
sical logic, concurrency, references and rewriting’ Récré ANR-11-BS02-0010.

Reductions vs. labelled transitions A second novelty is that our model is
based on the reduction semantics of π, while all others, to our knowledge, are
based on its standard labelled transition system (lts). The tension between the
two has been the subject of substantial research [43]. Briefly, reduction semantics
is simple and intuitive, but it operates on equivalence classes of terms (under
so-called structural congruence). On the other hand, designing ltss is a subtle
task, rewarded by easier, more structural reasoning over reductions. Ltss are
generally perceived as less primitive than reduction semantics, although they
are often preferred for practical reasons.

Most ltss for π distinguish two kinds of transitions for output, respectively
called free and bound. This distinction is crucial in all models mentioned above,
which rely on the standard lts semantics, but not in our model. Actually, as
explained below in the proof sketch for Theorem 4, our model suggests a new
lts for π which does not distinguish between free and bound output, in a way
reminiscent of the carefully-crafted lts of Rathke and Sobociński [43].

Innocent presheaves = concurrent strategies The third novelty of our se-
mantics is its strong game semantical flavor, in the sense of Hyland-Ong [26] and
Nickau [40], whereas most previous work was based on coalgebras, bialgebras,
presheaves, event structures, or graph rewriting. Game semantics was designed
to provide denotational semantics for functional programming languages, but
also led to fully-abstract models for impure features like references or control
operators. A few authors have defined game semantics for concurrent languages,
as discussed below.

A particular feature of our game is its truly ‘multi-player’ aspect. An immedi-
ate benefit of this is that parallel composition, usually interpreted as a complex
operation, is here just a move in the game, allowing a player to fork into two.
On the other hand, considering a multi-player game opens the door to undesir-
able strategies, which are then ruled out by imposing an innocence condition,
very close in spirit to game semantical innocence [26, 40]. Indeed, it amounts to
requiring that players interact according only to their local view of the play.

A particular feature of our strategies helps dealing with π’s external choice
operator, which allows processes to accept the same action on some channel a
in several ways. E.g., any process of the shape a(x).P + a(x).Q may input on
a in two ways, resp. leading to P and Q. In order to model this, we use the
fact1 that presheaves on the poset P of plays ordered by prefix are actually a
form of concurrent strategies. Indeed, a strategy is traditionally a prefix-closed
set of plays. This is equivalent to a functor F : P op → 2, where 2 is the poset
0 → 1, viewed as a category: the accepted plays p ∈ P are those such that
F (p) = 1. The action of F on morphisms ensures prefix closedness, because for
any plays p ≤ q, we must have F (q) ≤ F (p); hence, if q is accepted, then so
is p. Now, 2 embeds fully and faithfully into sets by 0 7→ ∅ and 1 7→ 1 (the
latter denoting any singleton set {⋆}): this is as if strategies could accept plays
in one way only, ⋆. Presheaves generalise this by mapping to arbitrary sets (or

1 The second author learnt this from a talk by Sam Staton.

even just finite ones, as we do), and we think of F (p) as the set of possible ways
for F to accept p. Sticking to strategies as sets of plays would lead to models
of coarser equivalences, as obtained by Ghica-Murawski [17] and Laird [29].
(Harmer and McCusker [21], on the other hand, consider a finer equivalence for
a non-deterministic language rather than a concurrent one.)

So, our strategies may both be viewed as a concurrent variant of game se-
mantical innocent strategies, and as an innocent variant of presheaves.

Playgrounds Finally, our category of strategies is not constructed by hand. It
is derived using the previously defined theory of playgrounds [24]. This theory
draws direct inspiration from Kleene coalgebra [2].

In Kleene coalgebra, the main idea is that both the syntax and the semantics
of various kinds of automata should be derived from more basic data describing,
roughly, the ‘rule of the game’. Formally, starting from a well-behaved (polyno-
mial) endofunctor on sets, one constructs both (1) an equational theory and (2)
a sound and complete coalgebraic semantics. This framework has been applied
in traditional automata theory, as well as in quantitative settings. Nevertheless,
its applicability to programming language theory is yet to be established. E.g.,
the derived languages do not feature parallel composition.

Playgrounds may be seen as a first attempt to convey such ideas to the area
of programming language theory.

In [24], it was shown how to construct, from any playground D, (1) a syntax
and a transition system SD, together with (2) a denotational model in terms of
innocent, concurrent strategies as described above. This mimicks the syntactic
and semantic models derived in Kleene coalgebra, except that we replace the
equational theory by a transition system, and the coalgebraic semantics by a
game semantics. Then, a playground DCCS was constructed and shown, by em-
bedding CCS into SDCCS , to give rise to a fully-abstract model for fair testing
equivalence.

In this paper, we construct a playground D for π and show, using similar
techniques, that it yields a fully-abstract model for our variant of fair testing
equivalence (Theorems 4 and 5).

Related work Building upon previous work [1, 35] on asynchronous games,
recent work by Winskel and collaborators [44, 47] attempts to define a notion of
concurrent game encompassing both innocent game semantics and presheaf mod-
els. Ongoing work shows that the model does contain innocent game semantics,
but presheaf models are yet to be investigated.

Furthermore, our model is inspired by Girard’s ludics [18], Melliès’s game
semantics in string diagrams [34], Harmer et al.’s categorical combinatorics of
innocence [20], and combinatorial structures from algebraic topology [30].

Finally, Hildebrandt’s approach to fair testing equivalence [23] uses related
techniques, namely sheaves. We also use sheaves: our innocence condition may
be viewed as a sheaf condition, as briefly reviewed in Sect. 2.6. In Hildebrandt’s
work, sheaves are used to correctly handle infinite behaviour, whereas here they
are used to force reactions of players to depend only on their view.

Plan In Sect. 2, we sketch the construction of our playground for π, recalling
the notion along the way. We emphasise one particular axiom for playgrounds,
which was most challenging when passing from CCS to π. We then recall the
notion of strategy. In Sect. 3, we recall and instantiate the transition system for
strategies constructed in [24] and define our variant of fair testing equivalence.
Finally, we state our main results.

Perspectives We plan to adapt our semantics to other calculi like the Join
and Ambients calculi, and ultimately get back to functional calculi. We hope to
eventually generalise it, e.g., to some SOS format. More speculative directions
include (1) defining a notion of morphism for playgrounds which would induce
translations between strategies, and find sufficient conditions for such morphisms
to preserve, resp. reflect behavioural equivalences; (2) applying playgrounds be-
yond programming language semantics; in particular, preliminary work shows
that playgrounds easily account for cellular automata, which provides a testbed
for morphisms of playgrounds [9].

Notation Throughout the paper, any finite ordinal n is seen as {1, . . . , n}
(rather than {0, . . . , n−1}). Set is the category of sets; set is the category of finite
ordinals and arbitrary maps; ford is the category of finite ordinals and monotone

maps. For any category C, put Ĉ = [Cop , Set], C = [Cop , set], ÛC = [Cop , ford],

and let Ĉf denote the category of finite presheaves, i.e., those presheaves F such
that

∑
c∈ob(C) F (c) is finite. For all presheaves F of any such kind, x ∈ F (d),

and f : c→ d, let x · f denote F (f)(x).

Our π-calculus processes will be infinite terms generated by the typing rules:

. . . Γ · αi ⊢ Pi . . . (∀i ∈ n)

Γ ⊢
∑

i∈n

αi.Pi

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P |Q

Γ + 1 ⊢ P

Γ ⊢ ν.P
·

Γ ranges over finite ordinals viewed as sets of variables {1, . . . , Γ}, and Γ · α
assumes that α ::= ā〈b〉 | a | ♥, for a, b ∈ Γ . In that case, Γ ·ā〈b〉 = Γ ·♥ = Γ and
Γ ·a = Γ +1. The ♥ form is a ‘tick’ action used to define fair testing equivalence.
This is a de Bruijn-like presentation, which we equip with any standard reduction
semantics [36], viewed as a reflexive graph Pi . For any Γ ⊢ P and map h : Γ → ∆
(of finite sets), we denote by ∆ ⊢ P [h] the result of renaming channels according
to h in P .

Finally, and this will only be used in sketching our proof of Theorem 4,
we consider a slightly more general notion of lts than usual. We work in the
category Gph of reflexive (directed, multi) graphs, and our category of ltss over
A is the slice category Gph/A. The usual notion of an lts over an alphabet Σ
is recovered by taking for A the free one-vertex reflexive graph with edges in Σ
(and by restricting to faithful morphisms over A).

2 Diagrams and plays

In this section, we sketch the construction of our playground for π, and recall the
notion of strategies. As sketched in the introduction, our playground will model
a multi-player game, consisting of positions and plays between them. Positions
are certain graph-like objects, where vertices represent players and channels. But
what might be surprising is that moves are not just a binary relation between
positions, because we not only want to say when there is a move from one
position to another, but also how one moves from one to the other. This will
be implemented by viewing moves from X to Y as cospans X → M ← Y in
a certain category Ĉf of higher-dimensional graph-like objects, where X and Y
respectively are the initial and final positions, and M describes how one goes
from X to Y . By composing such moves (by pushout), we get a bicategory
Dv of positions and plays. We then go on and equip this bicategory with more
structure, namely that of a pseudo double category, where one direction models
dynamics, and the other models space, e.g., the inclusion of a position into
another. We then explain why the so-called ‘fibration’ axiom is non-obvious and
describe our solution.

2.1 Diagrams

In preparation for the definition of our base category C, recall that (directed,
multi) graphs may be seen as presheaves over the category freely generated
by the graph with two objects ⋆ and [1], and two edges s, t : ⋆ → [1]. Any
presheaf G represents the graph with vertices in G(⋆) and edges in G[1], the
source and target of any e ∈ G[1] being respectively e · s and e · t. A way to
visualise how such presheaves represent graphs is to compute their categories
of elements [33]. Recall that the category of elements

∫
G for a presheaf G

over C has as objects pairs (c, x) with c ∈ C and x ∈ G(c), and as morphisms
(c, x) → (d, y) all morphisms f : c → d in C such that y · f = x. This category
admits a canonical functor πG to C, and G is the colimit of the composite∫
G

πG−−→ C
y
−→ Ĉ with the Yoneda embedding. E.g., the category of elements

for y[1] is the poset (⋆, s)
s
−→ ([1], id [1])

t
←− (⋆, t), which could be pictured as

, where dots represent vertices, the triangle represents the edge, and
links materialise the graph of G(s) and G(t), the convention being that t goes
from the apex of the triangle. We thus recover some graphical intuition.

Our string diagrams will also be defined as (finite) presheaves over some base
category C. Let us give the formal definition of C for reference. We advise to
skip it on a first reading: we then attempt to provide some graphical intuition.

Definition 1. Let GC be the graph with, for all n, m, with a, b ∈ n and c, d ∈ m:

– vertices ⋆, [n], πl
n, π

r
n, πn, νn, ♥n, ιn,a, on,a,b, and τn,a,m,c,d;

– edges s1, ..., sn : ⋆→ [n];
– for all v ∈ {πl

n, π
r
n,♥n, on,a,b}, edges s, t : [n]→ v;

– edges [n]
t
−→ νn

s
←− [n+ 1] and [n]

t
−→ ιn,a

s
←− [n+ 1];

v

[n] [n′]

⋆
sa sa

t s

(∀v ∈ ∪a,b∈n{π
l
n,

πr
n,♥n, ιn,a, on,a,b, νn})

πn

πl
n πr

n

[n]
t t

l r

(∀ n)

[m] om,c,d [m]

⋆ τn,a,m,c,d ⋆

[n] ιn,a [n+ 1]

sc

sb

t

t

ρ

ǫ

sd

sn+1

s

s

(∀ a ∈ n and c, d ∈ m)

Fig. 1. Equations for C

– edges πl
n

l
−→ πn

r
←− πr

n;

– edges ιn,a
ρ
−→ τn,a,m,c,d

ǫ
←− om,c,d.

Let C be the free category on GC, modulo the equations in Fig. 1, where, in
the left-hand one, n′ is n+ 1 when v = νn or ιn,a, and n otherwise.

Our category of string diagrams will be the category of finite presheaves Ĉf .
(⋆, s1) (⋆, s2) (⋆, s3)

([3], id [3])

To explain this seemingly arbitrary definition,
let us compute a few categories of elements. Let us
start with an easy one, that of [3] ∈ C (we implicitly
identify any c ∈ C with yc). An easy computation shows that it is the poset
pictured in the top part on the right. We will think of it as a position with one
player ([3], id [3]) connected to three channels, and draw
it as in the bottom part on the right, where the bullet
represents the player, and circles represent channels. In
particular, elements over [3] represent ternary players, while elements over ⋆
represent channels. The positions of our game are finite presheaves empty ex-
cept perhaps on ⋆ and [n]’s. Other objects will represent moves. The graphical
representation is slightly ambiguous, because the ordering of channels known to
players is implicit. We will disambiguate in the text when necessary.

A more difficult category of elements is that of π2. It is the poset generated
by the graph on the left (omitting the base objects for conciseness):

ls rs

lss1 l idπ2
r lss2

lt = rt

.

We think of it as a binary player (lt) forking into two players (ls and rs), and
draw it as on the right. The graphical convention is that a black triangle stands
for the presence of idπ2

, l, and r. Below, we represent just l as a white triangle
with only a left-hand branch, and symmetrically for r. Furthermore, in all our
pictures, time flows ‘upwards’.

ǫs ρs

ǫts3

ǫts1 ǫ idτn,a,m,c,d
ρ

ǫts2

ǫt ρt

β

α

x′

x

y′

y
.

Fig. 2. Category of elements for τ1,1,3,2,3 and graphical representation

Another category of elements, characteristic of the π-calculus, is the one
for synchronisation τn,a,m,c,d. The case (n, a,m, c, d) = (1, 1, 3, 2, 3) is the poset
generated by the graph on the left of Fig. 2, which we will draw as on the
right. The left-hand ternary player x outputs its 3rd channel, here β, on its 2nd
channel, here α. The right-hand unary player y receives the sent channel on its
1st channel, here α. The carrier channel is marked with thick lines, while the
transmitted channel is indicated with arrows. Both players have two occurrences,
one before and one after the move, respectively marked as x/x′ and y/y′. Both
x and x′ have arity 3 here, while y has arity 1 and y′, having gained knowledge
of channel β, has arity 2.

We leave the computation of other categories of elements as an exercise to the
reader. The remaining diagrams for πl

p, π
r
p, om,c,d, ιn,a, ♥p, and νp are depicted

below, for p = 2 and (m, c, d, n, a) = (3, 2, 3, 1, 1):

♥

.

The first two are views, in the game semantical sense, of the fork move π2 ex-
plained above. The next two, om,c,d (for ‘output’) and ιn,a (for ‘input’), respec-
tively represent what the sender and receiver can see of the above synchroni-
sation move. The next diagram is a ‘tick’ move, used for defining fair testing
equivalence. The last one is a channel creation move.

2.2 From diagrams to moves

In the previous section, we have defined our category of diagrams as Ĉf , and
provided some graphical intuition on its objects. The next goal is to construct a
bicategory whose objects are positions (recall: presheaves empty except perhaps
on ⋆ and [n]’s), and whose morphisms represent plays in our game. We start in
this section by defining moves, and continue in the next one by explaining how
to compose moves to form plays. Moves are defined in two stages: seeds, first,

give the local form for moves; moves are then defined by embedding seeds into
bigger positions.

To start with, until now, our diagrams contain no information about the
‘flow of time’. To add this information, for each diagram M representing a
move, we define its initial and final positions, say X and Y , and view the whole

move as a cospan Y
s
−→ M

t
←− X . We have taken care, in drawing our dia-

grams before, of placing initial positions at the bottom, and final positions at
the top. So, e.g., the initial position X and final position Y for the synchro-
nisation move are pictured on the right and they map into (the representable

presheaf over) τ1,1,3,2,3 in the obvious ways,

yielding the cospan Y
s
−→ M

t
←− X . We leave

it to the reader to define, based on the above pictures, the expected cospans

[n] | [n] [m] c,d |a,n+1 [n+ 1] [n] [n] [m] [n+ 1] [n] [n+ 1]

πn τn,a,m,c,d πl
n πr

n om,c,d ιn,a ♥n νn

[n] [m] c |a [n] [n] [n] [m] [n] [n] [n],

where initial positions are on the bottom row, and we denote by [m]a1,...,ap
|c1,...,cp

[n] the position consisting of an m-ary player x and an n-ary player y, quotiented
by the equations x · sak

= y · sck for all k ∈ p. When both lists are empty, by
convention, m = n and the players share all channels in order.

Definition 2. These cospans are called seeds. Their lower legs are called t-legs.

As announced, the moves of our game are obtained by embedding seeds into
bigger positions. This means, e.g., allowing a fork move to occur in a position
with more than one player. We proceed as follows.

Definition 3. Let the interface of a seed Y
s
−→ M

t
←− X be IX = X(⋆) · ⋆, i.e.,

the position consisting only of the channels of the initial position of the seed.

IX

Y M X

Since channels present in the initial position
remain in the final one, we have for each seed
a commuting diagram as on the right. By gluing
any position Z to the seed along its interface, we obtain a new cospan, say
Y ′ → M ′ ← X ′. I.e., for any morphism IX → Z, we push IX → X , IX → M ,
and IX → Y along IX → Z and use the universal property of pushout, as in:

Y Y ′

M M ′

IX Z

X X ′.

Definition 4. Let (global) moves be all cospans obtained in this way.

Recall that colimits in presheaf categories are pointwise. So, e.g., taking pushouts
along injective maps graphically corresponds to gluing diagrams together. Let
us do a few examples.

Example 1. The copsan [2] | [2]
[ls,rs]
−−−−→ π2

lt
←− [2] has as canonical interface the

presheaf I[2] = 2 ·⋆, consisting of two channels, say a and b. Consider the position
[2] + ⋆ consisting of a player y with two channels b′ and c, plus an additional
channel a′. Further consider the map h : I[2] → [2] + ⋆ defined by a 7→ a′ and
b 7→ b′. The pushout

I[2] [2] + ⋆

π2 M ′

is .

x1 x2

x

y ca=a′ b=b′

Example 2. The canonical interface, being the interface of the initial position,
may not contain all channels of the move. In particular, for an input move which
is not part of any synchronisation, the received channel cannot be part of the
initial position.

2.3 From moves to plays

U

X Y

V

Having defined moves, we now define their compo-
sition to define our bicategory Dv of positions and
plays. Dv will be a sub-bicategory of Cospan(Ĉf), the
bicategory which has as objects all finite presheaves
on C, as morphisms X → Y all cospans X → U ←
Y , and as 2-cells U → V all commuting diagrams as on the right. Composition
is given by pushout, and hence is not strictly associative.

Remark 1. We choose to view the initial position as the target of the morphism
in Cospan(Ĉf), in order to emphasise below that the fibration axiom is very close
to a universal property of pullback [27].

Definition 5. Plays are composites of moves in Cospan(Ĉf). Let Dv be the sub-
bicategory consisting of positions and plays.

Remark 2. We do not yet specify what the 2-cells of Dv are. This will follow
from the next section.

Intuitively, composition by pushout glues diagrams on top of each other,
which features some concurrency.

Example 3. Composing the move of Example 1 with a forking move by y yields

.

x1 x2 y1 y2

x y

ca=a′ b=b′

Example 4. Composition retains causal dependencies between moves. To see
this, consider the following diagram. In the initial position, there are channels
a, b, and c, and three players x(a, b), y(b), and z(a, c) (we indicate the channels
known to each player in parentheses). In a first move, x sends a on b, which
is received by y. In a second move, z sends c on a, which is received by (the
avatar y′ of) y. The second move is enabled by the first one, by which y gains
knowledge of a. The corresponding diagram looks like the following, identifying
the two framed nodes and the two circled ones:

.
a b ca

c

x y z

y′

2.4 A pseudo double category

X X ′ X ′′

Y Y ′ Y ′′

Z Z ′ Z ′′

h

u

h′

u′

k

k′

u′′

v

h′′

v′

k′′

v′′

α α′

β β′

We now continue the construction of our play-
ground for π by adding a new dimension. Namely,
we view Dv as the vertical part of a (pseudo) dou-
ble category [19, 16]. This is a weakening of Ehres-
mann’s double categories [10], where one direction
has non-strictly associative composition. A pseudo
double category D consists of a set ob(D) of objects, shared by a ‘horizontal’ cat-
egory Dh and a ‘vertical’ bicategory Dv. Following Paré [41], Dh, being a mere
category, has standard notation (normal arrows and ◦ for composition), while
the bicategory Dv earns fancier notation (arrows and • for composition). D
is furthermore equipped with a set of double cells α, which have vertical, resp.
horizontal, domain and codomain, denoted by domv (α), codv (α), domh(α), and
codh(α). We picture this as, e.g., α above, where u = domh(α), u

′ = codh(α),
h = domv (α), and h′ = codv (α). Finally, there are operations for composing
double cells: horizontal composition ◦ composes them along a common vertical
morphism, vertical composition • composes along horizontal morphisms. Both
vertical compositions (of morphisms and of double cells) may only be associa-
tive up to coherent isomorphism. The full axiomatisation is given by Garner [16],

and we here only mention the interchange law, which says that the two ways of
parsing the above diagram coincide: (β′ ◦ β) • (α′ ◦ α) = (β′ • α′) ◦ (β • α).

Returning to our playground for π, we put

Definition 6. Let H ⊆ Ĉf be the identity-on-objects subcategory of natural
transformations with injective components, except perhaps on channels.

X X ′

U V

Y Y ′

l

k

h

s s′

t t′

(1)

For Dh, we take the full subcategory of H spanning
positions2. Finally, as double cells, D has commuting dia-
grams as on the right, where the vertical cospans are plays
and h, k, and l are in H.

Proposition 1. D forms a pseudo double category.

There is more data to provide and axioms to check to obtain that D forms a
playground. The most serious challenge is to show that the vertical codomain
functor codv : DH → Dh is a (Grothendieck) fibration [27]. Here, DH denotes
the category with vertical morphisms as objects, and double cells as morphisms.
The functor codv maps any play to its initial position and any double cell to its
lower border. Intuitively, the fibration axiom amounts to the existence, for all

plays Y
u

X and horizontal morphisms X ′ h
−→ X , of a universal (≈ maximal)

way of restricting u to X ′, as on the left below:

Y ′ Y

X ′ X

h′

u′ u

h

α

E′′

E′ E

p(E′′)

p(E′) p(E)

r

p(r)

t

p(t)

s

k

Formally, consider any functor p : E → B. A morphism r : E′ → E in E is
cartesian when, as on the right above, for all t : E′′ → E and k : p(E′′)→ p(E′),
if p(r) ◦ k = p(t) then there exists a unique s : E′′ → E′ such that p(s) = k and
r ◦ s = t.

Definition 7. A functor p : E→ B is a fibration iff for all E ∈ E, any h : B′ →
p(E) has a cartesian lifting, i.e., a cartesian antecedent by p.

Unlike in the CCS case, what the lifting u′ should be in our case is generally not
obvious (see Ex. 6 and 7 below).

2.5 Factorisations and fibrations

Our approach to ensuring that codv is a fibration works for π as well as for CCS,
and is much clearer conceptually than our first proposal [24].

2 Injective transformations suffice for CCS, but not for π, because of channel mobility.

Definition 8. A (strong) factorisation system [15, 28] on a category C consists
of two subcategories L and R of C, both containing all isomorphisms, such that
any morphism in C factors essentially uniquely as r ◦ l with l ∈ L and r ∈ R.

‘Essentially unique’ here means unique up to unique commuting isomorphism.

Example 5. In Set, surjective and injective maps form a factorisation system.

Our aim is to construct such a factorisation system (L,R) on Ĉf , such that L

contains all t-legs of plays, and R contains all morphisms in H. The idea is to
compute the restriction of V along h, as in (1), by factoring t′ ◦ h as k ◦ t with
k ∈ R and t ∈ L, and then taking the pullback of k and s′.

Actually, it is enough to demand that L contains t-legs of seeds. Indeed, as
is well-known, L is always stable under pushout; and, by construction, t-legs of
plays are composites of pushouts of t-legs of seeds.

A C

B D.

u

f

v

gh

We rely on Bousfield’s construction [3, 28] of factori-
sation systems from a generating class of maps in L (the
generating cofibrations). For any morphism f : A→ B and
g : C → D, let f ⊥ g iff for all commuting squares as on the
right, there is a unique lifting h making both triangles commute. This extends
in the obvious way to classes of morphisms, which we denote by L ⊥ R. For all
classes L and R of morphisms, let L⊥ = {g | L ⊥ {g}} and ⊥R = {f | {f} ⊥ R}.

Theorem 1 (Bousfield). For any class T of morphisms in any locally pre-
sentable category E, the pair (⊥(T⊥),T⊥) forms a factorisation system.

In the setting of the theorem, one may construct the double category DL,R, with
L = ⊥(T⊥) and R = T⊥, with the same objects as E, and such that

– vertical morphisms X → Y are cospans X
f
−→ U

l
←− Y with l ∈ L,

– horizontal morphisms are morphisms in R, and
– double cells are diagrams like (1) with r′ ∈ R.

The theorem yields:

Proposition 2. The functor codv : (DL,R)H → (DL,R)h is a fibration.

Proof. Consider any vertical morphism X
f
−→ U

l
←− Y and r : Y ′ → Y in R.

X ′ X

U ′ U

Y ′ Y

r′′

r′

r

f ′ f

l′ l

We construct the restriction of (f, l) along r by factoring l ◦ r
as r′ ◦ l′, and then taking the pullback, as on the right. It is
well-known that in any factorisation system, R is stable under
pullback, hence r′′ ∈ R. The universal property of this restric-
tion follows from the other well-known general fact that for all
l ∈ L and r ∈ R, we have l ⊥ r. Indeed, consider as in Fig. 3

any other vertical morphism X ′′ f ′′

−−→ U ′′ l′′

←− Y ′′ and morphism (t, t′, t′′) to U ,
together with a morphism s : Y ′′ → Y ′ such that r ◦ s = t. The lifting property
l′′ ⊥ r′ and the universal property of pullback give the unique s′ and s′′ making
the diagram of Fig. 3 commute. Finally, s′ and s′′ are in R, by the general fact
that R has the left cancellation property [28]: for all composable u and v, vu ∈ R

and v ∈ R implies u ∈ R. ⊓⊔

X ′′

X ′ X

U ′′

U ′ U

Y ′′

Y ′ Y

r′′

r′

r

f

l

t′′

t′

t

f ′′

l′′

s′′

s′

s

f ′

l′

Fig. 3. Cartesianness of lifting

Corollary 1. The functor codv : DH → Dh is a fibration.

Proof. We apply the theorem for T the set of all t-legs of seeds to obtain a
factorisation system (L,R) on Ĉ. We temporarily work in Ĉ, and then show that

the needed factorisations remain in Ĉf . Finally, we verify that H is contained in
R, is stable under pullback, and has the left cancellation property. ⊓⊔

Let us briefly explain what factorisations do. First, for all morphisms r : U → V

in Ĉ, r ∈ R iff t ⊥ r for all t-legs t of seeds. But for any seed X
s
−→ M

t
←− Y ,

M is a representable presheaf. By Yoneda, t ⊥ r intuitively means that for all
x ∈ V (M), if Y is already present in U , then the whole of M is. Otherwise said,
morphisms in r may not ‘grow’ new moves from initial positions. Consequently,
in (1), the first factor t of any t′ ◦h : Y → V will perform all possible moves from
Y ; and the second factor will then map the result to V .

Example 6. Consider the synchronisation of Fig. 2. Let V be the synchronisation
obtained by identifying α and β, so that the received name is already known to y.
Consider the restriction of V to just y. By Ex. 2, an input move (in the absence of
a corresponding output move) cannot receive an already known channel. Thus,
the restriction of V to y is just the input seed.

Example 7. Consider again the synchronisation of Fig. 2, say X
f
−→ U

l
←− Y , and

the position [3] + [1] consisting of a ternary player x0 and a unary player y0,
not sharing any channel. Consider the horizontal map r : [3] + [1] → Y defined
by x0 7→ x and y0 7→ y. The factorisation of l ◦ r as r′ ◦ l′ yields a play where
x0 does an o3,2,3 move and y0 does an ι1,1 move (the order is irrelevant). Thus,
restrictions of moves may be plays of length strictly greater than one.

We at last obtain:

Theorem 2. D forms a playground.

2.6 Innocent Strategies

Following our previous work [24], we now associate to each object, i.e., position
X , its category of strategies SX . Consider first the most naive notion of strategy

Y ′ Y ′

Y

X X

w

u

u′

∼=

over X . In a playground, the analogue of the poset of plays with
prefix order is given by the category P(X) with plays u : Y X
as objects and double cells as on the right as morphisms u → u′.
Let the category BX of behaviours on X be P(X). Behaviours do
not yield a satisfactory notion of strategy:

Example 8. Consider the position X consisting of three players x, y, z sharing a
channel a. Let ux,y denote the play where x sends a on a, which is received by y;
let similarly ux,z denote the play where x sends a on a, which is received by z.
Let, finally, iz denote the play where z inputs on a. One may define a behaviour
B mapping ux,y and iz to a singleton, and ux,z to the empty set. Because ux,y is
accepted, x accepts to send a on a. Because iz is accepted, z accepts to receive
on a. The problem is that B rejecting ux,z amounts to x or z choosing their
partners for synchronising, e.g., x accepts to send a on a only to players other
than z.

[m′] [m′]

[m]

[n] [n]

w

v

v′

∼=

α

Xx x

We want to rule out this kind of behaviour from our model,
and our solution is innocence. Let basic seeds be all seeds of the
shape ιn,a, on,a,b, νn, ♥n, π

l
n, or πr

n, for a, b ∈ n. Intuitively,
basic seeds follow exactly one player. Let views be composites
of basic seeds in Dv. We now replace our base P(X) with VX ,
whose objects are pairs (v, x) of a view v : [m] [n] and a
horizontal morphism x : [n] → X , i.e., by Yoneda, of a player of X and a view
from it. Morphisms v → v′ are cells α as on the right.

Definition 9. Let the category SX of strategies over X be ṼX .

Remark 3. We restrict to presheaves of finite ordinals (as opposed to finite sets).

There is an essentially surjective embedding ṼX →֒ VX , so we do not really lose
any strategy in the process, only some completeness properties. On the other
hand, we gain the syntactic characterisation used in the next section.

T Z ′

Z

Y Y ′

w

u

u′

r

s

α

Xh h′

To relate strategies and behaviours, consider the category
PX with as objects pairs (u, h) of a play u : Z Y and a
horizontal morphism h : Y → X , and as morphisms (u, h) →
(u′, h′) all diagrams as on the right. This category contains
both VX and P(X) in obvious ways, and it furthermore allows
to describe the views (v, x) of a general play u′ by taking
h′ = idX

3. So our morphisms account both for prefix inclusion, and for ‘spatial’
inclusion, i.e., inclusion of a play into a play on a bigger position.

Right Kan extension and restriction along V
op
X →֒ P

op
X ←֓ P(X)op induce a

functor SX → BX . Intuitively, this functor maps any strategy S to the behaviour

3 There is a small problem, however: morphisms should only describe how u maps to
u′, not w. We actually consider a quotient of morphisms to rectify this.

accepting a play u iff S accepts all views of u. This also allows to view strategies
as sheaves [33] for a certain Grothendieck topology on PX , as explained in pre-
vious papers [25]. Intuitively, strategies provide (locally determined) behaviours
for all subpositions of X . Such local ‘behaviour’ may become irrelevant when
passing to the globally-defined behaviours. In particular, SX → BX is neither
injective on objects, nor full, nor faithful.

Example 9. If two strategies differ, but are both empty on the views of some
player, then both are mapped to the empty behaviour.

3 Bridging the gap with π

3.1 Syntax and transition system for strategies

One of the main results about playgrounds [24] entails that strategies over D are
entirely described by the following typing rules

. . . nB ⊢ SB . . . (∀B : [nB]→ [n])

n ⊢D 〈(SB)B∈Bn
〉

. . . n ⊢D Di . . . (∀i ∈ m)

n ⊢ ⊕i∈mDi

(m ∈ N),

where Bn is the set of basic seeds from [n] as defined above. The rules feature
two kinds of judgements, ⊢ for plain strategies, and ⊢D for definite strategies,
intuitively those with exactly one initial state.

Remark 4. The sum ⊕ is not commutative (although it is up to fair testing
equivalence).

Theorem 3 ([24]). Strategies over [n] are in bijection with possibly infinite
terms in context n.

Furthermore, giving a strategy over any position X amounts to giving a strat-
egy over [n] for each n-ary player of X.

Theorem 3 yields the following coinductive interpretation of processes:

JΓ ⊢
∑

i αi.PiK = 〈B 7→ ⊕{i|JαiK=B}JΓ · αi ⊢ PiK〉

JΓ ⊢ P |QK =

∞
πl
Γ 7→ JΓ ⊢ P K

πr
Γ 7→ JΓ ⊢ QK
− 7→ ∅

∫

JΓ ⊢ ν.P K =

≠
νΓ 7→ JΓ + 1 ⊢ P K
− 7→ ∅

∑
,

with Jā〈b〉K = oΓ,a,b, JaK = ιΓ,a, J♥K = ♥Γ , ∅ is the empty ⊕ sum, and − 7→ ∅
means that all unmentioned basic seeds are mapped to ∅.

Example 10. Omitting typing contexts, we have

JΓ ⊢ a.P + a.Q+ b̄〈c〉.RK =

∞
ιΓ,a 7→ JΓ + 1 ⊢ P K⊕ JΓ + 1 ⊢ QK

oΓ,b,c 7→ JΓ ⊢ RK
− 7→ ∅

∫

.

We now define a transition system for definite strategies, which is useful for char-
acterising fair testing equivalence, and for which we need to define two auxiliary
operations. The first is an operation of derivation along a basic seed, defined
from definite strategies to strategies by ∂B〈(SB′)B′∈Bn

〉 = SB. The second is a
partial restriction operation from strategies to definite strategies, defined if i ∈ p
by (⊕i′∈pDi′)|i = Di.

Example 11. Following up on Example 10 and omitting contexts, we have

(∂JaKJa.P + a.Q+ b̄〈c〉.RK)|2 = JQK (∂Jb̄〈c〉KJa.P + a.Q+ b̄〈c〉.RK)|1 = JRK.

These operations may be extended to arbitrary strategies and moves, in a way
which we will gloss over here. We may thus write (∂MS)|i. This yields:

Definition 10. Let SD denote the free reflexive graph with as vertices pairs of a
position X and a definite strategy D over X, and as edges all well-defined triples

(X,D)
M
−→ (Y, (∂MD)|i), for all moves M : Y X.

We view this graph as a transition system for strategies.

Example 12. We have examples mirroring transitions in π. Calling D the trans-

lation of the process of Example 10, we have, e.g., ([Γ], D)
ιΓ,a

−−→ ([Γ + 1], JP K),
and the same with Q. But we also have transitions for things which usually
go into structural equivalence, e.g., ([Γ], JP | QK)

πΓ−−→ ([Γ] | [Γ], (JP K, JQK)).
In the final state, by the second part of Theorem 3, we define a strategy on
[Γ] | [Γ] by providing two strategies on [Γ]. Similarly, we have a transition

([Γ], Jν.P K)
νΓ−−→ ([Γ + 1], JP K).

3.2 Fair testing equivalence from the transition system

The point of the transition system SD is to characterise our semantic analogue
of fair testing equivalence. For lack of space, we describe the characterisation,
omitting the direct, game semantical definition. First, as announced in the in-
troduction, we allow tests to rename some channels. Recall from Definition 3 the
canonical interface IX of a position X .

Definition 11. For any state (X,D) of SD, a test for (X,D) is a pair of a
horizontal morphism h : IX → Y and a strategy T on Y .

The morphism IX → Y may identify some channels and introduce new ones.
Whether such a test is passed successfully will be determined by the ‘closed-
world’ dynamics of the strategy (D,T) over the pushout Z = X +IX Y . Intu-
itively, the players of Z are partitioned into players from X and players from Y ,
so (D,T) is, by a slight abuse of language, a strategy for the whole.

Let now S
W

D
, the closed-world part of SD, be the identity-on-vertices subgraph

of SD consisting of edges whose underlying moves have the shape τn,a,m,c,d, νn,
♥n, or πn. There is an obvious morphism of reflexive graphs ℓD : S

W

D
→ Σ to the

one-vertex reflexive graph with one non-identity edge ♥. We denote by (X,D) =⇒

(X ′, D′) the existence of a path in S
W

D
mapped by ℓD to a path of identities in Σ,

and by (X,D)
♥
=⇒ (X ′, D′) the existence of a path mapped to a path consisting

of identities and exactly one ♥ edge.

Definition 12. Let ⊥D denote the set of all vertices x of SD such that, for

all x =⇒ x′, there exists x′′ such that x′ ♥
=⇒ x′′. Let (X,D)⊥ denote the set

of all tests (h, T) such that (D,T) ∈ ⊥D. Finally, let (X,D) ∼D (X ′, D′) iff
(X,D)⊥ = (X ′, D′)⊥.

3.3 Main results

In this section, we at last state our main results. First, let us define our variant
of fair testing equivalence for π. Let a test for Γ ⊢ P consist of a pair of a
map h : Γ → ∆ and a process ∆ ⊢ R. Let PiW denote the identity-on-vertices
sub-reflexive graph of Pi consisting of τ and ♥ transitions. There is an obvious
morphism ℓPi : PiW → Σ and, mimicking previous notation, we put:

Definition 13. Let ⊥Pi denote the set of all vertices x of Pi such that, for all

x =⇒ x′, there exists x′′ such that x′ ♥
=⇒ x′′. Let (Γ ⊢ P)⊥ denote the set of all

tests (h,R) such that (P [h] | R) ∈ ⊥Pi . Finally, let (Γ ⊢ P) ∼Pi (Γ ⊢ Q) iff
(Γ ⊢ P)⊥ = (Γ ⊢ Q)⊥.

Theorem 4. For all P,Q, (Γ ⊢ P) ∼Pi (Γ ⊢ Q) iff ([Γ], JP K) ∼D ([Γ], JQK).

Proof sketch. The main difficulty is that we have to compare ltss over very
different alphabets. A first point is that edges in SD are very intensional. E.g.,
an input transition describes not only the involved channels but also which player
makes the move. A second point is that SD is not ‘modular’, in the sense that it
is not obvious to infer the transitions of a vertex (X,D) from the transitions of

players of X . E.g., we have transitions Jνa.a(x)K
ν0−→ Ja(x)K

ι1,1
−−→ 0.

We rectify the latter deficiency first, by designing a finer lts S
L

D
for D. Its

vertices are triples (I, h, S) of an interface I, a horizontal map h : I → X , and
a strategy S over X . I represents all channels known to the environment, and
the idea is that all transitions in S

L

D
may be completed into closed-world transi-

tions by interacting at I. This corrects the second mentioned deficiency, but SL
D

remains too intensional. So, we coarsen the lts S
L

D
to a new lts S

A

D
. The new

labels are given by the free reflexive graph A with as vertices all maps ∆ → Γ
of finite sets, and as with edges as defined by the rules in Fig. 44.

The idea, for vertices, is that ∆ represents the channels of the interface, and
Γ represents the channels that the considered process or strategy (say, an agent)
knows locally. The first rule should be easy. The second rule says that an agent
may create a private channel, a priori unknown to the environment. The next
two rules, for input and output, have been simplified for clarity. The important
point is their symmetry: both add one channel to the interface. The input rule,

4 In Fig. 4, we put side conditions as premises for conciseness.

(∆
h
−→ Γ)

♥
←− (∆

h
−→ Γ) (∆

h
−→ Γ)

ν
←− (∆

h
−→ Γ

⊆
−֒→ Γ + 1)

a ∈ Im(h)

(∆
h
−→ Γ)

ι(a)
←−− (∆+ 1

h+!
−−→ Γ + 1)

a ∈ Im(h)

(∆
h
−→ Γ)

o(a,b)
←−−−− (∆+ 1

[h,b]
−−−→ Γ)

a, c ∈ Im(h); a 6= c

(∆
h
−→ Γ)

o(a,b) ι(c)
←−−−−−−− (∆

h
−→ Γ

⊆
−→ Γ + 1) (∆

h
−→ Γ)

δ
←− (∆

h
−→ Γ)

·

Fig. 4. Edges for A

however, locally considers the new channel as fresh, whereas the output rule
records that it is the sent channel. By the side condition, the channel on which
the synchronisation occurs should belong to ∆. The rules for input and output
describe one way of decomposing a synchronisation. The last two rules describe
another way, where an input on a and an output on c both occur for the same
agent, which cannot verify locally that a = c. Again, we only present a particular
case of our real rules (actually this is just the case b /∈ Im(h)). These rules are
reminiscent of Rathke and Sobociński [43] (for input/output), and Crafa et al. [7]
(for partial synchronisations).

We have already mentioned that SD may be viewed as an lts S
A

D
over A. It

is not too much work to also view PiA as an lts over A. Next, we define when
two transitions in A are complementary, i.e., are the restrictions of a closed-
world transition. This gives the right notion of complementarity for both PiA

and S
A

D
, so that fair testing equivalence in Pi and SD may be checked in terms

of transitions over A. Thus, in order to check whether an agent P passes a test
T , e.g., instead of considering transition sequences P |T =⇒ Q, one may consider

complementary sequences P
w
=⇒A P ′ and T

w′

=⇒A T ′ such that Q = P ′ | T ′.

Thanks to this, one reduces to proving that the translation J−K : Pi → SD is
surjective up to weak bisimilarity (except for empty strategies), which ensures
that there are enough tests in Pi . For this, the only subtlety is that in Pi , ν is
a standalone construct, which may not be part of a guarded sum, while in SD it
is treated exactly as inputs, outputs, and ticks. This is dealt with by encoding
any guarded sum ν.P + . . . as, informally, νc.(c̄.ν.P + . . .). ⊓⊔

In the course of our proof, we have shown that almost all strategies are weakly
bisimilar, hence fair testing equivalent, to some JP K. Actually, the only strategy
which is not is ∅, which is in fact fair testing equivalent to J♥K! This entails

Theorem 5. For all strategies S over [Γ], there exists a process Γ ⊢ P such
that JΓ ⊢ P K ∼D ([Γ], S).

Theorems 4 and 5 together are the desired full abstraction result.

References

1. S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In LICS
1999 [32], pages 431–442.

2. M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. A Kleene theorem for poly-
nomial coalgebras. In FoSSaCS, volume 5504 of LNCS, pages 122–136. Springer,
2009.

3. A. K. Bousfield. Constructions of factorization systems in categories. Journal of

Pure and Applied Algebra, 9(2-3):287–329, 1977.
4. E. Brinksma, A. Rensink, and W. Vogler. Fair testing. In CONCUR, volume 962

of LNCS, pages 313–327. Springer, 1995.
5. D. Cacciagrano, F. Corradini, and C. Palamidessi. Explicit fairness in testing

semantics. Logical Methods in Computer Science, 5(2), 2009.
6. G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the pi-calculus. In

Category Theory and Computer Science, volume 1290 of LNCS, pages 106–126.
Springer, 1997.

7. S. Crafa, D. Varacca, and N. Yoshida. Event structure semantics of parallel ex-
trusion in the pi-calculus. In FoSSaCS, volume 7213 of LNCS, pages 225–239.
Springer, 2012.

8. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83–133, 1984.
9. M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier. Bulking I: An abstract

theory of bulking. Theoretical Computer Science, 412(30):3866–3880, 2011.
10. C. Ehresmann. Catégories et structures. Dunod, 1965.
11. U. Engberg and M. Nielsen. A calculus of communicating systems with label

passing. Technical Report PB-208, Aarhus University, 1986.
12. M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the pi-calculus

(extended abstract). In LICS 1996 [31], pages 43–54.
13. M. P. Fiore and S. Staton. A congruence rule format for name-passing process

calculi from mathematical structural operational semantics. In LICS, pages 49–58.
IEEE Computer Society, 2006.

14. M. P. Fiore and D. Turi. Semantics of name and value passing. In LICS, pages
93–104. IEEE Computer Society, 2001.

15. P. Freyd and G. Kelly. Categories of continuous functors, I. Journal of Pure and

Applied Algebra, 2:169–191, 1972.
16. R. Garner. Polycategories. PhD thesis, University of Cambridge, 2006.
17. D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained concurrency.

In FoSSaCS, volume 2987 of LNCS, pages 211–225. Springer, 2004.
18. J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathemat-

ical Structures in Computer Science, 11(3):301–506, 2001.
19. M. Grandis and R. Paré. Limits in double categories. Cahiers de Topologie et

Géométrie Différentielle Catégoriques, 40(3):162–220, 1999.
20. R. Harmer, M. Hyland, and P.-A. Melliès. Categorical combinatorics for innocent

strategies. In LICS, pages 379–388. IEEE Computer Society, 2007.
21. R. Harmer and G. McCusker. A fully abstract game semantics for finite nondeter-

minism. In LICS 1999 [32], pages 422–430.
22. M. Hennessy. A fully abstract denotational semantics for the pi-calculus. Theoret-

ical Computer Science, 278(1-2):53–89, 2002.
23. T. T. Hildebrandt. Towards categorical models for fairness: fully abstract presheaf

semantics of SCCS with finite delay. Theoretical Computer Science, 294(1/2):151–
181, 2003.

24. T. Hirschowitz. Full abstraction for fair testing in CCS. In CALCO, volume 8089
of LNCS, pages 175–190. Springer, 2013. Long version submitted.

25. T. Hirschowitz and D. Pous. Innocent strategies as presheaves and interactive
equivalences for CCS. Scientific Annals of Computer Science, 22(1):147–199, 2012.
Selected papers from ICE ’11.

26. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000.

27. B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. North Holland, Amsterdam, 1999.

28. A. Joyal. Factorisation systems. http://ncatlab.org/joyalscatlab.
29. J. Laird. Game semantics for higher-order concurrency. In FSTTCS, volume 4337

of LNCS, pages 417–428. Springer, 2006.
30. T. Leinster. Higher Operads, Higher Categories, volume 298 of London Mathemat-

ical Society Lecture Notes. Cambridge University Press, Cambridge, 2004.
31. 11th Symposium on Logic in Computer Science. IEEE Computer Society, 1996.
32. 14th Symposium on Logic in Computer Science. IEEE Computer Society, 1999.
33. S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction

to Topos Theory. Universitext. Springer, 1992.
34. P.-A. Melliès. Game semantics in string diagrams. In LICS, pages 481–490. IEEE,

2012.
35. P.-A. Melliès and S. Mimram. Asynchronous games: Innocence without alternation.

In CONCUR, volume 4703 of LNCS, pages 395–411. Springer, 2007.
36. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
37. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I/II. Infor-

mation and Computation, 100(1):1–77, 1992.
38. U. Montanari and M. Pistore. Concurrent semantics for the pi-calculus. Electronic

Notes in Theoretical Computer Science, 1:411–429, 1995.
39. V. Natarajan and R. Cleaveland. Divergence and fair testing. In ICALP, volume

944 of LNCS, pages 648–659. Springer, 1995.
40. H. Nickau. Hereditarily sequential functionals. In LFCS, volume 813 of LNCS,

pages 253–264. Springer, 1994.
41. R. Paré. Yoneda theory for double categories. Theory and Applications of Cate-

gories, 25(17):436–489, 2011.
42. A. Popescu. A fully abstract coalgebraic semantics for the pi-calculus under weak

bisimilarity. Technical Report UIUCDCS-R-2009-3045, University of Illinois, 2009.
43. J. Rathke and P. Sobocinski. Deconstructing behavioural theories of mobility. In

IFIP TCS, volume 273 of IFIP, pages 507–520. Springer, 2008.
44. S. Rideau and G. Winskel. Concurrent strategies. In LICS ’11. IEEE Computer

Society, 2011.
45. D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica,

33(1):69–97, 1996.
46. I. Stark. A fully abstract domain model for the pi-calculus. In LICS 1996 [31],

pages 36–42.
47. G. Winskel. Strategies as profunctors. In FoSSaCS, volume 7794 of LNCS, pages

418–433. Springer, 2013.

