
HAL Id: hal-00840362
https://hal.science/hal-00840362v1

Submitted on 2 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-Aware Management of Monotonic Service
Orchestrations

Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, John A.
Thywissen

To cite this version:
Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, John A. Thywissen. QoS-Aware
Management of Monotonic Service Orchestrations. Formal Methods in System Design, 2014, 44 (1),
pp.1-43. �10.1007/s10703-013-0191-7�. �hal-00840362�

https://hal.science/hal-00840362v1
https://hal.archives-ouvertes.fr

Formal Methods in System Design

QoS-Aware Management of Monotonic Service Orchestrations
--Manuscript Draft--

Manuscript Number: FORM-D-12-00304R1

Full Title: QoS-Aware Management of Monotonic Service Orchestrations

Article Type: Manuscript

Keywords: Web Services; Service orchestrations; Quality of Service Algebra; Probabilistic
Models.

Corresponding Author: Albert Benveniste
Inria
Rennes, FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Inria

Corresponding Author's Secondary
Institution:

First Author: Albert Benveniste

First Author Secondary Information:

Order of Authors: Albert Benveniste

Claude Jard

Ajay Kattepur

Sidney Rosario

John A. Thywissen

Order of Authors Secondary Information:

Abstract: We study QoS-aware management of service orchestrations, specifically for
orchestrations having a data-dependent workflow. Our study supports multi-
dimensional QoS. To capture uncertainty in performance and QoS, we provide support
for probabilistic QoS. Under the above assumptions, orchestrations may be non-
monotonic with respect to QoS, meaning that strictly improving the QoS of a service
may strictly decrease the end-to-end QoS of the orchestration, an embarrassing
feature for QoS-aware management. We study monotonicity and provide sufficient
conditions for it. We then propose a comprehensive theory and methodology for
monotonic orchestrations. Generic QoS composition rules are developed via a QoS
Calculus, also capturing best service binding -- service discovery, however, is not
within the scope of this work. Monotonicity provides the rationale for a contract-based
approach to QoS-aware management. Although function and QoS cannot be
separated in the design of complex orchestrations, we show that our framework
supports separation of concerns by allowing the development of function and QoS
separately and then weaving them together to derive the QoS-enhanced orchestration.
Our approach is implemented on top of the Orc script language for specifying service
orchestrations.

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation

Revised version of Manuscript D-12-00304

Answers to the reviewers

February 18, 2013

1 General answers

We thank the reviewers for their careful reading and criticism. Detailed
answers to each reviewer are provided below. Main changes in this version
are the following:

1. We must agree with the main criticism of reviewer #2. Indeed, having
submitted this paper, we decided to re-investigate with Samy Abbes
branching cells for nets with read arcs and found errors in the defi-
nitions of Sydney Rosario’s thesis. This had impact on the definition
of Procedure 1 and correcting it would result in a significant increase
in complexity. Our formulation of Procedure 1 in the first submission
was indeed incorrect as pointed out by reviewer #2, and we are very
grateful for this. We have decided to follow the advise of this reviewer
by restricting ourselves to the much simpler case of free choice nets.
This adequately puts the focus on the handling of the QoS, which
remains the main contribution of this paper.

2. Since our submission, the development of the QoS-Orc tool has been
pursued and we have updated the second Appendix to account for the
resulting changes and we provide more details.

3. We have shifted the related work later in the paper.

2 Detailed answers

2.1 Reviewer #1

We thank you for your careful reading.

1

• Intro: The authors should provide more discussion about the relations
of this paper with [15,39,40]. Our paper states on page 7: “This agenda
was developed by a subgroup of authors of this paper in [15, 39, 40],
for the restricted case of latency. In this paper we extend our previous
work on latency-aware management of composite services to generic,
possibly multi-dimensional, QoS.” The extension is non-trivial because
it covers generic, partially ordered, QoS. We do not see what we should
say more.

• [Pag. 8, Line 32/33] ”non-probabilistic” excedes the page margin.
Does not apply to the revised version.

• [Pag. 13, Line 34] ”the left most token” → the token in the left most
place (In Fig. 4). Modified as requested.

• nition). Modified as requested.

• [Pag. 18, Line. 10] ”1/” → ”(1)” , ”2/” → ”(2)”. Modified as
requested.

• [Pag. 20, Def. 2] ”daemons” have the same role of ”schedulers” in
the terminology of Lynch, Segala. Please clarify. A footnote has been
added when introducing daemons. Our use is wider than the one you
mention but the relation indeed holds.

2.2 Reviewer #2

We thank you very much for your highly valuable reading.

• Page 4, line 26-27 ”In general we believe that the term Quality of
Service presupposes that better QoS is indeed better overall”. Is that
just what you believe? Or is it what practitioners in the field implicitly
apply? Changed the wording to “It is commonly understood”.

• Page 16, line 38-39. I think that D0 is not the empty set, but the
singleton of the empty tuple. Replaced tuples by sets, so the problem
disappears.

• Page 38, line 29: what does it mean that k-dagger cannot occur? Mod-
ified; we hope it is clarified.

2

Formal Methods in Systems Design manuscript No.
(will be inserted by the editor)

QoS-Aware Management
of Monotonic Service Orchestrations

Albert Benveniste · Claude Jard ·
Ajay Kattepur · Sidney Rosario ·
John A. Thywissen

Received: date / Accepted: date

Abstract We study QoS-aware management of service orchestrations, specifi-
cally for orchestrations having a data-dependent workflow. Our study supports
multi-dimensional QoS. To capture uncertainty in performance and QoS, we
provide support for probabilistic QoS. Under the above assumptions, orches-
trations may be non-monotonic with respect to QoS, meaning that strictly
improving the QoS of a service may strictly decrease the end-to-end QoS of
the orchestration, an embarrassing feature for QoS-aware management. We
study monotonicity and provide sufficient conditions for it. We then propose a
comprehensive theory and methodology for monotonic orchestrations. Generic
QoS composition rules are developed via a QoS Calculus, also capturing best
service binding—service discovery, however, is not within the scope of this
work. Monotonicity provides the rationale for a contract-based approach to
QoS-aware management. Although function and QoS cannot be separated in
the design of complex orchestrations, we show that our framework supports
separation of concerns by allowing the development of function and QoS sep-
arately and then “weaving” them together to derive the QoS-enhanced orches-
tration. Our approach is implemented on top of the Orc script language for
specifying service orchestrations.

A. Benveniste and A. Kattepur
DistribCom team at INRIA Rennes,
Campus Universitaire de Beaulieu, 35042 Rennes CEDEX, France.
E-mail: Firstname.Lastname@inria.fr

C. Jard
Department of Computer Science, Université de Nantes, LINA-Atlanstic
rue de la Houssinière, 44322 Nantes CEDEX 3, France
E-mail: Claude.Jard@univ-nantes.fr

J.A. Thywissen
Department of Computer Science, The University of Texas at Austin,
1 University Station, Austin, Texas 78712, USA.
This work started when S. Rosario was with U.T. Austin.
E-mail: sidney.rosario@gmail.com, jthywiss@cs.utexas.edu

*Manuscript
Click here to download Manuscript: FMSD_springer_revised.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/form/download.aspx?id=17339&guid=321aae33-ef44-4023-a42f-04c5230dfdf8&scheme=1
http://www.editorialmanager.com/form/viewRCResults.aspx?pdf=1&docID=442&rev=1&fileID=17339&msid={C1F3D870-3A79-4C7A-915F-75A5BA8678F0}

2 Albert Benveniste et al.

Keywords Web Services · QoS · Algebra · Probabilistic Models

1 Introduction

Service Oriented Computing is a paradigm suited to wide area computing,
where services can be dynamically selected and combined to offer a new ser-
vice [17]. To enable service selection and binding, services expose both func-
tional and Quality of Service (QoS) properties. Service selection can thus occur
on the basis of both types of properties. In particular, service selection among
a pool of functionally substitutable services can be performed based on QoS.
Therefore, models of composite services should involve policies for QoS-based
service selection [17].

Quite often, several dimensions for QoS must be handled (e.g., timing per-
formance, availability, cost), leading to the consideration of multi-dimensional
QoS. Consequently, QoS domains should be partially, not totally ordered. For
simple policies, QoS guarantees exposed by the service or expected by the user
are typically stated as fixed bounds. QoS is, however, generally subject to un-
certainties, due to the numerous hidden sources of nondeterminism (servers,
OS, queues, and network infrastructure). Therefore, a number of authors have
agreed that QoS should be characterized in probabilistic terms [27,39,40,53].

To illustrate the issues behind the QoS aware management of composite
services, consider the following toy example, for which we first present a simple
form and then develop some variations. Fig. 1(a) depicts a simple orchestration
for a travel agent. The user enters the location of a place to visit. Two Airline
services are invoked in parallel with the one offering “best” cost being selected.
Next, two Hotel reservation services are invoked and selection occurs on the
basis of cost and category, seen both as QoS dimensions. The selection on
cost/category may be done through lexicographic or weighted ordering. The
results are presented as an invoice. This orchestration exhibits a control flow
that is independent from the circulated data. It has a two-dimensional QoS,
with the two dimensions being cost and hotel category. Observe that the two
QoS dimensions in this example are correlated.

This diagram is reformulated into that of Fig. 1(b), to be interpreted as
a Petri net, where rectangles figure transitions and rounded rectangles figure
places. Each query to the orchestration is modeled by a token traversing the
input transition. Upon entering the first place, the transition to traverse must
be chosen. This choice is based on best cost among offers by airline companies.
Subsequently, the token enters the second place, where choice among differ-
ent hotel booking services (shown as transitions) occurs based on both cost
and category. This alternative Petri net description is a formalization of the
previous description. We shall follow this Petri net modeling style hereinafter.

Fig. 2 shows a variation of Fig. 1(b) with a control flow dependent on both
returned data and QoS values. A loop is introduced in the decision process
that checks if the total Cost is within the budget and can ask the user to specify
preferences again. The presentment of the Invoice is guarded by a timer. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 3

(a)

Present Invoice

best(cost)

best(cost, category)

AirlineCompany1 AirlineCompany2

HotelBookingA HotelBookingB

Submit Order (location)

(b)

Present Invoice

AirlineCompany1 AirlineCompany2

Submit Order (location)

HotelBookingA HotelBookingB

best(cost)

best(cost,category)

Fig. 1 TravelAgent1: Simple travel agent; (a) informal diagram, and (b) Petri net form,
where rectangles figure transitions and rounded rectangles figure places. This orchestration
has a data-independent workflow.

choice at the place labeled with “best(latency)” depends on which subsequent
transition fires first. Thus, if the Invoice is ready before Timeout occurs, then
it is emitted, otherwise a “timeout” message is returned. This timeout mech-
anism ensures that the loop terminates within a pre-specified time bound,
possibly with a failure. This orchestration has a three-dimensional QoS, with
the dimensions being cost, hotel category, and latency (due to timers). We now
review some important issues in Service Oriented Computing.

Monotonicity and Consequences for Management: A basic assumption under-
pinning the management of composite services is that QoS improvements in
component services can only be better for the composite service. For exam-
ple, once service selection in QoS-based design has been performed, a selected
service is not expected to get deselected if it improves its QoS performance.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Albert Benveniste et al.

HotelBookingA HotelBookingB

AirlineCompany1 AirlineCompany2

Present InvoiceTimeout

best(cost)

best(latency)

best(cost,category)

Submit Order (location, budget)

Resubmit (budget)

≤Budget ?AirlineCost
+ HotelCost

Yes
No

Fig. 2 TravelAgent2: A variation of TravelAgent1 having a data-dependent workflow.

Similarly, once services have been selected on the basis of QoS performance,
reconfiguration will not occur unless some requested service’s performance
degrades or some non-selected service’s performance improves. Finally, QoS
monitoring consists of checking components for possible degradations in QoS.
It is commonly understood that the term“Quality of Service”presupposes that
“better QoS is indeed better overall”. In other words, the better the involved
services1 perform, the better the composite service performs. This general
property is important, so we give it a name—monotonicity. If a composite
service fails to be monotonic, the common understanding of QoS is no longer
valid and negotiations between the service provider and service requester re-
garding QoS issues become nearly unmanageable. We see monotonicity as a
highly desirable feature, so we make it a central topic of this work.

Monotonicity always holds for orchestrations having a data-independent
workflow—the orchestration shown in Fig. 1 is an example. A careful inspec-
tion shows that the orchestration of Fig. 2, which possesses a data-dependent
workflow, is also monotonic.

However, monotonicity is not always satisfied. Consider the example in
Fig. 3. This orchestration performs late binding of service by deciding on-
line and based on the cost of the airline ticket, which company to select.
The two companies then propose different sets of hotels, shown by the two
steps HotelBookingA/B. Let c1 and c2 be the cost of ticket for Companies 1
and 2, and h(c) be the optimum cost of the hotel booking if company c was
selected. Suppose c1 < c2 and h(c1) < h(c2) both hold. Then, the left branch is

1 Involved services include all services that can potentially be requested by the composite
service. For example, if the composite service involves an if-then-else branch, only one branch
will actually be executed, but both are involved in the composite service.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 5

HotelBookingA HotelBookingB

AirlineCompany1 AirlineCompany2

Present InvoiceTimeout

best(cost)

best(latency)

Submit Order (location, budget)

Resubmit (budget)

≤Budget ?AirlineCost
+ HotelCost

Yes
No

Fig. 3 TravelAgent3: A variation of TravelAgent2 lacking monotonicity.

preferred and yields a total cost QoS for the orchestration equal to c1 +h(c1).
Now, suppose Company 2 improves its offer beyond Company 1: c2 < c1.
Then, the right branch will be selected and total cost c2 + h(c2) will result.
Now, it may very well be that c2 + h(c2) > c1 + h(c1) still holds, meaning
that the improvement in QoS of Company 2 has resulted in a degradation
of total QoS. The orchestration of Fig. 3 is thus non-monotonic, despite it
being a quite minor modification of TravelAgent2. Differences in “local” versus
“global” optimization due to lack of monotonicity were identified in [8,11,51]—
“monotonicity” was not mentioned in the referred works but the concept was
identified.

Examples such as TravelAgent3 can be easily specified using the standard
language BPEL for orchestrations and business processes. To summarize, this
issue of monotonicity is essential. However, it seems underestimated in the
literature on Web services, with the exception of [8, 11, 51], as our discussion
of related work will show.

Assume that monotonicity is addressed, either by enforcing it, or by dealing
with the lack of it. Then, new avenues for composite service management can
be considered, by taking advantage of monotonicity:

(a) A called service that strictly improves its QoS cannot strictly worsen the
QoS of the orchestration. Therefore, it is enough for the orchestration to
monitor QoS degradations for each called service. Negotiations and penal-
ties occur on the basis of understandable rules. If suitable, relations be-
tween the orchestration and its called services can rely on QoS contracts.
It is then the duty of the orchestration (or of some third party) to monitor
such contracts for possible violation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Albert Benveniste et al.

(b) Since we build on a contract-based philosophy, the orchestration itself must
be able to offer QoS contracts to its customers. This necessitates relating
the contracts the orchestration has with its involved services to the overall
contract it can offer to its customers. We refer to this as contract composi-
tion.

(c) Thanks to monotonicity, it is possible to perform QoS-based late binding
of services by selecting, at run time, the best offer among a pool of compli-
ant candidates—by “compliant” we mean candidates satisfying some given
functional property.

Handling Probabilistic QoS: To handle uncertainty in QoS, probabilistic frame-
works have been favored by a number of authors [18, 26, 27, 34, 39, 40, 44, 50,
51,52,53]. When the workflow of the orchestration is statically defined regard-
less of data, rules for composing QoS probability distributions of the called
services have been proposed for various QoS domains [6, 8, 9, 10, 11, 19, 49].
Optimal service selection among different options has been solved by efficient
optimization methods, by using, for example, Markov models [6, 18].

For orchestrations exhibiting data-dependent workflow or QoS values, how-
ever, such methods do not apply. The QoS-aware model of the orchestration
combines probability and non-determinism — non-determinism arises from
the data-dependent selection among alternatives. Markov models do not ap-
ply, and Markov Decision Process models must be considered instead. The
successive data-dependent choices performed are referred to as the scheduler
of the MDP. Optimization can then be stated in two different ways. In most
approaches [18, 26, 27, 34, 44, 53], the scheduler itself is also randomized, thus
resulting in a larger Markov model (assuming that sources of randomness are
all independent). Alternatively, a max-min optimization can be performed,
where the min is computed among the different service alternatives for a given
fixed scheduler, and then the max over schedulers is computed. These methods
have been widely used for off-line orchestration design. Optimal on-line ser-
vice selection or binding is much more demanding. Mathematically speaking,
this activity amounts to solving a stochastic control problem [7], in which, at
each decision step, the expected remaining overall QoS is optimized and best
decision is taken. Stochastic control is computationally demanding unless the
considered orchestration is very small—this approach has not been considered
in the literature.

In the previous paragraph, we have advocated the importance of mono-
tonicity and have discussed its (good) consequences for QoS-aware manage-
ment of composite services. Can we lift these considerations to probabilistic
QoS? To compare random variables, stochastic ordering has been proposed
in various forms and extensively used in the area of economics and opera-
tions research [36, 37, 46]. Using this concept, monotonicity was lifted to the
probabilistic setting for the particular case of latency in [15]. Assuming that
monotonicity can be lifted to the probabilistic setting for general QoS, the
approach outlined in (a), (b), and (c) above becomes applicable and simple
techniques can be developed for QoS aware service management based on con-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 7

tracts. This agenda was developed by a subgroup of authors of this paper
in [15,39,40], for the restricted case of latency.

Our Contribution: In this paper we extend our previous work on latency-aware
management of composite services to generic, possibly multi-dimensional, QoS.
In particular, QoS domains are no longer totally but only partially ordered,
which causes significant increase in difficulty. Also, we take advantage of our
formal approach to QoS management in developing a technique of weaving QoS
aspects in the functional specification of a composite service. Our approach
proceeds through the three steps (a), (b), and (c). Overall, we see our main
contribution as being a comprehensive and mathematically sound framework
for contract-based QoS-aware management of composite services, relying on
monotonicity. This framework consists of the following.

An Abstract Algebraic Framework for QoS composition: As QoS composi-
tion is the primary building block of QoS-aware management, it is of interest
to develop abstract algebraic composition rules. We propose such an abstract
algebraic framework encompassing key properties of QoS domains and cap-
turing how the QoS of the orchestration follows from combining QoS con-
tributions by each requested service. This algebraic framework relies on an
abstract dioid2 (D,max,⊕), where D is the (possibly multi-dimensional) QoS
domain. The abstract addition of the dioid identifies with the “max” opera-
tion associated with the partial order of the QoS domain; it captures both the
preference among services in competition and the cost of synchronizing the
return of several services requested in parallel. The increment in QoS caused
by the different service calls is captured by the abstract multiplication of the
dioid, here denoted by ⊕. A dioid framework for QoS was already proposed
in [12,13,14,16,17,48]. With comparison to the above references, we propose in
addition a new competition operator that must be considered when perform-
ing late binding; this competition operator captures the additional cost of the
on-line comparison of the QoS within a pool of competing services. We show
how our abstract algebraic framework can be specialized to encompass known
QoS domains.

A Careful Handling of Monotonicity: We then study monotonicity in this
generic QoS context, by proposing conditions enforcing it for both non-probabilistic
and probabilistic QoS frameworks. Guidelines for how to enforce monotonicity
are derived and ways are proposed to circumvent a lack of monotonicity. The
mathematical justification of the extension required to deal with probabilistic
QoS domains that are only partially, not totally ordered is non-trivial.

Support for Separation of Concerns: QoS-aware management of compos-
ite services requires developing a QoS-aware model of a service orchestration,
which can be cumbersome. It is thus desirable to offer means to develop func-
tion and QoS in most possible orthogonal ways. We have developed an im-
plementation of our mathematical approach in which QoS-aware orchestration
models are automatically generated, from a specification of the function only,

2 A dioid is a semi-ring with idempotent addition.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Albert Benveniste et al.

augmented with the declaration of the QoS domains and their algebra. This
model can be executed to analyze the orchestration and perform QoS contract
composition. We have implemented this technique on top of the Orc language
for orchestrations [32,35].3

Managing QoS by Contracts: By building on top of monotonicity, we advo-
cate the use of contract-based QoS-aware management of composite services,
in which the considered orchestration establishes QoS contracts with both its
users and its requested services. Contract-based design amounts to performing
QoS contract composition [40], which is the activity of estimating the tight-
est end-to-end QoS contract an orchestration can offer to its customer, from
knowing the contract with each requested service. QoS composition is devel-
oped in Section 3.2. Late service selection or binding is performed on the basis
of run-time QoS observations, by simply selecting, among different candidates,
the one offering best QoS. Monotonicity ensures that this greedy policy will
not lead to a loss in overall QoS performance of the orchestration. Best service
binding is a built-in mechanism in our model, see Procedure 1 in Section 3.2.
To ensure satisfaction of the QoS contract with its users, it is enough to mon-
itor the conformance of each requested service with respect to its contract,
since a requested service improving its QoS can only improve the overall QoS
of the orchestration. This was developed in [40] for the case of latency and the
techniques developed in this reference extend to multi-dimensional QoS. To
account for uncertainty in QoS, soft probabilistic QoS contracts were proposed
in [39, 40] for the case of latency and are extended in this paper to multi-
dimensional QoS. Such contracts consist of the specification of a probability
distribution for the QoS dimensions. Performing this requires formalizing what
it means, for a service, to perform better than its contract. We rely for this on
the notion of stochastic ordering [36, 37, 46] for random variables, a concept
that is widely used in econometrics. All our results regarding monotonicity
extend to the case in which ordering of QoS values is replaced by stochastic
ordering. We can thus apply statistical testing [40] to detect at run time the
violation of contracts in this context. To illustrate our approach, we use this
tool in performing contract composition for the example TravelAgent2.

The paper is organized as follows. Related work is discussed in Section 6.
Our QoS calculus is developed in Section 2; it provides the generic basis for
QoS composition. Section 3 develops our theory of QoS for services orchestra-
tions. Algebraic rules for QoS composition and best service binding are devel-
oped. Monotonicity is studied. Support for probabilistic QoS is presented. In
Section 4 we present the implementation of our approach on top of the Orc lan-
guage. Evaluation of this implementation on the TravelAgent2/3 is discussed
in Section 5.

3 http://orc.csres.utexas.edu/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://orc.csres.utexas.edu/

QoS-Aware Management of Monotonic Service Orchestrations 9

2 QoS Calculus

In this section we develop our QoS calculus as a basis for QoS composition. A
toy example is used to motivate our abstract algebra. Then we illustrate how
this algebra can encompass concrete QoS domains. Finally the algebra itself
is formalized in a way similar to [12,16,17,23].

2.1 An Informal Introduction

In dealing with multi-dimensional QoS, several approaches can be taken. First,
one can see QoS as only partially, not totally ordered. In this case QoS out-
comes q and q′ satisfy q≤q′ if and only if q(i)≤q′(i) holds for all dimensions
i = 1 . . . n of the QoS. Alternatively, one could prioritize dimensions and then
take the lexicographic (total) order q≤q′ iff there exists some i such that
q(j)=q′(j) for j < i and q(i)≤q′(i). Finally, different dimensions could be
weighted by considering

∑
i wiq(i) with its total order, where the wi’s are

weights to be selected, e.g., by using AHP (Analytical Hierarchy Process) [47].
Finally, recall that dealing with uncertainty is by regarding QoS outcomes as
random variables.

We use colored Petri nets to model the executions of a service orchestration.
Queries are represented by tokens that circulate throughout the net and service
calls are represented by transitions. To represent QoS measures and how they
evolve while the query is being processed by the orchestration, we equip the
tokens with a color, consisting of a pair

(v, q) = (data, QoS value). (1)

Fig. 4 shows such a net. Each query is represented by a token entering the net
at the top place. The marking shown figures the reception of such a query by
the net: it results in the launching of three sub-queries in parallel. The first
two sub-queries re-synchronize when calling t2. The third sub-query branches
toward either calling t′1 or calling t′′1 and then confluences. The processing
of the query ends when the token reaches the exit place. With reference to
this figure, the different operators needed to compute the evolution of QoS
measures are introduced next. In the following discussion, we only consider
choices governed by QoS (data-driven choices play no role in QoS evaluation).

We begin by giving the basic abstract operators for use in QoS manage-
ment. The objective is to capture, via generic operators, how QoS measures
get modified when calling a service (traversing a transition), when synchroniz-
ing the responses of services (figured by several tokens consumed by a same
transition), or when different services compete against each other (such as t′1
and t′′1 in Fig. 4).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Albert Benveniste et al.

t1 t′1

t′2

δq1

q′0

δq2

q2 q′2

q′1q′′0 ∨ q1

t′′1

q′′1
q′′0q1

t2

q0

δq′1

δq′2

δq′′1

Fig. 4 A simple example. Only QoS values are mentioned — with no data. Each place
comes labeled with a QoS value q which is the q-color of the token if it reaches that place.

Incrementing QoS: When traversing a transition, each token gets its QoS value
incremented, which is captured by operator ⊕. For example, the token in the
left most place has initial QoS value q0, which gets incremented as q1 = q0⊕δq1
when traversing transition t1.

Synchronizing tokens: A transition t is enabled when all places in its preset
have tokens. For the transition to fire, these tokens must synchronize, which
results in the “worst” QoS value, denoted by the supremum ∨ associated to a
given order ≤, where smaller means better. For example, when the two input
tokens of t2 get synchronized, the resulting pair of tokens has QoS q′′0 ∨ q1.
This is depicted in Fig. 4 by the shaded area.

QoS policy: Focus on the conflict following place q′0. The QoS alters the usual
semantics of the conflict by using a QoS policy that is reminiscent of the clas-
sical race policy [33]. The competition between the two conflicting transitions
in the post-set is solved by using order ≤ also used for token synchronization:
test whether q′o ⊕ δq′1 ≤ q′o ⊕ δq′′1 holds, or the converse. The smallest of the
two wins the competition—nondeterministic choice occurs if equality holds.

However, comparing q′o ⊕ δq′1 and q′o ⊕ δq′′1 generally requires knowing the
two alternatives, which in general can affect the QoS of the winner. This is
taken into account by introducing a special operator “C”: If two transitions t
and t′ are in competition and would yield tokens with respective QoS values
q and q′ in their post-sets, the cost of comparing them to set the competition
alters the QoS value of the winner in that—assuming the first wins—q is
modified and becomes q C q′, where C denotes a new operator called the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 11

competition function. For the case of the figure, we get

if (q′o ⊕ δq′1) ≤ (q′o ⊕ δq′′1)
then t′1 fires and q′1 = (q′o ⊕ δq′1)C (q′o ⊕ δq′′1)

if (q′o ⊕ δq′1) ≥ (q′o ⊕ δq′′1)
then t′′1 fires and q′′1 = (q′o ⊕ δq′′1)C (q′o ⊕ δq′1)

(2)

2.2 Some Examples of QoS Domains

We now instantiate our generic framework by reviewing some examples of QoS
domains, with their associated relations and operators ⊕,≤, and C.

Latency: QoS value of a token gives the accumulated latency d, or “age” of
the token since it was created when querying the orchestration. Corresponding
QoS domain is R+, equipped with ⊕d = +, and ≤d = the usual order on R+.
Regarding operator Cd, for the case of latency with race policy [33], comparing
two dates via d1≤d d2 does not impact the QoS of the winner: answer to this
predicate is known as soon as the first event is seen, i.e., at time min(d1, d2).
Hence, for this case, we take d1Cd d2 = d1, i.e., d2 does not affect d1. This is
the basic example of QoS measure, which was studied in [15].

Security level: QoS value s of a token belongs to ({high, low},≤s), with high≤s
low. Each transition has a security level encoded in the same way, and we take
⊕s = ∨s, reflecting that a low security service processing a high security data
yields a low security response. Regarding operator Cs, again, comparing two
values via s1≤s s2 does not impact the QoS of the winner: QoS values are
strictly “owned” by the tokens, and therefore do not interfere when comparing
them. Hence, we take again s1 Cs s2 = s1, i.e., s2 does not affect s1. More
complex partially ordered security domains can be handled similarly.

We do not claim that this solves security in orchestrations. It only serves a
more modest but nevertheless useful purpose, namely to propagate and com-
bine security levels of the requested services to derive the security level of the
orchestration. How security levels of the requested services is established is
a separate issue, e.g., by relying on reputation or through the negotiation of
security contracts.

Reliability: Reliability is captured similarly as follows. The QoS attribute of
a token takes its value in the ordered set ({in operation, failed},≤r), with
in operation≤r failed. Other operators follow as for the case of Security level.
By equipping this QoS domain with probability distributions we capture reli-
ability in our setting.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Albert Benveniste et al.

Cost: QoS value c captures the total cost of building a product by assembling
its parts. Referring to Fig. 4, costs are accumulated when tokens get synchro-
nized. When a token traverses a transition, its cost is incremented according to
the cost of the action being performed. A natural definition for the correspond-
ing QoS domain would thus be (Dc,≤c,⊕c) = (R,≤,+) or (Z,≤,+). Unfor-
tunately, when taking this definition, synchronizing tokens using ∨c amounts
to taking the worst cost, which is not what we need. We need instead the sum
of the costs of incoming tokens, an operation different from ∨c.

The right idea is to encode the cost by using multi-sets. The overall cost
held by a token is obtained by adding the costs of the constituting parts plus
the costs of successive assembly actions. Parts and actions are then handled as
“quanta of cost”and the token collects them while traversing the orchestration.
This leads to defining the QoS domain as a multi-set of cost types: Dc = Q 7→
N, where Q is a set of cost types equipped with a cost labeling function λ : Q 7→
R+. Each q ∈ Q corresponds to either a part or an assembly action and has
a unique identifier. Domain Dc is equipped with the partial order of functions
and ∨c follows as the corresponding least upper bound. Recall that operator
∨c is used to synchronize tokens, see Fig. 4. In this context, it makes sense to
assume that cost types held by the tokens for synchronization are different. For
this case, ∨c coincides with the addition of multi-sets and costs get added as
wished. Traversing a transition amounts to adding the corresponding quantum
in the set, hence, identifying singletons with the corresponding element, ⊕c is
again the addition of multi-sets. Finally, (Dc,≤c,⊕c) = (Q 7→ N,⊆,+). As
before, the competition function is c1Cc c2 = c1 when c1≤c c2, i.e., c2 does
not affect c1.

Composite QoS, first example: We may also consider a composite QoS measure
consisting of the pair (s, r), where s is as above and r is some Quality of Re-
sponse with domain Dr, equipped with ≤r and Cr. Since the two components
s and r are similar in nature, we simply take ≤=≤s × ≤r and C = (Cs , Cr).

Composite QoS, second example: So far the special operator C did not play
any role. We will need it, however, for the coming case, in which we consider
a composite QoS measure (s, d), where s and d are as above. We want to give
priority to security s, and thus we now take ≤ to be the lexicographic order
obtained from the pair (≤s,≤d) by giving priority to s.

Focus on operator C. Consider the marking resulting after firing t1 and t′1 in
Fig. 4, enabling t2 and t′2, which are in conflict. Let the QoS value of the token
in postset of t2, i.e. q2 = (low , d2). (Recall that q2 = (q′′o ∨ q1)⊕δq2.) Similarly,
let q′2 = (low , d′2) where d′2 >d d2. From the competition rule, transition t2 wins
the conflict and the outgoing token has QoS value q2 = (low , d2). However,
the decision to select t2 can only be made when q′2 is known, that is, at time
d′2. The reason for this is that, since at time d2 a token with security level low
is seen at place following t2, it might be that a token with security level high
later enters place following t′2. The latter would win the conflict according
to our QoS policy — security level prevails. Observing that the right most

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 13

token indeed has priority level low can only be seen at time d′2. Thus it makes
little sense assigning q2 = (low , d2) to the outgoing token; it should rather be
q2 = (low , d′2). This is why a non-trivial operator C is needed, namely, writing
≤ for short instead of ≤d:

(s, d)C (s′, d′) =
if d ≤ d′ and s = low then(s, d′) else (s, d)

(3)

2.3 The QoS Calculus

In this section we formalize the discussion of Section 2.1. We introduce alge-
braic QoS domains. Our framework is a mild modification of the one proposed
by [12, 16, 17, 23], based on semi-rings. Besides some minor adaptations, the
main difference lies in the consideration of the “competition function”.

Definition 1 (QoS domain) A QoS domain is a tuple Q = (D,≤,⊕,C)
where:

– (D,≤) is a partial order that is a complete upper lattice, meaning that every
subset S ⊆ D has a least upper bound denoted by

∨
S. For any S ⊆ D,

min(S) denotes the set of all q ∈ S such that no q′ ∈ S exists such that
q′ < q, with a symmetric definition for max(S).

– Operator ⊕ : D×D→ D is a commutative semi-group with neutral element
0 and such that:

monotonicity:
q1 ≤ q′1
q2 ≤ q′2

}
=⇒ (q1 ⊕ q2) ≤ (q′1 ⊕ q′2) (4)

∀q, q′ ∈ D,∃q′′ ∈ D =⇒ q ≤ q′ ⊕ q′′ (5)

– The competition function C : D× 2D → D satisfies:

q C ε = q where ε denotes the empty set (6)

q ≤ q′
q1 ≤ q′1

...
qn ≤ q′n

 =⇒ q C {q1. . . qn} ≤ q′ C {q′1. . . q′n} (7)

q0 < q1 =⇒ q0 C {q1, q2. . . qn} ≤ q1 C {q0, q2. . . qn} (8)

∀i = 1 . . . n : qi≤q =⇒ q C {q1. . . qn}=q (9)

Referring to our motivating discussion: D is the set in which QoS takes its
values; q≤q′ is interpreted as “ q is better than (or preferred to) q′ ”; partial
order ≤ gives raise to the least upper bound ∨, interpreted as the worst QoS;
operator ⊕ is used to accumulate QoS quanta from causally related events;
its condition (5) will play an important role in the study of monotonicity.
The competition function C accounts for the additional cost of comparing
the QoS of competing events, additional cost induced on the winning event.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Albert Benveniste et al.

The special monotonicity conditions (8) and (9) for the competition function
ensure that taking into account the cost of comparing will not revert the QoS-
based ordering of the events under comparison. The actual size of the second
component of C depends on the considered event, this is why the domain of C
is D× 2D. Examples were given in Section 2.1. It is easily checked that axioms
are met by these examples.

If some QoS measure q of the orchestration is irrelevant to a service it
involves, we take the convention that this service acts on tokens with a 0
increment on the value of q. With this convention we can safely assume that
the orchestration, all its requested services, and all its tokens use the same
QoS domain. This assumption will be in force in the sequel.

3 A QoS framework for composite services

This section collects the technical material in support of our theory and devel-
opments. We first recall the needed background on Petri nets as a supporting
framework for service orchestrations—to simplify our presentation we restrict
ourselves to safe free choice nets, see below. On top of this framework, we
define priority rules for QoS based selection of competing services and we de-
velop OrchNets as a model of QoS-sensitive composite services. We then study
monotonicity. The above material is subsequently lifted to probabilistic QoS.
We conclude by some methodological discussion.

3.1 Petri Nets, Occurrence Nets, Orchestration Nets

A Petri net [38] is a tuple N = (P, T ,F ,M0), where: P is a set of places, T is
a set of transitions such that P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is the flow
relation. For x ∈ P ∪ T , we call •x = {y | (y, x) ∈ F} the preset of x and
x• = {y | (x, y) ∈ F} the postset of x. A marking is a map M : P → N; in
the tuple defining N , M0 is the initial marking. Firing transition t at marking
M requires M(p) > 0 for every p ∈ •t and yields the new marking M ′ such
that M ′(p) = M(p) − 1 for p ∈ •t \ t•, M ′(p) = M(p) + 1 for p ∈ t• \ •t, and
M ′(p) = M(p) otherwise.

For a net N = (P, T ,F ,R,M0) the causality relation � is the transitive
and reflexive closure of F and we set ≺ = � ∩ 6=. For a node x ∈ P ∪ T , the
set of causes of x is dxe = {y ∈ P ∪ T | y � x}. Say that two transitions t, t′

are in conflict, written t#t′, if •t∩ •t′ 6= ∅ or t and t′ possess some causes that
are in conflict. Say that net N is free choice if the relation {(t, t′) | •t∩ •t′ 6= ∅}
forms a partition of T . If N is free choice, a cluster [38] is a minimal set c of
places and transitions of N such that

∀t ∈ c =⇒ •t ⊆ c
∀p ∈ c =⇒ p• ⊆ c

(10)

Any two distinct transitions of a same cluster are in conflict and clusters form
a partition of the set of all nodes of a free choice net.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 15

Occurrence nets: A Petri net is safe if all its reachable markings M satisfy
M(P) ⊆ {0, 1}. A safe net N = (P, T ,F ,M0) is an occurrence net (O-net) iff

1. � is a partial order and dte is finite for any t ∈ T ;
2. for each place p ∈ P, |•p| ≤ 1;
3. for each t ∈ T , ¬#dte holds;
4. M0 = {p ∈ P|•p = ∅} holds.

A configuration of N is a subnet κ of nodes of N such that: 1) κ is causally
closed, i.e, if x � x′ and x′ ∈ κ then x ∈ κ; and, 2) κ is conflict-free. For
convenience, we require that the maximal nodes in a configuration are places.
A configuration κ2 is said to extend configuration κ1 (written as κ1 � κ2) if
κ1 ⊆ κ2 and @t ∈ κ2 \ κ1, t′ ∈ κ1 such that t ↗ t′. Two configurations κ and
κ′ are said to be compatible if 1) κ ∪ κ′ is a configuration, and 2) κ � κ ∪ κ′
and κ′ � κ ∪ κ′. Node x is called compatible with configuration κ if dxe and
κ are compatible. Transition t is enabled by κ if t 6∈ κ and κ ∪ {t} ∪ t• is a
configuration. For κ a configuration, its future Nκ is defined as

Nκ = maxPlaces(κ) ∪
{x ∈ P ∪ T | x 6∈ κ and x is compatible with κ} (11)

where maxPlaces(κ) is the set of maximal nodes of κ (which are all places).
Two nodes x and y are said to be concurrent if they are neither in conflict nor
causally related.

Unfoldings and Orchestration nets: The executions of a safe Petri net N can
be represented by its unfolding UN , which is an occurrence net collecting all
executions of N in such a way that common prefixes are represented once. For
example, Fig. 4 shows a net, the unfolding of which is obtained by removing
the maximal (exit) place and attaching a different copy of this exit place to
each exit transition. Formally, unfolding UN is derived from N [24] in the
following way. For N = (P, T ,F ,R,M0) and N ′ = (P ′, T ′,F ′,R′,M ′0) two
safe Petri nets, a morphism ϕ : N → N ′ is a function from P ∪ T to P ′ ∪ T ′,
mapping P to P ′ and T to T ′, preserving the initial marking: ϕ(M0) = M ′0,
and preserving the flow and read relations: ϕ(•t) = •ϕ(t), ϕ(t•) = ϕ(t)•, and
ϕ(◦t) = ◦ϕ(t). If N ′ is another occurrence net and ψ′ : N ′ → N is a morphism,
then there exists a third morphism ψ : N ′ → UN such that ψ′ factorizes as
ψ′ = ϕ◦ψ, where ◦ is the composition of functions. This property characterizes
the unfolding UN . If net N is free choice, then so is its unfolding UN .

Definition 2 (orchestration net) Call Orchestration net any free choice
safe Petri net possessing a finite unfolding.

We insist that Petri nets with loops can still possess a finite unfolding. An
example of this is the Petri net modeling the examples TravelAgent of Fig. 2
and Fig. 3, which involve successive retries guarded by a timeout. In the sequel
we only consider Petri nets that are orchestration nets. Examples of Orches-
tration nets are the loop-free and 1-safe WorkFlow nets (WFnets). WF-nets
were proposed by van der Aalst [2,4,5] and are Petri nets with a special initial

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Albert Benveniste et al.

place (where the initial tokens are provided) and a special final place (from
which tokens exit the net).

3.2 OrchNets

The OrchNets we propose as a model to capture QoS in composite services are
a special form of colored occurrence nets (CO-nets). Executions of Workflow
Nets [2, 3] are also CO-nets. The reader can compare our approach with the
graph-based approach of [48].

Throughout this section we assume a QoS domain (D,≤,⊕,C). OrchNets
formalize the notion of an orchestration with its QoS. The mathematical se-
mantics of OrchNets formalizes QoS contract composition, i.e., the process
of deriving end-to-end QoS of the orchestration from the QoS of its involved
services.

Definition 3 (OrchNet) An OrchNet is a tuple N = (N,V,Q,Qinit) con-
sisting of

– A finite free choice occurrence net N with token attributes

c = (v, q) = (data, QoS value)

– A family V = (νt)t∈T of value functions, mapping the data values of the
transition’s input tokens to the data value of the transition’s output token.

– A family Q = (ξt)t∈T of QoS functions, mapping the data values of the
transition’s input tokens to a QoS increment.

– A family Qinit = (ξp)p∈min(P) of initial QoS functions for the minimal
places of N .

Value and QoS functions can be nondeterministic.

The nondeterminism of a function can be resolved by introducing an explicit
daemon ω making choices explicit. As a result, νt(ω), ξt(ω), and ξp(ω) are all
deterministic functions of their respective inputs. We denote by Ω the set of
all daemons.4

We now explain how the presence of QoS values attached to tokens af-
fects the semantics of OrchNets. Any place p of occurrence net N has a pair
(vp, qp) = (data, QoS value) assigned to it, which is the color held by a token
reaching that place. In the following QoS policy, the role of data in the se-
mantics has been abstracted—taking it into account would only increase the
notational burden without introducing changes worth the study.

Procedure 1 (QoS aware semantics) Let ω ∈ Ω be any value for the dae-
mon. The continuation of any finite configuration κ(ω) is constructed by per-
forming the following steps, where we omit the explicit dependency of κ(ω),
νt(ω), and ξt(ω), with respect to ω:

4 The schedulers introduced for probabilistic automata by Lynch and Segala [45] are a
special case of daemon.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 17

1. Choose nondeterministically a �-minimal cluster c in the future of κ.
2. For every t ∈ c, compute:

qt =
(∨

p′∈•t qp′
)
⊕ ξt(vp′ | p′ ∈ •t) (12)

3. Competition step: select nondeterministically a minimal transition t∗ of c
such that no other minimal transition t of c exists with qt < qt∗ . The set
Ω of daemons is extended to resolve this additional nondeterminism.

4. Augment κ to κ′ = κ∪{t∗}∪ t•∗, and assign, to every p ∈ t•∗, the pair (v, q),
where

v = νt(vp′ | p′ ∈ •t)
q = qt∗ C {qt | t ∈ c, t 6= t∗}

(13)

Competition step 3 formalizes on-line service binding based on best QoS. Step
4 of QoS policy simplifies for all examples of Section 2.1 by not needing the sec-
ond formula of (13), except for the last one, see formula (3). Observe that the
augmented configuration κ′ as well as the pair (v, q) depend on ω. We are now
ready to formalize what the set Ω of all daemons should be for Procedure 1.

Defining the set Ω of all daemons: The nondeterminism of a function mapping
X to Y can be resolved by introducing an explicit daemon making choices
explicit. For X and Y two sets, call (X,Y)-daemon (or simply daemon if no
confusion can result) any total function

ω : X×2Y → Y (14)

The set of all (X,Y)-daemons is denoted by ΩXY or simply Ω. Determinizing
a nondeterministic function χ : X→2Y consists in selecting a daemon ω ∈ Ω,
which fixes the (deterministic) function

χω(x) =def ω(x, χ(x)).

This construction is implicitly invoked each time a daemon is mentioned. To
explicit what the set Ω of all daemons should be, for Procedure 1, we first
identify the different sources of nondeterminism arising in this procedure. First
of all, the nondeterminism in the choice of the minimal cluster c in Step 1 does
not need to get resolved since it yields a confluent evaluation of the end-to-
end QoS of configurations, because all minimal clusters are concurrent and ⊕
is commutative and associative. Consequently, sources of nondeterminism for
consideration are 1) the νt and ξt for every t ∈ T (the set of transitions of
N), and 2) the nondeterministic selection of the optimal transition in Step 3.
Denoting by C the set of all clusters of N , we apply construction (14) with

X ′ = T and Y ′ = D × D which yields Ω′

X ′′ = C and Y ′′ = T which yields Ω′′

where D is the domain of data, and set

Ω =def Ω
′ ×Ω′′ (15)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Albert Benveniste et al.

Component ω′ resolves the nondeterminism of νt and ξt, whereas component
ω′′ resolves the nondeterminism in selecting the optimal transition in Step 3.

Since occurrence net N is finite, the QoS policy terminates in finitely many
steps when Nκ(ω) = ∅. The total execution thus proceeds by a finite chain
of nested configurations: ∅ = κ0(ω) ≺ κ1(ω) . . . ≺ κn(ω). Hence, κn(ω) is a
maximal configuration of N that can actually occur according to the QoS
policy, for a given ω ∈ Ω. We generically denote this maximal configuration
by

κ(N , ω). (16)

For the example of latency, our QoS policy boils down to the classical race
policy [33]. In general, our QoS policy bears some similarity with the “pre-
selection policies” of [33], except that the continuation is selected based on
QoS values in our case, not on random selection. We will also need to compute
the QoS for any configuration of N , even if it is not a winner of the competition
policy. We do this by modifying Procedure 1 as follows:

Procedure 2 (QoS of an arbitrary configuration) Let κmax be any max-
imal configuration of N and κ � κmax a prefix of it. With reference to Proce-
dure 1, perform: step 1 with c any �-minimal cluster in κmax \ κ, step 2 with
no change, and then step 4 for any t as in step 2. Performing this repeatedly
yields the pair (vp, qp) for each place p of κmax. �

We are now ready to define what the QoS value of an OrchNet is:

Definition 4 (End-to-end QoS) For κ any configuration of occurrence net
N , and ω any value for the daemon, the end-to-end QoS of κ is defined as

Eω(κ,N) =
∨
p∈maxPlaces(κ) qp(ω) (17)

The end-to-end QoS Eω(N) and pessimistic end-to-end QoS Fω(N) of Orch-
Net N are respectively given by

Eω(N) = Eω(κ(N , ω),N) (18)

Fω(N) = max{Eω(κ,N) | κ ∈ V (N)} (19)

where function max picks one of the maximal values in a partially ordered set,
κ(N , ω) is defined in (16), and V (N) is the set of all maximal configurations
of net N .

Observe that Eω(N) ≤ Fω(N) holds and Eω(N) is indeed observed when the
orchestration is executed. The reason for considering in addition Fω(N) will
be made clear in the next section on monotonicity.

So far formulas (18) and (19) provide the composition rules for deriving
the end-to-end QoS for each individual call to the orchestration. Monte-Carlo
simulation techniques can then be used on top of (18) and (19) to derive
the end-to-end probabilistic QoS contract from the contracts negotiated with
the requested services [39, 40]. See also [28] for fast Monte-Carlo simulation
techniques.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 19

3.3 Monotonicity

The monotonicity of an orchestration with respect to QoS is studied in this
section, for the non-probabilistic setting. Extension to the probabilistic setting
is discussed in Section 3.4. We provide sufficient and structurally necessary
conditions for monotonicity, when QoS is measured in terms of tight end-to-end
QoS—missing proofs are deferred to Appendix A. When these conditions fail
to hold, then pessimistic end-to-end QoS can be considered when dealing with
contracts, as monotonicity is always guaranteed when using it. Monotonicity
is assumed in the rest of the paper. Also, to simplify the presentation, the
following assumption will be in force:

Assumption 1 QoS functions ξt can be increased at will within their respec-
tive domain of values, independently for each transition t.

This is only a technical assumption. This assumption rules out cases in which
one requires, e.g., that QoS functions ξt and ξt′ can be modified at will, but
subject to the constraint ξt = ξt′ . The general case yields the same results, at
the price of more complex notations. The reader interested in the general case
is referred to [41].

For two families Q and Q′ of QoS functions, write Q′ ≥ Q and Q′init ≥ Qinit

to mean:

∀ω ∈ Ω, ∀t ∈ T ⇒ ξ′t(ω) ≥ ξt(ω)
respectively ∀t ∈ T ⇒ Qinit(t) ≥ Qinit(t)

(20)

For N ′ = (N,V,Q′, Q′init) (observe that N and V are unchanged), write

(i) : N ′ ≥ N ; (ii) : E(N ′) ≥ E(N); (iii) : F (N ′) ≥ F (N)

to mean, respectively:

(i): Q′ ≥ Q and Q′init ≥ Qinit both hold;
(ii): ∀ω ∈ Ω, Eω(N ′) ≥ Eω(N) holds;

(iii): ∀ω ∈ Ω, Fω(N ′) ≥ Fω(N) holds.

Definition 5 Call OrchNet N monotonic if

∀N ′ : N ′ ≥ N =⇒ E(N ′) ≥ E(N)

Call OrchNet N pessimistically monotonic if

∀N ′ : N ′ ≥ N =⇒ F (N ′) ≥ F (N)

The following immediate result justifies considering also the pessimistic end-
to-end QoS:

Theorem 1 Any OrchNet is pessimistically monotonic.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Albert Benveniste et al.

Consequently, it is always sound to base contract composition and contract
monitoring [40] on pessimistic end-to-end QoS. This, however, has a price,
since pessimistic end-to-end QoS is pessimistic compared to (actual) end-to-
end QoS. The next theorem gives conditions enforcing monotonicity:

Theorem 2 OrchNet N = (N,V,Q,Qinit) is monotonic if and only if:

∀ω ∈ Ω, ∀κ ∈ V (N) =⇒ Eω(κ,N) ≥ Eω(κ(N , ω),N) (21)

where V (N) is the set of all maximal configurations of net N and κ(N , ω) is
defined in (16).

Condition (21) expresses that Procedure 1 implements globally optimal service
selection. It is costly to verify and may not even be decidable in general.

Thus, we develop a structural condition for monotonicity for Orchestra-
tion nets N (Definition 2). Orchestration net N induces an OrchNet NN =
(UN , νN , QN , Qinit) by attaching, to each transition t of the unfolding UN of
N , the value and QoS inherited from N through the unfolding N 7→ UN .

Theorem 3 A sufficient condition for the OrchNet NN = (UN , νN , QN , Qinit)
to be monotonic is that every cluster c of N satisfies the following condition:

∀t1, t2 ∈ c, t1 6= t2 =⇒ t•1 = t•2. (22)

If, in addition, every transition of N is reachable and partial order (D,≤) is
such that for every q ∈ D, there exists q′ ∈ D such that q′ > q, then (22) is
also necessary.

In words, a sufficient condition for monotonicity is that, each time branching
has occurred in net N , a join occurs right after. The additional condition
ensuring necessity is a reinforcement of condition (5).

3.4 Probabilistic Monotonicity

To account for uncertainties in QoS performance, soft probabilistic contracts
were proposed in [39], with associated composition and monitoring procedures,
for the particular case of response time. In [40,42] the above approach was ex-
tended to more general QoS. In this section, we describe the corresponding
model of probabilistic OrchNets, an extension of OrchNets supporting proba-
bilistic behavior of QoS measures. Details are found in [41].

In probabilistic OrchNets, the nondeterministic QoS functions ξt are now
random, and so are the non-deterministic selections of minima in competition
step of Procedure 1. Equivalently, the set Ω for the values of the daemon is
equipped with some probability P. To define monotonicity, we need to give
a meaning to (20) when ξt is random. This is achieved by considering the
stochastic partial order [46] induced by partial order ≤ defined on D. We
briefly recall this notion next. Consider ideals of D, i.e., subsets I of D that
are downward closed: x ∈ I and y ≤ x =⇒ y ∈ I. Examples of ideals are:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 21

for R+, the intervals, [0, x] for all x; for R+ × R+ equipped with the product
order, arbitrary unions of rectangles [0, x] × [0, y]. Now, if ξ has values in D,
we define its distribution function by F (I) = P(ξ ∈ I), for I ranging over the
set of all ideals of D. For ξ and ξ′ two random variables with values in D, with
respective distribution functions F and F ′, define

ξ ≥s ξ′ iff for any ideal I of D, F (I) ≤ F ′(I) holds. (23)

With this new interpretation of the order, we will now show that Theorems 1–
3 remain valid. We first define probabilistic OrchNets, which are OrchNets in
which the QoS of the different services are randomized.

Definition 6 (probabilistic OrchNet) A probabilistic OrchNet is a pair
(N ,P) consisting of an OrchNet N following Definition 3 and a probability
distribution P over the set Ω of daemons of N equipped with its Borel σ-
algebra.

We further assume that the random variables νt(ω), ξt(ω), where t ranges
over the set T of all transitions of the OrchNet, and the different random
selections of an optimum in Step 3 of Procedure 1 are all mutually independent.

How can we lift monotonicity to this probabilistic setting? We first make pre-
cise what the set Ω of all daemons is. For t a generic transition, let (Ωt,Pt) be
the set of possible experiments together with associated probability, for ran-
dom latency ξt; and similarly for (Ωc,Pc), where c ranges over the set C of
all clusters of N . Thanks to the assumption stated at the end of Definition 6,
setting

Ω =
(∏
t∈T

Ωt
)
×
(∏
c∈C

Ωc

)
and P =

(∏
t∈T

Pt

)
×
(∏
c∈C

Pc

)
(24)

yields the probabilistic part of Definition 6. In the nondeterministic framework
of Section 3.3, we said that

ξ ≥ ξ′ if ξ(ω) ≥ ξ′(ω) holds ∀ω ∈ Ω (25)

Clearly, if two random latencies ξ and ξ′ satisfy condition (25), then they
also satisfy condition (23). That is, ordering (25) is stronger than stochas-
tic ordering (23). Unfortunately, the converse is not true in general. For ex-
ample, condition (23) may hold while ξ and ξ′ are two independent random
variables, which prevents (25) from being satisfied. Nonetheless, the following
result holds [46], which will allow us to proceed:

Theorem 4 Assume condition (23) holds for the two distribution functions
F and F ′. Then, there exists a probability space Ω, a probability P over Ω,
and two real valued random variables ξ̂ and ξ̂′ over Ω, such that:

1. ξ̂ and ξ̂′ possess F and F ′ as respective distribution functions, and
2. condition (25) is satisfied by the pair (ξ̂, ξ̂′) with probability 1.

The proof of this result is immediate if (D,≤) is a total order. It is, however,
highly nontrivial if ≤ is only a partial order. This theorem is indeed part
of theorem 1 of [46].5 Theorem 4 allows to reduce the stochastic comparison

5 Thanks are due to Bernard Delyon who pointed this reference to us.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Albert Benveniste et al.

of random variables to their ordinary comparison as functions defined over
the same set of experiments endowed with a same probability. This applies in
particular to each random QoS function and each random initial QoS function,
when considered in isolation. Thus, when performing construction (24) for two
OrchNets N and N ′, we can take the same pair (Ωt,Pt) to represent both
ξt and ξ′t, and similarly for ξp and ξ′p. Applying (24) implies that both N
and N ′ are represented using the same pair (Ω,P). This leads naturally to
Definition 6.

In addition, applying Theorem 4 to each transition t and each minimal
place p yields that stochastic ordering N ≥s N ′ reduces to ordinary ordering
N ≥ N ′. Observe that this trick does not apply to the overall QoS E(N) and
E(N ′) of the two OrchNets; the reason for this is that the space of experiments
for these two random variables is already fixed (it is Ω) and cannot further
be played with as theorem 4 requires. Thus we can reformulate probabilistic
monotonicity as follows—compare with Definition 5:

Definition 7 Probabilistic OrchNet (N ,P) is called probabilistically mono-
tonic if, for any probabilistic OrchNet N ′ such that N ≥ N ′, we have
E(N) ≥s E(N ′).

Note the careful use of ≥ and ≥s. The following two results establish a relation
between probabilistic monotonicity and monotonicity.

Theorem 5 If OrchNet N is monotonic, then, probabilistic OrchNet (N ,P)
is probabilistically monotonic for any probability P over the set Ω. Vice-versa,
if probabilistic OrchNet (N ,P) is probabilistically monotonic, then N is mono-
tonic with P-probability 1.

As a consequence, Theorem 3 enforcing monotonicity extends to the proba-
bilistic setting.

3.5 Enforcing Monotonicity

Theorem 3 in Section 3.3 provides guidelines regarding how to enforce mono-
tonicity. Consider again the workflow of Fig. 4 and the two alternative branches
beginning at the place labeled with QoS q′0 and ending at the place labeled
with the QoS q′2. This pattern is a source of non-monotonicity as we have seen.
One way of enforcing monotonicity is by invoking Theorem 3. Aggregate the
two successive transitions in each branch and regard the result as a single tran-
sition (t′12 for the left branch and t′′12 for the right branch). The QoS increments
of t′12 and t′′12 are equal to δq′12 = δq′1⊕ δq′2 and δq′′12 = δq′′1 ⊕ δq′′2 , respectively.
The resulting Orchestration net satisfies the condition of Theorem 3 and thus
is monotonic. This process of aggregation is illustrated on Fig. 5, mid diagram.

An alternative to the above procedure consists in not modifying the orches-
tration but rather changing the QoS evaluation procedure. Referring again to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 23

t′1

t′2 t′′2

q′0

q′2

q′1

t′′1

q′′1

δq′1 δq′′1

δq′′2δq′2

t′12 t′′12

q′0

q′2

δq′′12δq′12

q′0

q′2

t12 δq12

Fig. 5 Enforcing monotonicity through service aggregation, mid diagram, with δq′12 = δq′1⊕
δq′2 and δq′′12 = δq′′1 ⊕δq′′2 . Pessimistic QoS evaluation, right diagram, with δq12 = δq′12∨δq′′12.

Fig. 4, isolate the part of the workflow that is a source of non-monotonicity,
namely the subnet shown on Fig. 5, left. For this subnet, use pessimistic for-
mula (19) to get a pessimistic but monotonic bound for the QoS of this subnet.
For this example, the pessimistic bound is equal to δq12 = δq′12∨δq′′12. We then
plug the result in the evaluation of the QoS of the overall orchestration, by ag-
gregating the isolated subnet into a single transition t12, with QoS increment
δq12. This is illustrated on Fig. 5, right diagram.

The above two procedures yield different results. By aggregating service
calls performed in sequence, the first procedure delays the selection of the best
branch. The second procedure does not suffer from this drawback. In turn,
it results in a pessimistic evaluation of the end-to-end QoS. Both approaches
restore monotonicity.

4 Implementing our approach in Orc

We have implemented our approach on top of the Orc orchestration language
and we now present two aspects of this implementation: we explain how our
approach supports separation of concerns in QoS-aware orchestration model-
ing; we also illustrate contract composition as a method for QoS-based design
of composite services. Before presenting this, we briefly summarize how the
technical developments of Section 3 contribute to our approach to contract
based QoS aware management of composite services. For this, the reader is
referred to the overview, in the introduction, of our approach to QoS manage-
ment using contracts.

4.1 Practical use of the QoS framework

Our framework of Probabilistic OrchNets developed in Section 3.4 supports
soft probabilistic QoS contracts expressed as probability distributions over
(possibly multi-dimensional) QoS metrics. Probability distributions can be
specified either as a parameterized family of distributions, or as a finite set of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Albert Benveniste et al.

quantiles. Such contracts are part of SLA (Service Level Agreement) declara-
tion. They can either be agreed as part of negotiation or estimated by remotely
observing how a service responds in terms of QoS performance. See [39,40] for
details. The theory developed in Section 3.3–3.5 provides the needed founda-
tions for handling monotonicity properly. Criteria ensuring monotonicity are
provided. Techniques to overcome the lack of monotonicity were developed,
thus providing support for managing arbitrary orchestrations. QoS aware de-
sign of composite services requires relating the QoS sub-contracts between the
orchestration and its called services, and the end-to-end QoS contract between
the orchestration and its clients. This task is not within the scope of this pa-
per and the reader is referred to our previous work [39, 40], where statistical
on-line detection of the violation of a probabilistic contract is also developed.
On-line dynamic service selection based on QoS is a central task in QoS aware
management of composite services. Procedure 1 specifying the semantics of an
OrchNet offers dynamic service selection as a built-in feature.

How should we adapt an orchestration language so that it naturally sup-
ports the above concepts and techniques? This orchestration language should
be enhanced with features allowing: 1) To take the proper decision based on
QoS regarding competing events, actions, or service calls while executing an
orchestration; key here is to identify which events, actions, or service calls are
in competition when making this decision. 2) To compute the end-to-end QoS
of a given execution of an orchestration by composing the QoS of the different
services.

To perform the above, we only need to support the following four tasks:

Causality Tracking: Since the QoS algebra relies on the knowledge of causal-
ity relations between events, actions, or service calls, we need to keep track
of causal dependencies while executing the orchestration.

Competition Tracking: We must identify which events or service calls are
in competition at each stage of a given execution of the orchestration.

QoS Tracking: We need to implement the QoS algebra with its relations and
operators
– ⊕ (incrementing QoS),
– ≤ (comparing QoS), and
– C (resolving competition based on QoS).

End-to-End QoS: Then, we need to be able to compute the end-to-end QoS
of an execution of the orchestration, following Section 2.3 and Section 3.2.

Once these four tasks are supported, QoS aware management follows as a
byproduct. This provides the foundations for a separation of concerns and
opens the way to an orthogonal development of QoS and functional aspects of
an orchestration. This important contribution is detailed next.

4.2 Weaving QoS in Orchestrations

Separation of concerns has been advocated as a recommended design discipline
in the development of complex software systems. The consideration of QoS

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 25

in composite services is a source of significant increase in complexity. Tight
interaction between QoS and the function performed makes QoS a crosscut-
ting concern. Aspect Oriented Programming (AOP) has been advocated as
a solution to support separation of crosscutting concerns in software devel-
opment [30, 31]. In AOP, the different aspects are developed separately by
the programmer. Their weaving is performed using joinpoints and pointcuts,
and by having advice refining original pointcuts. In this section we develop a
compile-time weaving of QoS aspects in composite services. Observe first that
our formal model of OrchNets offers by itself support for separation of concerns
in QoS management. Once the involved QoS domains have been specified with
their algebraic operations, the execution policy of OrchNets (Procedure 1) en-
tirely determines how QoS interferes with the execution of the orchestration,
see the discussion of the example of Fig. 4 in Section 2.1.

Van der Aalst’s WF-nets (WFnets) [2, 4, 5] are a Petri net formalism and
are thus closely related to the functional part of our OrchNets. The compile-
time weaving of QoS into WF-nets is best illustrated by the example of Fig. 6,
where the XML-like specification explains how a functional description of a
composite service can be complemented with its QoS specification. The original
functional specification is BPEL-compliant and is written in boldface. Add-
ons for QoS are written in italics and consist of the WSLA [29] specification
of the Interface, playing the role of a rich SLA specification. Two QoS domains
are declared: RTime (for ResponseTime) and Cost. These domains come up
with the declaration of their associated operators following Section 2.2, namely
Cost.leq, Cost.oplus, Cost.vee, Cost.compet and similarly for
RTime—this is not shown on the figure since such QoS domains should be
predefined and available from a library. The Interface also contains, for each
called service, the declaration of the QoS measures that are relevant to it—
service1 knows only RTime whereas service2 knows the two. The func-
tional part of this specification (shown in boldface) collects four service calls
or returns, each of which constitutes a pointcut.

The QoS-enhanced orchestration is automatically generated from the spec-
ification shown in Fig. 6—to save space, we do not show it but we only discuss
the steps performed in generating it. The added code is written in roman. The
first step is to initialize the metrics relevant to the orchestration, see Fig. 7. The
sequence begins with the initialization of the response time carried by the token
using the <assign> declaration. Concurrent invocation of the service(-)
and clock = service.clock.store follow, using the <flow></flow>
declaration. Once the service(-) returns, the difference between the cur-
rent clock and service.clock.store is assigned to service.RTime.
Resulting weaving is obtained by applying the generic rewriting rule shown
on Fig. 8. The same mechanism is used for the response time of service2
and the end-to-end response time of the orchestration follows by adding the
above two. Each pointcut shown in boldface in this figure is refined by the
corresponding advice (in roman) following it.

The end-to-end evaluation of Cost for the orchestration is computed in a
different way, because this kind of QoS is individually carried by the tokens rep-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Albert Benveniste et al.

<SLA>
<SLAParameter name = "ResponseTime"
type = "float" unit = "milliseconds">

<Metric>ResponseTime</Metric>
<Function>

<Metric>ResponseTimeOplus</Metric>
<Metric>ReponseTimeCompare</Metric>
<Metric>ReponseTimeCompete</Metric>

</Function>
</SLAParameter>
<SLAParameter name = "Cost"
type = "integer" unit = "euro">

<Metric>Cost</Metric>
<Function>

<Metric>CostOplus</Metric>
<Metric>CostCompare</Metric>
<Metric>CostCompete</Metric>

</Function>
</SLAParameter>
<ServiceDefinition name="orch">
<MetricURI http://orch.com/getMetric
?ResponseTime />
<MetricURI http://orch.com/getMetric?Cost />
</ServiceDefinition>
<ServiceDefinition name="service1">
<MetricURI http://service1.com/getMetric
?ResponseTime />
</ServiceDefinition>
<ServiceDefinition name="service2">
<MetricURI http://service2.com/getMetric
?ResponseTime />
<MetricURI http://service2.com/getMetric?Cost />
</ServiceDefinition>

</SLA>

<process>
<sequence>

<invoke name = "service1(-)" ... />
<receive name = "service1(-)" ... />
<invoke name = "service2(-)" ... />
<receive name = "service2(-)" ... />

</sequence>
</process>

Fig. 6 Separation of concerns in QoS-aware specification. The functional specification is
depicted last in boldface, whereas the QoS part is shown in italics on top in the form
of a rich SLA specification.

resenting the queries while being processed by the orchestration. Since Cost is
relevant to service2 by interface declaration in Fig. 6, the call to service2
is augmented with the return of the cost of calling service2. This weaving
is obtained by applying the generic rewriting rule of Fig. 9. Here, the invoke

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 27

<assign>
<$orch.RTime = 0 />
<$orch.Cost = 0 />

</assign>

Fig. 7 Initialization step

<sequence>
<invoke name = "service(-)" />
...
<receive name = "service(-)" />
</sequence>

rewrites as:

<sequence>

<flow>
<invoke name = "service(-)" />
<sequence>

<invoke "clock()"/>
<receive "clock()"
outputVariable = "clock"/>
<assign>

<$service.clock.store = $clock />
</assign>

</sequence>
</flow>
...
<flow>

<receive name = "service(-)" />
<sequence>

<invoke "clock()"/>
<receive "clock()"
outputVariable = "clock"/>
<assign>

<$service.RTime =
$clock - $service.clock.store />
<$orch.RTime =
$orch.RTime + $service.RTime />

</assign>
</sequence>

</flow>
</sequence>

Fig. 8 Rewriting rule for weaving response time.

pointcut is not refined, only the receive is refined, by the advice code (in
roman) following it.

The automatic generation of the augmented program from the original
specification is a direct coding of the Procedure 1. Rules for other constructions
such as the firing of a transition with several input places and the competition
when a token exits a place with possible choices, are derived similarly, following
Procedure 1. For general WFnets, we must keep track of the different tokens

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 Albert Benveniste et al.

<sequence>
<invoke name = "service(-)"/>
<receive name = "service(-)"/>
</sequence>

rewrites as:

<sequence>
<invoke name = "service(-)" />
<receive name = "service(-)"
outputVariable = "service.Cost" />
<assign>

<$orch.Cost =
$orch.Cost + $service.Cost />

</assign>
</sequence>

Fig. 9 Rewriting rule for weaving cost.

and attach QoS values to them. This amounts to keeping track of causalities
between service calls that result from the WFnet. To support the weaving,
pointcuts need not be explicitly declared by the programmer. They are instead
obtained by pattern matching searching for keywords invoke and receive
in the functional specification.

Instead of developing a tool implementing the above technique for WFnets,
we have performed a prototype implementation on top of the Orc orchestration
language. This is explained in the next section and subsequently illustrated
using the TravelAgent2 example of Fig. 2.

4.3 Enhancing Orc for QoS

Background on Orc: Orc [22] is a general purpose language aimed to encode
concurrent and distributed computations, particularly workflows and Web ser-
vice orchestrations. An orchestration described in Orc is essentially an Orc
expression. An Orc expression is either a site or is built recursively using any
of the four Orc combinators. A site models any generic service which the Orc
expression orchestrates. A site can be called with a list of parameters, and all
these parameters’ values have to be defined before the call can occur. A call
to a site returns (or publishes) at most one value; it may also halt without
returning a value. The identity site, which publishes the value x it receives as
a parameter, is denoted by x (the name of its parameter). Orc allows compos-
ing service calls or actions by using a predefined small set of combinators that
we describe next. In the parallel composition f | g, expressions f and g run
in parallel. There is no direct interaction between parts of f and g and the
returned values are merged by interleaving them. The sequential composition
f >x> g starts by running f . For every value v published by f , a new instance
of g is run in parallel, with the value of x bound to v in that instance. As a
particular case, f�g performs f and then g, in sequence. The pruning com-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 29

position f <x< g runs f and g in parallel. When g publishes its first value v,
the computation of g is terminated, and occurrences of x in f are replaced by
v. Since f is run in parallel with g, site calls in f that have x as a parameter
are blocked until g publishes a value. Finally, the otherwise combinator f ; g
runs f first. If f publishes a value, g is entirely ignored. However if the com-
putation of f halts without returning any values, then g is run. Orc also has
built in sites to track passage of time (Rtime, Rwait), deal with data structures
(tuples, lists, records), handle concurrency (semaphores, channels) and define
new sites (class). An interested reader is referred to the Orc documentation 6

for details.

Enhancing Orc: We now describe how we integrate our QoS framework into
the Orc language. In particular, we explain how we perform the four tasks
listed at the end of Section 4.1 within Orc.

The Causality Tracking task consists in tracking the causal relations
between execution events in the Orc interpreter. This was straightforward for
WFnets, since causality is revealed by the graph structure of the net. It is
not immediate for Orc programs, however. The event structure semantics of
Orc [43] served as a formal specification for this. It turns out that causality can
be cast into our generic algebraic framework for QoS developed in Section 2.3.
Causalities are represented as pairs x = (e, C), where e is the considered event
and C = {x1, . . . , xk} is the set of its direct causes, recursively encoded as pairs
of the same kind. The QoS domain encoding causalities is defined similarly to
the QoS domain “Cost” of Section 2.2. Consequently, the generic technique
developed to weave QoS into an Orc program can be instantiated to generate
causalities. Details will be reported elsewhere. As a small illustration example,
consider the computation of causalities for the following Orc program:

((2� x) <x< (1� 3))� print(4)

We apply our generic weaving method by seeing causality as a QoS domain.
We make use of two data structures in Orc : tuples, such as (f, g) and finite
lists, such as [f, g]. The causal history is stored as a list of lists with the tuple
(publication, causal past) published in the transformed program. The weaving
yields the following causality-enhanced Orc program:

(
((
((((2, []) >t> (x >(x0,)> (x0, union([x], [t])))) <x<
((((1, []) >t> (3, [t]))
() >t> ((”print”, [t]) >x0> (print(4), [x0]))
)

The first event has an empty causal past (represented by []). Through pattern
matching, this is propagated to the next event with causal history accumulated.

6 http://orc.csres.utexas.edu/documentation.shtml

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 Albert Benveniste et al.

The output of its execution yields the partial order of causes of the publication
of print(4):

4(signal, [(print, [(3, [(3, [(1, [])]), (2, [])])])])

Focus now on the Competition Tracking task. In its basic form, Orc does
offer a way to select one publication among several candidate ones, namely by
using the pruning operator. Indeed, in the Orc expression

f <x< (E1 | E2 | · · · | En) (26)

the first publication by E1, E2, . . . , or En, preempts any future publication
of the parallel composition g∆E1 | E2 | · · · | En. Since only one publication
of g is picked, all possible publications of g are in mutual conflict when in
the context of (26). One can regard (26) as implementing the Competition
Tracking task for the particular case when the conflict is resolved on the
basis of the time of occurrence of the conflicting publications, seen as a QoS
measure—only the earliest one survives. We propose to lift the Orc pruning
operator by resolving the conflict on the basis of an arbitrary QoS measure q
given as a parameter of the generalized pruning:

f <x<q (E1 | E2 | · · · | En) (27)

which is, for its definition, macro-expanded in core Orc as follows:

f <x< sortq(E1 | E2 | · · · | En) (28)

In (28), expression sortq(E1 | E2 | · · · | En) stores as a stream all publica-
tions of (E1 | E2 | · · · | En) upon termination and then reorders this stream
according to the partial order defined by QoS measure q.7 For the special case
where QoS measure q is just the response time d, then (27) boils down to (26),
the original pruning operator.

At this point, we must explain how Procedure 1 is implemented. Focus first
on step 1 of that procedure, where a cluster is selected. In free choice nets,
clusters localize conflicts. In core Orc, conflicts are localized in the pruning
operator (26). In our extension of Orc, conflicts are localized in the QoS-based
pruning operator (27). Thus, step 1 of Procedure 1 consists in selecting one
among all enabled expressions of the form (27). Next, expression (27) itself is
better explained with reference to Fig. 1. Fig. 1-(a) is a direct illustration of
(27), whereas its equivalent form Fig. 1-(b) yields step 3 of Procedure 1 (the
competition step). This discussion shows that the new feature (27) enhances
Orc with a feature that is as powerful as the QoS-based conflict of our OrchNets
and it explains how Procedure 1 is implemented. Details of implementing this
approach are presented in Appendix B.1. We could have considered a more
general feature f <x<q g, where g is an arbitrary Orc expression with its
several induced threads, not necessarily a parallel composition. Our current
implementation does not provide this more general feature, however.

7 Since QoS values may be partially ordered, this choice could be non-deterministic.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 31

The QoS Tracking task of implementing the QoS algebra is handled as
in the SLA declarations of Section 4.2. This is extended with QoS Weaving
to enhance the functional declared code with a QoS enhanced output. In Ap-
pendix B we provide examples and develop the TravelAgent2/3 Examples in
Orc by using the above methodology.

Finally, the End-to-End QoS task is much less obvious than for WFnets.
The reason is that Orc does not handle explicitly states, transitions, and
causality. Rewriting rules are needed that automatically transform functional
Orc code by enhancing it for QoS, structurally. This resembles what we briefly
presented regarding causality. Details will be presented elsewhere.

5 Evaluation of Our Approach

In this section, we make use of our implementation for performing contract
composition, that is, estimating the end-to-end QoS of the TravelAgent2 and
TravelAgent3 examples. The former is monotonic whereas the latter is not. Our
study illustrates the effect of monotonicity and substantiates the need for the
rich theory developed in this paper.

The experiments

Each orchestration is specified as a QoS weaved specification such as explained
in Appendix B.2. For each trial, QoS values for each called service are drawn
according to their specified contracts and then our automatic QoS evaluation
procedure applies—we will actually use both the normal QoS evaluation from
(18) and the “pessimistic” QoS evaluation from (19) and compare them. Draw-
ing 20, 000 successive trials yields, using Monte-Carlo estimation, an estimate
of the end-to-end contract in the form of a probability distribution. QoS di-
mensions considered here are latency, cost, and category. When choices are
performed according to two dimensions or more (e.g., cost and category), we
make use of a weighing technique following AHP [47].

Fig. 10 displays the results of two experiments, corresponding to two dif-
ferent sets of contracts exposed by the called services, shown on diagrams
(a) for latency, and (c) for cost. In order to evaluate the end-to-end QoS of
the TravelAgent 2/3 orchestrations in a realistic setting, the AirlineCompany
and HotelBooking services are modeled as distributed applications hosted on a
GlassFish 3.1 server on the Inria local area network—each call to AirlineCom-
pany or HotelBooking results in a parallel call to one of the above mentioned
GlassFish applications and the corresponding latency is recorded and used for
end-to-end QoS evaluation. Other services are assumed to react much quicker
and are drawn from a Student-t distribution, not shown in the figures. Costs,
on the other hand, are drawn from some Gaussian distributions (with small
variance/mean ratio); note that we could as well have costs deterministic, this
would not change our method.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 Albert Benveniste et al.

Fig. 10 displays the estimated end-to-end QoS in diagrams (b) for latency
and (d) for cost. The results are shown for both the normal QoS evaluation
from (18) and the “pessimistic” QoS evaluation from (19). Not surprisingly,
pessimistic evaluation yields larger end-to-end QoS estimates.

Now, recall that TravelAgent2 is monotonic, whereas TravelAgent3 is not.
What are the consequences of this? In Fig. 10-right, the cost for AirlineCom-
pany2 has been reduced as compared to Fig. 10-left. For the monotonic orches-
tration TravelAgent2, this reduction results in a reduction of the overall cost.
For the non-monotonic orchestration TravelAgent3, however, this reduction
gives raise to an increase in overall cost. On the other hand, pessimistic QoS
evaluations are always monotonic, see Theorem 1; the results shown conform
to this theorem.

Once these end-to-end measurements are taken, the negotiation of con-
tracts and their monitoring may be done as in [39, 40]. This follows the
Monte-Carlo procedure explained in [39,40] and is thus omitted.

Discussion

When dealing with monotonic orchestrations, our contract composition pro-
cedure performs at once, both QoS evaluation and optimization. Competing
alternatives are captured by the different choices occurring in the orchestra-
tion. According to Procedure 1, choice among competing alternatives is by
local optimization, which implements global optimization since the orches-
tration is monotonic. Despite the use of Monte-Carlo simulations, this simple
policy is cheaper than global optimization, even if analytic techniques are used
for composing probabilistic QoS. Furthermore, when applied at run time, Pro-
cedure 1 implements late binding of services with optimal selection in a very
cheap way.

Of course, there is no free lunch. If the considered orchestration is not
monotonic, the above approach does not work as such, as already pointed out
in [8, 11, 51], see Section 6. The bypasses developed in Section 3.5 must be
used. The aggregation procedure results in aggregating services that are called
in sequence, which increases granularity of the orchestration. When applied in
the context of late binding, the decision is delayed until alternatives have all
been explored—thus, it is hard to claim that late binding has been achieved
by doing so. If pessimistic evaluation is followed, then immediate choices can
be applied but, as we said, the end-to-end QoS evaluation that results is pes-
simistic in that the evaluation accumulates worst QoS among alternatives. So,
none of the above techniques is fully satisfactory for non-monotonic orchestra-
tions. In turn, global optimization always applies and implements best service
selection—however, we question the meaning of QoS aware management when
orchestrations are non-monotonic.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 33

0 50 100 150
0

0.5

1

(a) Latency (seconds)

C
um

. D
en

si
ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(b) Latency (seconds)

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(c) Cost

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(d) Cost

C
um

. D
en

si
ty

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

TravelAgent2 (11)
TravelAgent2 pessimistic (12)
TravelAgent3 (11)
TravelAgent3 pessimistic (12)

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

TravelAgent2
TravelAgent3

0 50 100 150
0

0.5

1

(a) Latency (seconds)

C
um

. D
en

si
ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

(b) Latency (seconds)

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(c) Cost

C
um

. D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

(d) Cost

C
um

. D
en

si
ty

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

TravelAgent2 (11)
TravelAgent2 pessimistic (12)
TravelAgent3 (11)
TravelAgent3 pessimistic (12)

TravelAgent2
TravelAgent3

AirlineCompany1
AirlineCompany2
HotelBookingA
HotelBookingB

Fig. 10 We show results from two experiments (top and bottom). For each experiment
we display cumulative densities of: (a) Measured latency of invoked services (b) End-to-end
latency for TravelAgent 2/3 orchestrations through two evaluation schemes (c) Measured
cost of invoked services (d) Returned cost invoice of TravelAgent 2/3 orchestrations.

6 Related Work

We restrict ourselves to papers dealing with QoS-aware management of com-
posite services and addressing QoS-based design, on-line service selection, mon-
itoring and adaptation/reconfiguration. We focus on specific papers dealing
with issues relevant to our work:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34 Albert Benveniste et al.

– QoS Algebraic Formulation: While QoS composition has been studied in
a variety of techniques, we are interested in mathematically sound mod-
els for QoS. We pay attention to the handling of probabilistic and multi-
dimensional QoS.

– Monotonicity: In case of data dependent workflows, the analysis of mono-
tonicity in design becomes crucial. We restrict our discussion to papers
that have either considered this implicitly or make use of other techniques
to ensure this.

– Contracts: Once QoS models have been specified, contractual agreements
between clients and orchestrations (or similarly, between orchestrations
and sub-contracted services) will need to be specified. We review some
approaches that utilize the probabilistic nature of QoS to ensure mathe-
matically sound contractual agreements.

We review the literature collected in Table 1 and Table 2, where issues of
monotonicity are relevant.

We begin with the work of Yu and Bouguettaya [48]. Built-in monotonicity
is still ensured, due to proper restrictions on the control flow of the considered
orchestrations. We nevertheless discuss it because specific issues of interest
are studied. A Service Query Algebra is proposed in which composite services
are seen as graphs. They can be further composed. QoS composition is one
aspect of this service composition. QoS is treated in a fully algebraic style,
very much like our present approach. Probabilistic aspects are not extensively
developed, however. Buscemi and Montanari (2011) [17], Buscemi and Mon-
tanari (2007) [16], De Nicola et al. (2005) [23] is a series of paper developing
algebraic modeling of QoS in a way very similar to ours. By building on the
seminal work of Baccelli et al. [25] on max/+-algebra, these authors develop a
commutative semi-ring algebra to model QoS domains; this is almost identical
to our modeling, except for our consideration of the “competition” operator
used in late service binding. Then, the authors develop the cc-pi calculus to
capture dynamic service binding way beyond our present study. Probabilistic
frameworks are not considered, however.

The work by Bistarelli and Santini [13, 14] is discussed here because it
explicitly refers to monotonicity in its title. This is, however, misleading in
that this term is used in the totally different setting of “belief revision”, a kind
of logic in which facts can get falsified (thus the world is not monotonic in this
sense).

For the next group of papers, the authors seem unaware of the issue of
monotonicity for the type of orchestration they consider (we do not repeat
this fact for the different papers). Cardoso et al. [20, 21] propose a predictive
QoS model that allows to compute the QoS of workflows from the QoS of
their atomic parts. Individual QoS measures are estimated for their minimum,
maximum, and averaged values based on measurements. Rules to compute
QoS composition incrementally are used (the SWR rules published in the first
author’s PhD), with a special attention paid to fault-tolerant systems. Proba-
bilistic QoS is possibly supported, with, however, little technical details. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 35

Paper QoS framework Algorithms
Yu and
Bouguettaya
(2008) [48]

QoS parameters can be defined as
“the probability of something”,
composition rules are proposed

Extensive study of QoS
algebra; optimization of
service selection by Dynamic
Programming applied to the
orchestration modeled as a
directed graph

Bistarelli and
Santini (2009,
2009, 2010)
[13], [14], [12]

Probabilistic QoS supported;
analytic techniques for composing
component QoS to get overall
service QoS

Formal language based on
semirings used to aggregate
QoS; however, composition
rules for QoS are not detailed

Buscemi and
Montanari
(2011) [17],
Buscemi and
Montanari
(2007) [16], De
Nicola et al.
(2005) [23]

Generic QoS is supported through
a commutative semi-ring algebra;
The cc-pi calculus is developed to
model dynamic service binding
with QoS-based selection and its
expressiveness is studied; SLA is
declared as a system of named
constraints

Cardoso et al.
(2002,
2004) [20,21]

Probabilistic QoS is supported
but with little details; the
composition of QoS values is
explained but the composition of
QoS distributions is not explained

Generic formulae presented
with rules for composing
workflows’ QoS and tested on
a genome based workflow.

Hwang et al.
(2004,2007)
[26,27]

Probabilistic QoS is supported,
with analytic techniques for QoS
composition

Efficient approximations for
the analytic evaluation of
Probabilistic QoS composition
are proposed

Menascé et al.
(2008) [34]

Probabilistic QoS is supported,
with analytic techniques for QoS
composition, mathematical details
are provided

Optimal service selection is
precisely formulated and
solved with an efficient
heuristic

Table 1 Literature survey: Papers dealing with orchestrations allowing for a data-dependent
workflow (thus exhibiting a risk of non-monotonicity). The issue of monotonicity is ignored,
except in the work of the authors of this paper and in Ardagna et al. [11], Alrifai & Risse [8]
and Zeng et al. [51], cited in Table 2, where it is identified through the discussion on global
versus local optimization.

work by Hwang et al. [26, 27] is very interesting in its study of probabilistic
QoS composition via analytic techniques. To avoid the computational cost re-
sulting from state explosion in composite services, heuristic approximations
are proposed. The work by Menascé et al. [34] gives a mathematically precise
development of optimal service selection with cost and latency as QoS dimen-
sions. The BPEL constructs are supported, including the “switch”, which is
a source of possible lack of monotonicity; alternative branches of the switch
are assigned a probability. A very interesting heuristic is provided to per-
form near-to-optimal selection at a reasonable computational cost. The long
and rich paper by Calinescu et al. [18] presents a methodology and extensive
toolkit for performing QoS-based design and reconfiguration. Markov types of
models are used in this toolkit, ranging from discrete and continuous Markov
chains to Markov Decision Processes to deal with non-deterministic choices
or data-dependent branching. QoS analyses are supported thanks to a formu-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36 Albert Benveniste et al.

Paper QoS framework Algorithms
Calinescu et al.
(2011) [18]

Probabilistic QoS is
supported, with analytic
techniques for QoS
composition (Markov models,
DMC, CMC, MDP)

QoS is formally specified by using
probabilistic temporal logic;
extensive toolkit and model
checkers are used to implement
QoS-based design and
reconfiguration but little detail is
given about algorithms

Zeng et al.
(2004, 2008,
2003) [51],
[50, 52]

Probabilistic QoS is supported
(restricted to Gaussian
distributions); analytic
techniques for QoS
composition are provided

Using an integer programming
formulation, global and local
optimization are studied in
dynamic environments and the
issue of monotonicity is implicitly
pinpointed

Ardagna et
al.(2005) [11];
Alrifai &
Risse(2009) [8]

Probabilistic QoS is not
supported

QoS-aware service selection is
solved via Mixed Integer Linear
Programming / Multi-dimension
Multi-choice 0-1 Knapsack
Problem (MMKP); the issue of
monotonicity is pinpointed
through the comparison of local
vs. global QoS guarantees

Rosario et al.
(2007, 2008,
2009)
[15,39,40]

Probabilistic QoS is supported
through Soft Probabilistic
contracts; Monte-Carlo
simulation is proposed for
QoS composition; the whole
study is restricted to latency

An in-depth study of
monotonicity is performed;
contract composition, optimal
service binding, and statistical
QoS contract monitoring are
developed

Rosario et al.
(2009) [41,42]

Probabilistic
multi-dimensional QoS is
supported, with soft
Probabilistic contracts
involving Monte-Carlo
simulation for QoS
composition

Probabilistic monotonicity is
studied; a preliminary version of
this paper

Table 2 Literature survey, continued.

lation using probabilistic temporal logic and associated model checkers. The
methodology and toolkit reuses existing tools and did not need the devel-
opment of any new engine. The paper lacks mathematical details, however,
regarding the models and algorithms used.

The issue of monotonicity is identified in only three papers from our list,
albeit under a different wording than ours. Ardagna et al. [11] discuss local
versus global QoS guarantees and explain why optimizing QoS guarantees of
local execution paths may not lead to the satisfaction of global QoS guarantees.
Alrifai & Risse [8] propose a similar approach using MMKP for computation-
ally efficient selection over global and local constraints. In Zeng et al. [51], a
thorough comparison is made between local versus global optimization in ser-
vice selection. It is argued that performing local optimization may not lead to
optimal selection; indeed, the beginning of Section 3.2 in this paper explains
exactly our example of Fig. 3. The paper explains that global optimization
always provides a relevant selection, which is certainly correct. We have, how-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 37

ever, explained in our introduction why we believe that not having monotonic-
ity leads to a strange understanding of QoS management. Now, referring to
our taxonomy, in monotonic orchestrations, local optimization is enough to
ensure global optimality. Other major features of this paper are summarized
in the table.

To conclude on this bibliographical study, we notice that the issue of mono-
tonicity is mostly ignored in the literature on composite Web services, whereas
it is known in the area of performance studies for general computer architec-
tures. Our work focuses on monotonicity, its conditions, and its consequences
for QoS-aware management of composite Web services.

7 Conclusion

We have studied the QoS aware management of composite services, with em-
phasis on QoS-based design and QoS-based on-line service selection. We have
advocated the importance of monotonicity—a composite service is monotonic
if a called service improving its QoS cannot decrease the end-to-end QoS of
the composite service. Monotonicity goes hand-in-hand with QoS, as we think.
For monotonic orchestrations, “local” and “global” optimization turn out to be
equivalent. This allowed us to propose simple answers to the above tasks.
Corresponding techniques are valid for both deterministic and probabilistic
frameworks for QoS. We have proposed techniques to deal with the lack of
monotonicity. We have observed that the issue of monotonicity has been un-
derestimated in the literature.

To establish our approach on firm bases, we have proposed an abstract QoS
calculus, whose algebra encompasses most known QoS domains so far. How
QoS based design and on-line service selection are performed in our approach
is formalized by the model of OrchNets. Our framework of QoS calculus and
OrchNets supports multi-dimensional QoS measures, handled as partial (not
total) orders. To account for high uncertainties and variability in the perfor-
mance of Web services, we support probabilistic QoS.

QoS and function interfere; still, the designer expects support for sepa-
ration of concerns. We provide such a support by allowing for separate SLA
declaration and functional specification, followed by weaving to generate QoS-
enhanced orchestrations. Our weaving techniques significantly clarifies the
specification. Finally, we have proposed a mild extension of the Orc orchestra-
tion language to support the above approach—the principles of our extension
could apply to BPEL [1] as well.

We believe that our approach opens new possibilities in handling orches-
trations with rich QoS characteristics.

Acknowledgements The authors would like to thank Jayadev Misra and William R. Cook
for fruitful discussions regarding Orc. Further thanks to the two anonymous referees for
providing us with constructive comments and suggestions that have been incorporated in
the revised version. This work was partially funded by the INRIA Associated Team grant

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38 Albert Benveniste et al.

FOSSA, the ANR national research program DocFlow (ANR-06-MDCA-005) and the project
CREATE ActivDoc.

A Appendix: Proofs

A.1 Proof of Theorem 2

Throughout the proof, we fix an arbitrary value ω for the daemon. We first
prove the sufficiency of condition (21). Let N ′ be such that N ′ ≥ N . Since op-
erators ⊕ and C are both monotonic, see Definition 1, we have, by Procedure 2
and formulas (17) and (18):

Eω(κ(N ′, ω),N ′) ≥ Eω(κ(N ′, ω),N)

By (21) applied with κ = κ(N ′, ω), we get that

Eω(κ(N ′, ω),N) ≥ Eω(κ(N , ω),N)

holds. This proves the sufficiency of condition (21).
We prove necessity by contradiction. Let (N , ω, κ†) be a triple violating

condition (21), in that

κ† cannot get selected by Procedure 1, but
Eω(κ†,N) ≥ Eω(κ(N , ω),N) does not hold.

Now consider the OrchNet net N ′ = (N,V,Q′, Qinit) where the family Q′ is
such that, ∀t ∈ κ†, ξ′t(ω) = ξt(ω) holds, and ∀t /∈ κ†, using (5) together with
the assumption that (D,≤) is an upper lattice, we can inductively select ξ′t(ω)
such that the following two inequalities hold:∨

t∈κ†
qt ≤

(∨
p′∈•t

qp′
)
⊕ ξ′t(ω) (29)

ξt(ω) ≤ ξ′t(ω) (30)

Condition (30) expresses that N ′ ≥ N . By Procedure 1 defining QoS policy,
(29) implies that configuration κ† can win all competitions arising in step 3 of
QoS policy, κ(N ′, ω) = κ† holds, and thus

Eω(κ(N ′, ω),N ′) = Eω(κ†,N ′) = Eω(κ†,N)

However, Eω(κ†,N) ≥ Eω(κ(N , ω),N) does not hold, which violates mono-
tonicity.

A.2 Proof of Theorem 3, Sufficiency

Let ϕN be the net morphism mapping UN onto N and let N be any OrchNet
built on UN . We prove that condition (21) of Theorem 2 holds for N by induc-
tion on the number of transitions in the maximal configuration κ(N , ω) that
actually occurs. The base case is when it has only one transition. Clearly this
transition has minimal QoS increment and any other maximal configuration
has a greater end-to-end QoS value.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 39

Induction Hypothesis: Condition (21) of Theorem 2 holds for any maximal
occurring configuration with m − 1 transitions (m > 1). Formally, for an
OrchNet N ,∀ω ∈ Ω, ∀κ ∈ V (N),

Eω(κ,N) ≥ Eω(κ(N , ω),N) (31)

must hold if |{t ∈ κ(N , ω)}| ≤ m− 1.

Induction Argument: Consider the OrchNet N , where the actually occurring
configuration κ(N , ω) has m transitions and let

∅ = κ0(ω) ≺ κ1(ω)(= κ) ≺ . . . ≺ κM(ω)(ω) = κ(N , ω)

be the increasing chain of configurations leading to κ(N , ω) under QoS policy,
see (3.2) — to shorten the notations, we write simply κ instead of κ1(ω) in
the sequel of the proof. We assume that M(ω) ≤ m. Let t be the unique
transition such that t ∈ κ1(ω) and set t̂ = {t} ∪ t•. Let κ′ be any other
maximal configuration of N . Then two cases can occur.

– t ∈ κ′: In this case, comparing the end-to-end QoS of κ(N , ω) and κ′

reduces to comparing

Eω(κ(N , ω) \ t̂,N κ) and Eω(κ′ \ t̂,N κ)

where N κ is the future of κ in N = (N,V,A,Q,Qinit), obtained by re-
placing N by Nκ, restricting V , A, and Q to Nκ, and replacing Qinit by
Eω(κ,N), the QoS cost of executing configuration κ.
Since κ(N , ω) \ t̂ is the actually occurring configuration in the future N κ

of transition t, using our induction hypothesis, then

Eω(κ′ \ t̂,N κ) ≥ Eω(κ(N , ω) \ t̂,N κ)

holds, which implies

Eω(κ′,N) ≥ Eω(κ(N , ω),N)

– t /∈ κ′: Then there must exist a transition t′ ∈ κ′ such that t and t′

differ and belong to the same cluster c. Hence, ϕN (t)• = ϕN (t′)• follows
from the structural condition of Theorem 3. The futures N κ and N κ′

thus are isomorphic: they only differ in the initial colors of their places.
If Qinit and Q′init are the initial QoS values for the futures N κ and N κ′ ,
then Qinit ≤ Q′init holds (since ξt ≤ ξt′ , t

• has QoS lesser than t′• by
monotonicity of ⊕). On the other hand,

Eω(κ(N , ω),N) = Eω(κ(N , ω) \ t̂,N κ) (32)

and

Eω(κ′,N) = Eω(κ′ \ t̂′,N κ′)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40 Albert Benveniste et al.

Now, since N κ′ and N κ possess identical underlying nets and N κ′ ≥ N κ,
then we get

Eω(κ′ \ t̂′,N κ′) ≥ Eω(κ′ \ t̂′,N κ) (33)

Finally, applying the induction hypothesis to (32) and using (33) yields
Eω(κ′,N) ≥ Eω(κ(N , ω),N).

This proves that condition (21) of Theorem 2 holds and finishes the proof of
the theorem.

A.3 Proof of Theorem 3, Necessity

We will show that when the structural condition of Theorem 3 is not satisfied
by N , Orchnet NN can violate condition (21) of Theorem 2, the necessary
condition for monotonicity.

Let c be any cluster in UN that violates the structural condition of Theo-
rem 3. Since N is sound, all transitions in c are reachable from the initial place
and so there are transitions t1, t2 ∈ c such that •t1∩•t2 6= ∅, •ϕ(t1)∩•ϕ(t2) 6= ∅
and ϕ(t1)• 6= ϕ(t2)•.

Define [t] = dte \ t̂ and κ = [t1] ∪ [t2]. κ is a configuration. Since t•1 6= t•2,
without loss of generality, we assume that there is a place p ∈ t•1 such that
p /∈ t•2. Let t∗ be a transition in N κ such that t∗ ∈ p•. Such a transition
must exist since p can not be a maximal place: ϕ(p) can not be a maximal
place in N which has a unique maximal place. Now, consider the Orchnet
N ′ > N obtained as follows: using repeatedly condition (5) for operator ⊕ in
Definition 1, ξ′t1(ω) = ξt1(ω), ξ′t2(ω) ≥ ξt1(ω), and, for all other t ∈ c, ξ′t(ω) ≥
ξ′t2(ω). For all remaining transitions of N ′, with the exception of t∗, the QoS
increments are the same as that in N and thus are finite for ω. Finally, select
ξ′t∗(ω) such that

ξt1(ω)⊕ ξ′t∗(ω) > Q∗(ω) (34)

where Q∗(ω) ∈ D will be chosen later—here we used the additional condition
of Theorem 3 regarding D, together with condition (5) for operator ⊕ in Def-
inition 1. Transition t1 has a minimal QoS increment among all transitions in
cluster c. It can therefore win the competition, thus giving raise to an actually
occurring configuration κ(N ′, ω). Select Q∗(ω) equal to the maximal value of
the end-to-end QoS of the set K of all maximal configurations κ that do not
include t1 (e.g., when t2 fires instead of t1). By (34), since t∗ is in the future
of t1, we thus have Eω(κ(N ′, ω),N ′) ≥ ξt1(ω)⊕ ξ′t∗(ω) > Q∗(ω) ≥ Eω(κ,N ′)
for any configuration κ and, therefore, N ′ violates the condition (21) of The-
orem 2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 41

A.4 Proof of Theorem 5

The proof is by contradiction. Assume that

there exists a pair (N ,N ′) of OrchNets such that
N ≥ N ′ and P {ω ∈ Ω | Eω(N) < Eω(N ′)} > 0.

(35)

To prove the theorem it is enough to prove that (35) implies:

there exists No,N ′o such that No ≥ N ′o,
but E(No) ≥s E(N ′o) does not hold

(36)

To this end, set No = N and define N ′o as follows, where Ωo denotes the set
{ω ∈ Ω | Eω(N) < Eω(N ′)}:

N ′o(ω) = if ω ∈ Ωo then N ′(ω) else N (ω)

Note that No ≥ N ′o ≥ N ′ by construction. On the other hand, we have
Eω(No) < Eω(N ′o) for ω ∈ Ωo, and Eω(No) = Eω(N ′o) for ω 6∈ Ωo. By (35),
we have P(Ωo) > 0. Consequently, we get:

[∀ω ∈ Ω ⇒ Eω(No) ≤ Eω(N ′o)]

and [P {ω ∈ Ω | Eω(No) < Eω(N ′o)} > 0]

which implies that E(No) ≥s E(N ′o) does not hold.

B Appendix: Implementation in Orc

B.1 Upgrading Orc with the bestQ operator

In order to enhance Orc with the feature presented in (27), we begin with the
specification of the sortq(E1 | E2 | · · · | En) which sorts the list of QoS values
from a domain q. The merge sort algorithm is employed here to sort through
the list of QoS values according to the specified partial order po.

def mergeBy[A](lambda (A,A) :: Boolean, List[A], List[A]) :: List[A]
def mergeBy(po, xs, []) = xs
def mergeBy(po, [], ys) = ys
def mergeBy(po, x:xs, y:ys) = if po(y,x) then y:mergeBy(po,x:xs,ys)

else x:mergeBy(po,xs,y:ys)

def sortQ[A](lambda (A,A) :: Boolean, List[A]) :: List[A]
def sortQ(po, []) = []
def sortQ(po, [x]) = [x]
def sortQ(po, xs) =
val half = Floor(length(xs)/2)
val front = take(half, xs)
val back = drop(half, xs)
mergeBy(po, sortBy(po, front), sortQ(po, back))

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

42 Albert Benveniste et al.

To complete the implementation of f <x< sortq(E1 | E2 | · · · | En), the head
of the sorted list is selected. This results in the competition winner presented
as the output of the bestQ operator ((27)).

def head[A](List[A]) :: A
def head(x:xs) = x

def bestQ[A](lambda (A,A) :: Boolean, List[A]) :: A
def bestQ(comparer, publisher) = head(sortBy(comparer, publisher))

The bestQ operator performs the function of the competition operator as in
Step 3 of the QoS policy. In trivial cases, this yields q Cq {q1, q2, . . . , qn} = q
(bestQ output), with q winning the competition according to the specified
partial order ≤q (po).

B.2 QoS Weaving

These are the implementation steps to enhance functional Orc specifications
with QoS. Refer to the informal specification of the TravelAgent2 orchestration
in Section 1.

1. SLA / QoS Declaration: A library of pre-defined QoS classes that specify
the types, domains, operations and units for various metrics. This makes
use of the class construct in Orc that provides the capability to implement
sites within Orc. This can include a variety of QoS domains (Latency,
Cost, Security, Reliability, Throughput) that can be instantiated and re-
used when required. Note that multiple units may be specified: eg. seconds
and milliseconds for latency/throughput, cost in items/currencies. As the
classes are declared within Orc, the classes/definitions may be updated
when required. For the TravelAgent2/3 example, domains such as Latency
and Cost are relevant. An example is shown for the domains of Latency
and Cost as follows.

def bestQoS(comparer,publisher) = head(sortBy(comparer,publisher))
def addNum(x, y) = x + y
def zipWith(_, [], _) = []
def zipWith(_, _, []) = []
def zipWith(f, x:xs, y:ys) = f(x, y) : zipWith(f, xs, ys)

-- Latency.inc -- Types and Definitions for Response Time
def LatencyIncrement(sitex) =

{- Using tuple construction as fork-join -}
(sitex, Rtime()) >(sitex, st)> (sitex, Rtime()-st)

type TimeUnit = Second() | Millisecond()

def class ResponseTime(unit) =
def QoS(sitex) =
LatencyIncrement(sitex) >(_, q)>
(Ift(unit = Millisecond()) >> q | Ift(unit = Second()) >>

q/1000)
def QoSOplus(rt1, rt2) = rt1+rt2
def QoSCompare(rt1, rt2) = rt1 <= rt2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 43

def QoSCompete(rt1, rt2) = bestQoS(QoSCompare, [rt1, rt2])
def QoSVee(rt1, rt2) = max(rt1, rt2)
stop

-- Cost.inc -- Types and Definitions for Cost
type CostUnit = Items() | CurrencyEuros() | CurrencyDollars()
def CostValue() = 1
def class Cost(unit) =
def UnitConverter(x, Items()) = x
def UnitConverter(x, CurrencyEuros()) = x*100
def UnitConverter(x, CurrencyDollars()) = x*80
def QoS(sitex, c) =

val s = Ref([])
signal >> (s? >q> (if q=[] then s := c >> s? else QoSOplus(s?,

c) >v> s := v >> UnitConverter(s?, unit)))
def QoSOplus(c1, c2) = zipWith(addNum, c1, c2)
def QoSCompare(c1, c2) = foldl((&&), true, zipWith((<=), c1, c2))
def QoSCompete(c1, c2) = bestQoS(QoSCompare, [c1, c2])
def QoSVee(c1, c2) = zipWith(max, c1, c2)
stop

In the above declaration, multiple data structures such as records {. .}, lists
[f, g] and tuples (f, g) are used. Other general sites available in Orc such
as real time (Rtime) rewritable storage locations (Ref and FIFO channels
(Channel) are also invoked.
Once these classes are declared, the SLA type checker checks for Ambient/Non-
ambient QoS types before passing the control flow. If the correct typing is
not found, the SLA site blocks further evaluation. A non-ambient metric
(eg. cost) has competition operator defined trivially. However, for ambient
metrics (eg. latency), the competition operator must be specified explic-
itly when combined with non-ambient metrics. This would specify whether
the lexicographic ordering implies a infemum/supremum for the ambient
metrics.

-- SLA.inc
include "Latency.inc"
include "Cost.inc"

def class NonAmbient(QoStype) =
def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy((<:), [q1,q2]))
signal

def class Ambient(QoStype,competition) =
def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy(competition, [q1,q2]))
signal

2. QoS Registry : This registers services with relevant QoS classes, QoS metric
units and specific handles for accessing them. The registry is defined using
the records data structure that can match keys to a record pattern. By
providing multiple QoS units, it is possible to re-use the same class of QoS
metrics multiple times by the same set of sites. Note that handles are also
specified – additional information that must be returned by the service in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

44 Albert Benveniste et al.

order to satisfy the QoS requirements. Instances of handles include cost in-
crements (items/currency), latency increments (milliseconds/seconds) and
security levels that need to be specified. As the orchestration requires these
increments to generate the end-to-end QoS increment for each domain, the
sites must imperatively provide these handles. A site can also be neutral
(zero increment) to certain domains.
An example is provided with three sites TAgent, Airline and Hotel specified
with various QoS domains, units and handles. An additional QoSMatch site
matches the site identifier with these values when invoked.

-- QoSRegistry.inc
val QoSRegistry =
[
{. name = "TAgent", QoSDom = ResponseTime, QoSUnit = Millisecond,

Handle = LatencyIncrement .},
{. name = "TAgent", QoSDom = Cost, QoSUnit = CurrencyEuros,

Handle = CostValue .},
{. name = "Airline", QoSDom = Cost, QoSUnit = Items,

Handle = CostValue .},
{. name = "Hotel", QoSDom = Cost, QoSUnit = Items,

Handle = CostValue .}
]

def QoSMatch(siteID) = each(QoSRegistry) >M> Ift(M.name = siteID)
>> (M.QoSDom,M.QoSUnit,M.Handle)

3. Validating Registry Entries: As the registry contains many services with
possibly conflicting QoS domains, accurate mapping of service and domains
may be needed. This can be done either permissively (not specified domains
produce zero increments) or strictly (restricting QoS domains according to
the mapping).
For a Orc expression def f() = (g1(),...gN()) (service f invoking gi), an
injective partial function is defined as QoS(f) 7→ QoS(gi). Note that this
definition allows for multiple instances of QoS classes to be defined for
each of these services. A QoSValidate site is implemented that checks
for strict conformance of QoS domains between the caller/callee sites.

def QoSValidate(callersiteID,caleesiteID) =
(collect(defer(QoSMatch,callersiteID)),
collect(defer(QoSMatch,caleesiteID)))
>(A,B)> (Ift(A.QoSDom = B.QoSDom) >> signal
| Iff(A.QoSDom = B.QoSDom) >> Println("Registry Entries Missing")
>> stop)

4. QoS Weaving : The QoS Weaver site weaves the values generated by the
sites (with appropriate domains and handles) and generates the tuple of
Data, QoS. Note that the check for the domains and handles are strict with
computation stopped otherwise. For Ambient metrics (eg. Latency) the
competition operator must be specified.

-- QoSWeaver.inc
def QoSWeaver(site,(lookup,unit,handle)) =

def ResponseTimeCheck(competition) =

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 45

Ift(lookup = ResponseTime && handle = LatencyIncrement) >>
(Ambient(ResponseTime,competition)
>> (ResponseTime(unit).QoS(site)))
; stop

def CostCheck() =
Ift(lookup = Cost && handle = CostValue) >>
(NonAmbient(Cost) >> Cost(unit).QoS(site,CostValue()))
; stop

signal >> v<v<(ResponseTimeCheck(max)| CostCheck())

def QoS(site,identifier) =
val Data = Ref()
def QoSCollect(v) = collect(defer2(QoSWeaver,Data?,v))

site >d> Data:=d >> collect(defer(QoSMatch,identifier)) >v>
(Data?, map(QoSCollect,v))

The weaver also incorporates a QoS site that wraps a specific site with the
QoS increment produced by it.

5. Functional Declaration: Once these steps are completed, the Orc expression
may be written after including the necessary sites (QoS Declarations, Reg-
istries). The site declarations must specify the site identifiers that would
be invoked from the registry.

-- Site Definitions
def class AirlineCompany() =
def function(GenerateInvoice) =
bestQ(compareCost, defer(inquireCost,AirlineList))
>q> GenerateInvoice >> GenerateInvoice.AirQuote := q
def QoSID() = "Airline"
stop

def class HotelBooking() =
def function(GenerateInvoice) =
bestQ(compareCategory, defer(inquireCategory,HotelList))
>q> GenerateInvoice >> GenerateInvoice.HotelQuote := q
def QoSID() = "Hotel"
stop

def class TravelAgent() =
def function(salesOrder,budget) = timeout(
(acceptOrder(salesOrder, budget) >(bookingRequest, budget)>
quoteAirfare(bookingRequest) >> quoteHotel(bookingRequest) >>
checkBudget(bookingRequest, budget)), timeoutVal, salesOrder)
>Some(bookingRequest)> bookingRequest
def QoSID() = "TAgent"
stop

def QoSsite(sitex) = QoS(sitex.function(),sitex.QoSID())

Once the sites have been declared, the goal expression may be written with
the relevant classes included. The QoS weaving automatically equips rele-
vant sites with their QoS increments. Note that the functional declarations
can make use of the QoS outputs as well.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

46 Albert Benveniste et al.

B.3 TravelAgent2 Example

The QoS-weaved output of the TravelAgent2 orchestration is provided with
the original functional specification in (bold) and the QoS specification in
roman. Increments to domains Cost and ResponseTime are accumulated as
the control flow progresses in the orchestration. The code of QoS enhanced
output is installed on the Orc site at url http://orc.csres.utexas.
edu/papers/qos-aware.shtml, from where it can be run.

--SLA Declaration
def bestQoS(comparer,publisher) = head(sortBy(comparer,publisher))
def addNum(x, y) = x + y
def zipWith(_, [], _) = []
def zipWith(_, _, []) = []
def zipWith(f, x:xs, y:ys) = f(x, y) : zipWith(f, xs, ys)

-- Types and Definitions for Response Time
def LatencyIncrement(sitex) =

- Using tuple construction as fork-join -
(sitex, Rtime()) >(sitex, st)> (sitex, Rtime()-st)

type TimeUnit = Second() | Millisecond()

def class ResponseTime(unit) =
def QoS(sitex) =

LatencyIncrement(sitex) >(_, q)>
(Ift(unit = Millisecond()) >> q | Ift(unit = Second()) >> q/1000)

def QoSOplus(rt1, rt2) = rt1+rt2
def QoSCompare(rt1, rt2) = rt1 <= rt2
def QoSCompete(rt1, rt2) = bestQoS(QoSCompare, [rt1, rt2])
def QoSVee(rt1, rt2) = max(rt1, rt2)
stop

-- Types and Definitions for Cost
type CostUnit = Items() | CurrencyEuros() | CurrencyDollars()
def CostValue() = 1
def class Cost(unit) =

def UnitConverter(x, Items()) = x
def UnitConverter(x, CurrencyEuros()) = x*100
def UnitConverter(x, CurrencyDollars()) = x*80
def QoS(sitex, c) =

val s = Ref([])
signal >> (s? >q> (if q=[] then s := c >> s?
else QoSOplus(s?, c) >v> s := v >> UnitConverter(s?, unit)))

def QoSOplus(c1, c2) = zipWith(addNum, c1, c2)
def QoSCompare(c1, c2) = foldl((&&), true, zipWith((<=), c1, c2))
def QoSCompete(c1, c2) = bestQoS(QoSCompare, [c1, c2])
def QoSVee(c1, c2) = zipWith(max, c1, c2)
stop

def class NonAmbient(QoStype) =
def QoSCompete(Number,Number) :: Number
def QoSCompete(q1,q2) = head(sortBy((<:), [q1,q2]))
signal

def class Ambient(QoStype,competition) =
def QoSCompete(Number,Number) :: Number

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://orc.csres.utexas.edu/papers/qos-aware.shtml
http://orc.csres.utexas.edu/papers/qos-aware.shtml

QoS-Aware Management of Monotonic Service Orchestrations 47

def QoSCompete(q1,q2) = head(sortBy(competition, [q1,q2]))
signal

--QoS Registry
val QoSRegistry =
[
. name = "TAgent", QoSDom = ResponseTime, QoSUnit = Millisecond,

Handle = LatencyIncrement .,
. name = "TAgent", QoSDom = Cost, QoSUnit = CurrencyEuros,

Handle = CostValue .,
. name = "Airline", QoSDom = Cost, QoSUnit = Items,

Handle = CostValue .,
. name = "Hotel", QoSDom = Cost, QoSUnit = Items,

Handle = CostValue .
]

def QoSMatch(siteID) = each(QoSRegistry) >M> Ift(M.name = siteID)
>> (M.QoSDom,M.QoSUnit,M.Handle)

def QoSValidate(callersiteID,caleesiteID) =
(collect(defer(QoSMatch,callersiteID)),
collect(defer(QoSMatch,caleesiteID)))
>(A,B)> (Ift(A.QoSDom = B.QoSDom) >> signal
| Iff(A.QoSDom = B.QoSDom) >> Println("Registry Entries Missing")
>> stop)

--QoS Weaving
def QoSWeaver(site,(lookup,unit,handle)) =

def ResponseTimeCheck(competition) =
Ift(lookup = ResponseTime && handle = LatencyIncrement) >>
(Ambient(ResponseTime,competition)
>> (ResponseTime(unit).QoS(site)))
; stop

def CostCheck() =
Ift(lookup = Cost && handle = CostValue) >>
(NonAmbient(Cost) >> Cost(unit).QoS(site,CostValue()))
; stop

signal >> v<v<(ResponseTimeCheck(max)| CostCheck())

def QoS(site,identifier) =
val Data = Ref()
def QoSCollect(v) = collect(defer2(QoSWeaver,Data?,v))
site >d> Data:=d >> collect(defer(QoSMatch,identifier)) >v>
(Data?, map(QoSCollect,v))

--TravelAgent2 Example
val AirlineList = ["Airline 1", "Airline 2"]
val HotelList = ["Hotel A", "Hotel B"]
def QoSsite(sitex) = QoS(sitex.function(),sitex.QoSID())
def bestQ(comparer,publisher) = head(sortBy(comparer,collect(publisher)))

--Simulation utilities
def cat() = if (Random(1)=1) then "Economy" else "Premium"
val simElaspedTime = Rclock()

--Functional Sites declared
def GenerateOrder(SalesOrder,Budget) = Dictionary() >GenerateInvoice>

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

48 Albert Benveniste et al.

GenerateInvoice.TravelAgent := SalesOrder.ordernumber? >>
GenerateInvoice.acceptedTime := simElaspedTime.time() >>
Println("Order "+GenerateInvoice.TravelAgent?+" accepted at time "
+GenerateInvoice.acceptedTime?) >> (GenerateInvoice,Budget)

def inquireCost(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup>> ProductDetails.cost := Random(50)
>> ProductDetails

def inquireCategory(List) = each(List) >sup> Dictionary() >ProductDetails>
ProductDetails.Company := sup >> ProductDetails.cost := Random(50) >>
ProductDetails.category := cat() >> ProductDetails

def compareCost(x, y) = x.cost? <= y.cost?
def compareCategory(x, y) = if x.category?="Economy" then false

else if y.category?="Economy" then true else compareCost(x, y)

def CheckBudget(GenerateInvoice,Budget) =
if (GenerateInvoice.AirQuote?.cost? + GenerateInvoice.HotelQuote?.cost?
<: Budget) then GenerateInvoice else
(Println("Resubmit Order " +GenerateInvoice.TravelAgent?) >>
Dictionary() >SalesOrder>
SalesOrder.ordernumber:= GenerateInvoice.TravelAgent?
>> (SalesOrder,GenerateOrder(SalesOrder,Budget)))

def timeout(x, t, SalesOrder) = Let(Some(x)
| (Rwait(t) >> notifyFail(SalesOrder, "Timeout") >> None()))

def notifyFail(SalesOrder, reaSalesOrdern) =
Println("Order "+SalesOrder.id?+" failed: "+reaSalesOrdern)
>> stop

--QoS-Aware Sites
def class AirlineCompany(GenerateInvoice,Cost) =

def function() = bestQ(compareCost, defer(inquireCost,AirlineList))
>q> GenerateInvoice >> GenerateInvoice.AirQuote := q
def QoSID() = "Airline"
stop

def class HotelBooking(GenerateInvoice,Cost) =
def function() = bestQ(compareCategory, defer(inquireCategory,HotelList))
>q> GenerateInvoice >> GenerateInvoice.HotelQuote := q
def QoSID() = "Hotel"
stop

def class TravelAgent(SalesOrder,Budget,Cost,Latency) =
def function() =timeout((GenerateOrder(SalesOrder,Budget)
>(GenerateInvoice,Budget)> QoSsite(AirlineCompany(GenerateInvoice,Cost))
>(_,AirQoS)> GenerateInvoice.AirQoS := AirQoS
>> QoSsite(HotelBooking(GenerateInvoice,Cost)) >(_,HotelQoS)>
GenerateInvoice.HotelQoS := HotelQoS
>> CheckBudget(GenerateInvoice,Budget)) , 10000, SalesOrder)
>Some(GenerateInvoice)> GenerateInvoice
def QoSID()= "TAgent"
stop

--Simulation
def simulateOrders(50) = stop
def simulateOrders(n) = Dictionary() >SalesOrder> SalesOrder.ordernumber:= n

>> SalesOrder
| Rwait(Random(100)) >> simulateOrders(n+1)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 49

simulateOrders(1) >SalesOrder>
QoSsite(TravelAgent(SalesOrder,150,Cost,ResponseTime))
>(GenerateInvoice,QoS)> ((GenerateInvoice.TravelAgent?,QoS)
>> Println("Invoice for order "+SalesOrder.ordernumber?+"
presented at time "+simElaspedTime.time())
>> (GenerateInvoice.AirQoS?,GenerateInvoice.HotelQoS?)
>([[aq]],[[hq]])> (aq,hq)
>> (GenerateInvoice.TravelAgent?,QoS))

References

1. Web Services Business Process Execution Language Version 2.0. Tech. rep., OA-
SIS Standard, Available from: http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.pdf
(April, 2007)

2. van der Aalst, W.M.P.: Verification of workflow nets. In: ICATPN, pp. 407–426 (1997)
3. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The

Journal of Circuits, Systems and Computers 8(1), 21–66 (1998). URL citeseer.ist.
psu.edu/vanderaalst98application.html

4. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT Press (2002)

5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003). DOI http://dx.doi.org/10.
1023/A:1022883727209

6. Abundo, M., Cardellini, V., Presti, F.L.: Optimal admission control for a qos-aware
service-oriented system. In: ServiceWave, pp. 179–190 (2011)

7. Alain Bensoussan: Stochastic Control of Partially Observable Systems. Cambridge Uni-
versity Press (1992)

8. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient
qos-aware service composition. In: WWW, pp. 881–890 (2009)

9. Ardagna, D., Ghezzi, C., Mirandola, R.: Model Driven QoS Analyses of Composed
Web Services. In: P. Mähönen, K. Pohl, T. Priol (eds.) ServiceWave, Lecture Notes in
Computer Science, vol. 5377, pp. 299–311. Springer (2008)

10. Ardagna, D., Giunta, G., Ingraffia, N., Mirandola, R., Pernici, B.: QoS-Driven Web
Services Selection in Autonomic Grid Environments. In: R. Meersman, Z. Tari (eds.)
OTM Conferences (2), Lecture Notes in Computer Science, vol. 4276, pp. 1273–1289.
Springer (2006)

11. Ardagna, D., Pernici, B.: Global and Local QoS Guarantee in Web Service Selection.
In: C. Bussler, A. Haller (eds.) Business Process Management Workshops, vol. 3812, pp.
32–46 (2005)

12. Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Unicast and multicast qos routing
with soft-constraint logic programming. ACM Trans. Comput. Logic 12(1), 5:1–5:48
(2010)

13. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for sla
negotiation. Electr. Notes Theor. Comput. Sci. 236, 147–162 (2009)

14. Bistarelli, S., Santini, F.: Soft constraints for quality aspects in service oriented archi-
tectures. In: Young Researchers Workshop on Service-Oriented Computing, pp. 51–65
(2009)

15. Bouillard, A., Rosario, S., Benveniste, A., Haar, S.: Monotonicity in Service Orches-
trations. In: G. Franceschinis, K. Wolf (eds.) Petri Nets, Lecture Notes in Computer
Science, vol. 5606, pp. 263–282. Springer (2009)

16. Buscemi, M.G., Montanari, U.: Cc-pi: a constraint-based language for specifying service
level agreements. In: Proceedings of the 16th European conference on Programming,
ESOP’07, pp. 18–32. Springer-Verlag (2007). URL http://dl.acm.org/citation.
cfm?id=1762174.1762179

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

citeseer.ist.psu.edu/vanderaalst98application.html
citeseer.ist.psu.edu/vanderaalst98application.html
http://dl.acm.org/citation.cfm?id=1762174.1762179
http://dl.acm.org/citation.cfm?id=1762174.1762179

50 Albert Benveniste et al.

17. Buscemi, M.G., Montanari, U.: Qos negotiation in service composition. J. Log. Algebr.
Program. 80(1), 13–24 (2011)

18. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic
QoS Management and Optimization in Service-Based Systems. IEEE Transactions on
Software Engineering 37(3), 387 –409 (2011)

19. Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L.: Adaptive management of com-
posite services under percentile-based service level agreements. In: ICSOC 2010, LNCS
6470, pp. 381–395 (2010)

20. Cardoso, J., Sheth, A.P., Miller, J.A.: Workflow Quality of Service. In: K. Kosanke,
R. Jochem, J.G. Nell, A.O. Bas (eds.) ICEIMT, IFIP Conference Proceedings, vol. 236,
pp. 303–311. Kluwer (2002)

21. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of Service for
workflows and Web service processes. J. Web Sem. 1(3), 281–308 (2004)

22. Cook, W.R., Patwardhan, S., Misra, J.: Workflow Patterns in Orc. In: Coordination,
pp. 82–96 (2006)

23. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E., Jacquet, J.M.: Coor-
dination Models and Languages, chap. A Process Calculus for QoS-Aware Applications,
pp. 246–252. Springer Berlin / Heidelberg (2005)

24. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s Unfolding Algorithm.
Formal Methods in System Design 20(3), 285–310 (2002)

25. F. Baccelli and G. Cohen and G.J. Olsder and J-P. Quadrat: Synchronization and
Linearity. Wiley Series in Probability and Mathematical Statistics, John Wiley (1992)

26. Hwang, S.Y., Wang, H., Srivastava, J., Paul, R.A.: A Probabilistic QoS Model and
Computation Framework for Web Services-Based Workflows. In: ER, pp. 596–609 (2004)

27. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling
and estimating the QoS of web-services-based workflows. Inf. Sci. 177(23), 5484–5503
(2007)

28. Kattepur, A.: Importance sampling of probabilistic contracts in web services. In: G. Kap-
pel, Z. Maamar, H.R. Motahari-Nezhad (eds.) ICSOC, Lecture Notes in Computer Sci-
ence, vol. 7084, pp. 557–565. Springer (2011)

29. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. J. Network Syst. Manage. 11(1) (2003)

30. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., marc Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. SpringerVerlag (1997)

31. Kiselev, I.: Aspect-Oriented Programming with AspectJ. Sams, Indianapolis, IN, USA
(2002)

32. Kitchin, D., Cook, W.R., Misra, J.: A Language for Task Orchestration and its Semantic
Properties. In: Proc. of the Intl. Conf. on Concurrency Theory (CONCUR) (2006)

33. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of
execution policies on the semantics and analysis of stochastic petri nets. IEEE Trans.
Software Eng. 15(7), 832–846 (1989)

34. Menascé, D.A., Casalicchio, E., Dubey, V.K.: A heuristic approach to optimal service se-
lection in Service Oriented Architectures. In: A. Avritzer, E.J. Weyuker, C.M. Woodside
(eds.) WOSP, pp. 13–24. ACM (2008)

35. Misra, J., Cook, W.R.: Computation Orchestration: A Basis for Wide-Area Computing.
Journal of Software and Systems Modeling May (2006). Available for download at
http://dx.doi.org/10.1007/s10270-006-0012-1

36. Moshe Shaked and J. George Shanthikumar: Stochastic Orders and their Applications.
Academic Press (1994)

37. Moshe Shaked and J. George Shanthikumar: Stochastic Orders. Springer (2007)
38. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of the

IEEE, vol. 77, pp. 541–580 (1989)
39. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic qos and soft contracts for

transaction based web services. In: ICWS, pp. 126–133. IEEE Computer Society (2007)
40. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for

transaction based Web services orchestrations. IEEE Transactions on Service Comput-
ing 1(4) (2008)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

QoS-Aware Management of Monotonic Service Orchestrations 51

41. Rosario, S., Benveniste, A., Jard, C.: A Theory of QoS for Web Service Orchestrations.
Research Report RR-6951, INRIA (2009). Available from http://hal.inria.fr/
inria-00391592/PDF/RR-6951.pdf

42. Rosario, S., Benveniste, A., Jard, C.: Flexible probabilistic qos management of transac-
tion based web services orchestrations. In: ICWS, pp. 107–114. IEEE (2009)

43. Rosario, S., Kitchin, D., Benveniste, A., Cook, W.R., Haar, S., Jard, C.: Event structure
semantics of orc. In: M. Dumas, R. Heckel (eds.) WS-FM, Lecture Notes in Computer
Science, vol. 4937, pp. 154–168. Springer (2007)

44. Sato, N., Trivedi, K.S.: Stochastic modeling of composite web services for closed-form
analysis of their performance and reliability bottlenecks. In: B.J. Krämer, K.J. Lin,
P. Narasimhan (eds.) ICSOC, Lecture Notes in Computer Science, vol. 4749, pp. 107–
118. Springer (2007)

45. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: B. Jon-
sson, J. Parrow (eds.) CONCUR, Lecture Notes in Computer Science, vol. 836, pp.
481–496. Springer (1994)

46. Teturo Kamae and Ulrich Krengel and George L. O’Brien: Stochastic inequalities on
partially ordered spaces. The Annals of Probability 5(6), 899–912 (1977)

47. Thomas L. Saaty: How to make a decision: the Analytic Hierarchy Process. European
Jounral of Operational Research 48(2), 9–26 (1990)

48. Yu, Q., Bouguettaya, A.: Framework for Web service query algebra and optimization.
TWEB 2(1) (2008)

49. Yu, T., Lin, K.J.: Service Selection Algorithms for Composing Complex Services with
Multiple QoS Constraints. In: B. Benatallah, F. Casati, P. Traverso (eds.) ICSOC,
Lecture Notes in Computer Science, vol. 3826, pp. 130–143. Springer (2005)

50. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven Web
services composition. In: WWW, pp. 411–421 (2003)

51. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Trans. Software Eng. 30(5),
311–327 (2004)

52. Zeng, L., Ngu, A.H.H., Benatallah, B., Podorozhny, R.M., Lei, H.: Dynamic composition
and optimization of Web services. Distributed and Parallel Databases 24(1-3), 45–72
(2008)

53. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: Qos analysis for web service composi-
tions based on probabilistic qos. In: G. Kappel, Z. Maamar, H. Motahari-Nezhad (eds.)
Service-Oriented Computing, Lecture Notes in Computer Science, vol. 7084, pp. 47–61.
Springer Berlin / Heidelberg (2011)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf
http://hal.inria.fr/inria-00391592/PDF/RR-6951.pdf

