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Adaptive Unknown-Input Observers-Based
Synchronization of Chaotic Systems for

Telecommunication
Habib Dimassi and Antonio Loría, Member, IEEE

Abstract—We propose a robust adaptive chaotic synchronization
method based on unknown-input observers for master-slave syn-
chronization of chaotic systems, with application to secured com-
munication. The slave system is modelled by an unknown input
observer in which, the unknown input is the transmitted informa-
tion. As in the general observer-based synchronization paradigm,
the information is recovered if the master and slave systems ro-
bustly synchronize. In the context of unknown-input observers, this
is tantamount to estimating the master’s states and the unknown
inputs. The set-up also considers the presence of perturbations in
the chaotic transmitter dynamics and in the output equations (the
transmitted signal). That is, the estimator (slave system) must syn-
chronize albeit noisy measurements and reject the effect of pertur-
bations on the transmitter dynamics. We provide necessary and
sufficient conditions for synchronization to take place. To highlight
our contribution, we also present some simulation results with the
purpose of comparing the proposed method to classical adaptive
observer-based synchronization (without disturbance rejection). It
is shown that additive noise is perfectly canceled and the encoded
message is well recovered despite the perturbations.

Index Terms—Adaptive control, chaotic communication, non-
linear dynamical systems, observers, state estimation.

I. INTRODUCTION

O
NE of the most popular methods of synchronization is the
drive-response (or master-slave) configuration in which

there exists a leader (master) which the other system (slave)
is required to synchronize with. Since the pioneering work
of Pecora and Caroll [1] chaotic synchronization has become
a prominent research area in analysis and design of chaotic
systems. In part, due to the undisputed utility of the method in
secure communication (data encoding and scrambling)—see,
e.g., [2], [3]. On the other hand, chaotic oscillators such as the
Lorenz, Rössler, Colpitts, Chua, Liu, are easily implementable
with common nonlinear electronic components—see, e.g.,
[4], [5].

In chaos-based communication schemes, the two most ap-
plied techniques to encrypt the encoded message are the chaotic
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masking method based on masking the transmitted information
by adding it to a chaotic signal from the master system [6], and
the chaotic modulation method based on modulating one of the
drive system parameters by the encoded information [7].

As it has been keenly explained in the tutorial paper [8]
master-slave synchronization may be recasted from a control-
view point, in the paradigm of observer design or more gener-
ally, state and input estimators. Early work on observer-based
synchronization includes [9]; more recent work, including
parametric uncertainty and adaptation are the interesting papers
[10], [11] and the case of systems with unknown disturbances
has been studied for instance in [12]. Generally speaking, the
slave system (receiver) is considered as an observer of the
master system (transmitter). The message is recovered if the
systems synchronize their motions. In the case of simple Luen-
berguer-type observers, arguably, the scheme works provided
that the systems synchronize. However, the latter is possible
if the signal/noise ratio of the carrier relative to the input is
considerably large. In other words, the power of the information
signal must be several times smaller than that of the chaotic
carrier—see [13]. Nevertheless, not only this is a restrictive
assumption but in general, such an ad hoc method works poorly
as simulations and analytical results show—see [14].

Of particular interest for the use of synchronization of chaotic
systems in communication is that of parametric uncertainty.
Two problems are to be identified separately: 1) synchroniza-
tion in spite of parametric uncertainty; 2) asymptotic parameter
estimation. It has been mentioned that the literature lacks from
a strict analysis on parametric convergence—see [15]–[17].

The method presented in [18] achieves master-slave synchro-
nization under parameter uncertainty at the expense of synchro-
nization mismatch then, an adaptive algorithm is activated to
estimate the parameters. The method works locally. The article
[19] motivated many other works on adaptive synchronization
and identification of chaotic systems. For instance it is stressed
in [16], [20] that the method of proof in [19] is inadequate: in
[16] an alternative proof for parametric convergence is given
which relies on La Salle’s invariance principle however, the
latter may not be used for non-autonomous systems as is the
case here. In [20] a proof of convergence of synchronization er-
rors is established following “signal-chasing” arguments stan-
dard in adaptive control theory but parametric convergence is
not established, it is only observed (for the particular case of the
Lorenz system) that parameters converge when the system is in
a chaotic or in a periodic regime—this is stressed as an “inter-
esting phenomenon which remains to be further investigated.”

1549-8328/$26.00 © 2010 IEEE
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Another article along similar lines is [15] where a standard adap-
tive control law is applied and conditions in terms of linear in-
dependence of certain vector-fields are presented for parametric
convergence. However, such sufficient conditions are not met in
general by chaotic systems.

The “interesting phenomenon” observed in [20] has been
studied and explained recently in [21] in terms of so-called
persistency of excitation (PE) which is a necessary condition
for parametric convergence under appropriate structural con-
ditions, not in general. In Section III-B we explain in certain
detail the stabilization mechanism.

In the context of chaotic synchronization unknown-input ob-
servers is used as follows. As in the general observer-based
synchronization paradigm, the slave system is considered as
an observer. The unknown input to be reconstructed is the in-
formation signal that drives the master dynamics. Besides, in
this paper it is assumed that non-vanishing disturbances affect
the master’s equations; such perturbations may be generated by
un-modelled dynamics. In addition, we assume parametric un-
certainty and show convergence of parametric estimates to the
true values under appropriate persistency-of-excitation condi-
tions—see [21]. Finally, the scenario in this paper also con-
siders that the measured output from the master system is noisy.
To the best of our knowledge chaotic synchronization for com-
munication in such realistic and complete scenario has not yet
been solved. For instance, [21], [22] presents adaptive observers
which achieve practical estimation (synchronization with small
steady-state errors which may be diminished by design); the un-
known-input observers in [23] are designed under the assump-
tion of noise-free outputs.

We also present a series of simulation results to compare our
approach against classical adaptive-observer-based synchro-
nization (without input estimation and perturbation rejection)—
cf. comparison with the classic methodology based on adaptive
observer adopted recently in several works [7], [12].

The rest of the paper is organized as follows. In the following
section we describe the context and formulate the synchro-
nization problem that we solve; in Section III we present our
unknown-input observers, we give stability and convergence
proofs and discuss their implementation; in Section IV we
present a comparative study in simulations through two con-
crete examples. We conclude with some remarks in Section V.

Notation: The following notation is used throughout this
paper. denotes the absolute value for scalars, the Eu-
clidean norm for vectors, and the induced norm for matrices.
We use for the generalized inverse of a matrix . The
smallest and largest eigenvalues of are denoted by
and respectively. In particular, we may define

.

II. CONTEXT AND PROBLEM STATEMENT

Consider nonlinear systems

(1a)

(1b)

where is the state vector, is a measurable output,
and are once continuously

differentiable; , , ,
and are known constant matrices.

The functions and are
assumed to be (component-wise) piece-wise constant and
(Lebesgue) measurable respectively. It is assumed that there
exists such that

(2)

The function represents a vector of unknown parameters to be
estimated; in the context of synchronization for communication,

represents the valuable information that is encoded by the
dynamics (1a). Respectively, the transmitted signal is , which
is affected by disturbances and noise, denoted by . These
are to be rejected.

The model (1) covers virtually any chaotic system. Indeed,
note that the Duffing, van der Pol, Lorenz, Lü of 3rd and 4th
order, Lorenz, Rössler, Chua, are of the form

(3)

Let us recall some of the cited systems: the Rössler oscillator:

(4a)

(4b)

(4c)

is of the form (3) with

The Lorenz oscillator:

(5a)

(5b)

(5c)

is of the form (3) with

and so are the Lü oscillator of 4th order:
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and the Chua double scroll system;

with

if
if
if

to describe only a few.
Problem statement. The synchronization problem consists

in designing a slave dynamical system

(6a)

(6b)

(6c)

such that for any

(7)

where . In particular, it is required to
reject the perturbation which affects both the system dynamics
and the measured output.

To solve the problem stated we rely on the following.
Boundedness property. The solutions to (1) are forward

complete and uniformly bounded.
Boundedness is a common assumption in the literature of ob-

server design yet, it holds for many physical systems such as
oscillators.1 More particularly, chaotic oscillators. The bound-
edness property allows us to perform the following transforma-
tion, some times called “Lipschitz extension”. Let be
arbitrarily given for each . Define the compact

and define the saturation function where each
component of is given by

if
otherwise

Define and for each
as and . The following
observations are in order (the proof of the second is provided in
the Appendix):

Fact 1:

1) for all we have and ;
2) For each there exist positive reals and such that

for any , and

1The reader shall not understand systems with periodic solutions. See [24] for
several broad definitions of oscillators.

Then, for all and consider the system

(8a)

(8b)

Thus, the synchronization problem under the standing assump-
tion and the previous observation is assimilated to the problem
of designing an unknown-input observer for (8) that ensures (7).
The advantage is that the functions and are globally Lips-
chitz. Therefore, it suffices to define as the smallest set con-
taining the solutions of (1) for all . In general, depends on

i.e., on the ball of initial states defined previously how-
ever, for certain physical systems such as chaotic oscillators,
is independent of as it may be chosen as an arbitrary compact
containing the attractor.

III. ROBUST ADAPTIVE OBSERVER

A. State Estimation and Disturbance Rejection

We present an unknown-input adaptive observer that achieves
the synchronization objective (7) in presence of external distur-
bances, parametric uncertainty (piece-wise constant) and mea-
surement noise. The observer is given by the equations

(9a)

(9b)

and the adaptation laws

(10)

(11)

The constants and are positive real numbers imposed by the
designer. As we illustrate in simulations, their choice is intri-
cately linked to the rate of change of the piece-wise constant
signal ; roughly, the gains must be so that estimation conver-
gence is achieved between two switches.

The matrices , , , , , and are constant, of
appropriate dimensions and are left to be determined. They are
required to satisfy the following conditions

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Furthermore, we require that the triple satisfies the
stability conditions

(19)

(20)

for a positive definite symmetric matrix .
Proposition 1: Under the Standing Assumption and condi-

tions (12)–(20) the expression (7) holds for the solutions of
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(1) and the observer trajectories of (9). This, for all initial
states such that are bounded and for all initial states

. That is, the synchronization objective is achieved.
Remark 1: Expressions (12)–(20) restrict the class of systems

for which the proposed method applies. They establish struc-

tural conditions of detectability. In particular they may hold for
a particular chaotic system with respect to an output but not
with respect to another since the latter determines the matrix

. Correspondingly, not any degree of parametric uncertainty
may be coped with as this determines the term . Necessary
and sufficient conditions for expressions (12)–(20) are given in
Section III-C.

Remark 2: The case of modeling errors e.g. when
, where is an estimated distribution matrix and

is a modelling error, is beyond the scope of this paper. How-
ever, beyond mere convergence, in our main result—Theorem
2, we establish the stronger property of uniform asymptotic sta-
bility which entails natural robustness to external perturbations
such as . Namely, the so-called local input-to-state sta-
bility. Furthermore, one can use the estimated distribution ma-
trix for the design of the observer and use techniques on
the residual term .

Proof of Proposition 1: We start by writing the estimation
error dynamics in a convenient form. Then, we use standard
Lyapunov arguments to show convergence to zero of the state
estimation errors.

To that end define the error variables and
. Hence

Differentiating on both sides of the latter we obtain

Observe that in view of (17) and (18) we have .
Using this, (8b) and we obtain

Next, we regroup terms and observe from (14) that the factors
of equal to zero hence,

From (16) it follows that the (13) is equivalent to
therefore, using (15) we obtain

(21)

Let be a constant to be determined and define .
Adding to both sides of (21) we obtain

(22)

where, according to the adaptation laws (10) and (11) and
are solutions to2

(23)

(24)

Next, consider the positive definite and radially unbounded
function

(25)

Its total derivative along the trajectories of (22)–(24) yields3

where we have used (20). Next, let condition (19) generate a
positive real constant such that . Using
Fact 1.2 with , (20) and (2) we obtain

Let then, using the triangle inequality
on we finally obtain

which holds for all such that and almost all . That
is, for any compact and for all initial conditions such
that the solutions remain in the set and for almost all
we have

which, using the assumption that almost everywhere,
implies that

(26)

Integrating on both sides of the latter from 0 to we obtain
that , and are bounded for all and moreover,
is square integrable. Next, we make the following substitutions
in (22):

to conclude that is also uniformly bounded for all (since
is bounded). By [25, Lemma A.5] we conclude that

that is, (7) holds.

2Note that since � is piece-wise constant ����� � � for almost all �.
3Strictly speaking, this is valid, except for the points where �� does not exists

which is a countable number of points.
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B. Parametric Convergence

It has been mentioned that the literature lacks from a strict
analysis on parametric convergence—see [15]–[17]. However,
in the articles [21], [26] an extensive treatment of this issue is
presented through different approaches: tracking control and ob-
server-based respectively. We find it fit to shortly discuss the
fundamental theory that is used to establish parametric con-
vergence for non-autonomous nonlinear systems, which cover
chaotic systems.

Proposition 1 establishes the convergence of the estimation
errors to zero. However, in general this is a weak property (it
does not imply robustness). We show now that under the condi-
tions of the proposition and an additional assumption of persis-

tency of excitation, uniform global asymptotic stability of the
origin of the error system i.e., may be
obtained. Moreover, the excitation assumption is necessary and
sufficient.

Roughly speaking, persistency of excitation is a concept of
average which, under appropriate structural hypotheses leads to
the statement of necessary and sufficient conditions for asymp-
totic stability and parameter convergence. It seems fitting to
briefly discuss this property as it is fundamental to our main
results.

Consider the pulse train function defined as if
and if with

. This function possesses the property of persistency of
excitation: there exist4 and such that

Then, from the literature on stability of linear systems and
adaptive control we know that the origin of the
system

(27a)

(27b)

is exponentially stable. This implies the convergence of the
parametric error .

Persistency of excitation is omnipresent in Model Reference
Adaptive Control—[27], [28] of linear systems. Yet, the closed-
loop system is typically nonlinear. For the purpose of mere il-
lustration, consider the system

(28a)

(28b)

If we intend to apply tools tailored for linear systems to conclude
parametric convergence we would naturally impose that

For notational simplicity, arguments are often omitted in the lit-
erature, leading to fundamental mistakes. In the integral above,
it is crucial to define what is. If we consider that it is the state

4In this example, � � � and � � �.

of (28) then, the correct manner to write the condition seems to
be

The latter has two major drawbacks as the integral is computed
along system’s trajectories:

1) as obviously the persistency of excitation is lost;
2) it is implicitly implied that the error trajectories are

known ahead of time in order to evaluate the integral for
all time.

Note that the stabilization goal is precisely to steer the error
hence, in view of 1) above, the necessary condition

for stabilization may seemingly not be met.

The following is a relaxed notion of persistency of excitation
tailored for functions that depend on time and state variables.
However, the following definition is not a trajectory-based prop-
erty and leads to considerably relaxed stability conditions. Let

be a state variable and consider a uniformly contin-
uous function . It is uniformly persistently exciting with
respect to if and only if there exist and such
that, for all

Notice that for the system (28) we can define the regressor func-
tion and and . Then, the func-
tion is uniformly -persistently, with respect to be-
cause

In the integral above is a fixed variable and not a state trajec-
tory. Note that the condition to be verified holds if and only if

is persistently exciting. Then, it is possible to establish that
is exponentially stable for (28).

Remark 3: The following observations are in order.
1) As mentioned in the Introduction, although it has been rec-

ognized a lack of strict analysis in the literature references
such as [15], [16], [20] present interesting and highly in-
tuitive arguments to establish parametric convergence. In
[15], [16] the sufficient conditions may roughly be stated
for the system above as demanding that the function
is linearly independent from . This is tantamount to ask
that for all which obviously cannot
hold, in general—even if the function for
certain . However, it is sufficient that linear independence
holds over a sufficiently long interval starting at any time.
This is the rationale behind persistency of excitation.

2) Also, note that there is no contradiction with the argument
in the boxed paragraph above. Indeed, what is clear is that
persistency of excitation as originally defined for functions
of time only and tailored to be used in stability theorems for
linear systems, may not be used in the analysis of nonlinear
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systems. The general statement for nonlinear time-varying
systems which we present next is used to prove our main
result. The reader is kindly invited to see [26], [29] for fur-
ther discussions and illustration on the use of persistency
of excitation for chaotic systems.

Consider nonlinear time-varying systems with

(29)

for which it is assumed that , and
. Furthermore, define

(30)

and notice that necessarily, . Let the following hy-
potheses hold.

Assumption 1: There exists a locally Lipschitz function
, class- functions and a continuous,

positive definite function such that

(31)

and, almost everywhere

(32)

Assumption 2: The functions , and are locally Lips-
chitz in uniformly in . Moreover, for each there exist

and continuous nondecreasing functions
such that and for almost all and

(33)

(34)

(35)

Theorem 1: The system (29) under Assumptions 1–2 is uni-
formly globally asymptotically stable if and only if is
uniformly -persistently exciting w.r.t. .

We are ready to present our main result for the adaptive ob-
server (9).

Theorem 2: Consider the system (1) and the observer (9) with
the adaptation laws (10), (11). Let the Standing Assumption and
conditions (12)–(20) hold. Then, the origin
of the error system, (22)–(24) is uniformly globally asymptoti-
cally stable if and only if there exist , such that

(36)

Remark 4: Notice that persistency of excitation is assumed
to hold for the function along the master trajectories only and
not along error trajectories which are meant to converge to zero.
This is a crucial since the master system is meant to remain in
chaotic regime, by design. That is, in (36) is not steered to
zero and it may be safely assumed that (36) holds.

Proof: The proof follows invoking Theorem 1 with the
following definitions: , , hence using

Clearly, Assumption 2 of Theorem 1 holds. The necessary and
sufficient condition of persistency of excitation is equivalent to
(36) since . That Assumption 1 holds
follows from the proof of Proposition 1.

C. Implementation

We have showed that the slave system (9) achieves the syn-
chronization goal under conditions (12)–(20). In this section we
show in detail how these conditions may be verified. In partic-
ular, we present a procedure to determine the design matrices
involved in (12)–(20).

Consider first (17) and (18). They may be re-written as

(37)

which is of the form

(38)

in which, given and , it is required to find . After [23]
(38) is solvable if and only if

(39)

and the solution is given, for any , by

(40)

where denotes the generalized inverse of i.e., such that5

. Thus, may be obtained from (40) with

(41)
Consider next, (13) and (14). Given an arbitrary matrix let

so (13) and (14) become, respectively

(42)

(43)

5A practical method to compute� , is to find a singular value decomposition
of � such that � � ��� where � and � are unitary matrices and e.g.,
� �� �� �� non-negative and of the same dimension than �, with � square
and diagonal. Hence, � � � ��� where �� �� �� �� . By definition,
� � � if � � �.
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The necessary and sufficient condition for (43) to be solvable
for is that

(44)

and, according to (40) its general solution is

(45)

where is a generalized inverse of and is an arbitrary
matrix of appropriate dimensions. Using (45) in (42), we obtain

(46)

where

(47)

(48)

After [30], the necessary and sufficient conditions for the
solvability of (19) and (20) are

(49)

(50)

for each complex number such that . To solve (19),
(20) with we consider the following convex
optimization problem—cf. [30]: to minimize subject to

(51)

(52)

(53)

The solution to the latter yields the minimum and ,
such that satisfies (19), (20) with

.
We have showed that the adaptive observer (9)–(11) achieves

estimation error convergence for a fairly general class of non-
linear systems. The necessary and sufficient conditions are given
by the rank conditions (39), (44), (49) and (50) which impose
structural properties on the system.

We conclude the section with the following simple algorithm
to compute the design matrices.

Step 1: Compute using (48);
Step 2: compute using (40) and (41);
Step 3: if , choose . Else, if , choose

;
Step 4: compute and using respectively (15) and (16);
Step 5: compute using (47);
Step 6: find matrices , and by solving the convex

optimization problem, presented in the above
analysis. We can also apply the detailed method
proposed in [30], to determine , and .

Step 7: Compute and using respectively (45) and (46);
Step 8: compute .

Fig. 1. Attractors of the chaotic Rössler system (4) and the Rössler-based trans-
mitter (54).

IV. CHAOTIC-BASED SYNCHRONIZATION FOR TRANSMISSION

OF INFORMATION

We present now two examples on how to apply our synchro-
nization approach in tasks of transmission of information using
chaoticcarriers. Indeed, thedevelopmentofchaotic synchroniza-
tion has been long steered by the aim at enabling telecommunica-
tion robust to attacks i.e., interception of transmitted information.
See for instance [2], [31]. However, the technique must be used
with caution as it is not universally robust to attacks. For instance,
[32] shows particular examples for which parameter-modulation
based, master-slave synchronization fails in masking the infor-
mation; indeed, the latter may be recovered using simple tech-
nology (Butterworth filters, etc.). See also [14].

A. Example 1: Rössler Systems

Consider a Rössler-based transmitter circuit with ,
and . With this choice of parameters the system (4)

has a chaotic behavior. We assume that the measured outputs
are as previously defined. We assume that the
same perturbing input acts on the three dynamic equations.
Besides, a digital message is injected in the system. That
is, the dynamics of the transmitter is given by

(54a)

(54b)

(54c)

(54d)

(54e)

which is of the form (1) with

Under these conditions the transmitter (54) exhibits chaotic
behavior i.e., in spite of the additive disturbances and the injec-
tion of the information signal. For comparison, Fig. 1 depicts
the attractors of systems (54) and (4) with the initial conditions
set to for both systems. The effect of
noise in the measurements is appreciated in Fig. 2.

Let . Note from
Fig. 1 that strictly contains the systems’ attractors. Hence, the
saturation levels are set to and we define
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Fig. 2. Graph of measured outputs � ��� and � ���.

, . Clearly,
and for all . Hence, the transmitter (54)
takes the form (8) with , .

The receiver system is given by the system (9) and the adap-
tation laws (10) and (11). To find explicit numeric values of the
observer matrices we follow the tuning procedure previously de-
scribed in Section III-C. We obtain

The adaptation gains are and .

Fig. 3. Spectrum diagram of the carrier signal and the information.

To put our contribution in perspective, albeit through this par-
ticular example, we have run simulations using the adaptive ob-
server (9) as well as the “Luenberguer-type” adaptive observer

(55a)

(55b)

where is a positive number—cf. [7], [21], [30]. Referring to
the latter two we use

and .
We assume that the message to transmit is a digital pulse train

emulated by . Fig. 3 depicts the fre-
quency spectrum of the message and the carrier signals.

The initial conditions for both decoders, (9) and (55) are set
to and the estimated message is ini-
tialized at . That is, the two slave systems (9) and (55)
are driven by the same master system (4), submitted to the same
initial conditions with aim at recovering the signal .

The simulations are as follows. Firstly tests are carried out
without noise (i.e., with ); the obtained results are depicted
in Figs. 4, 5, 6 and 7. Note that the two receivers have an ac-
ceptable performance in terms of information recovery and esti-
mation error. However, both transient performance and asymp-
totic behavior of the adaptive observer (9) supersedes that of
(55) which in particular, presents transient oscillations and a
steady-state estimation error. This is not surprising for such a
simple scheme, as is formally studied in [14].

In a second run of simulations the transmitter system (54) is
perturbed. The perturbation function consists in an uniformly
distributed noise (random) signal generated between lower and
upper bounds respectively equal to 0 and 0.4. This corresponds
to a S/N ratio of 17.5 dB.

The simulation results are showed in Figs. 8 and 9. Note in
the former that the effect of noise and disturbances is perfectly
canceled out by the adaptation laws (10) and (11) and the tuning
procedure from Section III-C. Indeed, the synchronization error
is not affected—cf. Fig. 8. For comparison, we show in Fig. 9,
the performance of the alternative receiver (55).

The performance improvement in the presence of noise and
disturbances is clearer from Figs. 10 and 11 in which we show
the transmitted and recovered signals for both observers (9) and
(55) respectively.
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Fig. 4. Synchronization error � � � � �� for the adaptive robust observer
(9) in the absence of noise and disturbances.

Fig. 5. Synchronization error � � � � �� by applying the observer (55) in
the absence of noise and disturbances.

Fig. 6. The transmitted message� and the recovered message �� by the adap-
tive observer (9) in the absence of noise and disturbances.

Fig. 7. The transmitted message � and the recovered message �� by applying
the observer (55) in the absence of noise and disturbances.

Fig. 8. Synchronization error � � � � �� using observer (9) in presence of
noise and disturbances.

Fig. 9. Synchronization error � � � ��� using the observer (55) in presence
of noise and disturbances.

Fig. 10. The transmitted message� and the recovered message �� by applying
observer (9) in the presence of noise and disturbances.

Fig. 11. The transmitted message� and the recovered message �� by applying
observer (55) in the presence of noise and disturbances.
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Fig. 12. The transmitted high-frequency message � and the recovered mes-
sage �� by applying observer (9)–(11) in the presence of noise and disturbances;
“high” adaptation gain.

Fig. 13. The transmitted high-frequency message � and the recovered mes-
sage �� by applying observer (9)–(11) in the presence of noise and disturbances;
“low” adaptation gain.

In the previous simulations the frequency of the train pulse
used to mimic the information i.e., is rather low. Other
tests were performed with higher switching frequency of the
piece-wise constant function . Figs. 12 and 13 depict the es-
timation of a message with a relatively fast switching frequency
and by applying respectively, two different adaptive gains (

and ). As it is showed, in the case of fast
switching frequencies, we must increase sufficiently the adap-
tive gain in order to improve the quality of the recovered mes-
sage. We also see that the larger is the adaptive gain, the faster
is the convergence rate of the parameter estimation error (i.e.,
the lower is the convergence time).

B. Example 2: Genesio-Tesi System With Uncertainties

We present another case-study, in which besides the unknown
input (the coded message) it is assumed that the model contains
parameter uncertainties. The latter are estimated via an adap-
tation law, besides recovering the unknown input. The master
system consists of a Genesio-Tesi chaotic system subject to per-
turbations both in the dynamics and in the output equations i.e.,

(56a)

(56b)

(56c)

Fig. 14. Attractors of the chaotic system (56) with and without perturbations.

where is a (bounded) disturbance. The measured outputs are

(57)

According to the previous developments, we re-write the system
in the form of (58) i.e.,

(58)

where ,

and . It is assumed that
the parameters and are unknown. The information signal is

. We initialize the state of system
(56) at . Fig. 14 depicts the attractor of
system (56) without noise and in presence of uniformly
distributed noise generated between lower and upper bounds re-
spectively equal to 0 and 0.1 (13). Fig. 16 shows the effect of the
additive noise on the transmitted signal against
time. The signal-to-noise ratio is .

Consider the compact set
with . We can deduce from

Fig. 14, that contain strictly the attractor of the system (57).
Let be a saturation function defined as follows:

, and for

if
if
if .

(59)

In this case, for each , and
. Moreover, and are glob-

ally Lipschitz in with Lipschitz constants and respec-
tively. Then, the system can be written in the form

(60)
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Fig. 15. The uniformly distributed noise.

Fig. 16. Effect of the additive noise on the transmitted signal � .

Fig. 17. Synchronization errors � � � � �� , � � � � �� and � �

� � �� .

Fig. 18. Comparison between the state � and its estimate �� .

with , and .
Note that, from the chaotic behavior of the transmitter (60),

Fig. 19. Estimation of the parameter �.

we can deduce that is persistently exciting, and
its time derivative is bounded. The transmitted signal drives
the adaptive unknown-input observer having the form of the
system (9) associated with the adaptation laws (10) and (11)
and and . The observer gains are selected
following the algorithm in Section III-C. We obtain

The observer’s state is initialized at and
the estimated parameter vector is initialized as .

Simulation results depicted in Figs. 17 and 18 illustrate that
noise is perfectly canceled by the observer and the error syn-
chronization is not affected. Moreover, despite the presence of
noise, the unknown parameters and as well as the informa-
tion signal, are well recovered by the observer (9) as is appreci-
ated in Figs. 19, 20 and 21.
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Fig. 20. Estimation of the parameter �.

Fig. 21. Information signal ���� and its estimate �����.

V. CONCLUDING REMARKS

We have presented a synchronization method based on ro-
bust adaptive estimation for partially linear systems affected by
additive disturbances and driven by unknown inputs. The ap-
proach applies to a number of common chaotic circuit models
used in transmission of encrypted information. We have estab-
lished necessary and sufficient conditions for parameter esti-
mation and information recovery. In particular, we presented
two significant examples of chaotic systems used in a classic
master-slave synchronization scheme for transmission of infor-
mation. We have showed that the proposed methodology yields
very good performance and robustness to measurement noise.
In fact, neither stability nor the quality of information recovery
are compromised by the perturbations.

APPENDIX

Proof of Fact 1: The fact follows applying the mean value
theorem for vectorial functions. After [25, Theorem A.3] for
each , and there exist and

such that

...
. . .

...

Since is continuous for all and it follows
that every element in the matrix above is bounded from above.
That is, there exists such that for all .
The above holds for all , hence for and

for any and . Also, by definition of we
have

Thus the claim. The proof for follows with the obvious mod-
ifications.

REFERENCES

[1] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. A, vol. 64, pp. 821–824, 1990.

[2] M. Boutayeb, M. Darouach, and H. Rafaralahy, “Generalized state-
space observers for chaotic synchronization and secure communica-
tion,” IEEE Trans. Circ. Syst. I: Fund. Theory Applicat., vol. 49, no. 3,
pp. 345–349, 2002.

[3] G. Kolumban, M. P. Kennedy, and L. O. Chua, “The role of synchro-
nization in digital communications using chaos—Part II: Chaotic mod-
ulation of chaotic synchronization,” IEEE Trans. Circ. Syst. I: Fund.

Theory Applicat., vol. 45, no. 11, pp. 1129–1140, 1998.
[4] J. Lu, S. Yu, H. Leung, and G. Chen, “Experimental verification of

multidirectional multiscroll chaotic attractors,” IEEE Trans. Circ. Syst.

I: Reg. Papers, vol. 53, pp. 149–165, Jan. 2006.
[5] A. Elwakil and S. Ozoguz, “On the generation of higher order chaotic

oscillators via passive coupling of two identical or nonidentical sinu-
soidal oscillators,” IEEE Trans. Circ. Syst. I: Reg. Papers, vol. 53, pp.
1521–1532, Jul. 2006.

[6] T. L. Liao and N.-S. Huang, “An observer-based approach for chaotic
synchronization with applications to secure communications,” IEEE

Trans. Circ. Syst. I: Reg. Papers, vol. 46, no. 9, pp. 1144–1150,
1999.

[7] M. Feki, “An adaptive chaos synchronization scheme applied to se-
cure communication,” Chaos, Solitons Fractals, vol. 18, pp. 141–148,
2003.

[8] H. Nijmeijer and I. Mareels, “An observer looks at synchronization,”
IEEE Trans. Circ. Syst. I: Fund. Theory Applicat., vol. 44, no. 10, pp.
882–890, 1997.

[9] E. Cherrier, M. Boutayeb, and J. Ragot, “Observers-based synchro-
nization and input recovery for a class of nonlinear chaotic models,”
IEEE Trans. Circ. Syst. I: Reg. Papers, vol. 53, no. 9, pp. 1977–1988,
2006.

[10] B. R. Andrievskií, V. O. Nikifarov, and A. L. Fradkov, “Adaptive ob-
server-based synchronization of the nonlinear nonpassifiable systems,”
Automat. Remote Control, vol. 68, no. 7, pp. 1186–1200, 2007, Orig-
inal Russian text published in Avtomatika i Telemekhanika, No. 7, pp.
74–87, 2007.

[11] A. L. Fradkov, B. Andrievsky, and R. J. Evans, “Adaptive observer-
based synchronization of chaotic systems with first-order coder in the
presence of information constraints,” IEEE Trans. Circ. Syst. I: Reg.

Papers, vol. 55, no. 6, pp. 1685–1694, 2008.
[12] F. Zhu, “Full order and reduced-order observer-based synchronization

for chaotic systems with unknown disturbances and parameters,” Phys.

Lett. A, vol. 372, pp. 223–232, 2008.
[13] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization

of Lorenz-based chaotic circuits with applications to communications,”
IEEE Trans. Circ. Syst. I: Fund. Theory Applicat., vol. 40, no. 10, pp.
626–633, 1993.

[14] A. Loría and S. Poinsard, “Robust communication-masking via a syn-
chronized chaotic Lorenz transmission system,” presented at the Conf.
on Nonlinear Science and Complexity, Porto, Portugal, 2008.

[15] D. Yu and U. Parlitz, “Estimating parameters by autosynchronization
with dynamics restrictions,” Phys. Rev. E, vol. 77, no. 066221, 2008.

[16] D. Yu and A. Wu, “Comments on “estimating model parameters from
time series by autosynchronization”,” Phys. Rev. Lett., vol. 94, no.
219401, 2005.

[17] U. Parlitz and D. Yu, “Intelligent computing based on chaos. Studies
in computational intelligence,” in Synchronization and Control Based

Parameter Identification, L. Kocarev, Z. Galias, and S. Lian, Eds.
New York: Springer Verlag, 2009.



812 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 4, APRIL 2011

[18] C. Zhou and C.-H. Lai, “Decoding information by following parametric
modulation with parametric adaptive control,” Phys. Rev. E, vol. 59, no.
6, pp. 2269–6636, 1999.

[19] U. Parlitz, “Estimating model parameters from time series by autosyn-
chronization,” Phys. Rev. Lett., vol. 76, pp. 1232–1235, 1996.

[20] L. Li, H. Peng, X. Wang, and Y. Yang, “Comment on two papers of
chaotic synchronization,” Phys. Lett. A, vol. 333, pp. 269–270, 2004.

[21] A. Loría, E. Panteley, and A. Zavala, “Adaptive observers for robust
synchronization of chaotic systems,” IEEE Trans. Circ. Syst. I: Reg.

Papers, vol. 56, no. 12, pp. 2703–2716, 2009.
[22] G.-P. Jiang, W. X. Zheng, W. K.-S. Tang, and G. Chen, “Integral-ob-

server-based chaos synchronization,” IEEE Trans. Circ. Syst. II: Ex-

press Briefs, vol. 53, no. 2, 2006.
[23] M. Darouach, “Complements to full order observer design for

linear systems with unknown inputs,” Appl. Math. Lett., vol. 22, pp.
1107–1111, 2009.

[24] A. L. Fradkov and A. Y. Pogromsky, Introduction to Control of Oscil-

lations and Chaos. Singapore: World Scientific, 1998.
[25] R. Kelly, V. Santibáñez, and A. Loría, Control of Robot Manipula-

tors in Joint Space, ser. Series Advanced textbooks in control engi-
neering. New York: Springer Verlag, 2005, 1-85233-994-2.

[26] A. Loría and A. Zavala, “Adaptive tracking control of chaotic systems
with applications to synchronization,” IEEE Trans. Circ. Syst. I: Reg.

Papers, vol. 54, no. 9, pp. 2019–2030, 2007.
[27] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and

Robustness. Englewood Cliffs, NJ: Prentice Hall, 1989.
[28] B. D. O. Anderson, R. Bitmead, C. Johnson, Jr., P. Kokotović, R. Kosut,
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