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∗Université de Lyon, Université Claude Bernard Lyon 1, Institut de Science
Financière et d’Assurances, 50 Avenue Tony Garnier, F-69007 Lyon, France

Abstract

In this paper, we obtain asymptotic ruin probabilities in two models where claim
amounts become more and more adverse, because of phenomena like climate change
or some kind of sectorial inflation. The method we use also enables us to study a risk
model in which claims have infinite mean. In such models, ruin probability can be
controlled by a strong increase in the premium income rate, which causes premium to
become unacceptable for customers. We provide numerical illustrations of the impact
of the (uncertain) speed of change in the parameter of the claim size distribution, both
in terms of ruin and in terms of time at which premium becomes too high.

Keywords: Pareto distribution, regularly varying distributions, infinite mean, non ho-
mogenous risk process, ruin probability, asymptotics, climate change.

1 Introduction

Insurers are concerned that climate change is likely to increase the frequency and severity
of some natural catastrophes, in particular hurricanes and floods. For other large non-life
risks, sectorial inflation might also modify the claim severity tail in an adverse way. As
loss distributions for those risks are already heavy-tailed, and as the exposure increases
too at the same time (risk exposure doubles every 20 years in some regions of Florida for
example), one may fear that a large claim causes ruin of the insurer, or that those risks
become uninsurable because the premium required to maintain the solvency probability
high enough becomes too large and unacceptable for policyholders. The same reasoning
would apply at the reinsurance level. The type of effect of global warming on the claim
frequency and severity remains uncertain. In the classical risk model, one way to increase
the severity and frequency of natural catastrophes is to assume that the claim size distri-
bution changes over time in a unfavorable direction.

For the sake of simplification, even if we prove some results in a more general setting,
let us focus in this introduction on the compound Poisson model with Pareto distributed
claim amounts. There are two main ways to obtain worsening risks: either one changes
the shape parameter α, which means that the distribution of claim amounts becomes more
and more heavy-tailed, or one changes the scale parameter, which means that the claim
distribution remains regularly varying with the same α, but the average claim amount is
multiplied by a coefficient that increases with time. We do not consider in the present
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paper any change in the claim frequency. In some cases, a simple time change might
enable one to come back to the classical case. We will assume that premiums are adjusted
immediately. In practice however the premiums will only be updated after some lag. If
this lag is short enough our model will be a good approximation, but if the lag is too large
one should consider models with a different premium income process.

In this paper, we study the asymptotics of the ruin probability with large initial surplus
u in the first case, when αt tends to 1 as t goes to infinity. The techniques are similar to
the ones that we use to study the case where claim amounts are i.i.d. with infinite mean
(α < 1). When α < 1, the ruin probability is always 1 if one uses a constant premium
income rate. But one may make the probability of ruin as small as one wants by increasing
the premium income rate over time fast enough. This corresponds to a case where the
probability of ruin can be made as small as one wants, even if the net profit condition is
violated at any instant (because the premium income rate is finite and the average claim
amount is infinite).

Of course, this result is of theoretical nature. In practice, the company would close its
business after a certain time, when the premium income rate required for solvency reason
would hit the maximum acceptable premium income rate level. In the present paper, we
study the time at which risks could become uninsurable according to several global warm-
ing scenarios or different sectorial inflation scenarios, corresponding to different speeds of
increase of claim severities. We carry out a similar study in the second case, where the
scale parameter changes over time (instead of the shape parameter). We compare the
asymptotics of ruin probability for large u in the two cases. For risks that are already very
dangerous (for 1 < α < 2, with infinite variance and finite mean), change in the scale pa-
rameter is the most dangerous. For risks that are less heavy-tailed at the beginning (with
finite variance), change in the shape parameter is the most dangerous. This is consistent
with the fact that premiums computed thanks to a ruin probability approach are often
similar to premiums calculated with the variance principle (see e.g. [11]). For α0 > 2,
claim amounts variance becomes infinite after a certain time in the first case, while it
remains finite at any instant in the second case (even if it tends to infinity). Consequently,
it is intuitive that the premium required to maintain a certain ruin probability constraint
should increase faster in the first case than in the second one. We are able to show that
it is the case for u large enough.

Those results are useful from a researchwise dynamic risk management point of view.
From a more practical point of view, insurers who are concerned with insurability of large
risks would more care about the difference between the 1-year Value-at-Risk of the loss
and the expected loss, which drives Solvency Capital Requirements in Solvency II (the
new European regulation framework). Note that this SCR would be easy to compute
in the two first models, but not in the infinite case because the average aggregate claim
is infinite! In a numerical application section, we analyze the impact of different global
warming effects in different scenarios, particularly in terms of waiting time before either
ruin occurs or risks become uninsurable because the required safety loading would become
too high.
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From a mathematical point of view, we are considering time inhomogeneous risk models.
There is a huge amount of literature on non-homogeneous risk models. These models are
mainly motivated by periodic effects (see e.g. [4, 3, 5, 2]). In the heavy-tailed case, these
papers usually use some recursive method. The second type of motivation comes from
inflation or investment (e.g. [17, 14, 15]) where in the heavy tailed case it is often used
that the risk is decreasing over time. [17] also allows for an increase in risk over time
(motivated by wealth growth), but assumes that investments outweigh these effects. We
should note that these two frameworks differ from our situation since we assume that risk
increases over time. In terms of worsening risks, [8] considers a discrete risk model and
obtains recursive methods for finite time ruin probabilities. [6] compute the moments of
aggregate claims in a model where jump instant and sizes present some particular kind
of dependence and where limited positive sectorial inflation can prevail over discounting
effects. Infinite mean risks have been investigated in several papers related to operational
risk, see e.g. [16].

Our paper is structured as follows: in Section 2, we state two models and compare the
corresponding asymptotic risk ruin probabilities. We recall some definitions about regu-
larly varying distributions in Section 3. Then we introduce change in the shape parameter
for the first model in Section 4 for the first model and a linear drift for the second model
in Section 5. Finally, we present in Section 6 some simulations results on the two models.

2 Two specific models

As mentioned above we want to study a risk process, when the underlying risk changes
over time. Concretely let Nt be a Poisson process with intensity λ and Xt are independent
Pareto distributed random variables with distribution F t = (1+x/dt)

−αt where the change
of the distribution over time is characterized by

E [Xt] =
d

α0 − 1
(1 + cαt) . (1)

We consider the risk process (ρ > 0)

Rt = u+

∫ t

0
(1 + ρ)λE [Xt] dt−

Nt
∑

i=1

XTi = u+
(1 + ρ)λd(1 + cαt)

2

2cα(α0 − 1)
−

Nt
∑

i=1

XTi ,

where Ti is the time of the i-th jump. Further we denote with St =
∑Nt

i=1XTi and

p(t) =
(1 + ρ)λd(1 + cαt)

2

2cα(α0 − 1)
.

We now study two sets of parameters that assure that (1) holds. In the first model we
change the parameter α which means that the distribution of Xt gets more and more

heavy tailed. In this case we have that F
(1)
t (x) = (1 + x/d)−αt where

αt =
α0 − 1

1 + cαt
+ 1.
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we will call this variant model 1. An obvious alternative to this is model 2 where we only

change the other parameter. i.e. we choose F
(2)
t (x) = (1 + x/dt)

−α0 where

dt = d(1 + cαt).

We now want to compare these two models. An obvious method therefore is to consider

the ruin probability ψ(i)(u) = P(inft>0R
(i)
t ≤ 0). Denote with µ = E [X0] =

d
α0−1 . We get

by Theorems 4.2 respectively Corollary 5.2 that

ψ(1)(u) ∼ λ

√

2u(α0 − 1)

(1 + ρ)λcα
(1 + u/d)−1

∫ ∞

0
(1 + t2)−1dt ∼ πdu−0.5

2

√

2(α0 − 1)

(1 + ρ)λcα
.

ψ(2)(u) ∼ λ

cα

√
u

(

1 +

√
u

d

)−α0
∫ ∞

0

(

1

t
+
ρλµ

2cα
t

)−α0

dt

∼ λ

cα
dα0u−

α0−1

2

∫ ∞

0

(

1

t
+
ρλµ

2cα
t

)−α0

dt.

An interesting fact about model 1 is that we can even choose a premium rate that is less
than the mean of the claims and the ruin probability is still finite. Further note that for
α0 < 2 the shape change asymptotic is less risky and is the opposite for α0 > 2. For
α0 = 2 this can be decided by

∫ ∞

0

(

1

t
+
ρλµ

2cα
t

)−α0

dt =
π

4

(

ρλµ

2cα

)−3/2

=
π

4

(

ρλd

2cα(α0 − 1)

)−3/2

.

3 Regularly varying distributions

The main motivation of this paper is to study the effect of risk theory in a time changing
environment motivated by climate change. Since there are different ways how risk can
change over time we used two different models, where the claims are Pareto distribution.
One of the main properties of the Pareto distribution is that the tail behaves asymptotically
like a power. The class of functions that behave asymptotically like a power is the class
of regularly varying functions. A function f is regularly varying with index −α if

lim
x→∞

f(ax)

f(x)
= a−α

for a distributions with tail F (x) that is regularly varying with index −α we also say that
the distribution is regularly varying with index α.
In the following sections we will replace the Pareto distribution by certain regularly varying
distributions to gain more generality.
We will list some properties of regularly varying distributions that will be useful later in
the paper and basically show how we can replace a regularly varying function with a power
function. All results can for example be found in [7].
One of the most famous properties of regularly varying distributions is Karamata’s The-
orem. It states that for α > 1

∫ ∞

x
f(x)dx ∼ x

α− 1
f(x).
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Since a regularly varying distribution behaves asymptotically like a power, one would guess
that it is close to a monotone function. Indeed this guess is true and for α > 0 we get that

lim
x→∞

supt>x f(t)

f(x)
= 1.

When interchanging limits and integration, one often needs bounds for values f(x)/f(y).
Such bounds are called Potter bounds: for f regularly varying with index −α, and for any
chosen δ > 0 and ǫ > 0, there exists x0 such that for all x, y > x0

f(x)

f(y)
≤ (1 + δ)max

(

(

x

y

)−α+ǫ

,

(

x

y

)−α−ǫ
)

.

4 Change in the shape parameter

In this section we consider the first model. In the first model the parameter α → 1 as
t → ∞. This means that the distribution of the claims as t → ∞ converges to a Pareto
distribution with parameter α = 1. Since for large initial capital u one assumes that if
ruin occurs it occurs rather late, we guess that the ruin probability in the first model
will behave asymptotically like in a model with i.i.d. claims that are distributed with the
limit distribution. The proof of this guess can be split in two parts. In Subsection 4.1 we
provide the asymptotic of a ruin probability with i.i.d. claims that have infinite mean. In
Subsection 4.2 we then show that under some assumptions the infinite mean model can
be used as an upper bound. Together with a corresponding lower bound, the guess can
be shown to be true by standard calculations.

4.1 Ruin probability for a risk process with infinite mean

In this section we considering the following risk process.

Rt = Rt(u) = u+ p(t)−
Nt
∑

i=1

Xi

where the Xi are i.i.d. with distribution function F , Nt is a Poisson process with intensity
λ and p(t) are the premiums collected up to time t. We are interested in the infinite time
ruin probability

ψ(u) = P(inf
t≥0

Rt = 0).

Theorem 4.1. If X1,X2, . . . are i.i.d. random variables with distribution F (x) that is
regularly varying with index 0 < α ≤ 1, and regularly varying density f(x). If further p(T )
is regularly varying with index β > 1/α (continuous and strict monotonic increasing) then

ψ(u) ∼ λ

∫ ∞

0
F (u+ p(T ))dT ∼ λp−1(u)F (u)

∫ ∞

0
(1 + tβ)−αdt

Proof. Throughout the proof we will denote with ci a constant whose actual value is not
important. At first note that by substitution t = Tp−1(u)

∫ ∞

0
F (u+ p(T ))dT = p−1(u)F (u)

∫ ∞

0

F
(

u
(

1 + p(tp−1(u))
p(p−1(u))

))

F (u)
dt
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Since for some 0 < ǫ < (α+ β)/2 −
√

(α− β)2/4 + 1 we get by Potter bounds [7]

F
(

u
(

1 + p(tp−1(u))
p(p−1(u))

))

F (u)
≤ c1

(

1 +
p(tp−1(u))

p(p−1(u))

)−α+ǫ

≤ c1

(

1 + c2t
β−ǫ
)−α+ǫ

and the last function is integrable we get by dominated convergence that

λ

∫ ∞

0
F (u+ p(T ))dT ∼ λp−1(u)F (u)

∫ ∞

0
(1 + tβ)−αdt.

By the Marcinkiewicz-Zygmund strong law of large numbers (c.f. [10, Theorem 2.1.5])
and Nt ∼ λt a.s. we get that

p(t)−
Nt
∑

i=1

Xi ∼ p(t) a.s..

From Lemma B.1 and the fact that F is regularly varying we get that the asymptotic is
an asymptotic lower bound. So we only have to show that it is an upper bound too. We
will denote with F ∗n respectively f∗n the distribution or respectively the density of the
n-times convolution of F .
By conditioning on the number of jumps that lead to ruin we get that

ψ(u) =

∫ ∞

0
λe−λsF (p(s) + u)ds

+

∞
∑

n=2

E

[

F

(

u+ p (Tn)−
n−1
∑

i=1

Xi

)

1{∑k
i=1

Xi≤p(Tk)+u:k≤(n−1)}

]

.

For Sn−1 =
∑n−1

i=1 Xi and ǫ > 0 we get that

E

[

F

(

u+ p (Tn)−
n−1
∑

i=1

Xi

)

1{∑k
i=1

Xi≤p(Tk)+u:k≤(n−1)}

]

≤ E
[

F (u+ p (Tn)− Sn−1) 1{Sn−1≤p(Tn−1)+u}
]

≤ E
[

F (u+ p (Tn)− Sn−1) 1{Sn−1≤ǫ(u+p(Tn))}
]

+ E
[

F (u+ p (Tn)− Sn−1) 1{ǫ(u+p(Tn))<Sn−1≤u+p(Tn)}
]

= I1 + I2.

Since Tn follows an Erlang distribution we get that

I1 ≤ E
[

F
(

(1− ǫ)(u+ p(Tn))
)]

=

∫ ∞

0

λnT n−1

(n− 1)!
e−λTF

(

(1− ǫ)(u+ p(T ))
)

dT.

Further we have that

∞
∑

n=1

∫ ∞

0

λnT n−1

(n− 1)!
e−λTF

(

(1− ǫ)(u+ p(T ))
)

dT =

∫ ∞

0
λF
(

(1− ǫ)(u+ p(T ))
)

dT
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∼ (1− ǫ)−α

∫ ∞

0
λF
(

u+ p(T )
)

dT.

It remains to show that
∑∞

n=2 I2 = o(ψ(u)). Note that

I2 ≤ E

[

F (u+ p (Tn)− Sn−1) 1{ǫ(u+p(Tn))<Sn−1≤u+p(Tn)}1{Tn≤ n
2λ}
]

+ E

[

F (u+ p (Tn)− Sn−1) 1{ǫ(u+p(Tn))<Sn−1≤u+p(Tn)}1{Tn> n
2λ}
]

= J1(n) + J2(n).

By Lemma B.2 we get that there exists c2 > 0 with

J1(n) ≤ P

(

Tnλ ≤ n

2λ

)

≤ e−c2n.

Hence there exists a constant c3 such that

∞
∑

n=−c3 log(F (u))

J1(n) = o(F (u)) = o(ψ(u)).

Since J1(n) ≤ P(Sn > u) ≤ F (u/n) we have that

−c3 log(F (u))
∑

n=1

J1(n) ≤
−c3 log(F (u))

∑

n=1

F (u/n) ≤ c3 log(F (u))F

(

u

c3 log(F (u))

)

= o(ψ(u)).

We finally have to consider J2. From Corollary A.1 we get that there exist c4 > 0 and
u > uǫ (for some uǫ > 0), all n > 1, Tn > n/(2λ) and x > ǫ(u+ p(Tn))

P (Sn−1 ∈ (x, x+ 1]) ≤ c4nP (Xn ∈ (x, x+ 1]) .

With Lemma B.3 we get that for some c5 > 0 (that does not depend on n)

P

(

Sn > u+ p (Tn) , ǫ(u+ p (Tn)) < Sn−1 ≤ u+ p (Tn) ,Tn >
n

2λ

)

≤ E

[

c5nf(u+ p(Tn))
∫ u+p(Tn)

0
F (x)dx, 1{Tn> n

2λ}

]

= o
(

E
[

F (u+ p(Tn))
])

where the last equality follows by assumption (f(p(t))
∫ p(t)
0 F (x)dx is regularly varying

with index −2αβ < −αβ − 1) and is meant as u → ∞ (uniformly in n and T > n/2λ).
Hence we get that

∞
∑

n=2

J2(n) = o(1)

∞
∑

n=1

∫ ∞

n/(2λ)

λnT n−1

(n− 1)!
e−λTF (u+ p(T ))dT

≤ o(1)
∞
∑

n=1

∫ ∞

0

λnT n−1

(n− 1)!
e−λTF (u+ p(T ))dT

7



= o(1)λ

∫ ∞

0
F (u+ p(T ))dT.

Since
∫ ∞

0
λe−λsF (p(s) + u)ds ≤ F (u),

we get with ǫ→ 0 that

ψ(u) . λ

∫ ∞

0
F (u+ p(T ))dT.

4.2 Bounds for the first model

We now give two bounds for the ruin probability in certain risk models in a time changing
environment. For the first model one can easily see that the assumptions of Theorem 4.2
are fulfilled and that the upper and lower bounds are asymptotically the same.

Theorem 4.2. Let F be a distribution that is regularly varying with index α and regularly
varying density f(x). Assume that the premiums collected up to time t (p(t)) are regularly
varying with index β > 1/α.
Assume that Xt is a family of independent random variables with distribution Ft such that
for all x > 0 and t > 0 Ft(x) ≥ F (x). Further assume that there exists β > 0 such
that for every δ > 0 there exists x0 such that for y > x > x0 and all t > 0, we have
F t(y) ≥ (1− δ)(x/y)βF t(x). Then for the risk process

Rt = u+ p(t)−
Nt
∑

i=1

XTi

we have that

λ

∫ ∞

0
F t(u+ p(t))dt . ψ(u) . λ

∫ ∞

0
F (u+ p(t))dt.

Proof. We will denote with Yt t ≥ 0 i.i.d. random variables with distribution F . By a
coupling argument we can choose Yt > Xt. Hence Theorem 4.1 proves the upper bound.
For the lower bound note that by the Marcinkiewicz-Zygmund strong law of large numbers
(c.f. [10, Theorem 2.1.5]) and Nt ∼ λt a.s. we get that

p(t)−
Nt
∑

i=1

YTi ∼ p(t) a.s.

and hence

p(t)−
Nt
∑

i=1

XTi ∼ p(t) a.s..

From Lemma B.1 we get that for every ǫ > 0 and δ > 0 we get that for u large enough

ψ(u) & (1− ǫ)λ

∫ ∞

0
F t(u+K + (1 + ǫ)p(t))dt

8



& (1− ǫ)(1− δ)λ

∫ ∞

0

(

u+K + (1 + ǫ)p(t)

u+ p(t)

)−β

F t(u+ p(t))dt

= (1− ǫ)(1− δ)λ

∫ ∞

0

(

1 +
K + ǫp(t)

u+ p(t)

)−β

F t(u+ p(t))dt

&
(1− ǫ)(1− δ)

(1 + ǫ+K/u)β
λ

∫ ∞

0
F t(u+ p(t))dt.

The Theorem follows with ǫ→ 0 and δ → 0.

5 Linear drift

We now consider the second model. We will prove the result for regularly varying distri-
butions. Therefore let Xi be i.i.d. random variables with mean µ. We will consider the
risk process

Rt = u+ p(t)−
Nt
∑

i=1

TiXi.

where for some ρ > 0

p(t) ∼ λµ + ρ

2
t2.

Theorem 5.1. If X1,X2, . . . are i.i.d. random variables with distribution F (x) that is
regularly varying with index α > 1, mean µ, and regularly varying density f(x) then

ψ(u) ∼ λ

∫ ∞

0
F
(u

t
+
ρ

2
t
)

dt ∼ λ
√
u F (

√
u)

∫ ∞

0

(

1

t
+
ρ

2
t

)−α

dt (2)

Proof. Since it is well known that λTn/n → 1 and Nt/t → λ a.s. it follows from Lemma
B.5 that

n
∑

i=1

TiXi ∼ µ
n2

2λ
a.s. and hence

Nt
∑

i=1

TiXi ∼ λµ
t2

2
a.s..

Together with Lemma B.1 and the fact that F (x) is regularly varying we get that (2) is a
lower bound.
To prove that (2) is also an upper asymptotic bound first choose a k > 0 and an ǫ < 1/k2

that fulfill the conditions of Lemma 5.3. Note that for a given k, ǫ can be taken arbitrary
small. Further denote with mn = ⌊(1− kǫ)n⌋. Choose an ǫ1 such that

1− ǫ < (1− ǫ1)

(

1− 2ǫ21
(1− kǫ)2

)

< (1 + ǫ1)

(

1 + ǫ1 +
3ǫ21

(1− kǫ)2

)

< 1 + ǫ

and define the sets

An =

{

sup
m≥ǫ1n

∣

∣

∣

∣

λTm
m

− 1

∣

∣

∣

∣

≤ ǫ1

}

,

Note that by Lemma B.2 there exists a κǫ > 0 with

P(Ac
n) ≤

∞
∑

k=⌈ǫ1n⌉
P

(∣

∣

∣

∣

λTk
k

− 1

∣

∣

∣

∣

> ǫ1

)

≤ 2
∞
∑

k=⌈ǫ1n⌉
e−ǫ1κǫk ≤ 2e−ǫ1κǫn

1− e−κǫ
.
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The main point of the sets An is that there exists n0 such that for all n > n0 and m ≥ mn

and on these sets

m
∑

i=1

Ti ≤
⌈ǫ1n⌉−1
∑

i=1

Ti +
m
∑

i=⌈ǫ1n⌉
Ti ≤ (1 + ǫ1)

(⌈ǫ1n⌉ − 1)⌈ǫ1n⌉
λ

+ (1 + ǫ1)
m
∑

i=⌈ǫ1n⌉

i

λ

≤ 1 + ǫ1
λ

(

(ǫ1n+ 1)ǫ1n+
m(m+ 1)

2

)

=
(1 + ǫ1)m

2

2λ

(

1 +
2(ǫ1n+ 1)ǫ1n

m2
+

1

m

)

≤ (1 + ǫ1)m
2

2λ

(

1 +
2(ǫ1n+ 1)ǫ1n

⌊(1− kǫ)n⌋2 +
1

⌊(1− kǫ)n⌋

)

≤ (1 + ǫ1)m
2

2λ

(

1 + ǫ1
2(ǫ1n+ 1)n

((1− kǫ)n− 1)2
+

1

(1− kǫ)n− 1

)

≤ m2

2λ
(1 + ǫ1)

(

1 + ǫ1 +
3ǫ21

(1− kǫ)2

)

≤ (1 + ǫ)
m2

2λ
.

and

m
∑

i=1

Ti ≥
m
∑

i=⌈ǫ1n⌉
Ti ≥ (1− ǫ1)

m
∑

i=⌈ǫ1n⌉

i

λ
= (1− ǫ1)

m2

2λ

(

1 +
1

m
− ⌈ǫ1n⌉(⌈ǫ1n⌉+ 1)

m2

)

≥ (1− ǫ1)
m2

2λ

(

1− (ǫ1n+ 2)(ǫ1n+ 1)

((1− kǫ)n− 1)2

)

≥ m2

2λ
(1− ǫ1)

(

1− 2ǫ21
(1− kǫ)2

)

≥ (1− ǫ)
m2

2λ
.

Now to prove the upper bound note that

ψ(u) =

∫ ∞

0
λe−λsF

(

u+ p(s)

s

)

ds

+
∞
∑

n=2

E

[

F

(

u+ p (Tn)−
∑n−1

i=1 TiXi

Tn

)

1{∑k
i=1 Tixi≤p(Tk)+u:k≤(n−1)}

]

.

Denote with g(u) = ⌈log F (u)2⌉ we have that

∞
∑

n=g(u)

P(Ac
n) ≤

2

1− e−κǫ

∞
∑

n=g(u)

e−ǫ1κǫn ≤ 2

1− e−κǫ
e−ǫ1κǫ log(F (u))2

∞
∑

n=0

e−ǫ1κǫn = o(ψ(u))

and

g(u)
∑

n=2

E

[

F

(

u+ p (Tn)−
∑n−1

i=1 TiXi

Tn

)

1{∑k
i=1 Tixi≤p(Tk)+u:k≤(n−1)}

]

≤
g(u)
∑

n=2

P

(

n
∑

i=1

TiXi > u+ p(Tn)
)

≤ g(u)

g(u)
∑

n=2

E

[

F

(

u+ p (Tn)
g(u)Tn

)]

. g(u)2+αF

(
√

2u

λµ+ ρ

)

= o(ψ(u)).

10



So we can concentrate on the sets An and n > g(u). For n > ǫ
√
u we get from Lemma 5.3

we get that there exists a function o(ǫ) → 0 as ǫ→ 0

E

[

F

(

u+ p (Tn)−
∑n−1

i=1 TiXi

Tn

)

1{∑k
i=1

TiXi≤p(Tk)+u:k≤(n−1)}1{An}

]

E

[

F

(

u+ p (Tn)−
∑n−1

i=1 TiXi

Tn

)

1{∑mn
i=1

TiXi≤p(Tmn )+u,
∑n−1

i=1
TiXi≤p(Tn)+u}1{An}

]

= E

[

P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

,

m1
∑

i=1

TiXi ≤ u+ p(Tm1
),

n−1
∑

i=1

Ti
Tn
Xi ≤

u+ p(Tn)
Tn

∣

∣

∣

∣

∣

T
)

1{An}

]

≤ (1 + o(ǫ))E

[

F

(

u+ ρ
2T 2

n

Tn

)

1{An}

]

≤ (1 + o(ǫ))E

[

F

(

u+ ρ
2T 2

n

Tn

)]

.

It follows that
∞
∑

n=ǫ
√
u

E

[

F

(

u+ ρ
2T 2

n

Tn

)]

≤
∞
∑

n=1

∫ ∞

0

λntn−1

(n− 1)!
e−λtF

(

u+ ρ
2 t

2

t

)

dt

= λ

∫ ∞

0
F

(

u+ ρ t2

2

t

)

dt.

The last equality follows by standard arguments of regularly distributions.
Finally for g(u) < n < ǫ

√
u we get from Lemma 5.3

E

[

F

(

u+ p (Tn)−
∑n−1

i=1 TiXi

Tn

)

1{∑k
i=1

Tixi≤p(Tk)+u:k≤(n−1)}1{An}

]

≤ C1E

[

F

(

u+ ρ
2T 2

n

Tn

)]

≤ C1F

(
√

2u

ρ

)

.

The theorem now follows from

ǫ
√
u

∑

n=g(u)

C1F

(
√

2u

ρ

)

≤ ǫC1

√
u F

(
√

2u

ρ

)

(3)

and ǫ→ 0.

Corollary 5.2. If X1,X2, . . . are i.i.d. random variables with distribution F (x) that is
regularly varying with index α > 1, mean µ, and regularly varying density f(x). further
let a > 0 then the risk process

R
(1)
t = u+ p(t)−

Nt
∑

i=1

(a+ Ti)Xi.

has ruin probability
ψ(1)(u) ∼ ψ(u)

where ψ(u).

11



Proof. Since R
(1)
t ≤ Rt we get that ψ(1)(u) & ψ(u). For the upper bound choose an ǫ > 0

and define the risk process

R
(ǫ)
t = u+ p(t)− (1 + ǫ)

Nt
∑

i=1

TiXi

If ǫ is small enough such that

ρǫ = ρ− ǫ
λµ

1 + ǫ
> 0

then by Theorem 5.1

ψ(ǫ)(u) ∼
√
u F

( √
u

1 + ǫ

)
∫ ∞

0

(

1

t
+
ρǫ
2
t

)−α

dt ≤ (1 + o(ǫ))ψ(u).

Denote with tǫ = a/ǫ then by a coupling argument

ψ(1)(u) ≤ P

(

inf
0<t<tǫ

R
(1)
t < u−

√
u

)

+ P

(

inf
tǫ<t

(

R
(1)
t −R

(1)
tǫ

)

<
√
u− u

)

≤ P



(a+ tǫ)

Ntǫ
∑

i=1

Xi >
√
u



+ P

(

inf
tǫ<t

(

R
(ǫ)
t −R

(ǫ)
tǫ

)

<
√
u− u

)

. λtǫ(a+ tǫ)
−αF

(√
u
)

+ ψ(ǫ)
(

u−
√
u− p(tǫ)

)

= (1 + o(ǫ))ψ(u).

The corollary follows with ǫ→ 0.

Lemma 5.3. Let X1,X2, . . . be regularly varying and Ti the time of the i-th claim. Assume
that p(t) ∼ µ+ρ

2 λt2 the collected premium up to time t. Further let k > 3, ǫ < 1/k2 such
that

k − 3.5

k
> (1 + 1/k2)

µ+ ρ/2

µ+ ρ
and

4ǫ

1− ǫ

µ

ρ
< 1.

Assume
∣

∣

∣

∣

∣

m
∑

i=1

Ti −
m2

2λ

∣

∣

∣

∣

∣

≤ ǫ
m2

2λ
(4)

for m ∈ (n, n − 1,mn), where mn = ⌊(1 − kǫ)n⌋, |Tn − n/λ| ≤ ǫn/λ and |Tmn −mn/λ| ≤
ǫmn/λ then there exists a constant C1 and u0 such that for all u > u0, n > log(F (u))2

and Ti ≤ Tn which fulfill (4) we have that

P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

,

n−1
∑

i=1

Ti
Tn
Xi ≤

u+ p(Tn)
Tn

)

≤ C1P

(

Xn >
u+ ρλ

2 T 2
n

Tn

)

. (5)

Further for every c1 > 0 there exists a function o(ǫ) → 0 as ǫ→ 0 and an u1 such that for
all u > u1, n > c1sqrtu and Ti ≤ Tn which fulfill (4) we have that

P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

,

m1
∑

i=1

TiXi ≤ u+ p(Tm1
),

n−1
∑

i=1

Ti
Tn
Xi ≤

u+ p(Tn)
Tn

)

12



≤ (1 + o(ǫ))P

(

Xn >
u+ ρλ

2 T 2
n

Tn

)

. (6)

Proof. We only prove (6) since (5) can be proved along the same line. Denote with

B1 =

{

m1
∑

i=1

TiXi ≤ u+ p(Tm1
)

}

,

B2 =

{

n−1
∑

i=1

Ti
Tn
Xi ≤

u+ p(Tn)
Tn

}

.

Denote with δ1 = 3ǫ and

δ2 = min

[

ǫ

2
, ǫc21

µ+ ρ

2λ

]

.

We have that

P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

, B1, B2

)

= P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

,

∣

∣

∣

∣

∣

∑n−1
i=1

Ti
TnXi

µn/2
− 1

∣

∣

∣

∣

∣

≤ δ1, B1, B2

)

+ P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

,

∑n−1
i=1

Ti
TnXi

µn/2
≤ 1− δ1, B1

)

+ P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

, (1 + δ1)µn/2 <
n−1
∑

i=1

Ti
Tn
Xi ≤ (1− δ2)

u+ p(Tn)
Tn

, B1

)

+ P

(

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

, (1− δ2)
u+ p(Tn)

Tn
≤

n−1
∑

i=1

Ti
Tn
Xi ≤

u+ p(Tn)
Tn

, B1

)

= I1 + I2 + I3 + I4

Denote with

B3 =

{∣

∣

∣

∣

∣

∑n−1
i=1

Ti
TnXi

µn/2
− 1

∣

∣

∣

∣

∣

≤ δ1

}

.

The sets B1, B2 and B3 only depend on X1, . . . ,Xn−1. On the set B3 we have

n−1
∑

i=1

Ti
Tn
Xi ≤ (1 + δ1)µn/2 ≤ 1 + δ1

1− ǫ
µλ

Tn
2

and hence

u+ p(Tn)
Tn

−
n−1
∑

i=1

Ti
Tn
Xi &

u+ µ+ρ
2 λT 2

n

Tn
− 1 + δ1

1− ǫ
µλ

Tn
2

=
u

Tn
+

(

1− 4ǫ

1− ǫ

µ

ρ

)

ρλTn
2

≥
(

1− 4ǫ

1− ǫ

µ

ρ

)

u+ λρ
2 T 2

n

Tn

13



Since Xn is regularly varying we get

I1 . P

(

Xn >

(

1− 4ǫ

1− ǫ

µ

ρ

)

u+ λρ
2 T 2

n

Tn

)

∼
(

1− 4ǫ

1− ǫ

µ

ρ

)−α

P

(

Xn >
u+ λρ

2 T 2
n

Tn

)

.

I2 is basically a large deviation probability. Note that there exists an sǫ such that for
0 ≤ s ≤ sǫ − log(E

[

e−sXi
]

) > (1− ǫ)sµ and hence we get by Chebyshev inequality that

I2 ≤ P

(

∑n−1
i=1

Ti
TnXi

µn/2
≤ 1− δ1

)

≤ exp

(

sǫ(1− δ1)µ
n

2
+

n−1
∑

i=1

log

(

E

[

e−sǫ
Ti
Tn

Xi

])

)

≤ exp

(

sǫ(1− δ1)µ
n

2
− (1− ǫ)

n−1
∑

i=1

sǫ
Ti
Tn
µ

)

≤ exp

(

sǫ(1− δ1)µ
n

2
− (1− ǫ)(1− ǫ)

1 + ǫ
sǫ
n

2
µ

)

= exp

(

sǫµ
n

2

(1− δ1)(1 + ǫ)− (1− ǫ)(1− ǫ)

1 + ǫ

)

= exp

(

−sǫµ
n

2

4ǫ2

1 + ǫ

)

Hence for n > log(F (u))2 it follows that

I2 = o

(

P

(

Xn >
u+ p(Tn)

Tn

))

.

Ad I3: Note that
ǫ(1 + δ1)(1− ǫ)

1 + ǫ
=

(1 + 3ǫ)(1− ǫ)

1 + ǫ
> 1.

By Lemma B.4 we get that

I3 ≤ P

(

Xn > δ2
u+ p(Tn)

Tn
,
n−1
∑

i=1

Ti
Tn
Xi > (1 + δ1)µn/2

)

= P

(

Xn > δ2
u+ p(Tn)

Tn

)

P

(

n−1
∑

i=1

Ti
Tn
Xi > (1 + δ1)µn/2

)

≤ P

(

Xn > δ2
u+ p(Tn)

Tn

)

P

(

n−1
∑

i=1

Ti
Tn
Xi >

(1 + δ1)(1− ǫ)

1 + ǫ
µ

n−1
∑

i=1

Ti
Tn

)

= o

(

P

(

Xn >
u+ p(Tn)

Tn

))

.

Finally we are left with I4. We want to apply Lemma A.3. When
∑mn

i=1 TiXi ≤ u+p(Tmn)

and
∑n

i=1
Ti

Tn−1
Xi > (1− δ2)

u+p(Tn)
Tn then for

γ =
ǫ

2

14



there exists an u0 such that for all u > u0 and n > c1
√
u

n
∑

i=mn+1

Ti
Tn
Xi > (1− δ2)

u+ p(Tn)
Tn

− u+ p(Tmn)

Tn

> (1− δ2)
u+ (1− γ)µ+ρ

2 λT 2
n

Tn
− u+ (1 + γ)µ+ρ

2 λT 2
m1

Tn

> (1− δ2)
(1− γ)(1− ǫ)µ+ρ

2λ n
2

Tn
− δ2c

−2
1 n2 + (1 + γ)(1 + ǫ)µ+ρ

2λ (1− kǫ)2n2

Tn
≥ (µ+ ρ)n2

2λTn
(

1− ǫ− (1 + ǫ)(1− kǫ)2 − 3ǫ
)

definition of δ2, γ.

=
(µ+ ρ)n2

2λTn
(

(2k − 5)ǫ+ (2k − k2)ǫ2 − k2ǫ3
)

≥ (µ+ ρ)n2

2λTn
(2k − 7)ǫ ǫ < 1/(k2)

≥ (µ+ ρ)

(1 + ǫ)
(n −mn)

(k − 3.5)nǫ

n−mn

≥ (µ+ ρ)

(1 + ǫ)
(n −mn)

ǫ(k − 3.5)n

ǫkn+ 1
.

From the condition on k we get that for n large enough

n
∑

i=mn+1

Ti
Tn
Xi ≥ (µ + ρ/2)(n −mn) ≥ (µ + ρ/2)

n
∑

i=m1+1

Ti
Tn
.

From Lemma A.3 we get that for (1− δ2)
u+p(Tn)

Tn ≤ x < u+p(Tn)
Tn some C1 > 0 and u large

enough that

P

(

n
∑

i=mn+1

Ti
Tn
Xi > (µ + ρ/2)

n
∑

i=m1+1

Ti
Tn
,

n−1
∑

i=1

,
Ti
Tn

∈ [x, x+ 1)

)

≤ C1kǫnP (X1 ∈ [x, x+ 1))

and Lemma B.3 we get that for some C2 > 0 (that can depend on k)

I4 ≤ P

(

(1− δ2)
u+ p(Tn)

Tn
≤

n−1
∑

i=1

Ti
Tn
Xi ≤

u+ p(Tn)
Tn

,

n
∑

i=1

Ti
Tn
Xi >

u+ p(Tn)
Tn

,
n
∑

mn+1

Ti
Tn
Xi > (µ+ ρ/2)

n
∑

i=m1+1

Ti
Tn

)

≤ ǫC2nf

(

u+ p(Tn)
Tn

)

∼ ǫC2n

(

u+ p(Tn)
Tn

)−1

F

(

u+ p(Tn)
Tn

)
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where the last line follows from f regularly varying. The Lemma follows since

n

(

u+ p(Tn)
Tn

)−1

is bounded.

6 Numerical examples

The speed of future climate change and global warming remains uncertain and specialists
use numerical models (most of the time general circulation models) representing physical
processes in the atmosphere, ocean and land surface. The main parameter in these models
is the human emissions of greenhouse gases, mainly CO2. The Intergovernmental Panel on
Climate Change (IPCC) provides different emission scenarios families (namely A1, A2, B1
and B2) corresponding to different sets of hypotheses about economic growth, population
evolution, certain gas emissions, mitigation strategies, and many other factors (see [12]).
Usually, the B1 scenario is considered the most optimistic one while A1FI is the pessimistic
one.
It would be very challenging to quantify the impact of climate change on the claim size
distribution of some insurer for each scenario. Here for illustration we consider different
impacts on the claim size distribution, described by different values of parameter cα that
controls the claim size worsening speed. We take u = 500, cα ∈ {1, 2, 5, 10, 20}%, α0 = 1.5,
d0 = 0 and ρ = 1 or 0.1. Furthermore, we only calculate the ruin problem up to time
T where T is the first time that µ(t) (the premium income rate at time t) exceeds the
maximal acceptable premium intensity µ-max, that is chosen such that for c = 0.1 we have
T = 20. We also compute the probability of ruin up to time T = 1000 and give asymptotic
estimates for the infinite time ruin problem. We also give some plots of sample paths of
the considered process or of rescaled versions of the considered processes in Figures 1-4.
Tables 3 and 4 are made in a different way. We first calculate (for every cα) µ-max such
that for ρ = 1, µ-max is 20 years (results in Table 3), then we use the the same µ-max
for ρ = 0.1 (results in 4), in order to see what happens when the safety loading is smaller.
As one could expect, it is then longer to reach µ-max in that case, and it is more likely
to be ruined before reaching this time horizon than in the previous case (when the safety
loading was 100%). In both cases, one can see that being ruined before this time horizon
is often neither neglectable nor close to 1: it is thus interesting to study it. We left
some inconsistent asymptotic results (including values > 1 in Tables 2 and 4) to illustrate
that for some parameters, it is clear that we are no longer in the asymptotic theory
application domain. For the second model with parameter ρ = 0.1 we also calculated
estimates for the ruin probability before T = 105 with 100 simulations; in this case all
estimates were bigger than 0.75, so for these sets of parameters we do clearly not expect
asymptotic results to hold. In general in the proposed models, it is not easy to determine
whether the asymptotic approximation is accurate or not, because we are dealing with
infinite time ruin probabilities, with limited knowledge on the distribution of the time
to ruin. We used 107 simulations so the error (half–length 95%–confidence interval) is
approximated by 2

√

z/107 where z is the result. For z = .002 this gives for example an
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c T ruin1 ruin2 as1 T=1000 as2 T=1000

0.01 200 0.0401 0.0242 0.497 0.107 0.124 0.0672

0.02 100 0.027 0.0166 0.351 0.105 0.147 0.087

0.05 40 0.0134 0.00833 0.222 0.0918 0.185 0.119

0.1 20 0.0073 0.00491 0.157 0.0784 0.22 0.146

0.2 10 0.00422 0.00217 0.111 0.0643 0.262 0.179

Table 1: Table of finite time ruin probabilities for different time horizon and claim size
worsening speed together with the asymptotic for ruin probability for ρ = 1.

error of approximately 0.000028 (for T = 1000 the computation time is much longer and
hence we only used 105 simulations, which multiplies by 10 the above confidence interval
half-length). The numbers in Tables 1 to 4 illustrate the tradeoff between risk of ruin and
risk of inassurability: if one decreases the safety loading from 1 to 0.1, then it becomes
possible to propose acceptable prices during a longer period, but of course this causes a
strong increase in the probability to be ruined before premium becomes unacceptably high.
They also illustrate the potential impact of climate change or of some kinds of sectorial
inflation on the long term profitability and solvency of some insurance businesses.
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Figure 1: Plot of the surplus process for Model 1 with ρ = 1 and c = 0.1.
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c T ruin1 ruin2 as1 T=1000 as2 T=1000

0.01 200 0.069 0.0512 0.67 0.218 2.2 0.343

0.02 100 0.0381 0.0272 0.474 0.197 2.62 0.443

0.05 40 0.0164 0.0103 0.3 0.159 3.3 0.569

0.1 20 0.00804 0.00573 0.212 0.129 3.92 0.646

0.2 10 0.00424 0.00255 0.15 0.101 4.66 0.716

Table 2: Table of finite time ruin probabilities for different time horizon and claim size
worsening speed together with the asymptotic for ruin probability for ρ = 0.1.

c µ–max T ruin1 as1 ruin2 as2

0.01 4.8 20 0.00225 0.497 0.00197 0.124

0.02 5.6 20 0.00287 0.351 0.00225 0.147

0.05 8 20 0.00475 0.222 0.00312 0.185

0.1 12 20 0.00748 0.157 0.00471 0.22

0.2 20 20 0.0114 0.111 0.00838 0.262

Table 3: Table of finite time ruin probabilities for time horizon 20 and different claim size
worsening speed together with the asymptotic for ruin probability for ρ = 1.

c µ–max T ruin1 as1 ruin2 as2

0.01 4.8 118 0.0323 0.67 0.0223 2.2

0.02 5.6 77.3 0.0256 0.474 0.0172 2.62

0.05 8 52.7 0.0251 0.3 0.018 3.3

0.1 12 44.5 0.0284 0.212 0.0253 3.92

0.2 20 40.5 0.0326 0.15 0.0445 4.66

Table 4: Table of finite time ruin probabilities for time horizon 20 and different claim size
worsening speed together with the asymptotic for ruin probability for ρ = 1.
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Figure 2: Plot of the surplus process for Model 2 with ρ = 1 and c = 0.1.

liman, and the MIRACCLE project sponsored by French ministry of ecology.

A Large deviation auxiliary results

To prove an asymptotic upper bound we need large deviation results for heavy tailed
random variables a recent paper on this topic is [9] where a quite general large deviation
result is shown. An application of [9, Theorem 2.1] yields

Corollary A.1. If X1,X2, . . . are i.i.d. random variables with distribution F (x) that is
regularly varying with index 0 < α ≤ 1, and regularly varying density f(x). If further p(T )
is regularly varying with index β > 1/α then for all (fixed) ǫ > 0 and T > 0

lim
n→∞

sup
x≥ǫp(n/λ)

∣

∣

∣

∣

P (Sn ∈ (x, x+ T ])

n(F (x)− F (x+ T ))
− 1

∣

∣

∣

∣

= 0.

The result also holds for T = ∞.

Proof. We should mention that this result is quite close to the examples in [9] so we can
basically copy their proves with obvious modifications. To meet the assumptions of their
Theorem 2.1 we need four series bn, hn, In and Jn such that for ever ǫ > 0 there exits an
K such that for all n

P(Sn/bn ≤ K) > 1− ǫ
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Figure 3: Plot of the rescaled surplus process (surplus process divided by (u + p(t))) for
Model 1 with ρ = 0.1 and c = 0.1.

Further we need that bn/In → 0 and that for every T > 0

lim
n→∞

sup
x≥In

sup
0≤t≤bn

∣

∣

∣

∣

F (x− t+ T )− F (x− t)

F (x+ T )− F (x)
− 1

∣

∣

∣

∣

= 0

The series hn has to fulfill hn = O(bn) and for all T > 0.

lim
n→∞

sup
x≥hn

nP (X1 +X2 ∈ (x, x+ T ],min(X1,X2) > hn)

F (x+ T )− F (x)
= 0.

and finally the sequence Jn ≥ hn fulfills

lim
n→∞

sup
x≥Jn

sup
z≥x

P (Sn ∈ (x, x+ T ],X1 ≤ hn, . . . ,Xn ≤ hn)

n(F (x)− F (x+ T ))
.

Now to prove the corollary it is enough to show that for every β2 > β1 > 1/α we can
choose hn = bn = nβ1 , and In = Jn = nβ2 .
As in [9] we get from E

[

X1/β1
]

<∞ by the Marcinkiewicz-Zygmund law of large numbers
(e.g. [10, Theorem 2.1.5]) that bn = nβ1 fulfills the required condition. By a Taylor
argument we get for 0 ≤ ξi ≤ T

sup
x≥nβ2

sup
0≤t≤nβ1

∣

∣

∣

∣

F (x− t+ T )− F (x− t)

F (x+ T )− F (x)
− 1

∣

∣

∣

∣

= sup
x≥nβ2

sup
0≤t≤nβ1

∣

∣

∣

∣

f(x− t+ ξ1)

f(x+ ξ2)
− 1

∣

∣

∣

∣
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Figure 4: Plot of the rescaled surplus process (surplus process divided by (u + p(t))) for
Model 2 with ρ = 0.1 and c = 0.1.

. sup
x≥nβ2

sup
0≤t≤nβ1

∣

∣

∣

∣

f(x− nβ1)

f(x+ T )
− 1

∣

∣

∣

∣

→ 0

since nβ1−β2 → 0.
Note that for x > 2hn − T

P (X1 +X2 ∈ (x, x+ T ],min(X1,X2) > hn)

≤
∫ x+T−hn

hn

∫ x+T−y

(x−y)∨hn

f(z)f(y)dxdy . T

∫ x+T−hn

hn

f(y)f((x− y) ∨ hn)dxdy

. T

∫ x/2

hn

+

∫ x+T−hn

x/2
f(y)f(x− y)dxdy . Tf(x/2)F (hn) + Tf(x/2)F (hn − T ).

Since nF (hn − T ) → 0 it follows

lim
n→∞

sup
x≥h

nP (X1 +X2 ∈ (x, x+ T ],min(X1,X2) > hn)

F (x+ T )− F (x)

Finally we have to show that

lim
n→∞

sup
x≥Jn

sup
z≥x

P (Sn ∈ (x, x+ T ],X1 ≤ hn, . . . ,Xn ≤ hn)

n(F (x)− F (x+ T ))
= 0.

21



Therefore note that (ex ≤ 1 + 2x 0 ≤ x ≤ 1)

P (Sn ∈ (x, x+ T ],X1 ≤ hn, . . . ,Xn ≤ hn)

=

∫

[0,hn]n
f(x1) · · · f(xn)1{Sn∈(x,x+T ]}dx1 . . . dxn

=

∫

[0,hn]n
e−Sn/hn

n
∏

k=1

(

exk/hnf(xk)
)

1{Sn∈(x,x+T ]}dx1 . . . dxn

≤ e−x/hn

∫

[0,hn]n

n
∏

k=1

(

exk/hnf(xk)
)

dx1 . . . dxn

= e−x/hn

(∫ hn

0
ey/hnf(y)dy

)n

= exp

[

−x/hn + n log

(

1 + 2

∫ hn

0

y

hn
f(y)dy

)]

.

Since

n log

(

1 + 2

∫ hn

0

y

hn
f(y)dy

)

∼ 2n
∫ hn

0 yf(y)dy

hn

is regularly varying with index 1− β1 + (1− α)β1 = 1− αβ1 < 0 it follows

P (Sn ∈ (x, x+ T ],X1 ≤ hn, . . . ,Xn ≤ hn) ≤ Ce−x/hn = o(f(x)).

We also need a large deviation result for non identically distributed random variables.
Nevertheless one should note that the method of [9] still works and we only have to make
the obvious modifications. We first give an auxiliary result that is related to the small
step sequences hn and Jn of the proof of Corollary A.1.

Lemma A.2. Let X1,X2, . . . be regularly varying with regularly varying density f and
index α > 1. Denote with µ = E [X1]. Then for every fixed 0 < γ < 1, c1, c2, a > 0

lim
n→∞

sup
Ti≤Tn

sup
x> 1

a

(

c1n∨(1+c2)µ
∑n−1

i=1

Ti
Tn

)

sup
c3>a

P

(

∑n−1
i=1

Ti
TnXi > c3x,

Ti
TnXi ≤ xγ

)

nf(x)
= 0.

Proof. W.l.o.g. we can use c3 = a. Then

P

(

n−1
∑

i=1

Ti
Tn
Xi > ax,

Ti
Tn
Xi ≤ xγ

)

=

∫

∏n−1

i=1

[

0,Tn
Ti

xγ
]

e−
1

xγ
∑n−1

i=1

Ti
Tn

xi1{∑n−1

i=1

Ti
Tn

xi>ax
}

n−1
∏

i=1

e
Ti

Tnxγ
xif(xi)dx

≤ exp

(

−ax
xγ

+

n−1
∑

i=1

log

(

∫ Tn
Ti

xγ

0
e

Ti
Tnxγ

yf(y)dy

))

.
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For δ < α − 1 and constants Ci > 0 we get that there exists a d > 1 such that f(x) ≤
C1y

−α−1+δ for all x > d. Since ex − 1− x ≤ x(ed − (d+ 1)) for 0 < x < d we get that

∫ Tn
Ti

xγ

0
e

Ti
Tnxγ

yf(y)dy =

∞
∑

k=0

( Ti
Tnxγ

)k 1

k!

∫ Tn
Ti

xγ

0
ykf(y)dx

≤ 1 +
µ

xγ
Ti
Tn

+
∞
∑

k=2

( Ti
Tnxγ

)k dk

k!
+ C1

∞
∑

k=2

( Ti
Tn

)k x−kγ

k!

∫ Tn
Ti

xγ

d
yk−α−1+δdy

≤ 1 +
µ

xγ
Ti
Tn

+
1

x2γ

∞
∑

k=2

( Ti
Tn

)k dk

k!
+ C2

( Ti
xγTn

)α−δ ∞
∑

k=2

1

k!

≤ 1 +
1

xγ
Ti
Tn

(

µ+
C3

xγ((α−δ−1)∧1)

)

.

Since C3 does not depend on x we get that there exits an x0 such that for x > x0

n−1
∑

i=1

log

(

∫ Tn
Ti

xγ

0
e

Ti
Tnxγ

xif(xi)dxi

)

≤
n−1
∑

i=1

log

(

1 +
1

xγ
Ti
Tn
µ
(

1 +
c2
2

)

)

≤ µ
(

1 + c2
2

)

xγ

n−1
∑

i=1

Ti
Tn

≤ 1 + c2
2

1 + c2

ax

xγ
.

Since x > c1n and α > 1 we get that

P

(

n−1
∑

i=1

Ti
Tn
Xi > ax,

Ti
Tn
Xi ≤ xγ

)

≤ exp

(

−ax1−γ

(

1− 1 + c2
2

1 + c2

))

≤ exp

(

− ac2
2(1 + c2)

x1−γ

)

= o(xf(x)) = o(nf(x)).

Lemma A.3. Let X1,X2, . . . be regularly varying with regularly varying density f and
index α > 1. Denote with µ = E [X1]. Let, c1, κ > 0 then there exists a constant C1 such
that

lim sup
n→∞

sup
∑n−1

i=1

Ti
Tn

>c1n, Ti≤Tn
sup

x>(1+κ)µ
∑n−1

i=1

Ti
Tn

P

(

∑n−1
i=1

Ti
TnXi ∈ [x, x+ 1]

)

nP (X1 ∈ [x, x+ 1])
≤ C1. (7)

If further there exists a κ1 > 0 and a series mn > 0 limn→∞mn/n = 1− ǫ > 0 then there
exists a constant C2

lim sup
n→∞

sup
Tmn
Tn

>1/2,
∑n−1

i=1

Ti
Tn

>c1n, Ti≤Tn
sup

(1+κ)µ
∑n−1

i=1

Ti
Tn

<x<Mµ
∑n−1

i=1

Ti
Tn

P

(

∑n
mn+1

Ti
TnXi > (µ + κ1)

∑n
m1+1

Ti
Tn ,
∑n−1

i=1
Ti
TnXi ∈ [x, x+ 1]

)

ǫnP (X1 ∈ [x, x+ 1])
≤ C2. (8)
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Proof. At first note that P(X1 ∈ [x, x + 1]) ∼ f(x). Choose a 0 < γ < 1 such that
2 + α < (2α+ 1)γ and 1 < γα. Denote with Bi = { Ti

TnXi ≤ xγ}. We have

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1]

)

≤ P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Bi ∀i

)

+

n−1
∑

k=1

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Bc

k, Bi i 6= k

)

(9)

+

n−1
∑

l,k=1

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Bc

k, B
c
l , Bi i 6= k, l

)

.

From Lemma A.2 we get

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Bi ∀i

)

= o(nf(x)).

Further we get that

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Bc

k, B
c
l

)

≤ E

[

∫ Tn
Tk

(

x+1−
∑

i6=k
Ti
Tn

Xi

)

Tn
Tk

(

x−
∑

i6=k
Ti
Tn

Xi

)

f(y)dy1{
x+1−

∑

i6=k
Ti
Tn

Xi>xγ ,
Tl
Tn

Xl>xγ
}

]

. E





Tn
Tk
f





Tn
Tk



x−
∑

i 6=k

Ti
Tn
Xi







 1{
x+1−

∑

i6=k
Ti
Tn

Xi>xγ ,
Tl
Tn

Xl>xγ
}





. E

[Tn
Tk
f

(Tn
Tk

(xγ − 1)

)

1{
x+1−

∑

i6=k
Ti
Tn

Xi>
Tk
Tn

xγ ,Xl>xγ
}

]

.
Tn
Tk
f

(Tn
Tk

(xγ − 1)

)

F

(Tn
Tk
xγ
)

≤ cf(xγ)F (xγ),

for some c > 1 and we used Potter bounds in the last equality. Since x > c1µn,

n2f(xγ)F (xγ)

nf(x)
≤ 1

c1µ

xf(xγ)F (xγ)

f(x)

and the last term is regularly varying with index 2− (2γ − 1)α − γ < 0, we are left with
(9). Denote with Z =

∑

i 6=k
Ti
TnXi. Then

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Bc

k, Bi i 6= k

)

= P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Z >

1 + κ/2

1 + κ
x,Bc

k, Bi i 6= k

)
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+ P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Z ≤ 1 + κ/2

1 + κ
x,Bc

k, Bi i 6= k

)

.

Since
1 + κ/2

1 + κ
x > (1 + κ/2)µ

n
∑

i=1

Ti
Tn

we get by Lemma A.2 that

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Z >

1 + κ/2

1 + κ
x,Bc

k, Bi i 6= k

)

≤ P

(

Xi >
Tn
Ti
xγ
)

P

(

Z >
1 + κ/2

1 + κ
x,Bi i 6= k

)

= o(nf(x)F (xγ)) = o(f(x)).

Since F (xγ) = o(n). Finally we have that

P

(

n−1
∑

i=1

Ti
Tn
Xi ∈ [x, x+ 1], Z ≤ 1 + κ/2

1 + κ
x,Bc

k, Bi i 6= k

)

=

∫
1+κ/2
1+κ

x

0
F

(Tn
Tk

(x− z)

)

− F

(Tn
Tk

(x− z + 1)

)

dFZ(z)

.

∫
1+κ/2
1+κ

x

0

Tn
Tk
f

(Tn
Tk

(x− z)

)

dFZ(z)

. f(x)

∫
1+κ/2
1+κ

x

0

f (x− z)

f(x)
dFZ(z)

.

(

κ

2(1 + κ)

)−α

f(x),

where the last inequality follows since regularly varying functions are asymptotically mono-
tone. This proves (7). Since from Lemma A.2 we get that

P

(

n
∑

m1+1

Ti
Tn
Xi > (µ+ κ1)

n
∑

m1+1

Ti
Tn
, Bi i > mn

)

= o

(

(n−mn)f

(

(µ+ κ1)

n
∑

m1+1

Ti
Tn

))

= o (ǫnf(ǫx/(2M))) = o(nf(x)).

also (8) can be proved along the same lines (one only has to assume Bi for i > mn).

B Auxiliary results

In this section we show some basic Lemmas that are needed in several parts of the proofs.
Nevertheless one should note that none of these results are surprising and the proofs use
basically only standard techniques, so one may find the same or similar results and methods
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in other papers but since we don’t have a good reference and for reasons of completeness
we provide the proofs.
The following Lemma is basically a restatement of the results in [1, Section 4] which
basically provides a lower bound for ruin probabilities in quite general risk models. Since
[1] uses a different model we provide also a proof here.

Lemma B.1. Assume that St =
∑Nt

i=1XTi − p(t) (Nt is Poisson process with intensity
λt assume that Xt and Nt are independent and that there exists a continuous function
c(t) > 0 such that St− . −c(t) a.s.. Then for every ǫ > 0 there exists an K > 0 - such
that for u > K

P

(

sup
0≤t

St > u

)

≥ (1− ǫ)

∫ ∞

0
λtP(Xt > u+K + (1 + ǫ)c(t))dt

as u→ ∞

Proof. Since St− ∼ −ct a.s. for every ǫ > 0 there exists and K > 0 such that for the set

Aǫ = {St− < K − (1 + ǫ)ct,∀ t > 0}

P(Aǫ) > 1 − ǫ. Denote with τ(u) = inf{t : St > u} and with F t(x) = P(Xt > x). On the
set Aǫ we get that for u > K, τ(u) = ∞ and hence

P

(

sup
0≤t

St > u

)

≥
∫ ∞

0
λtE

[

F t(u− St−)1{τ(u)>t}
]

dt

≥
∫ ∞

0
λtE

[

F t(u− St−)1{Aǫ}1{τ(u)>t}
]

dt

≥
∫ ∞

0
λtE

[

F t(u+K + (1 + ǫ)ct)1{Aǫ}
]

dt

≥ (1− ǫ)

∫ ∞

0
λtF t(u+K + (1 + ǫ)ct)dt.

The following Lemma is just an application of Chebyshev inequality. We manly give it
here because we need it in different places in the proofs.

Lemma B.2. Let X be Erlang(λ,k) then for ǫ > 0 there exists a κǫ > 0 such that for all
k

P(X ≤ (1− ǫ)k/λ) ≤ e−κǫk

P(X > (1 + ǫ)k/λ) ≤ e−κǫk.

Proof. Choose an s > 0 such that

1− ǫ <
log(1 + s)

s

and set κlǫ = log(1 + s)− s(1− ǫ) then

P(X ≤ (1− ǫ)k/λ) ≤ es(1−ǫ)k
E

[

e−sλX
]

= e(s(1−ǫ)−log(1+s))k = e−κl
ǫk.
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Similarly we get for

1 + ǫ >
− log(1 + s)

s

and κuǫ = s(1 + ǫ) + log(1− s) that

P(X > (1 + ǫ)k/λ) ≤ e−s(1+ǫ)k
E

[

esλX
]

= e−(s(1+ǫ)+log(1−s))k = e−κu
ǫ k.

The following Lemma is equivalent to the well known asymptotic of
∫ u
cu F (u − x)g(x)dx

when g(x) ≤ cf(x) and f(x) is regularly varying. We only state it because we need it in
two places in the proof.

Lemma B.3. Assume that X1, . . . ,Xn are independent positive random variables and
Xn has distribution function F that is regularly varying with index α and has a regularly
varying density f . Further assume that there exists a set B, independent of Xn and that
for some Cu,n > 0 and 0 < c < 1 and all cu < x < u

P

(

n−1
∑

i=1

Xi ∈ [x, x+ 1), B

)

≤ Cu,n P (Xn ∈ [x, x+ 1)) .

Then we have

P

(

n
∑

i=1

Xi > u,
n−1
∑

i=1

Xi ∈ [cu, u), B

)

.
(

1 + c−α
)

Cu,n sup
x≥0

F (x)

F (x+ 1)

∫ (1−c)u

0
F (x)dxf(u),

where the asymptotic is uniformly in n and the distribution of X1, . . . ,Xn−1.

Proof. Denote with m = ⌈(1 − c)u⌉

P

(

n
∑

i=1

Xi > u,

n−1
∑

i=1

Xi ∈ [cu, u), B

)

≤
m
∑

k=1

P

(

n
∑

i=1

Xi > u,

n−1
∑

i=1

Xi ∈ [cu+ k − 1, cu + k), B

)

≤
m
∑

k=1

P

(

Xn > u− cu− k,

n−1
∑

i=1

Xi ∈ [cu+ k − 1, cu + k), B

)

=

m
∑

k=1

P (Xn > u− cu− k)P

(

n−1
∑

i=1

Xi ∈ [cu+ k − 1, cu+ k), B

)

≤ Cu,n sup
x>0

F (x)

F (x+ 1)

m
∑

k=1

P (Xn > u− cu− k + 1)P (Xn ∈ [cu+ k − 1, cu + k))

≤ Cu,n sup
x>0

F (x)

F (x+ 1)

m
∑

k=1

∫ cu+k

cu+k−1
F (u− x) dF (x)
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≤ Cu,n sup
x>0

F (x)

F (x+ 1)

(
∫ u+1

cu
F (u− x) dF (x)

)

.

Note that
∫ u+1

u
F (u− x) dF (x) =

∫ u+1

u
dF (x) ∼ f(u).

And the lemma follows from
∫ u

cu
F (u− x) dF (x) =

∫ (1−c)u

0
f(u− x)F (x) dx . f(u)c−α

∫ (1−c)u

0
F (x) dx.

The following Lemma is basically a standard version of the weak law of large numbers of
weighted random variables, we only give a proof to point out that the result is somehow
uniform in the weights.

Lemma B.4. Assume that X1,X2, . . . are i.i.d. random variables with common distri-
bution function F that is regularly varying with index α > 1 and mean µ. Further let
κ,C > 0 then

lim
n→∞

sup
0≤ci≤1,

∑n
i=1

ci>Cn
P

(

n
∑

i=1

ciXi > (1 + κ)µ

n
∑

i=1

ci

)

= 0.

Proof. At first note that

lim
n→∞

P

(

n
∑

i=1

ciXi > (1 + κ)µ

n
∑

i=1

ci,∃Xi > n

)

≤ lim
n→∞

n
∑

i=1

P (Xi > n) = lim
n→∞

nF (n) → 0.

Denote with µn = E
[

X11{X1≤n}
]

. We get with Chebyshev

P

(

n
∑

i=1

ciXi > (1 + κ)µ

n
∑

i=1

ci,∀Xi ≤ n

)

≤ P

(

n
∑

i=1

ciXi > (1 + κ)µn

n
∑

i=1

ci,∀Xi ≤ n

)

= P

(

n
∑

i=1

ci(Xi − µn) > κµn

n
∑

i=1

ci,∀Xi ≤ n

)

≤ 1

(κµn
∑n

i=1 ci)
2

n
∑

i=1

E
[

(ci(Xi − µn))
21{Xi≤n}

]

≤
µ2n
∑n

i=1 c
2
i + E

[

X2
i 1{Xi≤n}

]
∑n

i=1 c
2
i

(κµn
∑n

i=1 ci)
2

.
µ2n + E

[

X2
i 1{Xi≤n}

]

(κµn)
2∑n

i=1 ci
.
µ2n + E

[

X2
i 1{Xi≤n}

]

(κµn)
2 Cn

.

Since X1 is regularly varying with index α > 1 we get by Karamata’s Theorem that
E
[

X2
i 1{Xi≤n}

]

= o(n) which proves the Lemma.
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Lemma B.5. Assume that Tn
λn → 1 a.s. and the Xi are i.i.d. with mean µ then

n
∑

i=1

TiXi ∼ λµ
n
∑

i=1

i a.s..

Proof. We have to show that for every ǫ > 0 and δ > 0 there exists an n0 such that

P

(

sup
n≥n0

∣

∣

∣

∣

∑n
i=1 TiXi

λµ
∑n

i=1 i
− 1

∣

∣

∣

∣

> ǫ

)

≤ δ.

Therefore choose an ǫ1 such that

1− ǫ < (1− ǫ1)
3 < ǫ1 + (1 + ǫ1)

2 < 1 + ǫ.

and n1 > 0, n2 > 0 and n3 > n1 + n2 such that
∑n3

i=n1
i

∑n3

i=1 i
≥ 1− ǫ1

and the sets

B1 = B1(n1, ǫ1) =

{

sup
n≥n1

∣

∣

∣

∣

Tn
λn

− 1

∣

∣

∣

∣

> ǫ1

}

,

B2 = B2(n1, n2, ǫ1) =

{

sup
n≥n2

∣

∣

∣

∣

∣

∑n1+n
i=n1

iXi

µ
∑n1+n

i=n1
i
− 1

∣

∣

∣

∣

∣

> ǫ1

}

,

B3 = B3(n1, n3, ǫ1) =

{∑n1

i=1 TiXi

λµ
∑n3

i=1 i
> ǫ1

}

,

fulfill P(Bi) ≤ δ/3. This can be done since Tn
λn → 1 a.s and [13] proves that

∑n1+n
i=n1

iXi

µ
∑n1+n

i=n1
i
→ 1 a.s..

On Bc
1 ∩Bc

2 ∩Bc
3 we have that for n ≥ n3

∑n
i=1 TiXi

λµ
∑n

i=1 i
− 1 ≤

∑n1

i=1 TiXi

λµ
∑n

i=1 i
+

∑n
i=n1

TiXi

λµ
∑n

i=1 i
− 1

≤ ǫ1 + (1 + ǫ1)

∑n
i=n1

i
∑n

i=1 i

∑n
i=n1

iXi

µ
∑n

i=n1
i
− 1

≤ ǫ1 + (1 + ǫ1)
2 − 1 ≤ ǫ

with the same arguments we get that
∑n

i=1 TiXi

λµ
∑n

i=1 i
− 1 ≥ (1− ǫ1)

3 − 1 ≥ −ǫ.

It follows that
{

sup
n≥n3

∣

∣

∣

∣

∑n
i=1 TiXi

λµ
∑n

i=1 i
− 1

∣

∣

∣

∣

> ǫ

}

⊆ B1 ∪B2 ∪B3

and hence

P

(

sup
n≥n3

∣

∣

∣

∣

∑n
i=1 TiXi

λµ
∑n

i=1 i
− 1

∣

∣

∣

∣

> ǫ

)

≤ δ.
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