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Abstract

A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity.
Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities
(LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the
additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range
of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions
based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition,
the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating
feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the
basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected
sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with
respect to the quadratic function.

Key words: Lyapunov function, Lur’e systems, bounded sector nonlinearity, absolute stability, saturation, basin of attraction
estimate.

1 Introduction

The class of systems formed by a feedback intercon-
nection of a linear system and a cone bounded non-
linearity has been investigated, either in continuous-
or discrete-time domains. It was initially proposed
for continuous-time systems, and so-called the Lur’e
problem, [15,17,19]. Two different types of Lyapunov
functions were mostly considered for stability analysis:
the classical quadratic one and the Lur’e-type, which
has a quadratic term and a term of the nonlinearity
integral. By considering this function, the nonlinearity
appears directly in the Lyapunov time-derivative. It is
well known that this class of functions is more general
and leads to less conservative sufficient LMI conditions
than the quadratic function. For discrete-time systems,
likewise, great efforts have been made to reduce the con-
servatism of the quadratic function. Hence, the original
form of the Lur’e-type function, with the nonlinearity

⋆ A preliminary version [8] of this paper was presented at
IFAC World Congress 2011 at Milano. Corresponding author
M. Jungers. Tel. +33 (0)3 83 59 57 04. Fax + 33 (0) 3 83 59
56 44.

integral, was considered as candidate function for stabi-
lity analysis issues [9,14,6] (see also references therein).
In these references, it is assumed that the nonlinearity
derivative (or discrete variation) is bounded. According
to this assumption, the resulting integral term in the
Lyapunov difference is upper bounded.

The discrete-time version of the Lur’e problem was also
studied in a general framework developed in [11], for
feedback interconnections of linear systems and nonline-
arity or uncertainty. It is proposed a class of Lyapunov
functions which is quadratic in the system state and in
the feedback element. The stability conditions are de-
rived for an auxiliary system, defined recursively from
the original one. However, it is known that the Lur’e-
type function in the continuous-time framework is not
quadratic in the nonlinearity.

Among different cone bounded nonlinearities, the actu-
ator saturation is one of the most studied nonlinearities
in both time-domains. In general, only local stability can
be guaranteed and the exact determination of the basin
of attraction is a hard task. The main challenge, then, is
to improve the estimate of this set. The level sets of the
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Lyapunov function are usually considered and for which
the quadratic function gives ellipsoidal sets. Moreover,
two frameworks based on quadratic Lyapunov functions
draw attention for modelling the saturation as LMI con-
ditions. In [10], the saturation function of a given linear
state feedback is located inside the convex hull of hyper-
planes defined by the control gains and a set of auxiliary
gains. The condition for an ellipsoid to be a contractive
set in the single-input case is necessary and sufficient.
The second approach, in [7], describes the saturation by
the dead-zone nonlinearity which satisfies a general (lo-
cal) bounded sector condition. As exposed in [3], the
computational burden of this approach is less dependent
on the system dimension than the first one, because the
number of LMI to be checked is smaller.

A more general class of systems is the one combining
two types of nonlinearities such as the output depen-
dent cone bounded one and the input saturation. De-
spite it represents many practical control problems, this
problem has not been widely studied in the literature.
For continuous-time domain, in [3], the stability analy-
sis and closed-loop stabilization are covered by LMI op-
timization problems based on the quadratic Lyapunov
function. The equivalent class of systems in the discrete-
time is considered in [2]. In this case, only the control
synthesis problem is solved also using LMI optimization
based on the quadratic function.

The main contribution of this paper is to propose a new
class of Lyapunov functions including the cone bounded
nonlinearity. This function is able to relax the assump-
tion about the nonlinearity bounded variation. Based
on the proposed Lyapunov function, we tackle two dif-
ferent stability analysis problems. Sufficient conditions
to ensure the global stability of discrete-time Lur’e sys-
tems are formulated by LMI conditions. Also, it is shown
that this LMI condition is related to the discrete-time
strictly positive real lemma applied for an auxiliary sys-
tem transfer matrix. The second class of systems is the
same studied in [2], with a saturating control law in-
cluded. Sufficient BMI (or LMI via imposing a weight-
ing matrix) conditions are formulated to cover the local
stability analysis problem. An optimization problem un-
der these LMI constraints is proposed to maximize the
size of an estimate – given by the level set of the pro-
posed Lyapunov function – of the basin of attraction.
This estimate, as illustrated in the numerical examples,
might present disconnected and nonconvex sets. Also, it
is highlighted that the new Lyapunov function is able to
lead to a less conservative estimate than an ellipsoidal
domain.

The paper is organized as follows: in Section 2, we
present the first class of discrete-time systems studied
and our motivation describing some additional assump-
tions considered in the frameworks based on the Lur’e-
type function. In Section 3, a new type of Lyapunov
function dependent on the cone bounded nonlinearity

is presented. In Section 4, sufficient LMI conditions for
the global stability analysis problem is proposed and
followed by an academic example to illustrate the result.
In addition, we show that the global stability and the
existence of the proposed Lyapunov function is related
to the strictly positive realness property of an auxiliary
system transfer matrix. In Section 5, it is presented the
closed-loop formulation of discrete-time Lur’e systems
and a given feedback control law subject to saturation.
Then, a LMI optimization problem is proposed to solve
the local stability analysis problem. Several examples
are given, as well, to illustrate our framework and some
special features. Concluding remarks are presented in
Section 6.

Notations. For any vector x ∈ R
n, x ≥ 0 states that,

∀ ℓ = 1, . . . , n, its components x(ℓ) are nonnegative.
Also, for two vectors x, y of R

n, x ≥ y states that x(ℓ) −
y(ℓ) ≥ 0. ‖x‖ is related to the Euclidian norm of vector
x. The transfer function associated with a given state-

space realization G(z) ≃



A B

C D



 is defined by G(z) =

C (zI −A)
−1

B+D. A square matrix A ∈ R
n×n is called

Schur if all its eigenvalues are located inside the open
unit circle. A(ℓ) denotes the ℓ-th row of matrix A. For two
symmetric matrices, A and B, A > B means that A−B
is positive definite. A′ denotes the transpose of matrix A.
Im (0m×n) is the m-order identity matrix (m × n-order
null matrix). The operator diag(x) describes a diago-
nal matrix obtained from vector x. Also, diag(A;B) is a
block diagonal matrix of matrices A and B. ⋆ means the
symmetric blocks in matrices. For a symmetric positive-
definite matrix M ∈ R

n×n, the ellipsoidal set E(M,γ)
associated with M is given by {x ∈ R

n; x′Mx ≤ γ} and
the shortcut E(M) = E(M, 1) will be used.

2 Discrete linear systems under cone bounded
nonlinearity

Consider the following discrete-time system including a
nonlinearity ϕ(·)

xk+1 = Axk + Fϕ(yk), ∀ k ∈ N (1)

yk = Cxk, (2)

where xk ∈ R
n, yk ∈ R

p are respectively the state and
output vector of the system (1)-(2) at the instant k ∈ N.
The matrices A, C and F have appropriate dimensions.
The system nonlinearity will satisfy the following as-
sumption:

Assumption 1 The nonlinearity ϕ(·) : R
p → R

p veri-
fies a cone bounded sector condition and is assumed to be
decentralized [15].

This assumption means that: ϕ(0) = 0 and ϕ(·) ∈
[0p,Ω], where Ω ∈ R

p×p is a positive diagonal matrix.
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Thus, we have that ϕ(ℓ)(y) [ϕ(y) − Ωy](ℓ) ≤ 0, ∀y ∈ R
p,

∀ℓ = 1, · · · , p, and the following inequality

SC(ϕ(·), y,Λ) = ϕ′(y)Λ[ϕ(y) − Ωy] ≤ 0 (3)

is verified, for any diagonal and positive matrix Λ =
diag{λq}q=1;··· ;p ∈ R

p×p. Note that Ω is given by the
designer. It is simple to show, from Assumption 1, that
the relation (3) is equivalent to [Ωy]′(ℓ)[ϕ(y)−Ωy](ℓ) ≤ 0,

∀ℓ = 1, · · · , p; ∀y ∈ R
p, which implies, with Λ diagonal

positive definite, that

0 ≤ ϕ′(y)Λϕ(y) ≤ ϕ′(y)ΛΩy ≤ y′Ω′ΛΩy, ∀y ∈ R
p. (4)

We briefly consider the scalar version of this class of
systems in order to expose the motivation of our results.

2.1 Motivation

In the scalar case, the discrete-time Lur’e system is des-
cribed by

xk+1 = axk + fϕ(yk), ∀k ∈ N, (5)

yk = cxk, (6)

where a, f and c are scalars. The continuous nonlinea-
rity ϕ(·) : R → R is assumed to be time-invariant and
satisfies Assumption 1. By having ϕ(0) = 0, the origin is
an equilibrium point, and ϕ(y)[ϕ(y)−ωy] ≤ 0, ∀ y ∈ R,
with ω > 0.

The Lyapunov stability of this class of systems was stu-
died by considering the widespread Lur’e-type Lyapunov
function, [15], which takes the cone bounded nonlinea-
rity into account. In the scalar case, this function is de-
fined as v(x, ϕ(·)) = πx2 + η

∫ y

0
ϕ(s)ds, for some π > 0

and η ≥ 0. The function is inspired by the continuous-
time framework and can be considered as a candidate
function due to the time invariance of nonlinearity ϕ(·),
which guarantees the positiveness of the integral. To our
knowledge, the function v was first used in the discrete-
time domain, in [18], for stability of input-saturating
sampled-data systems. Because of the time invariance
of ϕ(·), the following integral term appears in the Lya-
punov difference I =

∫ yk+1

yk

ϕ(s)ds. An extensive liter-

ature (see [18,21,12,13,20,14,6]) is forced to make ad-
ditional assumptions about the slope of the nonlinea-
rity to define an upper bound of I and to conclude on
the stability. The spirit of these assumptions is to upper
and/or lower bound the slope of the nonlinearity to al-
low a bound of the integral I via a trapezoidal rule. As-
sumptions on the slope prohibit treating odd (ϕ(−y) =
−ϕ(y), ∀y ≥ 0) nonlinearities such as ϕ(y) = 0, if

y ∈ [0, 1] or y ∈ [3,+∞) and ϕ(y) =
√

(|y| − 2)2 + 1 if
y ∈ [1, 3], which is two half-circles with center at y = 2
and y = −2.

The choice of the Lyapunov function v can be justified
in the continuous-time original Lur’e problem because
it allows the nonlinearity to be directly considered in
the Lyapunov derivative. However, by using this type of
function in discrete-time, conservative assumptions on
the slope are necessary to conclude the stability. In the
following section, a candidate Lyapunov function will
be presented, not quadratic in ϕ(·) for the discrete-time
domain, which is able to conclude the stability under
assumption 1, without requiring any assumption on the
slope of the nonlinearity.

3 A new class of Lyapunov functions

We present a new candidate Lyapunov Function to be
associated with the system (1)-(2). This candidate func-
tion is composed of a quadratic term with respect to the
state and a cross term between the state and the nonli-
nearity:

V :

{
R

n × R
p −→ R,

(x;ϕ(Cx)) 7−→ x′Px + 2ϕ′(Cx)∆ΩCx,
(7)

where P ∈ R
n×n is a symmetric positive definite matrix

and ∆ ∈ R
p×p is a diagonal positive semidefinite ma-

trix. One should point out that the quadratic Lyapunov
function is recovered with ∆ = 0p and, thus, it may be
considered as a particular case of function (7). From in-
equalities (4), we have

V (x) ≤ V (x;ϕ(Cx)) ≤ V (x), (8)

with V (x) = x′Px and V (x) = x′(P + 2C ′Ω′∆ΩC)x.
The function V (x;ϕ(Cx)) can be considered as a candi-
date, because it verifies the following properties:

• V (x;ϕ(Cx)) ≥ 0, ∀x ∈ R
n, due to the left inequality

in (8);
• V (x;ϕ(Cx)) = 0, if and only if x = 0, because of

inequality (8) and P > 0.
• V (x;ϕ(Cx)) is radially unbounded, i.e., V (x;ϕ(Cx)) →
∞ when ‖x‖ → ∞.

The Lyapunov difference, which will be treated in
the sequel, is defined by δkV = V (xk+1;ϕ(Cxk+1)) −
V (xk;ϕ(Cxk)).

The level set associated with V (x;ϕ(Cx)) and γ > 0
is given by LV (γ) = {x ∈ R

n;V (x;ϕ(Cx)) ≤ γ} which
is, clearly, related to the two ellipsoids associated with
the upper and lower-bounds quadratic functions V (x)
and V (x)

E(P + 2C ′Ω′∆ΩC, γ) ⊆ LV (γ) ⊆ E(P, γ). (9)

In Fig. 1, it is possible to see an example of the can-
didate function, for n = 2, which is bounded by two
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paraboloids. Only the part of the surfaces (x2 ≥ x1) is
drawn.
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Fig. 1. Surfaces given by the proposed Lyapunov function
V (x; ϕ(Cx)) and the bounding paraboloids, V (x) and V (x).

The level sets associated with a given γ and the func-
tions V , V and V are depicted in Fig. 2. It is possible
to see the Inclusion (9). One of special features of the
Lyapunov function (7) is to provide disconnected and
nonconvex level sets. The shape and number of the sets
will directly depend on the nature of ϕ(·). In the follow-
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Fig. 2. Disconnected level sets LV (γ) and Inclusion (9) with
the parametrization line x2 = x1 of Fig. (1).

ing sections the candidate Lyapunov function (7) will
be considered as a main tool to study several stability
analysis problems.

4 Global stability analysis and frequency do-
main interpretation

Based on the function V (x;ϕ(Cx)), a framework is pro-
vided for studying the problem of global stability of sys-
tems (1)-(2). In addition, we present a frequency domain
condition related to the existence of our candidate func-
tion.

4.1 Global stability

We address the problem of global stability analysis,
which is defined as

Problem 1 (Global Stability Analysis) Under Assump-
tion 1, determine a matrix P = P ′ > 0n and a diagonal
matrix ∆ ≥ 0p which allow to guarantee the global stabi-
lity of system (1)-(2) for any nonlinearity ϕ(·) ∈ [0p; Ω].

The following statement gives a sufficient condition to
solve the Problem 1.

Theorem 2 For the class of systems defined by (1)-(2),
if there exists a matrix G ∈ R

n×n, a symmetric positive
definite matrix P ∈ R

n×n, a positive semidefinite diag-
onal matrix ∆ ∈ R

p×p and positive diagonal matrices
T, W ∈ R

p×p, such that the LMI





P − G′ − G G′A G′F 0n×p

⋆ −P Π1 A′Π2

⋆ ⋆ −2T F ′Π2

⋆ ⋆ ⋆ −2W




< 0, (10)

is verified, with

Π1 = C ′Ω [T − ∆] ; Π2 = C ′Ω [W + ∆] , (11)

then the function V (x;ϕ(Cx)) is a Lyapunov function
and the origin of system (1)-(2) is globally asymptotically
stable. �

Proof 3 By having Inequality (10) verified, it implies
P −G′ −G < 0 and P > 0. Hence, G is of full rank and
we have −G′P−1G ≤ P − G′ − G (see [4]). The change
of basis diag(G−1; In+2p) and a Schur complement ([1])
lead to the following inequality





A′

F ′

0



P





A′

F ′

0





′

+





−P C ′Ω [T − ∆] A′C ′Ω [W + ∆]

⋆ − 2T F ′C ′Ω [W + ∆]

⋆ ⋆ −2W



 < 0.

(12)
Due to the structure of the nonlinearity ϕ(·), the equation
(x′

k ϕ′(yk) ϕ′(yk+1))
′ = 0 is equivalent to xk = 0. Thus

by multiplying Inequality (12) on the right by (x′
k ϕ′(yk)

ϕ′(yk+1))
′ and on the left by its transpose, we get the

following inequality

δkV −2SC(ϕ(·), yk+1, W )−2SC(ϕ(·), yk, T ) < 0, ∀xk 6= 0.
(13)

Since nonlinearity ϕ(·) verifies a global sector condition,
Inequality (13) defines an upper bound for the Lyapunov
difference, implying δkV < 0, for any xk 6= 0. �

Remark 4 The stability of matrices A and A + FΩC
is necessary for the feasibility of inequality (10). These
necessary conditions are obtained by considering the
bounds of the sector condition (3), which are ϕ(yk) = 0
and ϕ(yk) = Ωyk.
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Example 1: Consider system (1)-(2) with n = 2; p = 1
and

A =

[
0.5 0.1

0.3 −0.4

]
;F =

[
0.5

0

]
;C ′ =

[
1

0

]
.

The nonlinearity is the half-circle given in the motivation
section. By taking Ω = 1√

2
, a sector for ϕ(·) is defined

and matrices A and A + FΩC are Schur. By applying
Theorem 2, the LMI (10) is feasible, with the following

numerical results P =

[
0.9293 −0.1045

−0.1045 0.9462

]
and ∆ =

0.5477. In fact, one can conclude that the origin of the
considered example is globally asymptotically stable for
any nonlinearity ϕ(·) belonging to the sector [0; 1√

2
]. For

a given initial condition x0 = (100;−50)′, the trajectory
associated with system (1)-(2) is asymptotically stable,
as depicted in Fig. 3.
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Fig. 3. Time response of system (1)-(2) for a given initial
condition – state components: xk,(1) with ’+’ and xk,(2) with
’×’.

4.2 Frequential Interpretation

It is possible to state a frequency domain condition for
Inequality (10). This condition will be derived by means
of the strict positive realness of a square transfer ma-
trix. By definition, [16, Lemma 5], a discrete-time square
transfer matrix G(z) is strictly positive real if it is asymp-
totically stable and G(ejθ)+G′(e−jθ) is positive definite
for all θ ∈ [0, 2π]. Let us define the following auxiliary
system matrices

A = A;B =
[
F 0n×p

]
;

C =

[
(∆ − T )ΩC

−(∆ + W )ΩCA

]
;D =

[
T −(∆ + W )ΩCF

0p W

]
.

(14)

Thus, the following theorem establishes a connection be-
tween the frequential approach and the global stability
condition of Theorem 2.

Theorem 5 Suppose that there exists a positive semidef-
inite diagonal matrix ∆ ∈ R

p×p, positive diagonal matri-
ces T, W ∈ R

p×p such that, for A, B, C, D given by (14),

the 2p× 2p−transfer matrix G(z) = C (zI −A)
−1

B +D
is strictly positive real. Then, the function (7) is a Lya-
punov function that proves global asymptotic stability of
system (1)-(2), for any nonlinearity ϕ(·) verifying the
sector condition (3). �

Proof 6 The proof is based on the strictly positive real
lemma, [16, Lemma 7] by considering a given transfer
matrix G(z) and from which an associated asymptotically

stable realization G(z) ≃



A B

C D



 is given. Then, G(z) is

strictly positive real iff there exists a matrix P = P ′ > 0
solution of the following inequality

[
A′PA− P A′PB − C′

⋆ −(D + D′) + B′PB

]
< 0. (15)

Hence, if there exists matrices ∆, T, W such that G(z)
is strictly positive real, then matrix P verifies Inequa-
lity (15).

By replacing the auxiliary system matrices as defined
in (14) in Inequality (15), one gets Inequality (12), with
P = P. If we multiply Inequality (15) on the right by
[x′ ϕ′ ϕ′

+]′ and its transpose on the left, considering the
shortcuts xk = x; ϕ = ϕ(yk); ϕ+ = ϕ(yk+1), one has

x′(A′PA − P )x − 2(ϕ+)′Wϕ+ + ϕ′(F ′PF − 2T )ϕ

+ 2x′(A′PFϕ + A′C ′Ω′(∆ + W )ϕ+ − C ′Ω′(∆ − T )ϕ)

+ 2(ϕ+)′(∆ + W )ΩCFϕ ≤ 0,

which is Inequality (13). Thus, function (7) is a Lya-
punov function that proves asymptotic stability of sys-
tem (1)-(2) for any nonlinearity ϕ(·) verifying the sector
condition (3). �

5 Discrete time Lur’e systems subject to input
saturation

Consider, now, a more general class of discrete-time sys-
tems composed of a linear part, a cone bounded nonli-
nearity and saturating inputs:

xk+1 = Axk + Fϕ(yk) + Bsat(uk); ∀ k ∈ N (16)

yk = Cxk, (17)

where xk ∈ R
n, uk ∈ R

m and yk ∈ R
p are, re-

spectively, the state, control input and output vec-
tor of the system (16)-(17) at instant k. Matri-
ces A, B, F and C are real matrices of appro-
priate dimension. The saturation is defined as fol-
lows: sat(uk)(ℓ) = sign((uk)(ℓ)) min

(
ρ(ℓ),

∣∣(uk)(ℓ)
∣∣), ∀

5



ℓ = 1, ...,m. The scalar ρ(ℓ) > 0 means the symmetric
saturation limit of the ℓ-component of the control input.
The vector ρ ∈ R

m is assumed to be given. In the sequel,
the control law provided by [2] will be considered:

uk = Kxk + Γϕ(yk), (18)

where m×n-matrix K is the state feedback gain and m×
p-matrix Γ is the nonlinear feedback gain associated
with ϕ(·). If Γ 6= 0m×p, the nonlinearity ϕ(·) value must
be available either by model estimation or measuring.
The saturation will be described as a dead-zone nonli-
nearity

Ψ(uk) = uk − sat(uk). (19)

By replacing uk given by (18) and (19) in (16), the closed-
loop model is described, with Acl = A + BK and Fcl =
F + BΓ as

xk+1 = Aclxk + Fclϕ(yk) − BΨ(uk). (20)

Remark 7 Similar to the global stability analysis, the
control law (18) gains should be set such that matrices
Acl and Acl +FclΩC (Acl +FΩC in case of a linear state
feedback) are both Schur.

Let us define the following set necessary to describe the
dead-zone belonging to a generalized sector condition.
For a given matrix H ∈ R

m×(n+p), the set S(H, ρ) is
defined by S

(
H, ρ

)
= {θ ∈ R

n+p;−ρ ≤ Hθ ≤ ρ}.

Lemma 8 Consider m × (n + p)-matrices, K̂ = [K Γ]

and Ĵ = [J1 J2]. If the vector x̂k = [x′
k ϕ′(yk)]′ is

an element of S(K̂ − Ĵ , ρ), then the nonlinearity Ψ(uk),
with uk is defined in Equation (18), satisfies the following
sector condition, with U ∈ R

m×m diagonal and positive
definite

SCuk
= Ψ′(uk)U [Ψ(uk) − J1xk − J2ϕ(yk)] ≤ 0. (21)

�

Proof 9 This proof is straightforward from [23, Lemma
1](see also [3]).

As the main result of this section, the new class of Lya-
punov function will be employed to study the problem
of local stability for system (16)-(17). Let us define this
problem

Problem 2 (Local Stability Analysis) For a given set of
gains K ∈ R

m×n and Γ ∈ R
m×p of the control law (18),

determine a region, in the state space, as large as possible
included in the basin of attraction B0 of the system (16)-
(17), under Assumption 1.

In general, the task of analytically determining the basin
of attraction B0 is difficult. Thus, we will use the level
set LV (1) of the proposed Lyapunov function.

Theorem 10 For given matrices K ∈ R
m×n, Γ ∈

R
m×p, consider as variables, matrices G ∈ R

n×n,
J1 ∈ R

m×n, J2 ∈ R
m×p, a symmetric positive definite

matrix P ∈ R
n×n, a positive semidefinite diagonal ma-

trix ∆ ∈ R
p×p and positive definite diagonal matrices

Q, T, W ∈ R
p×p, U ∈ R

m×m. The inequalities





P − G′ − G G′Acl G′Fcl −G′B 0n×p

⋆ −P Π1 J ′
1U A′

cl
Π2

⋆ ⋆ − 2T J ′
2U F ′

cl
Π2

⋆ ⋆ ⋆ − 2U −B′Π2

⋆ ⋆ ⋆ ⋆ −2W





< 0, (22)





P Π3 (K − J1)
′
(ℓ)

⋆ 2Q (Γ − J2)
′
(ℓ)

⋆ ⋆ ρ2
(ℓ)



 > 0, ∀ℓ = 1, · · · , m, (23)

where Π1, Π2 are defined in (11) and Π3 = C ′Ω (∆ − Q),
are respectively bilinear (BMI) and linear (LMI) matrix
inequalities and allow to obtain an estimate of the basin
of attraction B0 given by the level set LV (1), induced by
the Lyapunov function (7). �

Proof 11 Like in the proof of Theorem 2, Inequality (22)
implies P −G′ −G < 0 and P > 0, such that G is of full
rank, and so −G′P−1G ≤ P − G′ − G. By applying the
change of basis diag(G−1; In+2p+m) with a Schur com-
plement, one gets the inequality





−P C ′Ω [T − ∆] J ′
1U A′

cl
C ′Ω [W + ∆]

⋆ −2T J ′
2U F ′

cl
C ′Ω [W + ∆]

⋆ ⋆ −2U −B′C ′Ω [W + ∆]

⋆ ⋆ ⋆ −2W





+





A′
cl

F ′
cl

−B′

0




P





A′
cl

F ′
cl

−B′

0





′

< 0. (24)

In the following, by multiplying Inequality (24) on the
right by (x′

k ϕ′(yk) Ψ′(uk) ϕ′(yk+1))
′ 6= 0 and by its

transpose on the left, it leads to inequality

δkV −2SCuk
−2SC(ϕ(·), yk+1, W )−2SC(ϕ(·), yk, T ) < 0.

(25)
Also, by applying a Schur complement on Inequality (23)
with respect to the last block, we obtain Inequality

[
P Π3

⋆ 2Q

]
−

1

ρ2
(ℓ)

[
(K − J1)

′
(ℓ)

(Γ − J2)
′
(ℓ)

] [
(K − J1)

′
(ℓ)

(Γ − J2)
′
(ℓ)

]′

> 0. (26)
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By multiplying Inequality (26) on the right by x̂k =

( x′
k ϕ′(yk) )′ and on the left by its transpose, one has the

following inequality V (xk;ϕ(yk)) + 2SC(ϕ(·), yk, Q) ≥

1
ρ2
(ℓ)

∥∥∥(K̂ − Ĵ)(ℓ)x̂k

∥∥∥
2

. Due to the fact that nonlinearity

ϕ(·) verifies the global bounded sector condition, and

by noting K̂ and Ĵ as defined in Lemma 8, we have

V (xk;ϕ(yk)) ≥ 1
ρ2
(ℓ)

∥∥∥(K̂ − Ĵ)(ℓ)x̂k

∥∥∥
2

, which induces the

inclusion
LV (1) ⊂ S

(
K̂ − Ĵ , ρ

)
. (27)

Thus, the general sector condition (21), related to the
dead-zone, is verified inside the level set LV (1). Due to
inclusion (27), the local sector condition SCuk

≤ 0 for
the dead-zone is verified inside LV (1). This implies, with
the aid of the Inequality (25), that δkV < 0, ∀ x ∈
LV (1) (x 6= 0). Hence, the asymptotic stability is proved
inside the set LV (1). �

Based on the BMI and LMI in Theorem 10, it is possible
to build an optimization problem maximizing the size of
LV (1) or of the ellipsoid E(P +2C ′Ω′∆ΩC). The choice
has been made to define the size of an ellipsoid as its
minor axis. Its maximization consists in minimizing the
greatest eigenvalue of P + 2C ′Ω′∆ΩC. This can be in-
terpreted as maximizing the size of a ball included in the
ellipsoid. Other choices are also possible, such the trace
minimization, the maximization along certain directions
or the volume maximization under modified constraints
(see for more details and a discussion between these cri-
teria [22, Section 2.2.5.1] and [5]). By introducing the
variable R ∈ R

p×p, and a scalar µ, the optimization pro-
blem

min
µ, G, P, J1, J2, Q, R, T, U, W, ∆

µ

subject to BMI (22); LMI (23) and LMI

[
µIn − P −C ′Ω [R + ∆]

⋆ 2R

]
> 0 (28)

maximizes the radius of the ball E(µIn) verifying

E(µIn) ⊂ LV (1), (29)

because, by multiplying the Inequality (28) on the

right by x̂k = ( x′
0 ϕ′(Cx0) )′ and on the left by its

transpose, one gets the following inequality µx′
0x0 +

2SC(ϕ(·), Cx0, R) ≥ V (x0;ϕ(Cx0)). As ϕ(·) verifies the
bounded sector condition, the inclusion (29) is then
satisfied.

Remark 12 The Inequality (22) is a BMI. This induces
numerical difficulties. By imposing U = Im, it becomes a
LMI which is more convenient to cope numerically with,
even if it leads to a suboptimal solution. An other way
to circumvent the bilinear nature would be to consider

U = αIm, where α is a free scalar and using a line-search
procedure (or to consider an iterative algorithm similar
to [6] or to [8]). U = Im will be considered in the sequel
of the paper for a sake of clarity.

In the following, numerical examples are shown to high-
light some special features related to Theorem 10.

Example 2: Consider system (16)-(17) controlled by a
linear state feedback with n = 2; p = m = 1; ρ = 1.5,

Ω = 0.9, where ϕ(y) = Ω
y(1+cos( 100

3 y))

2 . The matrices are

A =

[
0.85 0.4

0.6 0.95

]
; B =

[
1.3

1.2

]
; F =

[
1.3

1.2

]
; C ′ =

[
−0.5

0.9

]
.

The LMI set of [2] provides K =
[
−0.3324 −1.0006

]

such that matrix Acl+FΩC has eigenvalues in {−0.1047;
0.6588} and we wish to estimate the basin of attrac-
tion. This estimate is performed by applying Theorem 10
and is compared to the one obtained via the quadratic
Lyapunov function in the framework of [2]. By applying
Theorem 10, one gets µ = 0.2810, with ∆ = W = R =
0.0381; T = 0.2424; Q = 0.2323; J2 = 0.5188; P = G =[
0.0418 0.0173

0.0173 0.2305

]
; J1 =

[
−0.0804 −0.6335

]
. By applying

the method proposed in [2], the estimate of B0 is given

by the ellipsoid E(P̃ ), where P̃ =

[
0.0865 −0.0470

−0.0470 0.4310

]
.

With respect to the basin of attraction B0 estimate, it
is possible to see, in Fig. 4, that our estimate, given
by the set LV (1), presents nonconvex and disconnected
sets (solid lines). The bounding paraboloids (dot-dashed
lines) and the largest sphere E(µIn) (dashed line) are

also depicted, in addition of the ellipsoid E(P̃ ) (dot-
dashed lines). For this example, we point out that the

ellipsoid E(P̃ ) is included in our estimate LV (1). By
comparing the areas of both estimates, AE(P̃ ) = 16.7742

and ALV (1) = 28.3666, we can stress here that the im-

provement is around 65%. Two initial conditions, x1
0 =

(4; −1.45)′ and x2
0 = (−2.55; 1.88)′, are shown in Fig. 4

(dot-square-star and dot-diamond-cross). Both are set-
tled in the disconnected sets of LV (1). The trajectories
are depicted as dot-star and dot-diamond respectively
and it should be pointed out that every point is placed
inside LV (1). It is exposed in Fig. 5 the trajectories with
respect to the discrete time, x1

0 at top and x2
0 at bottom.

One can notice that the system is asymptotically stable.

Example 3: Consider, now, the system (16)-(17)
with n = p = 2, m = 1, ρ = 5, Ω(1) = 1.5, Ω(2) = 1

where ϕ(ℓ)(y) = Ω(ℓ)
y(ℓ)(1+cos(30y(ℓ)))

2 ∀ ℓ = 1, 2. The
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by Theorem 10. Two trajectories for two initial conditions
inside disconnected LV (1), x1
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Fig. 5. Asymptotically stable trajectories x1
k (top) and x2

k

(bottom) generated from x1
0 and x2

0 respectively – state com-
ponents: xk,(1) with ’+’ and xk,(2) with ’×’.

matrices are

A =

[
−0.5222 −1.1556

−1.0111 0.9222

]
;F =

[
0.0798 0.6812

−0.7494 1.1863

]
;

C =

[
−0.2873 −1.6615

−0.9935 −1.1436

]
;B =

[
0.0489

−1.0918

]
.

The control gains, associated with the optimal solution
of the framework proposed in [2], are given by K =[
−1.2209 0.4497

]
and Γ =

[
−0.7030 1.5212

]
. We apply

Theorem 10 and one gets µ = 1.1433 as solution of the
optimization problem. The numerical results are given

by J1 =
[
−0.1893 0.4456

]
, J2 =

[
−0.0501 0.1971

]
,

P = G =

[
0.1982 0.1935

0.1935 0.5204

]
;Q =

[
0.0578 0

0 0.1767

]
;

∆ = W = R =

[
0.0069 0

0 0.1036

]
;T =

[
0.0032 0

0 0.1174

]
.

Applying the result of [2] leads to the estimate E(P̃ )

of B0, with P̃ =

[
0.4146 0.4659

0.4659 0.9261

]
. The estimates of the

basin of attraction B0, LV (1) and E(P̃ ) are depicted in
Fig. 6. As in the previous example, LV (1) is noncon-
vex and disconnected. Numerically one gets AE(P̃ ) =

7.69 and ALV (1) = 9.7299, which means an improve-
ment of 26.53% of the estimate of B0 with our approach.
Moreover, due to the fact that Theorem 10 provides suf-
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Fig. 6. Estimation set LV (1) (solid line) obtained by The-

orem 10. The largest ball E(µIn) (dashed line) and E(P̃ )
(dot-dashed line) are depicted. Markers ’+’ represent the ini-
tial conditions x0 = [x0,(1); x0,(2)]

′ for which the associated
trajectories are unstable.

ficient conditions, the question about the gap between
the basin of attraction and its estimate LV (1) may arise.
That is, is there a better estimate (for instance the ellip-
soid set E(P )) of the basin of attraction? Hence, we have
analyzed the trajectories related to initial conditions be-
longing to this set, x0 ∈ E(P ), including the set LV (1).
The initial conditions associated with an unstable tra-
jectory are depicted as ’+’ markers on Fig. 6. There is no
marker inside LV (1), as expected, but it can be seen that
numerous points x0 ∈ E(P )/LV (1) are associated with
an unstable trajectory of the system (16)-(17). This im-
plies that E(P ) cannot be an estimate of the basin of at-
traction (at least for this nonlinearity ϕ(·)). In addition,
the points located between the disconnected sets LV (1)
draw attention and point out that the set LV (1) is here
well suitable to estimate B0. Thus, we have exposed an
interesting feature of this new Lyapunov function be-
cause the level set LV (1) is a less conservative estimate
of the basin of attraction B0 for the class of systems de-
fined by (16)-(17) than an ellipsoid.

Remark 13 To illustrate Remark 12, we consider U =
αIm and the line-search procedure on Example 2. The
comparison in Table 1 underline that our choice α = 1
– in this case – is not so conservative.

Theorem 10 Theorem 10

with U = I1 with U = 1.23I1

µ 0.2810 0.2789

Area of LV (1) 28.3666 26.6061

Table 1
Comparison between the approaches of Remark 12 on Ex-

ample 2.
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6 Conclusion

In this paper, it is presented a new Lyapunov function
which was considered to address several problems of sta-
bility of discrete-time Lur’e system. The great feature of
this new Lyapunov function is that the stability condi-
tions were derived only with the help of the cone bounded
sector conditions. The assumption about the nonlinea-
rity bounding derivative (or variation) is not necessary,
in contrast to the frameworks based on the Lur’e-type
function. By considering the proposed function, LMI
conditions for the global stability problem were formu-
lated. Also, we have stated that the existence of such
Lyapunov function is related to the strictly positive re-
alness of an auxiliary system transfer matrix. Further-
more, in case of an input saturation for a given linear
state and/or nonlinearity feedback, the proposed func-
tion is employed to derive an optimization problem un-
der LMI constraints. The aim is to enlarge an estimate
included in the basin of attraction. Several examples are
given to highlight some special characteristics of this
new Lyapunov function such as an estimate composed
of disconnected and/or nonconvex sets. The examples
illustrate that this estimate is less conservative than el-
lipsoidal domains related to quadratic functions.
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