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Abstract—Substantial drag reductions are observed when microbubbles are injected at a surface. A
simple analytical formulation for this phenomenon is presented in this paper. It is based on an
argument developed by Lumley [Physics Fluids 20(10), S64 (1977)]. Following this argument,
particles having certain physical properties could affect the turbulence in the buffer layer and thus
increase the sublayer thickness with, as a result, a drag reduction. A simple model is derived from
this concept and compared to the data obtained by Madavan et al. {J. Fluid Mech. 156, 237 (1985)]
right downstream of the injection section. The agreement is good which tends to prove that this
approach is physically meaningful.

1. INTRODUCTION

Evidence of drag reduction due to microbubble injection is given in numerous experiments.
A complete survey of the literature has been recently reported [3,4]. Unfortunately, even
in the work of Madavan et al. [2], which is very well documented, velocity and turbulence
measurements turned out to be impossible because the boundary layers investigated were
too thin. For this reason, the physics of such boundary layers remains unknown and the
mechanisms of drag reduction very questionable.

According to Legner [3], three effects could be involved in the process: a reduction of
the mixture density, an increase of its effective dynamic viscosity and a turbulence modi-
fication in the boundary layer. He derives a simple model on these assumptions. The new
viscosity is evaluated from the empirical correlation of Sibree [5] and the effect on turbulence
is represented by an adequate eddy diffusivity term. He obtains an analytical expression for
the decrease of the shear stress, which fits the experimental data of Bogdevich ef al. [6]
quite well.

The increase of the sublayer thickness, as the main mechanism responsible for the decrease
of skin friction in polymer and particulate flows, is an idea that was first proposed by
Lumley [1, 7]. Madavan et al. [8] suggested that the same concept could be used to discuss
the action of microbubbles on the wall turbulence. From this remark, they tackled the
problem of modeling through a numerical approach [4]. They proposed a phenomenological
model in which the influence of the bubbles is simulated by allowing the viscosity and
density to vary locally as a function of a prescribed bubble concentration profile. Since the
latter profile itself varies downstream with the distance from the injection, it is clear that
the mixture can be described by means of a compressible flow analysis. The model is
introduced in a numerical code well-tested in compressible boundary layers. A parametric
study of the bubble location in the boundary layer, of the peak of concentration and of the
viscosity of the mixture is performed. The results of the calculations are of the same order
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Fig. 1. Typical gas concentration profile in the boundary layer. Line with symbols: measurements of
Bogdevich et al. [6]. ------ : approximate profile.

1]

of magnitude and exhibit the same trends as the experimental drag reduction measurements
reported in the literature.

This paper is an attempt to describe the effect of the microbubbles through an analytical
form. Due to its simplicity, this formulation could provide useful bases for the development
of future sophisticated numerical codes. The size of the bubbles concerned by our approach
ranges from 20 to 50 um. Above this upper limit no more drag reduction is observed [6]
and above 1 mm significant increases of the wall shear stress are expected [9]. As in [8], the
drag reduction is analysed by assuming that the increase of the sublayer thickness is the
main consequence of the action of the bubbles on the turbulence in the buffer layer. This
increase is evaluated and the resulting reduction of the friction coefficient is then calculated
by a simple analytical relationship. The predictions obtained are quite encouraging.

2. BASIC STATEMENTS

The structure of turbulent boundary layers containing microbubbles is likely to be too
complex to allow a general theory to be elaborated. Simplifications are necessary. It is
chosen to disregard the influence of certain essential parameters such as the exact shape of
the concentration profiles, their streamwise evolution, the effect of buoyancy and of the
bubble size. Attention is essentially focused on what happens in a section located immedi-
ately downstream of the trailing edge of the porous plate used for microbubble injection, that
is, where the drag reduction is maximum. At this location, observations from experiments of
various authors [6, 8] exhibit the following facts. The bubble concentration rapidly increases
to a maximum (which can sometimes reach 0.6 or 0.8) and then gradually returns to zero
in the free-stream. Moreover for reasons still unclear, microbubbles are completely absent
in the viscous sublayer. A typical concentration profile drawn from the Soviet measurements
[6] is displayed on Fig. 1. For the sake of simplicity, this profile is approximated by a
rectangular step distribution with a zero value within the sublayer and a constant maximum
value ¢,, in the wall layer. Similar simplifications were made by Legner [3] and Madavan
et al. [4]. Denoting by Quupwies the volumetric concentration of microbubbles and 0, the
total volumetric concentration (liquid and bubbles) per unit width of boundary layer, one
gets

Qbubbles
_ Kbubbles 1
¢m Qtotal ( )

Now, let us examine how the wall turbulence scales before the microbubbles are injected.



Analytical formulation for microbubble drag reduction 215

.
.

///&
?/4

LoG v

(%

/
_

LOG KY

Fig. 2. Scaling relations in the viscous and inertial sublayers, with and without microbubbles. Adapted
from {10].

This point has been thoroughly discussed by Lumley [10] in a particularly convincing
graphical form. Tt is briefly recalled here: “In the logarithmic layer there is no relevant
length other than Y, the distance from the wall, so that the energy-containing eddies must
scale with ¥”. On the energy spectrum, this corresponds to a wave number roughly equal
to the inverse of Y, that is KY = 1. Denoting by ( )", the variables non-dimensionalized
by U * (the friction velocity) and v, (the kinematic viscosity of the fluid alone), this equation
becomes

KiYs =1 @)

where Y = YU*/v, and K5 = Kvo/U*. Besides, the peak of dissipation for Newtonian
turbulence is proved to occur at K ¢ = 0.2 (see [11]) where 7 is the Kolmogoroff length
scale. A simple scaling analysis from the momentum and kinetic energy equations shows
that ng =(x¥s")"* where y, stands for the Karman constant. Thus the equation for the
maximum of dissipation reads

K¢t (r¥¢")! =02 &)

On a logarithmic plot (Fig. 2) equations (2) and (3) appear as two lines A; and A,. As
quoted by Lumley : “The point where they meet Y™ = 5o = 6.35 marks roughly the outer
edge of the viscous sublayer. As a matter of fact, from dynamical considerations, itis known
that turbulence can only maintain itself energetically when the scale of the energy-containing
eddies is larger than the scale of the dissipative eddies. Since at the point of intersection,
the two scales are of the same order, the turbulence becomes essentially dissipative in
character and closer to the wall it cannot sustain itself”.

At this level the question is what the action of microbubbles on the turbulence may be.
Microbubbles are particles which are approximately three to five times larger than the
smallest eddies of the flow, i.e. than the Kolmogoroff’s length scale. As a result, even if the
flow field around a microbubble is locally unsteady, the corresponding added mass term
should be negligible. Since this term contributes to confer an apparent inertia to microbubbles,
the latter can be considered as particles with small inertia. Referring to another study by
Lumley [1], we deduce that they likely poorly affect the turbulence by making the dissipation
process more efficient, like for certain solid particles. Hence the most probable effect to be
expected is both a reduction of the density and an increase of the dynamic viscosity in the
region where the microbubbles concentrate, i.e. in the wall layer. From some experimental
observations in particle-laden flows [12] it is reasonable to assume that the latter layer still
exists with a logarithmic velocity profile which conserves its usual slope. In this perspective
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such an alteration of the physical properties will have the following consequences on the
diagram in Fig. 2. We assume that the liquid flow rate is adjusted, so that the friction
velocity remains constant and equal to its initial value U* before gas injection. Under these
conditions, the sublayer, which is free of bubbles, scales with v,, while the inertial layer,
located above, scales with the new kinematic viscosity v. Thus the two lines A, and A, are
now given by

K*Y* =1 4)
K*(xYH" =02 (5)
which, expressed in terms of the initial viscosity v,, is also equivalent to
Ky Yd =1 &
Ko (Y = 0.2(v0/v)* Q)

v is larger than v,; it means that the peak of the energy-containing eddies (line A, in Fig.
2) remains unchanged whereas the peak of dissipation is translated on the left in A%. The
important result is that the point where the two lines intersect is shifted upward in

v

Yt =s5s=8,— 8
§ SovO 3

causing an apparent thickening of the sublayer. In other words, the small eddies of the
buffer layer are killed by the increase in kinematic viscosity and so the turbulence is wiped

away from the wall. Therefore, the logarithmic profile, whose existence and slope is supposed
to be unaffected by the microbubbles, will translate upward, following the equation

U o
U~
where C is larger than the constant C, in single-phase flow. The increase C-C, 1s easy to

relate to the thickening of the sublayer. As a matter of fact 5o and s are defined as the
intersection of the linear velocity distribution and the logarithmic one. Consequently

1

1
S(] =£1n So+C0 (10)
11 +C an
S=—inJys
X
which yields
1
C—cozso(i—-})—~1nl. (12)
Vo X Vo

However it must be stressed that the value of s, derived from equation (10) is greater than
6.35. As a matter of fact, choosing y = 0.41 and Cy = 4.9 as usual leads to a thickness value
of order 10.5. The latter will be used in the next calculations. Let us now examine the
implications of this process on the friction coefficient.

3. EVALUATION OF THE DRAG REDUCTION

Attention is focused on the fact that all the calculations in this section are performed at
constant U*. The friction laws without and with microbubbles are respectively written as
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ug 2 VW21 U*S, 211,
L=l =-1 C 13
U* (CF0> My, Tty (13)
U~ 2\?2 1. U*S 201,
“i]";—-<—C-F> —ilnfvff-*‘c—l—‘&-‘ (14)

where 2I1,/y is the wake function introduced by Coles [13] and & the boundary layer
thickness. It implies that microbubbles, unlike larger bubbles [9], do not have any effect on
the wake component of the velocity profile which is an admissible hypothesis, referring to
the literature concerned with particle-laden flows [14]. In order to simplify, § is supposed
to be only slightly different from J,. It leads to

7 \I/2 2 \2
(6?) “(ﬁ) =C-G (1)

C—C, is known from equation (12). Thus

CF C‘FO’/Z( (v ) 1 vﬂ‘Z
('éf)u‘[”‘(‘é‘) 1054, =) =5 )0 (16)

The problem now consists in modeling the action of the microbubbles on v. The density of
the mixture in the wall layer is defined as

p=po(l—n)+pPm a7
where p,; is the gas density. Since p; < p,, the effective density can be approximated by
p~ po(l—ay). (18)

Concerning the dynamic viscosity, several solutions are possible. Because of their small
size, microbubbles behave as rigid spheres. That is, their interface is perfectly spherical and
undeformable. For a dilute suspension of such particles, Einstein [15] proved that its
effective viscosity could be successfully estimated by

= po(1+2.5¢). 19

Since this relationship was derived in the case of negligible particle interactions it is not
expected to be well adapted to the present situation. This is why the formulation of Batchelor
and Green [16] can be a priori preferred. The latter formulation applies to rigid spherical
particles of uniform size interacting in a statistically homogeneous suspension. Practically,
it is an extension of equation (19) with an additional term of order ¢?, whose coefficient is
calculated from theoretical considerations. This coefficient is a function of various par-
ameters of the flow field. In particular, it depends on the probability density for the vector
r separating the centres of two adjacent particles. Due to the turbulent mixing existing in
microbubble layers, a density uniform in all the directions seems to be an assumption
physically acceptable. Then

p=po(1+2.5¢+52¢%). (20)

Equation (20) was derived for a monodisperse suspension. This is why it should be valid
in principle for low gas concentrations. Nevertheless, one will see in what follows, that it
works quite well at higher concentrations. In addition, for very small particles, for which
the Peclet number is small, the Brownian motion may also give a contribution to the
viscosity (Batchelor [17]). Therefore, this effect should be taken into account here. However,
for a uniform probability density, the coefficient of ¢ is shown to be 6.2 ([17]), when
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Brownian motion is considered. This is a minor correction, which appears as an excessive
refinement, regarding the simplicity of our approach. Consequently it is neglected. The
expressions of v associated with the two previous viscosity models are respectively

_ 14259,
=g @n
1425 52¢,

-y R 2 22)

In most experiments (see for example [2] or [8]) ratio CF/CF, is measured in keeping
constant the liquid velocity at infinity. So, in order to make a comparison between the
theory and these measurements, equation (16) must be corrected. For that purpose the
following argument is used. For a single-phase turbulent boundary layer developing on a
smooth flat plate the friction law is given by the well known formula [18]

CFy Uy ( 3%() e
o = oy = 0.0296( 23
2 Ug? Vo 23)

where X is the downstream distance. From the above and by analogy with (23) the friction
law in presence of microbubbles can be expected to be of the form

CF U*? CF,\"? U=~xy '
i Je———— e e
2 Uooz & <( 2 ) ad)m v . (24)
This being accepted, the ratio of CF to CF, at constant U * reads
CF F [UucY'?
b T nmens | o . 25)
CFy JU%w 0.0296 \Ug
Now U*/Us* in the left hand side of (25) is nothing else but (CFy/CF)}/2, . so that finally
CF 9/10 g;'
“~> = (26)
CFy Jugonst 0.0296
In the same way, this ratio taken at U® constant is equal to
CF F
Bl . — 2
(CF())U“OCOHSK 0.0296 ( 7)
We conclude that the relationship between the two ratios is
CF CFY!"?
(&) (D
CF() U “const CF() U onst ’

and hence

CF : CFO)‘/2 ( (v ) 1. v )]‘9/5
—— = {1+ |— 105 ——1)~~1In— . 29
(C’FO)U”’Jconst [ ( 2 Vo X Vo ( )

Equation (29) is compared with the measurements of Madavan et al. [2]. The data selected
for the comparison were obtained from a flush mounted hot film located at 51 mm down-
stream the injection section. No investigation was performed closer to this section, even in
the other experiments of the literature. Moreover these data correspond to the situation
where the plate is above the boundary layer. Thus the migration of the microbubbles
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Fig. 3. Effect of microbubbles on the local skin friction. Symbols: measurements of Madavan ef al. [2];

U® =10.7m/s [J; 4.6m/s V; ¥ is used for the probe located at 102mm. Lines: predictions; ------
Batchelor viscosity model; Einstein viscosity model.

out of the boundary layer still exists but is less pronounced than in the opposite case (plate
below the boundary layer). Calculations were made by using: first, Einstein’s viscosity
model (curves 1 and 2) and second, Batchelor—Green’s viscosity model (curve 3). The
agreement between Einstein’s model and the measurements is excellent. But since equation
(29) is valid for a section located at the trailing edge of the injection area, such a good
agreement requires special comments. As a matter of fact as one moves 51 mm downstream
the probe location, one can observe in Fig. 3 that for a given concentration, the skin friction
ratio increases significantly. This means that drag reduction is less important, due to the
migration process aforementioned. From this physical argument, one can expect a decrease
in the same proportion, if one moves 51 mm upstream. This tendency would involve that
the experimental data be then better fitted by Batchelor-Green’s formula than by Einstein’s
one. Henceforth, it is reasonable to think that microbubble interactions are to be taken into
account in the modeling. The main problem is the choice of an adequate viscosity formu-
lation. According to [4], Sibree’s correlation is proven to work satisfactorily. The present
study indicates that the Batchelor-Green model also provides acceptable predictions. In
such conditions, more assertive conclusion could be drawn provided that measurements
were performed at the immediate vicinity of the trailing edge of the injection section.
Finally, it is to be noted that over the parameter range investigated in Fig. 3, liquid
velocity has very little influence on the drag reduction, which is confirmed by equation (29).

4. CONCLUDING REMARKS

The present work is an attempt to give a simple analytical formulation for microbubble
drag reduction. This formulation is derived by assuming that the sublayer thickening is a
highly probable mechanism in the reduction process. It leads to a model which is tested
against the experimental data available in the literature. The predictions delivered by this
model satisfactorily reproduce the trends and the order of magnitude of the measurements
obtained close to the injection section. However a complete validation of the theory is not
possible without a detailed experimental description of the corresponding boundary layers.
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In particular, measurements of the velocity and of the gas concentration near the wall
would be very useful to check the existence of a sublayer thickening and better analyse the

in

fluence of microbubble migration.
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NOMENCLATURE

C constant in the logarithmic profile

CF skin friction coefficient

K wave number

0 index for single-phase flow

Ouunsles  voOlumetric concentration of microbubbles per unit width of boundary layer

Orol total volumetric concentration (liquid and bubbles) per unit width of boundary layer

s non-dimensional sublayer thickness

U mean liquid velocity

u» mean liquid velocity at the infinity

U* friction velocity

Y distance from the wall

I boundary layer thickness

i molecular viscosity

y kinematic viscosity

2mfy wake strength in the defect logarithmic profile

p density

¢ bubble concentration in the boundary layer

P maximum bubble concentration in the boundary layer

X Von Karman’s constant

() non-dimensionalisation by U* and v,,.
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