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We study the average velocity of crack fronts during stable interfacial mode I fracture experiments
in a heterogeneous quasi-brittle material under various loading rates, at imposed loading speed or
during long relaxation tests, exploring subcritical to critical regimes. Transparency of the material
(PMMA) allows to track continuously the front position and to relate its evolution to the energy
release rate. Despite significant velocity fluctuations at local scales [1], we show that a model of
independent thermally activated sites successfully reproduces the large scale behavior of the crack
front for several loading conditions.

I. INTRODUCTION

Fracturing of materials is an important scientific issue
that is strongly related to the strength of engineering
structures and natural materials such as rocks [2], sea ice
[3] and wood [4]. The mechanisms responsible for the
onset and evolution of crack propagation are of central
importance for the assessment of such failures [5]. In the
general context of fracture mechanics, several regimes of
behavior are often reported. According to the Griffith
energy balance concept, in a quasistatic regime the en-
ergy release rate G is roughly constant and equal to a
material dependent critical energy release rate, G ∼ Ggr

[6]. This critical energy release rate Ggr is the free energy
per unit surface area associated with the creation of new
crack surfaces. In unstable configurations or during fast
loading the kinetic energy becomes important, leading to
a dynamic regime [7, 8]. In the slow unstable regime, i.e.
at rupture velocity lower than the Rayleigh wave speed,
the crack propagation speed is roughly proportional to
the difference between G and Ggr (e.g. [9]). However,
in these brittle regimes, the propagation is strongly con-
trolled by the loading type (imposed stress or imposed
displacement), the loading rate and the material rheol-
ogy. Modeling approaches in these cases are typically
based on the LEFM approximation [10].

Rice [11] generalized the Griffith concept of fracture
in the framework of irreversible processes (second law of
thermodynamics). This formalism introduces some con-
sequence on the kinetic aspects of crack propagation, in
particular it allows slow propagation of fracture (much
below the Rayleigh wave speed) for energy release rate
lower than the Griffith critical energy release rate Ggr.
In consequence this slow kinetic crack propagation is
usually referred to as sub-critical crack growth or sub-
critical regime. Statistical physics models suggests that
this sub-critical regime is governed by a thermally acti-

vated mechanism where the strain rate often obeys an
Arrhenius law, i.e. corresponds to a Boltzmannian of the
gap to a critical energy level, Gc −G [6, 12, 13]. In this
approach, the crack growth is directly influenced by envi-
ronmental factors (applied stress, temperature, chemical
concentrations) that are affecting the free energy, and
thus the energy barrier, via numerous competing mech-
anisms like stress corrosion, diffusion, dissolution, plas-
ticity and thermal effects [2, 6]. Experimentally, several
empirical relations have been often reported to divide
the slow crack propagation in three main characteristic
regimes [14]: in a first regime I, at very slow velocity, ex-
ternal variables are dominant and result in an increasing
speed of crack growth with increasing G; a weak stress-
sensitive regime II follows where transport is limiting.
At higher stress, regime III appears and crack growth
kinetics become similar to the case without environmen-
tal effects. Different kinetic relations other than the Ar-
rhenius law have also been reported to describe the slow
crack growth. These relations are generally inferred from
fitting an empirical formulation to experimental data on
a G− v̄ diagram where v̄ is the crack velocity. Such rela-
tions involve for example, power laws with low exponent
[15] or with high exponent when the crack propagation
is more sensitive to chemical reaction rate [16, 17]. To
simplify the relationship between strain rate (i.e. crack
front advance) and stress, some models consider that the
crack propagation speed is roughly proportional to the
difference between G and an energy release rate thresh-
old, or to a power law of this difference, i.e. a Paris’ law
(e.g. [18–20]). The Arrhenius form of the kinetic frac-
ture evolution is appealing as it has a certain universal-
ity (associated to statistical mechanics), is related to any
thermally activated mechanism at the molecular scale,
can deal with the stress dependence of such mechanism,
and can be derived from first principles, as the theory
of process rates[6]. Such a relation is also supported by
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experimental data [2, 21] and if the dependence of the
free energy G on the strain can be adequately linearized,
a logarithmic time dependence of the strain, and of the
force, can be derived. This is observed for many creeping
systems, as e.g. in different granular systems displaying
a time logarithmic deformation (or force) during the slow
relaxation [22–24].

For heterogeneous materials, crack propagation is how-
ever influenced by local variations of the material proper-
ties, micro-structures, thermal fluctuations, development
of a process zone, etc [25]. The interplay of the differ-
ent contributions to the crack growth makes its analysis
a complex problem. It is indeed difficult to discriminate
the part of each contribution observing the evolution of a
crack advance at a microscopic level. In terms of macro-
scopic strength, the failure of brittle materials with weak
flaws are typically described by Weibull statistics of the
flaw strengths which rely on the weakest-link approach
and extreme-value statistics [26]. A departure from this
class of materials is exhibited by quasibrittle materials for
which ductile behavior around the crack tip imposes an
elementary representative volume of non negligible size
compared to the sample size. These materials show sig-
nificant scaling or size effects in particular at very low
loading rates [27]. The question of possible intermediate
scales between the microscopic flaw scales and the sample
scale when brittle and ductile local rheologies are com-
peting, is an active field of research. In particular when
time effects come into play the former regime being dom-
inated for processes in series, the latter for processes in
parallel, depending on the loading geometry [28, 29].

The interfacial crack propagation configuration has
long been a favorable experimental situation for fine mon-
itoring of crack propagation. It consists of a single can-
tilever beam configuration with a propagation along a
weak interface. For brittle material like mica, it was the
first setup to enable measurements of fracture energy [30].
In the case of quasibrittle materials (e.g. PMMA), it pro-
vided the first detailed observation of the morphology of
the crack front [31, 32]. This makes it possible to measure
the distribution of the local velocities of the crack front,
which display at small scales an intermittent behavior
[1, 33]. Recently, the impact of the loading regime on
the local dynamics of the crack was investigated [33]. It
was found that the scaling properties of the crack front
remain unchanged in both high and slow speed limits,
suggesting that a common mechanism might be operat-
ing in these two regimes. This was the case both for the
front geometrical properties (scaling of the front rough-
ness), and for the time and space scaling properties of
the velocity fluctuations. The interfacial configuration is
also favorable for numerical simulations since it reduces
the roughening of the crack front to an in-plane problem.
Two modeling approaches are followed: a microscopic de-
scription of the crack front as a continuous line [9, 34–36]
and fiber bundel models in which a discrete population of
active sites are competing under various interaction rules
[37–41].

We focus here on the experimental description of the
spatially averaged velocity of the crack front in the inter-
facial fracture configuration, under various loading con-
ditions, at the transition between sub-critical and critical
propagation. Our heterogeneous medium consists of an
interface between two PMMA plates with small tough-
ness fluctuations [42]. Each local asperity is the site of
a depinning transition which leads to a progressive lo-
cal advance of the crack front. By taking advantage of
the transparency of our sample, we obtain a direct opti-
cal monitoring of the global evolution of the crack. Two
types of loading are explored: low imposed loading speed
(up to 1 mm/s) and relaxation test at fixed load point
displacement. In both loading regimes, we compare the
average crack velocity to the loading velocity or the en-
ergy release rate. In a second part of the manuscript,
we show that the large scale evolution of the crack front
velocity can be explained by a simple model of a popula-
tion of statistically independent but temperature sensi-
tive microscopic active sites, slowly evolving, i.e. follow-
ing an Arrhenius law. This assumption will be checked
by comparing this simple model with experimental data.
Numerical solutions of the model correctly describe the
experimental behaviors for time scales spanning over 6
orders of magnitude and for both loading types. The
determination of the parameters of this subcritical crack
growth law from the experimental data, allows to de-
termine a characteristic size of the individual breaking
bonds in this material around 10−11m, a scale compa-
rable to the separation of individual molecular elements
but below the scaling range of the crack front (10µm to
10mm), similar to the scales determined for granite [43]
or for paper [44] and numerous materials [13].

In addition to the numerical solutions of the full equa-
tions, simple analytical expressions of the front posi-
tion evolution in these two regimes (imposed loading
speed or relaxation) are derived under several approxi-
mations. Notably, a slow time-logarithmic relaxation is
found, and its parameters are interpreted. Another result
of this numerical treatment is that the Griffith regime,
for which at imposed loading velocity stays roughly con-
stant, G ∼ Ggr, is derived as a result: it is to be a par-
ticular case, for large enough loading velocities, resulting
from the Arrhenius law with stress activated microscopic
sites and linear elasticity describing the dependence of
the stress on the large scale geometry.

II. EXPERIMENTAL ANALYSIS

A. Sample Preparation

We use two transparent polymethylmethacrylate
(PMMA) plates, one narrower than the other, to prepare
our transparent sample. The dimensions of the plates
are 20 cm× 10 cm× 1, 0 cm and 23 cm× 2, 6 cm× 0, 5 cm
respectively for the large and the narrow plate. First,
we sandblast one surface of the narrower plate with glass
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beads of diameter φ (φ ∈ [180 − 300]µm). The blasted
plate is cleaned to remove any electrically attached glass
beads. Then we assemble the two plates in a stiff alu-
minium frame with the blasted surface facing a surface of
the larger plate. Finally, we subject the assembled plates
to a homogeneous normal load of 3 MPa and heat the
assembly in an oven at 190◦C for 45 minutes to anneal
the plates. The thermal annealing produces a cohesive
interface that is weaker than the bulk and constrains the
sample to break in mode I along the prescribed inter-
face. The glass bead blasting introduces random hetero-
geneities in the surface topography that provides surface
roughness and controls the local strength at the inter-
face. The induced microstructure at the interface makes
the sample opaque, but the newly formed block, after
annealing, recovers its transparency since contrast of the
refraction index along the interface disappears.

B. Acquisition and Image Processing

Once the sample is ready, we clamp the large plate to
a stiff aluminium frame. A stepping motor applies the
loading over the tip of the narrow plate in a direction
normal to the plate surface (see Figure 1). The contact
on the plate is imposed by a freely rotating rod (using
ball bearing), made of a low friction coefficient material
(polyamide PA 6.6). This implies that a minimum shear
force is actually acting on the loaded plate which pre-
vents mode II loading of the fracture tip. We measure the
vertical displacement at the loading point with a linear
variable differential transformer (LVDT) and the force
load by an STC 1205 traction/compression transducer.
Displacement and force are measured with a resolution
of 1, 3µm and 2, 4 · 10−3N respectively. The vertical dis-
placement imposed on the narrower sample induces the
stable propagation of a mode I planar fracture along the
prescribed interface. The loading velocity varies for each
experiment within the range [6µm ·s−1; 600µm ·s−1] and
is zero during creep tests. This leads to null front velocity
at the start of experiments and maximum front velocities
of the order of 3 · 103µm · s−1. The total advance of the
crack front achieved during an experiment is typically of
the order of 1 cm.
We monitor the fracture front by optical means. A cam-
era (Nikon D700) with up to ∼ 5 frames per second is
used to follow the crack front propagation. The images
have a dimension of 4256× 2832 pixels and the resolution
is in the range of 5 − 10µm/pixel. Figure (1) represents
a scheme of the experimental setup configuration. Opti-
cal images of the interfacial mode I rupture are divided
in bright and dark regions representing respectively the
cracked open and unbroken sections of the sample. Im-
age processing aims at obtaining the transition between
the bright and dark areas of the images representing the
transition between the broken and unbroken regions that
define the fracture front. We first compute the difference
of the graymaps between each image and the first image

of the experiment. This first step highlights the difference
at the two stages of the fracture process while removing
permanent artifacts associated to index variations in the
material. Then, grayscale images are transformed into
black and white images according to a threshold value
which represents the gray level separation between the
bright and dark regions. The gradient of this last image
is used to extract the largest cluster of connected pixels
with non-zero gradient, which are assumed to represent
the front position, a(x, t). The front propagates on av-
erage along the y axis where the origin is defined at the
free end of the plate and is positive in the direction of
propagation of the crack. The x axis is perpendicular
to the y axis and defines the coordinate of a point along
the front. t is the time, and a(x, t) is the y position of
the front at lateral position x and time t. We compute
from each profile the average front position ā(t). For a
more complete description of the image processing, see
references [1, 42].
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FIG. 1: Side view (left) and top view (right) of the experimen-
tal setup. A stiff aluminium frame is attached to the upper
PMMA plate. The bottom plate is separated from the upper
one by a load F applied by a rod connected to a stepping
motor. The rod can freely rotate around its axis. The load
causes a deflection u of the bottom plate and the propagation
of a mode I crack. The crack front is located at the averaged
distance ā from the free end (ā is obtained by the spatial
average of the distance a along the front). Front advance is
monitored by a camera set in vertical position, perpendicular
to the crack plane. We add glycerol between the upper plate
and a thin glass sheet located above the crack front to en-
hance the optical contrast of the pictures. The narrow plate
thickness and width are noted h and b respectively.

C. Typical Run of an Experiment

All the experiments start with no initial deflection,
i.e. the loading point is not in contact with the narrow
PMMA plate. The stepping motor then produces the ver-
tical displacement of the loading point at controlled speed
Vl. Once contact is achieved between the loading point
and the plate, the force, F , at the free end of the plate
increases as well as the deflection, u. The force increase
leads to the initiation of the crack movement while the
loading point continues to move downward at constant
velocity. The amount of time spent in this constant load-
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ing velocity regime is inversely proportional to Vl. The
step motor is then stopped, i.e. Vl = 0, at t = tstop

leading to a decrease of the crack front speed, which is
monitored typically for 5 minutes but reaches up to more
than 18 hours in one experiment. The sample is finally
unloaded by moving the loading point upward back to its
initial position, leading to arrest of the front. The next
experiment starts where the previous one ends until the
front reaches the end of the plate. All experiments where
carried out at room temperature (T ∈ [22, 2 − 24, 4]Co).
These experiments were carried out on two completely in-
dependent setups by different experimentalists, with no
noticeable discrepancies between the results.

An example of a typical experiment is displayed on Fig-
ure 2. The sample is loaded continuously with a velocity
of 62µm.s−1 during 230 seconds. The rupture initiates
at t ∼ 190 s as evidenced by the onset of the front move-
ment and by the deviation of the force from a linear trend.
As long as the sample is continuously loaded we observe
an increase of the crack velocity. The loading point is
then maintained at fixed deflection at time tstop = 230 s
as indicated by the vertical gray line. As the loading
point velocity is set to zero, the front velocity exhibits a
deceleration during the entire recording period (5 min-
utes) while the force is also continuously decreasing. All
the experiments where carried following the same scheme
as presented in Figure 2, and different loading velocities
were tested Vl ∈ [6; 600]µm.s−1.

III. EXPERIMENTAL OBSERVATIONS

We separately describe our observations of the crack
propagation in the two loading regimes, at constant load-
ing velocity, or at contant loading position. We will re-
port here the behavior of the average front position with
time, and show that they follow simple laws. In the fol-
lowing section, we will derive these laws on a theoretical
basis, and interpret physically their parameters.

A. Constant Loading Velocity

We first focus on the regime with constant loading ve-
locity, Vl. As observed in Figure 2 an initiation phase
precedes the propagation of the crack at an almost con-
stant velocity. We display on Figure 3 the evolution of
the front position as a function of the loading point dis-
placement, u. For each experiment we keep only data
points with t < tstop, i.e. the dynamics of the crack is
supposedly driven by the applied load at constant veloc-
ity. For each sample we observe that the evolution of ā
can be well approximated by a fit of the form ā(u) ∝

√
u,

as evidenced by the fits on Figure 3.
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FIG. 2: Top : Variation of loading point position, u, as a
function of time during an experiment. At time t = 230 s,
the loading point is maintained in a fixed position. Middle:
Variation of the average front position, ā, as a function of
time (black solid line) and evolution of the crack front veloc-
ity dā/dt (gray solid line). The red solid and dashed lines
represents a fit to the average front position and velocity, re-
spectively, according to Eq. (18). The blue dashed line is
a fit to the crack velocity in the relaxation regime following
Eq. (25). Bottom : Variation of force as a function of time
(black solid line) and force predicted by the beam theory (dark
dashed line) using (5) with E = 3.2 GPa, h = 4.9 mm and
b = 2.84 cm which are the measured properties of the plate.
For all figures, the vertical gray line denotes the time at which
the loading was stopped and separates the imposed velocity
regime from the relaxation regime.

B. Constant Deflection Condition

We now turn to the relaxation regime characterized by
a constant deflection u, which occurred when t > tstop.
We observe in Figure 2 a progressive deceleration of
the front. In order to precisely describe the evolution
of the front position in this particular regime we set
ā0 = ā(tstop) and we represent the evolution of the front
position ā(t) − ā0 with time since tstop for several ex-
periments. We observe that data, displayed on Figure
4, shows a logarithmic evolution of the front advance for
large times (corresponding to a linear behavior in this
semilogarithmic representation). We propose to fit the
advance of the front by a logarithmic relation of the form

ā(t− tstop) − ā0 = A ln

(

t− tstop

t∗
+ 1

)

, (1)

where t∗ is a characteristic time and A an empirical con-
stant with dimension of length. We observe on Figure 4
that Eq. (1) provides a good fit to the observed data. We
obtain typical values of t∗ of the order of 1 − 10 s while
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FIG. 3: Variation of the crack front position, ā, as a function
of the loading point displacement, u. The gray points refer
to recorded data from different samples. For each sample we
carried several experiments. The best fit using ā(u) ∝ u1/2 is
displayed as a black line for each sample. Crack front posi-
tions are shifted vertically for each sample in order to enhance
the visibility (by a prefactor corresponding respectively to a
factor 0.5 for the lowest and 2 for the highest curves). We see
that for each sample and for each experiment the observed
behavior is in good agreement with the fitted trend. One can
notice however that the crack initiation does not seem well
approximated by this trend.

typical values of A are of the order of 10−4 − 10−3m.
We also report on Figure 4 the evolution of the front
position during this relaxation regime for an experiment
which lasted more than 18 hours in such a regime. We
apply the same fit (Eq. 1) to these data and we still
observe a reasonable agreement. Indeed, no clear devia-
tion from the logarithmic behavior is observed. Even in
this long term experiment, the propagation of the front
remains small (∼ 2 cm). This logarithmic evolution of
the crack front contrasts with the previous one found in
the regime at constant loading velocity. The large-scale
progression of the front must be dominated by a process
capable of capturing such distinct behaviors.

IV. A SUBCRITICAL CRACK PROPAGATION

MODEL

A. A Thermally Activated Microscopic Process

We suppose that the crack propagation is governed at
the local scale, by a subcritical mechanism following an
Arrhenius law [15]. Owing to thermal fluctuations large
enough to overcome the fracture energy barrier of indi-
vidual bonds the fracture is allowed to propagate at slow
speed. This contrasts with the Griffith approach where
no propagation is allowed below the Griffith energy re-
lease rate Ggr (or below the Griffith stress intensity fac-
tor Kgr following an Irwin criterion [6]). The fracture

0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
on

 o
f t

he
 fr

on
t (

in
 c

m
)

0.1 1 10 100

t−tstop in seconds

0.0

0.5

1.0

1.5

2.0

P
os

iti
on

 o
f t

he
 fr

on
t (

in
 c

m
)

100 101 102 103 104 105

t−tstop in seconds

FIG. 4: Evolution of the average front position ā(t)−ā0 during
several relaxation experiments as a function of time t− tstop.
The observed front position is represented by gray dots while
the best fits using (1) are displayed as continuous dark lines.
Traces have been shifted vertically in order to enhance visibil-
ity. The experiment displayed on the top figure lasted more
than 18 hours (the time representation scale is different from
the one in the bottom figure).

energy barrier is supposed to be fluctuating in space but
constant on a characteristic microscopic scale α which
is a length scale associated to the individual degrees of
freedom of the microscopic fracturing process. At zero
loading, we consider that the magnitude of the barrier
is related to the local critical energy release rate: α2Gc.
This aspect of a quenched fluctuating zero-loading bar-
rier relates material properties to Gc, and the energy gap
to reach it is also dependent on the the elastical mechan-
ical energy around the crack tip which is described by
the local energy release rate α2G. Such a model coupling
thermal noise and spatial disorder have been previously
investigated in some theoretical approaches in fiber bun-
dle models or irreversible crack growth model [45, 46].
We note ∆G = Gc − G the difference between the local
energy release rate, G, and the local critical energy re-
lease rate or fracture energy, Gc. The probability for an
individual asperity to go beyond this barrier, per period
characteristic of the microscopic thermal motion, τB, is
introduced as a Boltzmannian of the relative elastic en-
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ergy α2∆G. The Arrhenius relation governing the local
fracture velocity v = da/dt can thus be written as:

v(G,Gc) = ψ exp(−α2∆G/kBT ), (2)

where ψ is a constant of proportionality equal to α/τB, T
is the absolute temperature (in Kelvin), kB is the Boltz-
mann constant.

B. A population of Independent Microscopic Sites

We propose a model for the average crack velocity
based on a statistical approach. The behavior of the weak
interface is assumed to be dominated at large scales by a
discrete set of independent microscopic sites. The large-
scale evolution law of the crack front speed is obtained
by integrating Eq. (2) over all local microscopic sites
at a given time. Such an integration is not straightfor-
ward as there might exist correlations among local values
of G and Gc. Fluctuations in G are resulting from the
crack front roughening around its average position ā [34]
and a perpendicular, large scale, stress gradient owing
to the bending of the loading plate. For the fracture
energy, Gc, the quenched fluctuations result from the
sample preparation. Such fluctuations introduce corre-
lation over a finite length of local velocities [33]. We will
hypothesize that at the macroscopic scale, above these
correlation lengths, the average (or large-scale) evolution
of the front is governed by a law similar to (2) but involv-
ing only large scale average quantities Ḡ (describing the
average loading along the front) and Ḡc (describing the
upscaled energy barrier at the front scale) - the critical
size of the degree of freedom, α, being preserved. For
example in an (over-)simplistic model where all parame-
ters would be statistically independent and where G and
Gc could be described by two independent normal distri-
butions with respective mean Ḡ and Ḡc and root mean
square σG and σGc

, we would get

v̄ = χ exp(−α2(Ḡc − Ḡ)/kBT ), (3)

where χ = ψ exp
[

α4(σ2

G
+σ2

Gc
)

2k2

B
T 2

]

.

We acknowledge that at small scale, parameters as G
and Gc are not statistically independent and that inter-
mittent behavior, large fluctuations of velocity, and the
spatial correlations in G and in Gc have been described
in details (e.g. [1, 33]). We nevertheless assume that the
upscaling leads to a simple form as in Eq. 3. Such an up-
scaling could result from the existence of a discretization
scale above which asperities could be considered indepen-
dent. This discretization scale could be analogous to the
representative elementary volume (REV) introduced by
Baz̆ant and Pang [29] for quasi-brittle materials. Within
each REV, the effective failure of the asperity is consid-
ered as a purely thermally activated and stress dependent
process. This model is not continuous contrary to contact

line approaches [9, 34–36]. It can rather be compared to
fiber bundle models [37–41] or interacting damage models
[47–50] but with a non-direct stress redistribution.

At this stage, to describe the dynamics of the upscaled
(spatially averaged) velocity, mechanical interactions be-
tween microscopic sites are ignored for simplicity, and we
hypothesize that only the mechanical energy release rate
controlling the upscaled velocity depends mostly on the
large scale average front position, which is essentially flat
at large scales – i.e. we postulate that the upscaling of
Eq. (2) leads to a similar form, with only upscaled energy
released rates and energy barrier, Eq. (3). This strong
assumption will be checked by comparing this very sim-
ple model and the experimental data. It will be shown
to hold, not only for the relaxation regime, but somehow
more surprisingly, also for the forced regime.

C. A cantilever configuration

The average energy release rate Ḡ is estimated from
a classical elastic plate theory neglecting the fluctuation
of the front position around a mean flat front ā. Dur-
ing the experiment, the average energy release rate can
accordingly be computed from the elastic strain energy,
UE , stored in the loading plate as:

Ḡ = −1

b

dUE

dā
, (4)

where b is the width of the plate and ā is the average crack
front position [6]. From 1D beam theory a linear relation
exists between the applied force, F , and the deflection of
the beam, u,

F =
uEbh3

4ā3
, (5)

where E and h are respectively the Young modulus and
the thickness of the narrow plate [6]. This leads to the
following expression of the elastic energy

UE = F
u

2
. (6)

Combining Eqs. (4), (5) and (6) finally leads to an esti-
mation of the average energy release rate in our system

Ḡ =
3u2Eh3

8ā4
. (7)

D. A macroscopic evolution law

By combining Eqs. (3) and (7), we can derive the
complete expression of the evolution of the crack front
velocity:

v̄ =
dā

dt
= χ exp

(

α2

kBT

[

3u2Eh3

8ā4
− Ḡc

])

. (8)
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Eq. (8) is the differential equation that governs the move-
ment of the front in our experimental configuration. This
equation takes different forms depending on the loading
scheme, which manifests in the expression of the time-
dependent imposed deflection, u(t). We explored the two
particular loading conditions imposed on the experimen-
tal system, namely a constant loading velocity condition
and a fixed deflection condition.

As a first check, we computed the average crack front
velocity, v̄(t). This is obtained by smoothing ā(t) val-
ues with a window running along time and then dividing
each incremental position by the time interval between
successive pictures. We estimate Ḡ at each time inter-
val from Eq. (7). We represent on Figure 5a the average
crack front velocity as a function of the average energy
relase rate Ḡ computed from Eq. (7) for 13 experiments.
We see that a linear relationship (log(v) vs G) is a good
proxi of the whole behavior of each experiment where the
sample undegoes multiple loadings: first a constant load-
ing velocity condition followed by a constant deflection
condition. To account for the horizontal shift in G be-
tween experiments, we searched for an estimate of Ḡc for
each experiment following Eq. (3):

ln(v̄) = ln(χ) +
α2

kBT
(Ḡ− Ḡc), (9)

that provides the best superimposition of all experimen-
tal curves (see Figure 5b). Deduced values of Ḡc are
reported in Table I. We used kB = 1.38 · 10−23J ·K−1,
T = 300K and obtained the value of α by least square
fitting: α = 25pm. The characteristic length scale α
at which the elementary fracturing process is expected
to occur is thus of the order of 10−11m. This implies
that the rupture process is governed by mechanisms op-
erating at the scale of the bond distance between atoms.
This is consistent with the physical picture underlying
the Arrhenius law, where each individual degree of free-
dom in the system can break with a certain probability
set by thermodynamics to be a Boltzmann distribution:
we find that these individual degrees of freedom probably
correspond to individual molecules crossing through the
weak interface.

We see from Table I that the fracture energy Ḡc has a
median value of 200 J ·m−2 with 20% fluctuation. Such a
range of variation is compatible with sample preparation
variability (plate thickness fluctuation, non fully homoge-
neous annealing procedure, sand-blasting variability, etc)
and are very consistent with results obtained in [51].

Other relations linking the crack speed to the energy
release rate have been proposed as v̄ ∼ e−E′/kBTGn/2

[16], or transforming ∆G in (3) into ∆G−µ, where the
exponent µ arises from possible 3D paths taken by the
crack [43, 52]. Our experimental data do not allow us to
discriminate confidently among these different formula-
tions. The simple Arrhenius law introduded in Eq. (3)
where the energy barrier is linearly related to the differ-
ence between G and Gc can be considered as a relevant
model of the fracture process within each microscopic site

−6

−5

−4

−3

lo
g

1
0
(v

/v
0
),

v
0
 =

 1
m

.s
−

1

100 120 140 160 180 200

G (in J.m−2)

−6

−5

−4

−3

lo
g

1
0
(v

/v
0
),

v
0
 =

 1
m

.s
−

1

−100 −80 −60 −40

G − Gc (in J.m−2)

FIG. 5: a) Variation of the logarithm of the average crack
front velocity as a function of the average energy release rate.
All experiments are reported in this figure and are distin-
guished by gray levels and symbols. For each experiment,
both loading regimes (constant loading velocity and relax-
ation regimes) are included. Similar gray levels indicate ex-
periments performed in the same region of one specific plate
(short separation distance between fracture onsets). b) Su-
perimposition of all experiments when plotting as a function
of: Ḡ − Ḡc. Values of Ḡc are computed for each experiment
assuming α = 25pm and χ = 1m.s−1. The dashed curve
represents the best fitted model.

in our experiments. Indeed it fits nicely the experimen-
tal data over several orders of magnitude of average crack
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TABLE I: Values of Ḡc determined by fitting (9) to our exper-
iments and imposing the same value of α for all experiments.
The best least square estimate of α yields α = 25pm. The cor-
responding values of v1 computed from Eq. 10 and imposing
χ = 1m · s−1 are also reported.

Experiment Ḡc v1 in m.s−1

1 210 2 · 10−14

2 222 3 · 10−15

3 240 2 · 10−16

4 236 3 · 10−16

5 239 2 · 10−16

6 186 6 · 10−13

7 181 1 · 10−12

8 202 6 · 10−14

9 199 8 · 10−14

10 200 7 · 10−14

11 208 2 · 10−14

12 207 3 · 10−14

13 210 2 · 10−14

speed, as shown in Figure 5.

V. NUMERICAL SOLUTIONS

We propose to solve numerically the Arrhenius law,
Eq. (3), with the prescribed loading and dependence of
Ḡ on ā and u, Eq. (8), in order to obtain predictions
of the evolution, for each experiment, of the front posi-
tion, the loading force and the energy release rate. This
allows a second check of the validity of the activated en-
ergy mechanism introduced to describe the crack front
propagation. Unfortunately setting u = Vl × t or u =
const. in Eq. (8) does not lead to analytical solutions.

We first introduce a characteristic speed v1 defined as:

v1 = χ exp

(

−α
2Ḡc

kBT

)

. (10)

As a second step, we show that Eq. (8) can actually be
rewritten in a much simpler form by introducing dimen-
sionless variables: ā′ = ā/λ and t′ = t/τ . In the forced

regime where u = Vlt, we introduce:

λ = α
Vl

v1

(

3Eh3

8kBT

)1/2

(11)

τ =
λ

v1
, (12)

which leads to:

dā′

dt′
= exp

(

t′2

ā′4

)

. (13)

The values of the force, in our model, are computed
from the front position using Eq. (5). Eq. (5) is solved

numerically using a simple Euler model with a constant
time step. We found that the evolution of ā and F can
both be well reproduced as a solution of Eq. (13) when
setting α = 25pm and v1 = 1.0 · 10−14m.s−1. These
values fall in the range of parameters estimated from ta-
ble I and represent acceptable results. We should note
however that these two parameters are not very well con-
strained as they are highly correlated such that a change
of α can be balanced by a change of v1. We see on Fig-
ure 6 the evolution of force, front position and Ḡ, for six
experiments as well as the results of the numerical inte-
gration of Eq. (13). All six experiments are carried on
the same plate. In the forced regime, the loading veloc-
ity is Vl = 310µm.s−1 for the first three experiments and
Vl = 62µm.s−1 for the last three experiments. The width
of the plate is 2.84 cm, its thickness is h = 4.9mm and
the Young modulus of the PMMA plate is E = 3.2GPa.
All solutions with a common loading velocity tend to
align on the same curve after a sufficiently long time.
This results from the common time dependence of equa-
tion (13) in all experiments with the same loading veloc-
ity. Differences arise from the variation of the initial front
position at the start of the experiment. We see on Figure
6 that our numerical model, resulting from the coupling
of the cantilever beam configuration of our system and
the activated energy mechanism necessary to describe the
fracture process, is in good agreement with the evolution
of the force, front position and energy release rate.

Interestingly, we note that the integration of this ther-
mal activation model with the large scale elastic mechan-
ics, over these characteristic time scales, with a constant
velocity loading, leads to roughly constant values of G
during the propagation: this means that the fact that
G cst, i.e. a Griffith regime for the fast propagation, re-
sults from the direct integration of this subcritical model
with a proper forcing in the evaluation of G.

It should be noted that the results of the numerical
model is dependent on several parameters (e.g. E, b,
h) which are affected by some uncertainties such that
it could be possible to improve the fits by varying these
parameters within their uncertainties range. However the
discrepancy between the model and the data is small and
could also be the result of second order effects affecting
the crack propagation (e.g. viscoelastic effects).

We now turn to the relaxation regime, in which the
beam deflection is constant. We observe an evolution of
the front position in this regime (Figure 4) which is a
priori not compatible with LEFM theory and the viscous
rheology model as used in simulations e.g by Bonamy
et al. [53], where it is assumed that the transition to
zero propagation velocity of the front is sharp when the
energy release rate is below the critical energy for fracture
propagation (Griffith criterion, zero temperature limit).
The evolution of the crack front in this relaxation regime
predicted by our model is obtained by setting ustop = Vl ·
tstop in (8) and solving the differential equation. In order
to solve this equation we rewrite it with the dimensionless
variables a′ and t′ but with:
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λ =

(

3Eh3α2u2
stop

8kBT

)1/4

, (14)

τ =
λ

v1
, (15)

leading to:

dā′

dt′
= exp

(

1

ā′4

)

. (16)

In order to solve Eq. (16) we keep the same estimate
of α and v1 that were obtained in the constant loading
velocity regime. We compare the results of the integra-
tion of Eq. (16) with the observed data in the experi-
ment shown in Figure 2. We represent on Figure 7 the
evolution of the force and front position from the exper-
imental data and the numerical model. The fit to the

front position provided by the integration of (16) is in
close agreement with the observed values. In order to
detect any long term deviation we also fit our numerical
model to the long run experiment (18 hours of relax-
ation). As this experiment was performed on a different
sample we also computed v1 and α for this experiment.
We show in Figure 7 our best fit which is obtained when
setting α = 18pm and v1 = 5 · 10−9m.s−1. Both force
and front position are well reproduced by the numerical
model (dark continuous line in Figure 7A and 7B). We
may however observe that at long time scale, the front
position (gray dots in Figure 7B) departs from the com-
puted position (dark continuous line in Figure 7B). This
may imply that additional processes are taking place af-
fecting the front propagation or that some parameters,
considered as constant, did actually vary over the course
of this experiment, for instance temperature or broad
scale variation of the fracture toughness.
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VI. DISCUSSIONS

Eq. (8) which governs the large scale motion of the
crack has no analytical solution for the two loading
regimes investigated in our experiments. However we
show that two kinds of simple approximation can lead
to analytical expressions of the front advance in close
agreement with our experimental observations.

A. A Constant G approximation

We focus here on the case where the energy release
rate can be considered as constant: Ḡ = const. From
Eq. (3) this condition should correspond to a constant
crack velocity v̄ = const. We see actually from Figure 2b
that after an initiation phase the propagation of the front
is reaching a quasi-constant velocity during the forced
regime (when the loading velocity is non zero and con-
stant: Vl 6= 0). The initiation phase is expected as the
front velocity cannot jump instantaneously from zero to
its steady state velocity. This observation supports the
assumption that, to first order, during the forced regime
the energy release rate, Ḡ, remains the same: Ḡ = G0

during the crack propagation.

If the energy release rate G is constant we derive from
Eq. (7):

Ḡ =
3Eδ3

8

u2

ā4
= G0 = const. (17)

Introducing A =
(

3Eδ3

8G0

)1/4

we get:

ā(u) = A · u1/2. (18)

Therefore a constant energy release rate implies a scaling
between the average front position ā and the deflection u.
Actually Eq. (18) is the form of the fit used in Figure 3
which shows a good agreement with the experimental
data. It thus provides a physical basis to the empirical
relation proposed to fit the data.

On the other hand, the result of Eq. (18) in our exper-
iments implies that v̄(t) ∝ Vl/ā as u ∝ Vlt in the forced
regime. This suggests that the front velocity is decreas-
ing at constant G as the crack front advances although
we assumed a constant velocity. However as the evolu-
tion of ā is small around the initial front position for each
incremental experiment along the same sample, the evo-
lution of speed v̄ is small as well. An evolution between
experiments might however exist. Finally, it is noticeable
in Figure 6 that the experimental evolution of the energy
release rate, Ḡ, is almost constant for the whole duration
of the investigated range after an initiation period well
reproduced by the complete numerical integration of the
Arrhenius law (Eq. 8). This is also in agreement with the
hypothesis made that Ḡ = const. in this forced regime.

B. A First Order approximation of G evolution

We now aim at characterizing the relaxation process
which takes place at t > tstop. We recall that during this
time interval, the loading velocity is zero: Vl = 0. From
Fig. 2 we find that above tstop, the measured force de-
creases with time while the average position of the front
continues to increase with time. We also observe that
this increase of front position is well approximated by a
logarithmic evolution as seen in Fig. 4. As Eq. (8) is
not tractable analytically in this relaxation regime, we
analyze a first order approximation of the solution. As-
suming that the evolution of ā(t) with time is very small
in this relaxation regime, we derive a first order expan-
sion of Ḡ around some position ā0 = ā(tstop):

Ḡ = G0 +
dḠ(ā0)

dā
(ā− ā0), (19)

where G0 = Ḡ(ā0) and dḠ(ā0)
dā can be computed from Eq.

(7) and gives:

dḠ(ā0)

dā
= −4G0

ā0
. (20)

Replacing (19) and (20) into Eq. (3), we obtain:

v̄ = χ′ exp

(

−4α2G0ā

ā0kBT

)

(21)

with χ′ = χ exp
(

α2 −Ḡc+5G0

kBT

)

. The above equation in-

tegrates as:

ā(t) =
kBT ā0

4α2G0
ln

[

4χ′G0α
2

kBT ā0
(t− t0) + exp

(

4G0α
2

kBT

)]

,

(22)
where t0 and ā0 are the lower integration limits, cor-
responding to the initial time and position respectively
where we consider the creep conditions to apply. The
above expression can be simplified by setting H0 =
(5G0−Ḡc)α

2

kBT , β = 5G0−Ḡc

4G0

and introducing the character-

istic time, t∗ = βā0

H0χ exp (−H0(1 − 1/β)). It yields,

ā(t) − ā0 =
ā0β

H0
ln

[

t− t0
t∗

+ 1

]

. (23)

At large times, when t − t0 ≫ t∗, the above equation
reduces to

ā(t) − ā0 ≈ ā0β
H0

ln
(

t−t0
t∗

)

, (24)

v̄(t) ≈ ā0β
H0

1
t−t0

. (25)

It is interesting to note for comparison, that in granu-
lar media logarithmic relaxation have also been observed
[22] and that in rock mechanics Scholz [17] developed
a simple model of creep in heterogeneous media where
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the collective behavior resulting from local decreases of
strength leads to a similar ∝ t−1 evolution of the defor-
mation rate during the creep regime. We see that the
form of Eq. (23) is similar to Eq.( 1) which was used
to described the evolution of the front in this relaxation
regime in Fig. 4. It implies that Eq. (23) also provides a
good description of the data and that our first order ap-
proximation appears to be valid in the range investigated
in our experiments.

VII. CONCLUSIONS

We explored the average velocity of an interfacial crack
under two different loading conditions. Both conditions
induce crack velocities much lower than the Rayleigh
wave velocity of the material either in the forced regime
at imposed constant loading velocity, or in the relax-
ation regime. As often observed for homogeneous or
weakly heterogeneous materials, the constant speed load-
ing regime is compatible with a constant energy release
rate and the relaxation regime is compatible with a time
logarithmic deformation. The macroscopic evolution of
the crack front is smooth and continuous, characteristic
of creep processes. This is opposite to what is observed
and modeled at the local scale, namely an intermittency
of the fracture process which is described by a succession
of local discrete brittle failures [1, 9]. Such “brittle-creep”
behavior has been extensively studied in rocks where
acoustic emissions are recorded during the otherwise slow
global deformation of the sample (e.g. [17, 43, 54]) or in
other materials like paper [13, 44, 55].

We developed a thermally activated fracture model
that consists of a set of independent microscopic sites
that break according to an Arrhenius law. The energy
barrier is assumed to be a function of the difference be-
tween the local energy release rateG and the local critical
energy release rate Gc. We show that for independent
microscopic sites in time and space, the model reduces
to a 1D model where the crack tip advance is controlled
by the difference between the average energy release rate
Ḡ and the average critical energy release rate Ḡc. The
model describes the fracturing process in the sub-critical
regime close to the critical transition, i.e. the Griffith
criterion G = Gc, as a mechanism only sensitive to the
applied stress on the crack tip and the effective tough-
ness of the material. It allows the crack propagation to
be driven below the critical energy release rate by statis-
tical stress fluctuations that trigger rupture at the scale
of atomic bonds. We find that the typical length scale
of the process is of the order of tens of picometer, in
agreement with the value reported in Ponson [43] for
rocks samples or in Santucci et al. [44] for paper. This
suggests that the creeping mechanism we are observing
is related to the breakage at the typical length scale of

atomic bonds. Such an atomistic size is consistent with
the framework showing that thermally activated rupture
occurs at a characteristic size, at the level of single atomic
bonds [13, 44]. It also suggests that stress fluctuations
can trigger rupture of these atomic bonds. The length
scale of this process, a few 10−11 − 10−10 m, is much
smaller than the correlation length scale of the tough-
ness heterogeneity of the material, which is typically of
the order of the glass beads size used during peparation
of the sample by blasting, of the order of 0.1-0.5 mm
[51, 56].

We find that despite very different tested loading con-
ditions, all experimental data of the macroscopic evo-
lution of the crack can be well explained by the pro-
posed sub-critical mechanism. Neglecting this temper-
ature effect does not give a correct description of the
crack propagation in a constant deflection regime dur-
ing relaxation test. Moreover, several factors that would
possibly influence the progression of the crack have been
disregarded. They include possible mechanical finite ro-
tation of the plate, viscoelastic flows inside the bulk of the
PMMA plate like micro-bubbles, or chemical processes.
However, despite these simplifications, the thermally ac-
tivated model we propose, seems to correctly reproduce
the evolution of the front during experiments over a large
range of time scales (from 0.1 to more than 10000 s) and
different loading paths, at least when the average advance
of the front ā is small compared to its initial position: this
suggests that the neglected mechanisms have second or-
der effects on the crack evolution compared to the stress
induced creeping mechanism.

It is interesting to note that we reproduce the large
scale evolution of the front propagation despite a simple
description of the heterogeneous nature of the material.
Indeed, the interface with spatially fluctuating toughness
induced by the sandblasting procedure is represented for
its macroscopic behavior by an average quantity. This
might be due to the limited heterogeneity of the tough-
ness when seen at a centimetric scale, as evidenced by the
almost flat geometry of the crack front line (we never ob-
served crack front distortions bigger than 10% of the sys-
tem scale). This suggests that although heterogeneities
are present and are encountered during the crack propa-
gation, the macroscopic scale evolution is well described
by the average energy release rate, which is an average
quantity among all local sites. Such large scale informa-
tion appears sufficient to predict the overall large-scale
dynamics of the propagating crack under various loading
regimes.
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[24] G. Løvoll, K. J. Måløy, and E. G. Flekkøy, Phys. Rev.

E.. 60, 5872 (1999).
[25] M. Sahimi, Heterogeneous materials II: Nonlinear and

breakdown properties and atomistic modeling (Springer-
Verlag New York Inc, 2003).

[26] W. Weibull, J. Appl. Mech. 18, 293 (1951).
[27] Z. Baz̆ant, Scaling of Structural Strength (Butterworth-

Heinemann Ltd, 2005), 2nd ed.
[28] A. B. Kolton, A. Rosso, T. Giamarchi, and w. Krauth,

Phys. Rev. Lett. 97, 057001 (2006).
[29] Z. Baz̆ant and S. Pang, J. Mech. Phys. Solids 55, 91

(2007).
[30] J. Obreimoff, Proc. R. Soc. Lond. 127, 290 (1930).

[31] J. Schmittbuhl and K. J. Måløy, Phys. Rev. Lett. 78,
3888 (1997).

[32] A. Delaplace, J. Schmittbuhl, and K. J. Måløy, Phys.
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[51] O. Lengliné, J. Schmittbuhl, J. Elkhoury, J.-P. Ampuero,
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