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ABSTRACT 

The agent-based modeling is now widely used to study complex 

systems. Its ability to represent several levels of interaction along 

a detailed (complex) environment representation favored such a 

development. However, in many models, these capabilities are not 

fully used. Indeed, only simple, usually discrete, environment 

representation and one level of interaction (rarely two or three) 

are considered in most of the agent-based models. The major 

reason behind this fact is the lack of simulation platforms assisting 

the work of modelers in these domains. To tackle this problem, we 

developed a new simulation platform, GAMA. This platform 

allows modelers to define spatially explicit and multi-levels 

models. In particular, it integrates powerful tools coming from 

Geographic Information Systems (GIS) and Data Mining easing 

the modeling and analysis efforts. In this paper, we present how 

this platform addresses these issues and how such tools are 

available right out of the box to modelers.  
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1. INTRODUCTION 
The agent-based modeling has brought a new way to study the 

complex systems. It allows to take into account different levels of 

interactions as well as the heterogeneity of the entities composing 

the system.  

Even if numerous simulation platforms exist, most of the complex 

models are still developed from scratch. Indeed, very few 

platforms allow to directly work with geographical vector data 

(series of coordinates defining geometries) and/or to define multi-

level models. Moreover, these platforms are often complex to use 

and their understanding can require a time investment from the 

modeler that can be similar to the one needed to develop a model 

from scratch. 

In this paper, we present the GAMA agent-based simulation 

platform [1], [2]. This platform provides a complete modeling and 

simulation development environment for building spatially 

explicit multi-agent simulations. Many models have already been 

implemented using this platform (e.g. [3][4][5][6]). Its main 

advantages come from its versatility (domain independent) and 

the simplicity to define a model with it. Indeed, GAMA provides a 

rich, yet accessible, modeling language based on XML, GAML, 

that allows to define complex models integrating at the same time 

entities of different scales and geographical vector data. 

The paper is organized as follow. In Section 2, we present the 

capabilities of GAMA concerning the integration of geographical 

vector data. Section 3 is dedicated to the presentation of its multi-

scale modeling capabilities. In Section 4, we investigate a way to 

couple the use of geographical data and multi-scales modeling. 

Section 5 discusses about the contributions of this paper. At last, 

Section 6 concludes. 

2. INTEGRATING GEOGRAPHICAL 

VECTOR DATA IN SIMULATION 

2.1 Why using geographic vector data in 

models? 
These last years have seen the development on a large scale of 

geographical vector datasets. Today, most of the decision makers 

use this type of data when they have to face a problem integrating 

a spatial dimension.  

In the context of simulations, using this type of data allows to 

make the simulations closer to the field situation. In addition, it 

allows to use tools, like spatial analysis, coming from Geographic 

Information Systems (GIS) to manage these data. 

2.2 Use of geographical data in models 
If more and more models integrate geographical vector data, their 

use can take different forms. In the following sections, we present 

three different ways of using vector data, from the simplest 

(reading/writing of geographical data) to the most complex 

(agentification of geographical data). 

2.2.1 Reading and writing of geographical vector 

data 
The most basic functions concerning the use of geographical 

vector data are the reading and the writing of geographical data 

from files and from database. The goal is to integrate seamlessly 

the vector data as the simulation’s environment (input) and to 

store the resulting environment (output).  



Once geographical vector data has been read, several uses can be 

made of them. The most straightforward one consists in 

translating them as a grid where agents are localized. 

2.2.2 Using geographical vector data as background 

layers 
A more complex use consists in using these data as a “background 

layer” constituted of geographical objects: the agents will be able 

to move according to this layer. For example, some agents will be 

able to move along a network of road, or inside a complex 

polygon (e.g. inside a forest represented by a polygon.  

This use requires the integration in the simulator of GIS specific 

primitives such as moving an agent inside a geometry, computing 

a shortest path between two points of this geometry (or on a 

network), etc. 

2.2.3 Agentification of Geographical vector data  
A richer ways of integrating geographical vector data in a model 

is to consider each geographic object as an agent. Thus, a road 

will be an agent, a building or a city, and each object contained in 

a geographical dataset will also be represented by an agent. 

Remark that this kind of geographical data agentification was 

already used for other application contexts such as cartographic 

generalization [7]. In the context of simulation, the advantage of 

this approach is to give the possibility to manage geographical 

objects exactly like other agents in the simulation: it will be 

possible to give them an internal state and a behavior.  

Reciprocally, it is possible to go further and to consider that every 

“spatialized” (localized and with a geometry) agents of the 

simulation has a geometry and can be viewed as a geographic 

object in a geographical dataset. In this way, the management of 

agents and geographical objects is equivalent and trouble-free. 

Indeed, no difference is made anymore between agents and 

geographical objects. 

2.3 Geographical vector data in existing 

simulation platforms 

2.3.1  Simulation platforms with basic support of 

geographical vector data 

Swarm [8] is a well-established simulation platform and 

inspiration for many others. Its original version does not allow to 

integrate geographic vector data. However, a library called Kenge 

[9] allows to load layers of geographic vector data.  Practically, 

this extension allows to create a cellular automata from a shape 

file. In addition, an ad hoc access to geographical data has been 

developed for specific models (e.g. [10]). Unfortunately, they do 

not provide any spatial primitives neither the possibility to store 

the resulted environment. 

Netlogo [11] is also a well-established simulation platform. It is 

largely used for educational purpose and for research. The GIS 

support has been added recently through an extension [12]. It 

allows import and export of vector data and support the projection 

system (the method used to represent the geographical data on a 

plane). The attributes of the vector data are made accessible as 

well as their geometrical characteristics (centroid, list of vertex, 

etc.). Some basic geometrical operations are also available 

(bounding rectangles, union of polygons, etc.). However, many 

more advanced spatial analysis operation are not offered. 

CORMAS [13] is a platform dedicated to the modeling in ecology 

and especially the natural resources management where space 

representation and interaction is essential. It proposes two 

environment modes: vector and raster. They share the same 

organization of 3 classes «spatial entity», «agent», and «object». 

This organization, though being rigid, ease the development of 

model by abstracting the interaction with environment, thus 

allows to switch from a discrete environment to a continuous (or 

vector) one. Unfortunately, CORMAS provides only basic 

services for the discrete environment. Moreover, GIS support is 

limited to loading and storing shapefiles (a popular vector data 

format) and creating elementary areas. GIS primitives (union, 

intersection, shortest path, etc.) and access to polygon attributes 

have to be programmed. 

In 2008, Urbani proposed the SMAG (portmanteau word from 

SMA-SIG or MAS-GIS in English) architecture linking a GIS and 

MABS simulator for decision support system. The author 

implemented it over CORMAS, calling it CORMGIS [14]. The 

integration is relatively basic as access to geo-referenced data is 

done through a data-connection to ArcGIS. In addition, no GIS 

primitive (union, intersection, etc) is available. 

2.3.2  Simulation platforms with advanced support of 

geographic vector data  

Repast J [15] is a modeling toolkit inspired by Swarm. As a 

toolkit, it provides a structure with only basic services readily 

available. Different grids are implemented (hexagonal or 

rectangular, torus or not, etc.) but agents are not (only an interface 

is given). The GIS support is done through the OpenMap library. 

It provides the minimal services of a GIS: importing/exporting 

shapefiles and raster data, some geometrical operations, access to 

data attributes, etc. Nevertheless, as Repast J provides access to 

OpenMap, the modeler can implement more complex operations. 

Unfortunately, this programming is far from reach of the vast 

majority of modelers. 

Repast Symphony (Repast S) [16] is the up-to-date version of the 

Repast toolkit. It provides the same basic features as Repast J, but 

is based on a more advanced GIS library, Geotools, which 

provides additional GIS services. In particular, Repast S allows to 

directly model a network of lines as a graph and to compute the 

shortest paths from one point to another. It allows as well to 

visualize and manage 3D data.  Nevertheless, the number of GIS 

operations available is still fairly limited and localized agents are 

still to be programmed. More advanced operations have to be 

programmed (using the Geotools librabry) which is again, 

evidently, far from reach for many modelers. 

2.4 Geographic vector data in GAMA 
In order to address these shortcomings we developed the GAMA 

platform, which goes much further by making available many 

more GIS services and operations and especially an advance 

management of geographic vector data.  

The first version of GAMA that was presented in [1] proposed the 

idea of using a continuous environment to serve as a reference for 

all other environments (e.g. grid environment). In this former 

version, all situated agents had a point for geometry. The use of 

geographic vector data was very limited: there were just to 

initialize the initial location of the agents and as a background 

layer. 



If the new version of GAMA (GAMA 1.3) kept the same idea of a 

reference environment, it goes further by providing a true 

geometry to all situated agents. This geometry, which is based on 

vector representation, can be simple (point, polyline or polygon) 

or complex (composed of several sub-geometries).  

The geometry of the agents can be defined by the modeler (a list 

of points) or directly loaded from a shapefile. Indeed, GAMA 

allows to use geographic vector data to create agents of a specific 

species (a prototype of agents that defines both the agent internal 

state and their behavior): each object of the geographical data will 

be automatically used to instantiate an agent, GAMA taking care 

of managing the spatial projection of the data and, if necessary, of 

reading the values of the attributes. Consequently GAMA 

considers localized agents and geographic objects in the exact 

same way. 

Example: the following GAML lines allow to create a set of 

building agents from the shapefile shape_file_building.shp and to 

set the value of the attribute nature of each created building agent 

according to the attribute NATURE of the shapefile: 

<create species="building" 
from="shape_file_building.shp"   

with="[nature:: read ‘NATURE’]"/> 

 

Figure 1 gives an example of the agentification of 4 buildings 

from a shapefile. 

 

Figure 1. Example of geographical data agentification 

In the same way, GAMA allows to save a set of agents in a 

shapefile. 

Example: the following GAML lines allow to save all the agents 

of the species building in the shapefile shape_file_building.shp 

and to set the value of the attribute NATURE of each geographic 

object according to the attribute nature of the agents: 

<save species="building" 
to="shape_file_building.shp"   

with="[nature:: ‘NATURE’]"/> 

In order to ease the manipulation of the vector geometries, GAMA 

integrates different GIS features that are directly available through 

the GAML language. Thus, GAMA allows to: 

• Compute the area and the perimeter of a geometry. 

Example: The following GAML line allows to compute the 

area of the geometry of the agent ag: 

<let name="the_area" value="ag.area" /> 

• Test if two geometries intersect, touch, cross, overlap 

each other. 

Example: The following GAML lines allow to test if the 

geometry of the agent that is applying the action intersects 

the geometry geom: 

<do action="interection" return="is_true"> 
<arg name="geometry" value="geom" /> 

</do> 

• Compute the convex hull and the buffer geometry of a 

geometry (Figure 2). 

 

Figure 2. Example of convex hull and buffer actions. 

Example: The following GAML line allows to compute the 

convex hull of the geometry of the agent that is applying 

the action: 

<do action="convex_hull" return="result"/> 

• Apply translation, rotation and scaling operations on a 

geometry (Figure 3).   

 

Figure 3. Example of scaling, rotation and translation actions. 

Example: The following GAML lines allow to rotate the 

geometry of the agent that is applying the action with an 

angle of 90°: 

<do action="rotation "> 
<arg  name="angle" value="90" /> 

</do> 

• Compute the geometry resulting from the union, 

intersection or difference of two geometries (Figure 4). 

 

Figure 4. Example of union, intersection and difference 

actions. 

Example: The following GAML lines allow to compute the 

difference between the geometry geom1 and the geometry 

geom2: 



<do action="difference" return="result"> 
<arg name="geometry1" value="geom1" /> 

<arg name="geometry2" value="geom2" /> 

</do> 

• Compute the distance between two geometries (minimal 

distance). 

Example: The following GAML lines allow to compute the 

distance between the geometry of the agent that is 

applying the action and the geometry geom: 

<do action="distance_geometry" 
return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

• Compute the neighborhood of an agent, i.e. all the 

agents that are localized at a distance lower than a given 

thresholds to the agent. 

Example: The following GAML lines allow to compute the 

neighborhood of the agent ag: 

<let name="neighborhood" 
value="ag.neighbours_geometry "/> 

• Compute a random point inside a geometry. 

Example: The following GAML lines allow to compute a 

random point inside the geometry geom: 

<do action="place_in" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

 

Figure 5. Example of Tessellations (square and triangle). 

• Compute the point of a geometry that is the closest to 

the agent location. 

Example: The following GAML lines allow to compute the 

point of the geometry geom that is the closest to the agent 

that is applying the action. 

<do action="closest_point_in" 
return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

• Apply a tessellation operation (square or triangle) on a 

geometry (Figure 5). 

Example: The following GAML lines allow to compute the 

Delaunay triangulation of the geometry (polygon) geom: 

<do action="triangulation" return="result"> 

<arg name="geometry" value="geom" /> 

</do> 

• Compute the skeleton of a geometry (Figure 6). 

 

Figure 6. Example of Skeletonization. 

 

Example: The following GAML lines allow to compute the 

skeleton of the geometry (polygon) geom: 

<do action="skeletonization" return="result"> 
<arg name="geometry" value="geom" /> 

</do> 

• Compute the shortest path (or the distance) inside a 

geometry (line network or polygon) between two points 

located in the geometry. For this computation, our 

approach consists in modeling the geometry as a graph, 

and in computing from it the shortest path linking the 

two points. In the context of a line network, the 

modeling as a graph is trivial. In the context of a 

polygon, this one is based on a Delaunay triangulation 

of the geometry: each triangle resulting from the 

triangulation is modeled as a node and an edge 

represents the fact that two triangles are adjacent. Figure 

7 shows an example of graph computation. Two 

algorithms are implemented for the shortest path 

computation: Dijkstra [17] and Floyd Warshall [18]. 

 

Figure 7. Example of graph computation 

Example: the following GAML lines allow to move the agent 

that is applying the action toward the point the_target, at a 

speed of 5 km/h, inside the geometry geom (which can be 

a graph or a polygon): 

<do action="goto"> 
<arg name="target" value="the_target" /> 

<arg name="speed" value="5 km/s" /> 

<arg name="geometry" value="geom" /> 

</do> 



3.  MULTI-SCALE MODELING 

3.1 Context  
Another advantage of the agent-based modeling approach is its 

representation versatility. Indeed, an “agent” can represent any 

individual or aggregation/structure of individuals of the reference 

system, at any spatial scale and across different time horizons. 

Thus the modeler is free in her/his choice of the entities of the 

reference system that will be represented by agents. This choice 

will depend on the level of abstraction of the reference system the 

modeler is working with. This, in turn, depends on the question 

he/she wants to answer with the model, on the data available at 

hand, on the scale at which this data is described, etc.   

In addition to the agent representing entities of the reference 

system, the modeler can need to explicitly represent emergent 

structures. Indeed, during the simulation stage (execution of the 

model), some structure can emerge: appearance of pheromone 

trail built by ant [19], evolution of social group within a 

population [20], formation of arches in granular environment 

[21], etc. These structures are often the result of non-linear 

interactions between the agents defined in the model and can play 

a significant role in the model dynamics. They can be considered 

as a higher level of abstraction (upper scale) compare to the 

underlying agents composing them. It is important, if not crucial, 

to be able to detect and to generate them dynamically (i.e. might 

simplified the simulation run). 

Current agent-based modeling platforms lack support in term of 

agent-based modeling language to represent these structures as 

explicit entities in the model and tools to detect them. Thus, 

modelers face difficulties when they need to represent them and to 

follow their dynamics during the course of the simulation.  

3.2 Multi-scale modeling in GAMA 
In GAMA, in order to let modelers dynamically track the 

emergence of dynamic structures, we let them represent these 

structures as explicit entities in the model. We call these entities 

“emergent agents”. As regular agent, an emergent agent can have 

attributes and behaviors. Beside, its instantiation depends on the 

appearance of certain properties during the simulation and its life-

cycle possesses some specific operations. 

3.2.1 Representing emergent structure 
The “creation” operation helps to specify when an emergent 

agent is instantiated. This operation allows the modeler to express 

in an explicit way the rules governing the instantiation of 

emergent agents during the simulation. For example, consider a 

simulation of city dynamics: a modeler can decide to instantiate 

an emergent agent of species building block when two or more 

building agents are close enough. Figure 8 illustrates this 

example: an emergent agent (building block) representing the 

emergent structure is created with six micro-agents (building) as 

components. 

 

 

Figure 8. Creation of an emergent agent (building block agent) 

The “update” operation describes how micro-agents are added 

to or removed from an emergent agent. Some micro-agents may 

no longer satisfy a condition to belong to an emergent agent, 

while others, still “free” may now fulfill it: this operation allows 

to specify how these agents are added or removed from the 

structure. The purpose of this operation is to keep the list of 

components up-to-date with respect to the meaning of the 

emergent agent.  

 

 

Figure 9. Update of an emergent agent (building block agent) 

Figure 9 illustrates the “update” operation. It follows the example 

of city dynamic simulation presented Figure 8. We consider that a 

building block agent composes of three building agents. One 

building agent doesn’t satisfy the condition to belong to the 

building block agent anymore. A free building agent satisfies the 

condition to become a member of the building block agent. This 

operation helps the modeler to remove one building agent from 

the building block agent and add one building agent to the 

building block agent. 

The “merge” operation allows the modeler to specify how 

several emergent agents representing different structures can be 

merged into one unique emergent agent. The fusion of their 

respective components then becomes the components of the new 

unique emergent agent. 

Figure 10 illustrates the “merge” operation using the same 

example as Figure 8 and 9. We consider a new building block 

agent (in yellow) has been created. This agent is close enough to 

the existing building block agent (in green) to merge with it.  The 

resulting agent will be composed of the 5 building agents 

composing the two building block agents. 

 



 

Figure 10. Fusion of different emergent agents  

The purpose of the “disposal” operation is to express when an 

emerging structure should not consider to be an agent in the 

simulation anymore. The emergent agent representing the 

structure is cleared out of the simulation and its components 

become free. 

 

Figure 11. Death of an emergent agent  

Figure 11 illustrates the “disposal” operation. Following the 

example presented Figure 10, we consider that three of the 

building agents composing the building block agent died. Now, 

the remaining building agents are too far from each other to 

compose a building block agent. Then, the building block agent is 

going to die. 

The top-down feedback control allows the modeler to describe 

which feedback constraint an emergent agent is exercising on its 

underlying micro-agents. As emergent agents usually emerge 

because of the interactions of certain micro-agents, these agents 

have an influence on its attributes and behavior. Reciprocally, an 

emergent agent may also provide a feedback on the behavior of its 

components, either implicitly or explicitly. In order to describe it, 

the modeler needs to have some way to alter the behavior of a 

micro-agent (by changing parameters, adding, or removing entire 

behaviors) before and after it enters an emergent agent. 

Typically, in our city dynamic simulation example, a building 

agent, once part of building block agent, has more chance to 

attract residents to live in, and thus to lead to construction of new 

buildings in the neighborhood (for example, shops).  

3.2.2 Representing emergent agents in GAMA 
An emergent agent is composed of constituent agents. Constituent 

agents can be considered as micro-agents compared to the 

emergent agent. Reciprocally, the emergent agent can be seen as a 

macro-agent compared to its constituent agents. In turn, several 

emergent agents can be merged to form another emergent agent at 

a higher level of abstraction. Thus, an agent in GAMA can play 

the role of macro-agent in one level of organization and micro-

agent in a higher level of abstraction. This design aims at 

permitting the modeler to represent as many levels of abstraction 

as he needs in his model. Figure 12 shows an example of 

abstraction level hierarchy for the city dynamic simulation 

problem: a city agent is composed of a set of district agents that 

are each composed of a set of building block agents that are at 

their turn composed of a set of building agents. 

 

Figure 12. Example of level of abstraction hierarchy 

 

To manipulate the five specific operations in the lifecycle of an 

emergent agent (create, update, merge, disposal, top-down 

constraint control), six GAML commands are defined: creation, 

update, merge, disposal, enable and disable.  

• The creation command allows to specify when emergent 

agents are created in the simulation.  

Example: the following GAML lines create a building block 

agent which has for components the building agent 

contained in the list list_buildings: 

<creation> 
   <create 

with="[components::list_buildings]"        

species="building" />   

</creation> 

• The update command allows the modeler to define how 

the constituent micro-agents are added and removed 

from an emergent agent. 

Example: the following GAML lines update the components 

of the building block agent that is applying this command 

by adding the building agents contained in 

added_buildings and removing the ones contained in 

removed_buildings: 

<update> 

  <set name="components" value ="components + 

added_buildings - removed_buildings"/> 

</update> 

• The merge command allows the modeler to define how 

several emergent agents are merged. 

Example: the following GAML lines allow to merge several 

building block agents (the ones contained in the 

nearby_bb list) with the building block agent applying 

this command. All the constituent building agents of the 

building block agents contained in the nearby_bb list are 

added to the component list of the one applying the 



command. Then, the other building block agents die (i.e. 

are removed from the simulation): 

<merge> 

  <loop over="nearby_bb" var="one_bb"> 

     <set name="components" value 

="components + one_bb.components"/> 

     <ask target="one_bb"> 

        <do action="die"> 

     </ask> 

  </loop> 

</merge> 

• The disposal command allows the modeler to specify 

when an emergent agent is cleared out of the simulation. 

Example: the following GAML line specifies that a building 

block agent will be removed from the simulation if it 

contains less than two building agents: 

<disposal when="(length components) < 2"/> 

• The disable command allows the modeler to disable 

certain behavior units appropriately. While the enable 

command allows the modeler to enable the inactive 

behavior units. 

Example: the following GAML lines enable the behavior 

“expansion” and disable the behavior “destruction” of the 

building agent one_building_agent: 

<ask target="one_building_agent"> 
   <enable behavior="'expansion'"> 

   <enable behavior="'destruction'"> 
</ask> 

Note that GAMA provides several clustering algorithms (e.g. 

hierarchical clustering, X-Means [22], Cobweb [23]) that can be 

used to dynamically detect if an emergent agent has to be 

instantiate. For example, these algorithms can be used to detect 

groups of close agents, or agents sharing some specific attributes.  

Example: the following GAML lines allows to regroup the 

building agents contained in the buildings list into a set of groups; 

each group being composed of building agents of which the 

distance to each other is lower or equal to 10m: 

<do action="simple_clustering_by_distance"  
    return="groups"> 

<arg name="agents" value="buildings" > 
<arg name="dist_max" value="10m" > 

</do> 

4. COUPLING GEOGRAPHIC VECTOR 

DATA AND MULTI-SCALES MODELING 
In Section 2.4, we presented the GIS capacities and in Section 3.2 

its multi-scales modeling capacities of GAMA. In this section, we 

investigate a way to couple the use of geographical data and 

multi-scales modeling: we propose to decompose an agent into a 

set of constituent agents on geometric basis. One of the main 

interests of such decomposition is to improve the dynamicity of 

the special operations applied on the agent.  

Indeed, consider an agent with a geometry, which is used to 

constraint the movement of other agents: for example, a road 

network agent on which some people agents are moving, a forest 

agent in which animal agents are moving, etc.. Moving agents on 

this geometry requires to compute a new graph from the geometry 

each time it is modified. This computation can be very time 

consuming if the geometry is complex. An approach to face this 

problem is to decompose the agent in a set of constituent agents 

on a geometric basis: each constituent agent will represent a part 

of the macro agent geometry (for example, a line in the context of 

line network, or a triangle in the context of a polygon). Instead of 

computing the new graph each time the geometry is modified, the 

complete graph will be computed only once and each constituent 

agent will remember its role in the graph. Then, each time the 

macro agent geometry is modified, it will locally update its list of 

micro agents (delete the micro agents which geometry is no more 

part of the global geometry, create new ones if necessary and 

modify the geometry of existing ones), and each micro agent will 

update its role in the graph. Figure 13 gives an example, where a 

graph was already computed for a geometry, and where the 

modification of the geometry has lead to a local update of the 

graph. 

 

 

Figure 13. Example of a local modification of a graph 

In GAMA, using such an approach can be easily achieved. 

Indeed, in Section 2.4, we presented how GAMA allows to 

compute the square or triangle tessellation of a geometry and a 

graph from a geometry. More-over, as seen in Section 3.2, GAMA 

allows to define macro-agents (emergent agent). Thus, GAMA 

provides all the features that are required to apply this approach. 

5. DISCUSSION 
We see the contributions of this work as threefold: 

1- There is a difference between an idea and its implementation. 

What we incorporate into GAMA are implementations of ideas 

that may have been (or not) already proposed by other people but 

rarely found their way into operational instances. They are 

implemented into the platform and linked with the modeling 

language, so that they can be used by anyone building a model in 

GAMA. In our point of view, these implementations are 

contributions to the field, because they eliminate the ambiguities 

and the lack of formalism often found in ABM/MAS 

contributions and, most important, can be experimented. 

2- Integrating existing techniques in a framework and enabling the 

researchers to easily choose the most appropriate is a delicate 

exercise. In GAMA, we have ensured that all the proposed 

techniques are tightly coupled, and that they are usable even by 

novice users through GAML. This allows us to build, in the same 

platform, simple models (a la NetLogo) alongside more complex 

models. Actually, our efforts of integration tend to the point that 

there are no real differences between a "simple" and a "complex" 

model. So, while it is true that, for instance, we did not invent 

graph-related techniques, we believe we contribute to the field by 



providing a way, for researchers, to use the most appropriate, 

transparently, into their models. 

3- Following the previous point, we see GAMA as a contribution 

by itself, filling the gap between NetLogo, interesting for 

prototyping small models, but which does not scale well when it 

comes to real ones, and RePast, more a complete toolbox than a 

platform. The fact, for instance, that every agent in GAMA is 

provided with a geometry, and that any environment can be 

discretized, means that researchers can begin with a simple 

prototype (where agents are points on a grid, like in Netlogo) to 

test the logic of a model, and turn this model into a more realistic 

one, for example by loading data from a GIS base, without having 

to change anything to the logic. This radically transforms the 

experimental processes of ABM.  

6. CONCLUSION 
In this paper, we present the new advance features included in the 

last version of the GAMA platform (version 1.3)[2]. These 

features concern the use of geographic vector data and the 

definition of multi-scales models. 

This version of GAMA is already used in several projects related 

to different application domains such as the avian flu local 

propagation in North Vietnam, the rift valley fever in Senegal, the 

brown hopper invasion in South Vietnam, the effect of emotions 

on waves of panic.  

The next version of GAMA, version 1.4, is going to include a new 

integrated development environment (IDE) with a new modeling 

language. The goal is to ease the work of the modelers by 

providing a less extensive and easier to learn language. This 

version will also include all the classic features provide by most 

of the modern IDE (auto-completion, automatic detection of 

errors, etc.). In addition, we plan to improve the integration of the 

approach proposed in Section 4. Practically, for the moment, the 

use of this approach with GAMA is still complex and require 

much GAML code. Methods allowing to automate this approach 

are required. 
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