
HAL Id: hal-00688318
https://hal.science/hal-00688318v1

Submitted on 17 Apr 2012 (v1), last revised 19 Apr 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GAMA : a simulation platform that integrates
geographical information data, agent-based modeling

and multi-scale control
Patrick Taillandier, Duc-An Vo, Edouard Amouroux, Alexis Drogoul

To cite this version:
Patrick Taillandier, Duc-An Vo, Edouard Amouroux, Alexis Drogoul. GAMA : a simulation plat-
form that integrates geographical information data, agent-based modeling and multi-scale control.
PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS, 2012, Kolkata, India. pp.242-258,
�10.1007/978-3-642-25920-3_17�. �hal-00688318v1�

https://hal.science/hal-00688318v1
https://hal.archives-ouvertes.fr

GAMA: a simulation platform that integrates geographical
information data, agent-based modeling and multi-scale

control
Patrick Taillandier

 IFI, Equipe MSI; IRD, UMI
209 UMMISCO
42 Ta Quang

Buu, Hanoi, Vietnam

patrick.taillandier@gmail.com

Duc-An Vo
 IFI, Equipe MSI; IRD, UMI

209 UMMISCO
42 Ta Quang

Buu, Hanoi, Vietnam

voducanvn@yahoo.com

Edouard Amouroux
 IFI, Equipe MSI; IRD, UMI

209 UMMISCO
42 Ta Quang

Buu, Hanoi, Vietnam

edouard.amouroux@ird.fr

Alexis Drogoul
IRD, UMI 209 UMMISCO;

IFI, Equipe MSI 209
 42 Ta Quang

Buu, Hanoi, Vietnam

alexis.drogoul@gmail.com

ABSTRACT

The agent-based modeling is now widely used to study complex

systems. Its ability to represent several levels of interaction along

a detailed (complex) environment representation favored such a

development. However, in many models, these capabilities are not

fully used. Indeed, only simple, usually discrete, environment

representation and one level of interaction (rarely two or three)

are considered in most of the agent-based models. The major

reason behind this fact is the lack of simulation platforms assisting

the work of modelers in these domains. To tackle this problem, we

developed a new simulation platform, GAMA. This platform

allows modelers to define spatially explicit and multi-levels

models. In particular, it integrates powerful tools coming from

Geographic Information Systems (GIS) and Data Mining easing

the modeling and analysis efforts. In this paper, we present how

this platform addresses these issues and how such tools are

available right out of the box to modelers.

Categories and Subject Descriptors

D.0 [Software]: GENERAL

General Terms

Design

Keywords

Simulation platform, Agent-based modeling, Geographical vector

data, Multi-level control

1. INTRODUCTION
The agent-based modeling has brought a new way to study the

complex systems. It allows to take into account different levels of

interactions as well as the heterogeneity of the entities composing

the system.

Even if numerous simulation platforms exist, most of the complex

models are still developed from scratch. Indeed, very few

platforms allow to directly work with geographical vector data

(series of coordinates defining geometries) and/or to define multi-

level models. Moreover, these platforms are often complex to use

and their understanding can require a time investment from the

modeler that can be similar to the one needed to develop a model

from scratch.

In this paper, we present the GAMA agent-based simulation

platform [1], [2]. This platform provides a complete modeling and

simulation development environment for building spatially

explicit multi-agent simulations. Many models have already been

implemented using this platform (e.g. [3][4][5][6]). Its main

advantages come from its versatility (domain independent) and

the simplicity to define a model with it. Indeed, GAMA provides a

rich, yet accessible, modeling language based on XML, GAML,

that allows to define complex models integrating at the same time

entities of different scales and geographical vector data.

The paper is organized as follow. In Section 2, we present the

capabilities of GAMA concerning the integration of geographical

vector data. Section 3 is dedicated to the presentation of its multi-

scale modeling capabilities. In Section 4, we investigate a way to

couple the use of geographical data and multi-scales modeling.

Section 5 discusses about the contributions of this paper. At last,

Section 6 concludes.

2. INTEGRATING GEOGRAPHICAL

VECTOR DATA IN SIMULATION

2.1 Why using geographic vector data in

models?
These last years have seen the development on a large scale of

geographical vector datasets. Today, most of the decision makers

use this type of data when they have to face a problem integrating

a spatial dimension.

In the context of simulations, using this type of data allows to

make the simulations closer to the field situation. In addition, it

allows to use tools, like spatial analysis, coming from Geographic

Information Systems (GIS) to manage these data.

2.2 Use of geographical data in models
If more and more models integrate geographical vector data, their

use can take different forms. In the following sections, we present

three different ways of using vector data, from the simplest

(reading/writing of geographical data) to the most complex

(agentification of geographical data).

2.2.1 Reading and writing of geographical vector

data
The most basic functions concerning the use of geographical

vector data are the reading and the writing of geographical data

from files and from database. The goal is to integrate seamlessly

the vector data as the simulation’s environment (input) and to

store the resulting environment (output).

Once geographical vector data has been read, several uses can be

made of them. The most straightforward one consists in

translating them as a grid where agents are localized.

2.2.2 Using geographical vector data as background

layers
A more complex use consists in using these data as a “background

layer” constituted of geographical objects: the agents will be able

to move according to this layer. For example, some agents will be

able to move along a network of road, or inside a complex

polygon (e.g. inside a forest represented by a polygon.

This use requires the integration in the simulator of GIS specific

primitives such as moving an agent inside a geometry, computing

a shortest path between two points of this geometry (or on a

network), etc.

2.2.3 Agentification of Geographical vector data
A richer ways of integrating geographical vector data in a model

is to consider each geographic object as an agent. Thus, a road

will be an agent, a building or a city, and each object contained in

a geographical dataset will also be represented by an agent.

Remark that this kind of geographical data agentification was

already used for other application contexts such as cartographic

generalization [7]. In the context of simulation, the advantage of

this approach is to give the possibility to manage geographical

objects exactly like other agents in the simulation: it will be

possible to give them an internal state and a behavior.

Reciprocally, it is possible to go further and to consider that every

“spatialized” (localized and with a geometry) agents of the

simulation has a geometry and can be viewed as a geographic

object in a geographical dataset. In this way, the management of

agents and geographical objects is equivalent and trouble-free.

Indeed, no difference is made anymore between agents and

geographical objects.

2.3 Geographical vector data in existing

simulation platforms

2.3.1 Simulation platforms with basic support of

geographical vector data

Swarm [8] is a well-established simulation platform and

inspiration for many others. Its original version does not allow to

integrate geographic vector data. However, a library called Kenge

[9] allows to load layers of geographic vector data. Practically,

this extension allows to create a cellular automata from a shape

file. In addition, an ad hoc access to geographical data has been

developed for specific models (e.g. [10]). Unfortunately, they do

not provide any spatial primitives neither the possibility to store

the resulted environment.

Netlogo [11] is also a well-established simulation platform. It is

largely used for educational purpose and for research. The GIS

support has been added recently through an extension [12]. It

allows import and export of vector data and support the projection

system (the method used to represent the geographical data on a

plane). The attributes of the vector data are made accessible as

well as their geometrical characteristics (centroid, list of vertex,

etc.). Some basic geometrical operations are also available

(bounding rectangles, union of polygons, etc.). However, many

more advanced spatial analysis operation are not offered.

CORMAS [13] is a platform dedicated to the modeling in ecology

and especially the natural resources management where space

representation and interaction is essential. It proposes two

environment modes: vector and raster. They share the same

organization of 3 classes «spatial entity», «agent», and «object».

This organization, though being rigid, ease the development of

model by abstracting the interaction with environment, thus

allows to switch from a discrete environment to a continuous (or

vector) one. Unfortunately, CORMAS provides only basic

services for the discrete environment. Moreover, GIS support is

limited to loading and storing shapefiles (a popular vector data

format) and creating elementary areas. GIS primitives (union,

intersection, shortest path, etc.) and access to polygon attributes

have to be programmed.

In 2008, Urbani proposed the SMAG (portmanteau word from

SMA-SIG or MAS-GIS in English) architecture linking a GIS and

MABS simulator for decision support system. The author

implemented it over CORMAS, calling it CORMGIS [14]. The

integration is relatively basic as access to geo-referenced data is

done through a data-connection to ArcGIS. In addition, no GIS

primitive (union, intersection, etc) is available.

2.3.2 Simulation platforms with advanced support of

geographic vector data

Repast J [15] is a modeling toolkit inspired by Swarm. As a

toolkit, it provides a structure with only basic services readily

available. Different grids are implemented (hexagonal or

rectangular, torus or not, etc.) but agents are not (only an interface

is given). The GIS support is done through the OpenMap library.

It provides the minimal services of a GIS: importing/exporting

shapefiles and raster data, some geometrical operations, access to

data attributes, etc. Nevertheless, as Repast J provides access to

OpenMap, the modeler can implement more complex operations.

Unfortunately, this programming is far from reach of the vast

majority of modelers.

Repast Symphony (Repast S) [16] is the up-to-date version of the

Repast toolkit. It provides the same basic features as Repast J, but

is based on a more advanced GIS library, Geotools, which

provides additional GIS services. In particular, Repast S allows to

directly model a network of lines as a graph and to compute the

shortest paths from one point to another. It allows as well to

visualize and manage 3D data. Nevertheless, the number of GIS

operations available is still fairly limited and localized agents are

still to be programmed. More advanced operations have to be

programmed (using the Geotools librabry) which is again,

evidently, far from reach for many modelers.

2.4 Geographic vector data in GAMA
In order to address these shortcomings we developed the GAMA

platform, which goes much further by making available many

more GIS services and operations and especially an advance

management of geographic vector data.

The first version of GAMA that was presented in [1] proposed the

idea of using a continuous environment to serve as a reference for

all other environments (e.g. grid environment). In this former

version, all situated agents had a point for geometry. The use of

geographic vector data was very limited: there were just to

initialize the initial location of the agents and as a background

layer.

If the new version of GAMA (GAMA 1.3) kept the same idea of a

reference environment, it goes further by providing a true

geometry to all situated agents. This geometry, which is based on

vector representation, can be simple (point, polyline or polygon)

or complex (composed of several sub-geometries).

The geometry of the agents can be defined by the modeler (a list

of points) or directly loaded from a shapefile. Indeed, GAMA

allows to use geographic vector data to create agents of a specific

species (a prototype of agents that defines both the agent internal

state and their behavior): each object of the geographical data will

be automatically used to instantiate an agent, GAMA taking care

of managing the spatial projection of the data and, if necessary, of

reading the values of the attributes. Consequently GAMA

considers localized agents and geographic objects in the exact

same way.

Example: the following GAML lines allow to create a set of

building agents from the shapefile shape_file_building.shp and to

set the value of the attribute nature of each created building agent

according to the attribute NATURE of the shapefile:

<create species="building"
from="shape_file_building.shp"

with="[nature:: read ‘NATURE’]"/>

Figure 1 gives an example of the agentification of 4 buildings

from a shapefile.

Figure 1. Example of geographical data agentification

In the same way, GAMA allows to save a set of agents in a

shapefile.

Example: the following GAML lines allow to save all the agents

of the species building in the shapefile shape_file_building.shp

and to set the value of the attribute NATURE of each geographic

object according to the attribute nature of the agents:

<save species="building"
to="shape_file_building.shp"

with="[nature:: ‘NATURE’]"/>

In order to ease the manipulation of the vector geometries, GAMA

integrates different GIS features that are directly available through

the GAML language. Thus, GAMA allows to:

• Compute the area and the perimeter of a geometry.

Example: The following GAML line allows to compute the

area of the geometry of the agent ag:

<let name="the_area" value="ag.area" />

• Test if two geometries intersect, touch, cross, overlap

each other.

Example: The following GAML lines allow to test if the

geometry of the agent that is applying the action intersects

the geometry geom:

<do action="interection" return="is_true">
<arg name="geometry" value="geom" />

</do>

• Compute the convex hull and the buffer geometry of a

geometry (Figure 2).

Figure 2. Example of convex hull and buffer actions.

Example: The following GAML line allows to compute the

convex hull of the geometry of the agent that is applying

the action:

<do action="convex_hull" return="result"/>

• Apply translation, rotation and scaling operations on a

geometry (Figure 3).

Figure 3. Example of scaling, rotation and translation actions.

Example: The following GAML lines allow to rotate the

geometry of the agent that is applying the action with an

angle of 90°:

<do action="rotation ">
<arg name="angle" value="90" />

</do>

• Compute the geometry resulting from the union,

intersection or difference of two geometries (Figure 4).

Figure 4. Example of union, intersection and difference

actions.

Example: The following GAML lines allow to compute the

difference between the geometry geom1 and the geometry

geom2:

<do action="difference" return="result">
<arg name="geometry1" value="geom1" />

<arg name="geometry2" value="geom2" />

</do>

• Compute the distance between two geometries (minimal

distance).

Example: The following GAML lines allow to compute the

distance between the geometry of the agent that is

applying the action and the geometry geom:

<do action="distance_geometry"
return="result">
<arg name="geometry" value="geom" />

</do>

• Compute the neighborhood of an agent, i.e. all the

agents that are localized at a distance lower than a given

thresholds to the agent.

Example: The following GAML lines allow to compute the

neighborhood of the agent ag:

<let name="neighborhood"
value="ag.neighbours_geometry "/>

• Compute a random point inside a geometry.

Example: The following GAML lines allow to compute a

random point inside the geometry geom:

<do action="place_in" return="result">
<arg name="geometry" value="geom" />

</do>

Figure 5. Example of Tessellations (square and triangle).

• Compute the point of a geometry that is the closest to

the agent location.

Example: The following GAML lines allow to compute the

point of the geometry geom that is the closest to the agent

that is applying the action.

<do action="closest_point_in"
return="result">
<arg name="geometry" value="geom" />

</do>

• Apply a tessellation operation (square or triangle) on a

geometry (Figure 5).

Example: The following GAML lines allow to compute the

Delaunay triangulation of the geometry (polygon) geom:

<do action="triangulation" return="result">

<arg name="geometry" value="geom" />

</do>

• Compute the skeleton of a geometry (Figure 6).

Figure 6. Example of Skeletonization.

Example: The following GAML lines allow to compute the

skeleton of the geometry (polygon) geom:

<do action="skeletonization" return="result">
<arg name="geometry" value="geom" />

</do>

• Compute the shortest path (or the distance) inside a

geometry (line network or polygon) between two points

located in the geometry. For this computation, our

approach consists in modeling the geometry as a graph,

and in computing from it the shortest path linking the

two points. In the context of a line network, the

modeling as a graph is trivial. In the context of a

polygon, this one is based on a Delaunay triangulation

of the geometry: each triangle resulting from the

triangulation is modeled as a node and an edge

represents the fact that two triangles are adjacent. Figure

7 shows an example of graph computation. Two

algorithms are implemented for the shortest path

computation: Dijkstra [17] and Floyd Warshall [18].

Figure 7. Example of graph computation

Example: the following GAML lines allow to move the agent

that is applying the action toward the point the_target, at a

speed of 5 km/h, inside the geometry geom (which can be

a graph or a polygon):

<do action="goto">
<arg name="target" value="the_target" />

<arg name="speed" value="5 km/s" />

<arg name="geometry" value="geom" />

</do>

3. MULTI-SCALE MODELING

3.1 Context
Another advantage of the agent-based modeling approach is its

representation versatility. Indeed, an “agent” can represent any

individual or aggregation/structure of individuals of the reference

system, at any spatial scale and across different time horizons.

Thus the modeler is free in her/his choice of the entities of the

reference system that will be represented by agents. This choice

will depend on the level of abstraction of the reference system the

modeler is working with. This, in turn, depends on the question

he/she wants to answer with the model, on the data available at

hand, on the scale at which this data is described, etc.

In addition to the agent representing entities of the reference

system, the modeler can need to explicitly represent emergent

structures. Indeed, during the simulation stage (execution of the

model), some structure can emerge: appearance of pheromone

trail built by ant [19], evolution of social group within a

population [20], formation of arches in granular environment

[21], etc. These structures are often the result of non-linear

interactions between the agents defined in the model and can play

a significant role in the model dynamics. They can be considered

as a higher level of abstraction (upper scale) compare to the

underlying agents composing them. It is important, if not crucial,

to be able to detect and to generate them dynamically (i.e. might

simplified the simulation run).

Current agent-based modeling platforms lack support in term of

agent-based modeling language to represent these structures as

explicit entities in the model and tools to detect them. Thus,

modelers face difficulties when they need to represent them and to

follow their dynamics during the course of the simulation.

3.2 Multi-scale modeling in GAMA
In GAMA, in order to let modelers dynamically track the

emergence of dynamic structures, we let them represent these

structures as explicit entities in the model. We call these entities

“emergent agents”. As regular agent, an emergent agent can have

attributes and behaviors. Beside, its instantiation depends on the

appearance of certain properties during the simulation and its life-

cycle possesses some specific operations.

3.2.1 Representing emergent structure
The “creation” operation helps to specify when an emergent

agent is instantiated. This operation allows the modeler to express

in an explicit way the rules governing the instantiation of

emergent agents during the simulation. For example, consider a

simulation of city dynamics: a modeler can decide to instantiate

an emergent agent of species building block when two or more

building agents are close enough. Figure 8 illustrates this

example: an emergent agent (building block) representing the

emergent structure is created with six micro-agents (building) as

components.

Figure 8. Creation of an emergent agent (building block agent)

The “update” operation describes how micro-agents are added

to or removed from an emergent agent. Some micro-agents may

no longer satisfy a condition to belong to an emergent agent,

while others, still “free” may now fulfill it: this operation allows

to specify how these agents are added or removed from the

structure. The purpose of this operation is to keep the list of

components up-to-date with respect to the meaning of the

emergent agent.

Figure 9. Update of an emergent agent (building block agent)

Figure 9 illustrates the “update” operation. It follows the example

of city dynamic simulation presented Figure 8. We consider that a

building block agent composes of three building agents. One

building agent doesn’t satisfy the condition to belong to the

building block agent anymore. A free building agent satisfies the

condition to become a member of the building block agent. This

operation helps the modeler to remove one building agent from

the building block agent and add one building agent to the

building block agent.

The “merge” operation allows the modeler to specify how

several emergent agents representing different structures can be

merged into one unique emergent agent. The fusion of their

respective components then becomes the components of the new

unique emergent agent.

Figure 10 illustrates the “merge” operation using the same

example as Figure 8 and 9. We consider a new building block

agent (in yellow) has been created. This agent is close enough to

the existing building block agent (in green) to merge with it. The

resulting agent will be composed of the 5 building agents

composing the two building block agents.

Figure 10. Fusion of different emergent agents

The purpose of the “disposal” operation is to express when an

emerging structure should not consider to be an agent in the

simulation anymore. The emergent agent representing the

structure is cleared out of the simulation and its components

become free.

Figure 11. Death of an emergent agent

Figure 11 illustrates the “disposal” operation. Following the

example presented Figure 10, we consider that three of the

building agents composing the building block agent died. Now,

the remaining building agents are too far from each other to

compose a building block agent. Then, the building block agent is

going to die.

The top-down feedback control allows the modeler to describe

which feedback constraint an emergent agent is exercising on its

underlying micro-agents. As emergent agents usually emerge

because of the interactions of certain micro-agents, these agents

have an influence on its attributes and behavior. Reciprocally, an

emergent agent may also provide a feedback on the behavior of its

components, either implicitly or explicitly. In order to describe it,

the modeler needs to have some way to alter the behavior of a

micro-agent (by changing parameters, adding, or removing entire

behaviors) before and after it enters an emergent agent.

Typically, in our city dynamic simulation example, a building

agent, once part of building block agent, has more chance to

attract residents to live in, and thus to lead to construction of new

buildings in the neighborhood (for example, shops).

3.2.2 Representing emergent agents in GAMA
An emergent agent is composed of constituent agents. Constituent

agents can be considered as micro-agents compared to the

emergent agent. Reciprocally, the emergent agent can be seen as a

macro-agent compared to its constituent agents. In turn, several

emergent agents can be merged to form another emergent agent at

a higher level of abstraction. Thus, an agent in GAMA can play

the role of macro-agent in one level of organization and micro-

agent in a higher level of abstraction. This design aims at

permitting the modeler to represent as many levels of abstraction

as he needs in his model. Figure 12 shows an example of

abstraction level hierarchy for the city dynamic simulation

problem: a city agent is composed of a set of district agents that

are each composed of a set of building block agents that are at

their turn composed of a set of building agents.

Figure 12. Example of level of abstraction hierarchy

To manipulate the five specific operations in the lifecycle of an

emergent agent (create, update, merge, disposal, top-down

constraint control), six GAML commands are defined: creation,

update, merge, disposal, enable and disable.

• The creation command allows to specify when emergent

agents are created in the simulation.

Example: the following GAML lines create a building block

agent which has for components the building agent

contained in the list list_buildings:

<creation>
 <create

with="[components::list_buildings]"

species="building" />

</creation>

• The update command allows the modeler to define how

the constituent micro-agents are added and removed

from an emergent agent.

Example: the following GAML lines update the components

of the building block agent that is applying this command

by adding the building agents contained in

added_buildings and removing the ones contained in

removed_buildings:

<update>

 <set name="components" value ="components +

added_buildings - removed_buildings"/>

</update>

• The merge command allows the modeler to define how

several emergent agents are merged.

Example: the following GAML lines allow to merge several

building block agents (the ones contained in the

nearby_bb list) with the building block agent applying

this command. All the constituent building agents of the

building block agents contained in the nearby_bb list are

added to the component list of the one applying the

command. Then, the other building block agents die (i.e.

are removed from the simulation):

<merge>

 <loop over="nearby_bb" var="one_bb">

 <set name="components" value

="components + one_bb.components"/>

 <ask target="one_bb">

 <do action="die">

 </ask>

 </loop>

</merge>

• The disposal command allows the modeler to specify

when an emergent agent is cleared out of the simulation.

Example: the following GAML line specifies that a building

block agent will be removed from the simulation if it

contains less than two building agents:

<disposal when="(length components) < 2"/>

• The disable command allows the modeler to disable

certain behavior units appropriately. While the enable

command allows the modeler to enable the inactive

behavior units.

Example: the following GAML lines enable the behavior

“expansion” and disable the behavior “destruction” of the

building agent one_building_agent:

<ask target="one_building_agent">
 <enable behavior="'expansion'">

 <enable behavior="'destruction'">
</ask>

Note that GAMA provides several clustering algorithms (e.g.

hierarchical clustering, X-Means [22], Cobweb [23]) that can be

used to dynamically detect if an emergent agent has to be

instantiate. For example, these algorithms can be used to detect

groups of close agents, or agents sharing some specific attributes.

Example: the following GAML lines allows to regroup the

building agents contained in the buildings list into a set of groups;

each group being composed of building agents of which the

distance to each other is lower or equal to 10m:

<do action="simple_clustering_by_distance"
 return="groups">

<arg name="agents" value="buildings" >
<arg name="dist_max" value="10m" >

</do>

4. COUPLING GEOGRAPHIC VECTOR

DATA AND MULTI-SCALES MODELING
In Section 2.4, we presented the GIS capacities and in Section 3.2

its multi-scales modeling capacities of GAMA. In this section, we

investigate a way to couple the use of geographical data and

multi-scales modeling: we propose to decompose an agent into a

set of constituent agents on geometric basis. One of the main

interests of such decomposition is to improve the dynamicity of

the special operations applied on the agent.

Indeed, consider an agent with a geometry, which is used to

constraint the movement of other agents: for example, a road

network agent on which some people agents are moving, a forest

agent in which animal agents are moving, etc.. Moving agents on

this geometry requires to compute a new graph from the geometry

each time it is modified. This computation can be very time

consuming if the geometry is complex. An approach to face this

problem is to decompose the agent in a set of constituent agents

on a geometric basis: each constituent agent will represent a part

of the macro agent geometry (for example, a line in the context of

line network, or a triangle in the context of a polygon). Instead of

computing the new graph each time the geometry is modified, the

complete graph will be computed only once and each constituent

agent will remember its role in the graph. Then, each time the

macro agent geometry is modified, it will locally update its list of

micro agents (delete the micro agents which geometry is no more

part of the global geometry, create new ones if necessary and

modify the geometry of existing ones), and each micro agent will

update its role in the graph. Figure 13 gives an example, where a

graph was already computed for a geometry, and where the

modification of the geometry has lead to a local update of the

graph.

Figure 13. Example of a local modification of a graph

In GAMA, using such an approach can be easily achieved.

Indeed, in Section 2.4, we presented how GAMA allows to

compute the square or triangle tessellation of a geometry and a

graph from a geometry. More-over, as seen in Section 3.2, GAMA

allows to define macro-agents (emergent agent). Thus, GAMA

provides all the features that are required to apply this approach.

5. DISCUSSION
We see the contributions of this work as threefold:

1- There is a difference between an idea and its implementation.

What we incorporate into GAMA are implementations of ideas

that may have been (or not) already proposed by other people but

rarely found their way into operational instances. They are

implemented into the platform and linked with the modeling

language, so that they can be used by anyone building a model in

GAMA. In our point of view, these implementations are

contributions to the field, because they eliminate the ambiguities

and the lack of formalism often found in ABM/MAS

contributions and, most important, can be experimented.

2- Integrating existing techniques in a framework and enabling the

researchers to easily choose the most appropriate is a delicate

exercise. In GAMA, we have ensured that all the proposed

techniques are tightly coupled, and that they are usable even by

novice users through GAML. This allows us to build, in the same

platform, simple models (a la NetLogo) alongside more complex

models. Actually, our efforts of integration tend to the point that

there are no real differences between a "simple" and a "complex"

model. So, while it is true that, for instance, we did not invent

graph-related techniques, we believe we contribute to the field by

providing a way, for researchers, to use the most appropriate,

transparently, into their models.

3- Following the previous point, we see GAMA as a contribution

by itself, filling the gap between NetLogo, interesting for

prototyping small models, but which does not scale well when it

comes to real ones, and RePast, more a complete toolbox than a

platform. The fact, for instance, that every agent in GAMA is

provided with a geometry, and that any environment can be

discretized, means that researchers can begin with a simple

prototype (where agents are points on a grid, like in Netlogo) to

test the logic of a model, and turn this model into a more realistic

one, for example by loading data from a GIS base, without having

to change anything to the logic. This radically transforms the

experimental processes of ABM.

6. CONCLUSION
In this paper, we present the new advance features included in the

last version of the GAMA platform (version 1.3)[2]. These

features concern the use of geographic vector data and the

definition of multi-scales models.

This version of GAMA is already used in several projects related

to different application domains such as the avian flu local

propagation in North Vietnam, the rift valley fever in Senegal, the

brown hopper invasion in South Vietnam, the effect of emotions

on waves of panic.

The next version of GAMA, version 1.4, is going to include a new

integrated development environment (IDE) with a new modeling

language. The goal is to ease the work of the modelers by

providing a less extensive and easier to learn language. This

version will also include all the classic features provide by most

of the modern IDE (auto-completion, automatic detection of

errors, etc.). In addition, we plan to improve the integration of the

approach proposed in Section 4. Practically, for the moment, the

use of this approach with GAMA is still complex and require

much GAML code. Methods allowing to automate this approach

are required.

7. REFERENCES
[1] Amouroux, E., Chu, T. Q., Boucher, A., and Drogoul, A.

2007. GAMA: An Environment for Implementing and

Running Spatially Explicit Multi-agent Simulations.

PRIMA07, 359-371.

[2] GAMA platform, http://gama-platform.googlecode.com

[3] Amouroux, E., Desvaux, and S., Drogoul, A. 2008. Towards

Virtual Epidemiology: An Agent-Based Approach to the

Modeling of H5N1 Propagation and Persistence in North-

Vietnam. PRIMA2008: 26-33.

[4] Nguyen Vu, Q. A., Gaudou, B., Canal, R., and Hassas, S.

2009 Coherence and robustness in a disturbed MAS. IEEE-

RIVF, DaNang, VietNam, 2009. IEEE.

[5] Chu, T. Q., Drogoul, A., Boucher, A., and Zucker J., 2009.

Interactive Learning of Independent Experts’ Criteria for

Rescue Simulations. Journal of Universal Computer Science,

vol. 15, no. 13 (2009), 2701-2725

[6] Taillandier, P., and Buard, E. 2009. Designing Agent

Behaviour in Agent-Based Simulation through participatory

method. PRIMA2010, Nagoya, Japan, 571-578.

[7] Ruas, A., and Duchêne, C. 2007. A prototype generalisation

system based on the multi-agent system paradigm.

Generalisation of Geographic information: cartographic

modelling and applications, Elsevier Ltd, 269-284.

[8] Minar, N., Burkhart , R., Langton, C., and Askenazi M.

1996. The Swarm Simulation System: A Toolkit for Building

Multi-Agent Simulations, SFI Working Paper 96-06-042.

[9] Box, P. 2002. Spatial Units as Agents. Integrating GIS and

Agent-Based Modelling Techniques. ed. Oxford.

[10] Haklay, M., O'Sullivan, D., Thurstain-Goodwin, M. and

Schelhorn, T. 2001. So Go Downtown": Simulating

Pedestrian Movement in Town Centres, Environment and

Planning B: Planning and Design, 28(3): 343-359.

[11] Wilensky, U. 1999. NetLogo.

http://ccl.northwestern.edu/netlogo/. Center for Connected

Learning and Computer-Based Modeling, Northwestern

University. Evanston, IL

[12] Russell, E., and Wilensky, U. 2008. Consuming spatial data

in NetLogo using the GIS Extension. The annual meeting of

the Swarm Development Group. Chicago, IL.

[13] Bousquet, F., Bakam, I., Proton, H. and Le Page, C. 1998.

Cormas: common-pool resources and multi-agents systems.

IEA/AIE (Vol. 2) 826-837

[14] Urbani, D., and Delhom, M. 2008. Analyzing Knowledge

Exchanges in Hybrid MAS GIS Decision Support Systems,

Toward a New DSS Architecture, LNCS 4953, 323-332 ,

[15] North, M. J., Collier, N. T., and Vos, J. R. 2006. Experiences

Creating Three Implementations of the Repast Agent

Modeling Toolkit. ACM Transactions on Modeling and

Computer Simulation, Vol. 16, Issue 1, 1-25.

[16] North, M. J., Tatara, E., Collier, N. T., and Ozik, J. 2007.

Visual Agent-based Model Development with Repast

Simphony, Conference on Complex Interaction and Social

Emergence.

[17] Dijkstra, E. W. 1971. A short introduction to the art of

programming. Technological Univ. Eindhoven, Rep.

EWD316.

[18] Floyd, R.W. 1962. Algorithm 97: Shortest Path,

Communications of the ACM, vol. 5, no 6, p. 345

[19] Camazine, S. et al. 2001. Self-Organization in Biological

Systems. Princeton University Press, Princeton,

[20] Schelling, T.. Schelling ‘s Segregation model,

http://web.mit.edu/www/lab/alife/schelling.html

[21] Laurent Breton et al. 2000. A Multi-Agent Based Simulation

of Sand Pile in Static Equilibrium. MABS2000.

[22] Pelleg, D., Moore, A. W. 2000. X-means: Extending K-

means with Efficient Estimation of the Number of Clusters.

Seventeenth International Conference on Machine Learning,

727-734, 2000.

[23] Gennari, J. H. Langley, P., Fisher, D. 1990. Models of

incremental concept formation. Artificial Intelligence. 40:11-

61

