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Abstract

In finite markets with short-selling, conditions on agents’ utilities in-

suring the existence of efficient allocations and equilibria are by now

well understood. In infinite markets, a standard assumption is to

assume that the individually rational utility set is compact. Its draw-

back is that one does not know whether this assumption holds except

for very few examples as strictly risk averse expected utility maximiz-

ers with same priors. The contribution of the paper is to show that

existence holds for the class of strictly concave second order stochas-

tic dominance preserving utilities. In our setting, it coincides with

the class of strictly concave law-invariant utilities. A key tool of the

analysis is the domination result of Lansberger and Meilijson that

states that attention may be restricted to comonotone allocations of

aggregate risk. Efficient allocations are characterized as the solutions

of utility weighted problems with weights expressed in terms of the

asymptotic slopes of the restrictions of agents’ utilities to constants.

The class of utilities which is used is shown to be stable under aggre-

gation.

Keywords: Law invariant utilities, comonotonicity, Pareto efficiency, equi-
libria with short-selling, aggregation, representative agent.
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1 Introduction

The problem of the existence of equilibria in finite markets with short-selling
has first been considered in the early seventies by Grandmont [24], Hart [27]
and Green [25] in the context of temporary equilibrium models and assets
equilibrium models. It was later reconsidered by a number of authors (for a
review of the subject in finite markets, see Allouch et ali [3], Dana et al [17],
Page [35]). Three sets of conditions were given for existence of an equilib-
rium:
- the assumption of existence of a no-arbitrage price, a price at which no
investor could make costless unbounded utility nondecreasing purchases (see
for example Grandmont [24], Hammond [26], Page [34], [38]) or equivalently
under standard conditions on utilities, that aggregate demand exists at some
price,
-the no unbounded utility arbitrage condition, a condition of absence of col-
lective arbitrage, which requires that investors do not engage in mutually
compatible, utility nondecreasing trades (see for example, Hart [27], Page
[34], Nielsen [33]),
-and finally, the assumption that the individually rational utility set is com-
pact (see for example, Dana et al [17], Nielsen [33], Page and Wooders [36]).
Under suitable assumptions, these conditions were shown to be equivalent
(see Dana et al [17] and Page and Wooders [36]).

While the problem of existence of an Arrow-Debreu equilibrium in infi-
nite economies with consumption sets bounded below was considered as well
understood at the end of the eighties (see Aliprantis, Brown and Burkinshaw
[1] and Mas-Colell and Zame [32]), a number of papers discussed the difficul-
ties raised by the issue of shortselling: Cheng [12], Brown-Werner [8], Dana
and Le Van [14],[15], Dana et al [18] and Aliprantis et ali [2], this list not
being exhaustive. The finite dimension assumptions where shown not to be
equivalent, the assumption of absence of free lunch or of absence of collective
arbitrage too weak. The standard assumption has been to assume that the
individually rational utility set is compact with the drawback that it is not
known whether it is fulfilled except for very few examples (models with mean
variance utilities or strictly risk averse expected utilities). For proving exis-
tence of equilibrium in infinite dimension economies with consumption sets
unbounded below, most papers have used the topological version of Negishi’s
approach. Dana Le Van [14],[15] have used utility weights e and the excess
utility correspondence. Their paper however relies on the assumption that
the individually rational utility set is compact.
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More recently, there has been renewed interest for the problem of ex-
istence and characterization of efficient allocations in markets with short-
selling, in the mathematical finance literature. Indeed, for the last ten years,
the problem of quantifying the risk of a financial position has been very
popular in finance (see Föllmer and Schied [23] for an overview) and has
led to the concept of convex measure of risk. Risk sharing of an aggregate
capital betwen different units or different investors or of the risk of a bank
between its subsidiaries, led to problems of efficiency with shortselling that
have been mainly discussed in infinite dimension (see for example, Barrieu
and El Karoui [6], Filipovic and Svindland [21] and Jouini et ali [28] ). All
of these papers have all considered law-invariant convex measures of risk.

To show existence of efficient allocations for law-invariant convex mea-
sures of risk, Filipovic and Svindland [21] and Jouini et ali [28] have both
used the domination result of Lansberger and Meilijson [30] that any alloca-
tion of an aggregate risk is dominated for second order stochastic dominance
by a comonotone allocation. Comonotone allocations are allocations having
the property that agents’ wealths are non decreasing functions of aggregate
wealth that add up to identity. They are said to fulfill a mutuality principle.
Moreover, the wealths of any pair of agents are positively correlated. Since
the early work of Borch [7], Arrow [4] and Wilson [39], they have played an
important role in the theory of risk sharing between strictly concave expected
utility maximizers, the efficient allocations of risk being comonotone. When
utilities are second order stochastic dominance preserving, from the domina-
tion result, for efficiency issues, attention may be restricted to comonotone
allocations. As comonotone allocations are almost compact, with mild conti-
nuity assumptions on utilities, the individually rational utility set is compact.
When the state space is non atomic and the utilities are concave, the hypoth-
esis that utilities are second order stochastic dominance preserving is equiv-
alent to their law invariance. By definition, law invariant utility functions
only depend on the distributions of wealths and include many standard util-
ities, the expected utility, the rank dependent expected utility, the prospect
utility, Green and Jullien’s utility ( see below), the opposite of a number
of very well-known risk-measures used in finance as entropy or averagevar.
They have been very popular in the decision theoretic literature of the eight-
ies. However not all of them are concave. For example risk averse expected
utilities are law invariant and concave while risk taker expected utilities are
law invariant and convex.

The first aim of the paper is to show existence of efficient allocations and
equilibria for markets with short-selling for concave second order stochastic
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dominance preserving utilities that fulfill some mild continuity properties and
are strictly concave for most of the agents. In view of unifying models used
in economics and in finance, an l+m agents exchange economy is considered,
the first l agents having monetary utilities (adding t units of cash to a position
increases the utility of t ) and the last m agents having law invariant strictly
concave utilities. State contingent claims are assumed to be in L∞, a choice
that may seem odd given current financial markets and the horrors of (L∞)′.
As the utilities that are considered in the paper have supergradients in L1

+,
attention may be restricted to countably additive prices (or prices in L1

+ )
and values of contingent claims are integrals with respect to pricing densities.

Since utility functions are concave, the utility weight version of Negishi’s
method may be used to show existence of efficient allocations and equilib-
ria. Efficient allocations are characterized as the solutions of utility weighted
problems for weights expressed in terms of the asymptotic slopes of the re-
strictions to constants of the agents’ utilities. The same utility weights char-
acterize the efficient sharings of a fixed amount of a non random wealth
between l + m agents having as utilities on the reals the restrictions to reals
of agents’ utilities. The efficient utility weights are therefore defined as the
solutions of a set of equalities (monetary agents have same weight, otherwise,
they would exchange cash so as to increase aggregate utility ) and strict in-
equalities expressed in terms of the asymptotic slopes of the restrictions to
constants of the agents’ utilities.

The second aim of the paper is to show that the class of utilities being
studied is stable by aggregation. The aggregation problem is by no mean an
eazy problem. The strictly risk averse RDU class is not stable by aggrega-
tion while the class of Choquet integrals with respect to a convex distortion
is stable. It is shown that the monetary agents have a representative agent
with a monetary law invariant utility (the sup-convolution of the monetary
agents’ utilities). Strictly concave agents also have a representative agent
but it depends on the efficient allocation considered ( or on the set of utility
weights characterizing the efficient allocation). At any efficient allocation,
the representative agent of the whole economy has a law invariant strictly
concave utility. Finally at any efficient allocations, the wealths of the strictly
concave agents and the aggregate monetary wealth are comonotone. The
anticomonotonicity of prices and aggregate risk is known to hold in some
cases. The generality of the result remains an open question.

The paper is organized as follows. In section 2, the model is presented
and l some properties of law invariant, concave, norm continuous utilities
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recalled. Using the domination result of Lansberger and Meilijson, the utility
set is shown to be closed and the individually rational utility set is compact.
Section 3 is devoted to the characterization of efficient allocations as solutions
of utility weighted problems. A monetary representative agent independent
of utility weights is introduced. Section 4 is devoted to existence of equilibria
and to some of its qualitative and aggregation properties. An appendix
contains the proof of the two main results of the paper.

2 The domination result for law invariant con-

cave utilities

2.1 The model

We consider a standard Arrow-Debreu one good exchange economy under
uncertainty with l + m agents. Agents trade the set of state-contingent
claims and have homogeneous beliefs about states of the world. Given as
primitive is a non-atomic probability space (Ω,B, P ), hence it supports a
random variable U uniformly distributed on [0, 1]. Contingent claims are
identified to elements of L∞(Ω,R) that we now on write L∞. Agents are
described by their endowments Wi ∈ L∞, i = 1, . . . , l+m and their utilities.
Let W :=

∑
i Wi be the aggregate endowment with distribution function FW

assumed to be continuous. Agents’ utilities, ui : L∞ → R are concave, mono-
tone, law invariant (two random variables with same probability law, have
same utility), continuous in the norm topology of  L∞. We also assume that
the utility of some agent fulfills the following continuity assumption that in-
sures that the superdifferential of the utility is in  L1(see proposition 2 below).

H Xn ↑ X : a.e. implies u(Xn) ↑ u(X).

A utility is monetary if it is monotone and fulfills

ui(X + t) = ui(X) + t for any t ∈ R,

In other words, if the risk-free amount t ∈ R is added to X , then the utility
increases of t. The opposite of a concave monotone, monetary utility is
called a convex measure of risk. Numerous examples of concave, monotone,
law invariant monetary utilities may be found in Jouini et ali [28] and in
Föllmer and Schied [23].

We assume that the utilities of the first l agents are concave, monetary,
law invariant and norm-continuous and that the utilities of the last m agents
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are strictly concave. Let us give an example of such utilities.

An example: Green and Jullien’s utilities

Let X be a random variable and FX(t) = P (X ≤ t), t ∈ R be its distribution
function. The generalized inverse of FX or quantile of X is defined by:

F−1
X (0) = essinf X and F−1

X (t) = inf{z ∈ R : FX(z) ≥ t}, for all t ∈]0, 1]

Let

uL(X) :=

∫ 1

0

L(t, F−1
X (t))dt, for all X ∈ L∞ (1)

where L ∈ C2([0, 1] × R), ∂xL ≥ 0, ∂xxL < 0 and ∂txL ≤ 0 on [0, 1] × R.
The concavity of uL is proven in Carlier and Dana [9]. The strict concavity
follows from the representation formula

uL(X) = min
U

{E(L(U,X)) | F−1
X (U) = X}

where U is a uniform law and from the strict concavity of L. Moreover as-
sumption H is fulfilled. Indeed, if Xn ↑ X , then F−1

Xn
↑ F−1

X and from the
dominated convergence theorem, uL(Xn) ↑ uL(X).

In the case L(t, x) = f ′(1 − t)U(x) with f convex C1 and U concave C2,
one obtains the rank dependent expected utility.

2.2 A few properties of convave law-invariant utilities

The aim of this section is to show that the utilities that are considered have
two fundamental properties: they are second order stochastic dominance pre-
serving and their superdifferential is in L1.

We recall that X dominates Y for second order stochastic dominance
(SSD), denoted X�2Y if E(U(X)) ≥ E(U(Y )), for every U : R → R con-
cave nondecreasing while X strictly dominates Y for SSD denoted X≻2Y if
E(U(X)) > E(U(Y )) for every strictly concave nondecreasing utility func-
tion U . Hence X∼2Y if and only if X and Y have same distribution. A
map u : L∞ → R (strictly) preserves SSD if X�2 Y ( X≻2 Y ) implies
u(X) ≥ u(Y ) (u(X) > u(Y )). A map u : L∞ → R is law invariant if two
random variables with same distribution have same utility. Since X∼2Y if
and only if X and Y have same distribution, if u preserves SSD, then u is
law invariant. The next proposition provides sufficient conditions for the
converse to be true.
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Proposition 1 Let (Ω,B, P ) be non-atomic and u : L∞ → R be concave,
‖‖∞ upper semi-continuous. Then

1. u is σ(L∞, L1) upper semi-continuous,

2. u is SSD preserving if and only if u is law invariant and monotone.

Proof. From proposition 4.1 and remark 4.4 in Jouini et ali [29], a ‖‖∞-
closed convex law-invariant subset of L∞ is σ(L∞, L1) closed. Hence if
u : L∞ → R is concave and law-invariant, ‖‖∞ upper semi-continuous, then
{X ∈ L∞ | u(X) ≥ a} is ‖‖∞-closed convex law-invariant, hence is σ(L∞, L1)
closed and u is σ(L∞, L1) upper semi-continuous. The second assertion fol-
lows from the first assertion and theorem 4.1 in Dana [13].

Let us next recall the definition of a supergradient of u at X :

∂u(X) = {z ∈ (L∞)′ | u(X) − u(X ′) ≥ z · (X −X ′), for all X ′ ∈ L∞}

The norm continuity of u implies that supergradients exist while H insures
that supergradients are in L1

+.

Proposition 2 For any i, ∂ui(X) 6= ∅ and convex. If ui fulfills H , then
∂ui(X) ⊆ L1

+ and is L1 closed.

Proof. Since ui is norm continuous, it follows from Aubin [5], p 108 that
∂ui(X) is non empty, convex and σ((L∞)′, L∞) compact. Since (L∞)′ can be
identified to the space of bounded finitely additive measures which vanish on
P null sets, let Q ∈ ∂ui(X). Then Q is finitely-additive and non negative
since ui is monotone. Let us show that Q is σ-additive. Let X ∈ L∞ be
given and An ↓ ∅. Then Xn = X − 1An

↑ X . We have

ui(X) − ui(Xn) ≥ z · (X −Xn) = Q(An) ≥ 0

From H, ui(Xn) → ui(X), therefore Q(An) → 0, which implies that Q is
σ-additive.

2.3 Comonotone allocations

Let

A(W ) = {(Xi)
l+m
i=1 ∈ (L∞)l+m |

l+m∑

i=1

Xi = W}
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be the set of feasible allocations for aggregate endowment W , We recall
that (Xi)

l+m
i=1 ∈ A(W ) is (strictly) dominated by (X ′

i)
l+m
i=1 ∈ A(W ) if ui(X

′
i) ≥

ui(Xi) for every i (with a strict inequality for some i), while (Xi)
l+m
i=1 ∈ A(W )

is �2 (≻2) dominated by (X ′
i)

l+m
i=1 ∈ A(W ) if X ′

i �2 Xi for every i (strict for
some i). A �2-efficient allocation is a feasible allocation which is not strictly
(not strictly �2) dominated.

Comonotone feasible allocations play a crucial role in risk-sharing theory
when utilities are concave monotone, law invariant and norm continuous. We
recall that a pair of random variables (X, Y ) is comonotone if there exists a
subset B ⊂ Ω × Ω, P ⊗ P (B) = 1 such that

[X(s) −X(s′)] [Y (s) − Y (s′)] ≥ 0, ∀(s, s′) ∈ B

A family of randon variables (Xi)
d
i=1 is comonotone if any pair (Xi, Xj)

is comonotone for all (i, j). We next recall a number of useful results on
comonotone allocations.

Proposition 3 1. An allocation (Xi)
l+m
i=1 ∈ A(W ) is comonotone if and

only if there exists l + m non decreasing functions hi on R such that∑
i hi =Id, with Xi = hi(W ) a.e.

2. Any allocation in A(W ) is �2 dominated by a comonotone allocation
in A(W ). If the allocation is not comonotone, then there exists an
allocation that strictly dominates it.

3. A feasible allocation (Xi)
l+m
i=1 ∈ A(W ) is Pareto optimal iff there exist a

set of strictly positive utility weights λ ∈ R
l+m such that it is a solution

to the problem

Pλ(W ) : sup

{
∑

i

λiui(Xi) |
∑

i

Xi = W

}

Assertion 1 is well-known and proven in Denneberg [20]. If follows that
the hi are 1-Lipschitz. We refer to assertion 2 as the comonotone domi-
nance result. Domination by comonotone allocations was originally proven
by Landsberger and Meilijson [30] for two agents and an aggregate endow-
ment supported by a finite set. Domination for two agents was extended by
Filipovic and Swidland [21] to an aggregate risk in L1 by a limit argument.
The n agents case is proven in Dana and Meilijson [19] and Ludovski and
Rüschendorf [31] also by limits arguments. A direct proof with a construc-
tive algorithm as well as strict dominance for non comonotone allocations is
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proven in Carlier et ali [10] for a non-atomic probability space. Assertion
3 with non negative utility weights is well-known. Utility weights have to
be positive since if (Xi)

l+m
i=1 is efficient and say λ1 = 0, then agent 1 can

give a strictly positive constant amount to any agent with strictly positive
utility weight increasing the aggregate utility, contradicting efficiency of the
allocation.

Let U(W ) =
{
v ∈ R

l+m | vi ≤ ui(Xi), ∀i, for some (Xi)
l+m
i=1 ∈ A(W )

}

be the utility set. For a ∈ R
l+m, let

V (a,W ) =
{
v ∈ R

l=m | ai ≤ vi ≤ ui(Xi), for all i, for some (Xi)
l+m
i=1 ∈ A(W )

}
.

Proposition 4 1. For any W ∈ L∞, U(W ) is closed and convex,

2. For any W ∈ L∞, a ∈ R
l+m, V (a,W ) is compact. In other words, any

subset of the utility set which is bounded below is bounded above.

Proof. Convexity is standard. To prove that U(W ) is closed, let vn →
v, vn ∈ U(W ). From proposition 3, for any i = 1, , . . . , l + m, there
exists a sequence Xn

i (W ) with Xn
i non-decreasing 1-Lipschitz such that

vni ≤ ui(X
n
i (W )) for all n and i. Since Xn

i is 1-Lipschitz, we have for all
n and i, assuming w.l.o.g. that 0 ∈supportW

vni ≤ ui(X
n
i (W )) ≤ ui(X

n
i (0) + ‖W‖∞) (2)

which implies that the sequence Xn
i (0), i = 1, . . . , l + m is bounded below.

As
∑

iX
n
i (0) = 0, it is bounded above. Since Xn

i is 1-Lipschitz, it is uni-
formly bounded on compact subsets. From Ascoli’s theorem, a subsequence
converges uniformly to Xi non-decreasing 1-Lipschitz on the support of W
and ‖Xn

i (W ) −Xi(W )‖∞ → 0. As ui is norm-continuous, we have for any i
ui(Xi) = lim ui(X

n
i ) ≥ vi. Hence v ∈ U(W ) proving that it is closed. The

proof of the second assertion which uses similar arguments is omitted.

It follows from the proof of proposition 4 that any sequence of comono-
tone allocations (Xn

i (W ))l+m
i=1 with utilities bounded above or below has a

subsequence converging to a comonotone allocation in the L∞ norm.

Existence of an equilibrium with prices in (L∞)′ follows from proposition 4
and for example from Brown and Werner [8]. If there are no monetary agents,
then existence of an equilibrium with prices in L1 follows from Dana and Le
Van [15]. By using the utility weight approach, efficient allocations can be
fully characterized and the qualitative properties of equilibrium wealths and
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prices analysed. Furthermore aggregation properties of the utilities consid-
ered may be discussed. This is therefore the route we follow.

We shall make extensive use of the following corollary:

Corollary 1 If l = 0 or l = 1 then any efficient allocation must be comono-
tone. Furthermore if Pλ(W) has a solution, it is unique.

Proof. From proposition 1, agents’ utilities are SSD preserving. Let (Xi)
l+m
i=1

be efficient and assume that the first agent has a concave utility while the
others have strictly concave utilities. From assertion 2 of proposition 3, if
(Xi)

l+m
i=1 is not comonotone, it is strictly dominated for SSD by a feasible

comonotone allocation (Yi)
l+m
i=1 . As we must have for some i > 2, Xi 6= Yi

efficiency of (Xi)
l+m
i=1 is contradicted. Hence a Pareto optimal allocation is

comonotone. Suppose that Pλ(W) has two solutions (Xi)
l+m
i=1 and (Yi)

l+m
i=1 .

Then we must have for some i > 2, Xi 6= Yi. Then (Xi+Yi

2
)l+m
i=1 does strictly

better, a contradiction.

Remark. We let the reader verify that if all utilities except at most one, are
strictly risk averse, then corollary 1 also holds true.

3 Efficient risk-sharing

This section contains one of the main result of the paper. As standard in
Negishi’s method, efficient allocations are characterized as the solutions of
weighted utilities problems. However, the utility weights for which there are
solutions is not known. Theorem 1 shows that the utility weights for which
the weighted utility problems have solutions are those for which the sharing
of one good beween agents having as utilities the restrictions of the original
utilities to the reals has a solution.

Consider the problem Pλ(x) of optimal sharing of the amount x ∈ R

between the l + m agents with utilities ui(xi), xi ∈ R.

Pλ(x) : sup
l+m∑

i=1

λiui(xi),
l+m∑

i=1

xi = x, xi, x ∈ R (3)

To simplify the analysis, we assume that ui(xi) xi ∈ R is C1 for all i.
Let u′

j(∞) = limx→∞ u′
j(x), u′

j(−∞) = limx→−∞ u′
j(x) be its positive and

negative asymptotic slopes. For 1 ≤ i ≤ l, as ui(x) = x + b for all
x ∈ R, u′

i(−∞) = u′
i(∞) = 1.
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3.1 The main result

Theorem 1 The following are equivalent :

1. Pλ(W ) has a solution for any W ∈ L∞,

2. Pλ(x) has a solution for any x ∈ R,

3. λ ≫ 0 and

for all (i, j), i 6= j, 1 ≤ i ≤ l, 1 ≤ j ≤ l, λi = λj (4)

∀ (i, j), i 6= j, l+1 ≤ i ≤ l+m, l+1 ≤ j ≤ l+m,
λi

λj

<
u′
j(−∞)

u′
i(+∞)

(5)

∀(i, j), 1 ≤ i ≤ l, l + 1 ≤ j ≤ l + m, λju
′
j(∞) < λi < λju

′
j(−∞) (6)

The proof of theorem 1 may be found in the appendix. Let u0 be the sup-
convolution of the monetary utilities ui, 1 ≤ i ≤ l defined by

u0(X0) = sup {u1(X1) + u2(X2) . . . + ul(Xl), X1 + . . . + Xl = X0} (7)

Let
λ0 = λi, 1 ≤ i ≤ l and λ̃ = (λ0, λl+1, . . . , λl+m) (8)

Under (4), (5), (6), it follows from the proof of theorem 1 that solving prob-
lem Pλ(W ) is equivalent to solving an m + 1 agents risk-sharing problem of

W, P̃
λ̃
(W ) where the last m agents have utilities ui and the agent with index

0 has utility u0

P̃
λ̃
(W ) : sup

{
λ0u0(X0) +

∑

i≥l+1

λiui(Xi), X0 +
∑

i≥l+1

Xi = W

}
(9)

and solving u0 at the solution X̃0(λ̃,W ) of P̃
λ̃
(W ). Equivalently, the l first

agents aggregate into a monetary agent with utility u0 independent of the ef-
ficient allocation and that we are brought down to solve risk sharing problems
between the representative monetary agent and the last m agents.

3.2 Properties of the value function and of the efficient

risk sharing rule

In the remainder of this section, we focus on the value and the solutions of
problem P̃

λ̃
(W ). Let H = {0, l + 1, . . . , l + m}. Consider the open subset of

R
m+1
+ ,

D = {λ̃ ∈ R
m+1
+ | 0 <

λi

λj

<
u′
j(−∞)

u′
i(+∞)

, λju
′
j(∞) < λ0 < λju

′
j(−∞), i, j ∈ H}
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For any λ̃ ∈ D, W ∈ L∞, from theorem 1 and corollary 1, P̃
λ̃
(W ) has

a unique solution which is comonotone. Let h(λ̃,W ), (X̃i(λ̃,W ))i∈H and

(ṽi(λ̃,W ))i∈H = (ui(X̃i(λ̃,W )))i∈H denote respectively the value function of

P̃
λ̃
(W ), its solution and the optimal utilities.

Proposition 5 1. For any λ̃ ∈ D, h(λ̃, ·) is concave, monotone, law
invariant, continuous in the norm topology of L∞.

2. For any W ∈ L∞, h(·,W ) is convex and continuous on D.

Proof. In assertion one, the concavity and monotonicity of h(λ̃, ·) are ob-

vious. Since ∞ > h(λ̃,W ) ≥
∑l+m

i=l+1 λIui(0) + λ0u0(W ) > −∞ for any

W ∈ L∞ and λ̃ ∈ D, the domain of h(λ̃, ·) is L∞ and h(λ̃, ·) is norm-

continuous on its domain. To prove the law invariance of h(λ̃, ·), we have

h(λ̃,W ) = sup
∑

i∈H λiui(X̃i(W )) over comonotone allocations of W . If W ′

has same distribution as W , then ui(X̃i(W )) = ui(X̃i(W
′)) since the utilities

ui are law invariant, hence h(λ̃, ·) is law invariant. To prove assertion 2, the
function h(·,W ) is convex as supremum of linear functions. As D ⊆ dom
h(·,W ) and is open, h(·,W ) is continuous on D.

Let

∂2h(λ̃,W ) = {z ∈ (L∞)′ | h(λ,W ) − h(λ,W ′) ≥ z · (W −W ′), ∀ W ′ ∈ L∞}

be the superdifferential of the value function of problem P̃
λ̃
(W ).

Lemma 1 1. For any λ̃ ∈ D and W ∈ L∞, ∂2h(λ̃,W ) 6= ∅ and convex.

2. For any λ̃ ∈ D and any W ∈ L∞

∂2h̃(λ̃,W ) = ∩jλj∂2uj(X̃j(λ̃,W )) (10)

∂2u0(X̃0(λ̃,W )) = ∩l
i=1∂2ui(Xi(λ̃,W )) (11)

for any allocation (Xi(λ̃,W ))li=1 solving (7) at X0(λ̃,W ).

3. If some agent fulfills H, then ∂2h(λ̃,W ) ⊆ L1
+ and is L1 closed and

convex.

Proof. As h(λ̃, ·) is norm-continuous for any λ̃ ∈ D, ∂2h̃(λ̃,W ) is non
empty and convex. The second assertion is standard. Assertion 3 follows
from assertion 2 and lemma 1.
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Proposition 6 1. If λ̃n ∈ D → λ̃ ∈ D, then X̃i(λ̃
n,W ) → X̃i(λ̃,W ) in

the norm topology of L∞.

2. If λ̃n ∈ D → λ̃ ∈ ∂D, then, for some i, X̃i(λ̃
n,W ) → −∞ a.e. and

ṽi(λ̃,W ) → −∞

Proof. To prove the first assertion, as shown in the proof of 3 implies 1 in
theorem 1, if a subsequence of X̃i(λ̃

n, 0) is unbounded, then
∑

i∈H λiui(X̃i(λ̃
n,W ))

is dominated for n large enough, hence
∑

i∈H λn
i ui(X̃i(λ̃

n, X)) is dominated

for n large enough contradicting the optimality of X̃i(λ̃
n,W ). Therefore

X̃i(λ̃
n, 0) is bounded. As X̃i(λ̃

n, .) is 1-Lipschitz, X̃i(λ̃
n, .) is uniformly

bounded on compact sets and X̃i(λ̃
n,W ) has a subsequence converging to

X̃∗
i in the norm topology of L∞. We have for each n, for any comonotone

allocation (X̃i) of W ,
∑

i∈H

λn
i ui(X̃i(λ̃

n,W )) ≥
∑

i∈H

λn
i ui(X̃i(W ))

As ui is norm continuous, taking the limit, we obtain that
∑

i∈H

λiui(X̃
∗
i ) ≥

∑

i∈H

λiui(X̃i(W ))

As P̃
λ̃
(W ) has a unique solution (X̃i(λ̃,W ))i∈H , X̃∗

i (W ) = X̃i(λ̃,W ) for all

i ∈ H . As X̃i(λ̃
n,W ) has a unique limit point in the norm topology, it con-

verges to X̃i(λ̃,W ).

To prove the second assertion, let λ̃n → λ̃ ∈ ∂D. Suppose that ui(X̃i(λ̃
n,W ))

is bounded below for all i. From proposition 4, it is bounded above and
Xi(λ̃

n, .) is uniformly bounded on compact sets. From Ascoli’s theorem,

X̃i(λ̃
n,W ) has a subsequence converging in the norm topology. As in the

previous proof, we obtain that the limit is the solution of P̃
λ̃
(W ). From

theorem 1, λ̃ ∈ D contradicting the assumption that λ̃ ∈ ∂D. Hence for
some i, ṽi(λ̃

n,W ) → −∞. Since for every n, X̃i(λ̃
n, ·) is 1-Lipschitz, we have

X̃i(λ̃
n, 0) − ‖W‖∞ ≤ X̃i(λ̃

n,W ) ≤ X̃i(λ̃
n, 0) + ‖W‖∞ (12)

As ui is increasing, we obtain

ui(X̃i(λ̃
n, 0) − ‖W‖∞) ≤ ṽi(λ̃

n,W ) ≤ ui(X̃i(λ̃
n, 0) − ‖W‖∞)

Hence X̃i(λ̃
n, 0) → −∞. From (12), X̃i(λ̃

n,W ) → −∞ a.e. as was to be
proven.
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4 Equilibria

From now on, we assume that H is fulfilled.

Let us first consider the original l + m agents economy. A feasible allo-
cation and a price ((X∗

i )l+m
i=1 , z

∗) ∈ A(W ) × L1
+ is an equilibrium if for any

i = 1, . . . , l + m, , X∗
i solves

maxui(Xi) s.t. E(z∗Xi) ≤ E(z∗Wi), Xi ∈ L∞

4.1 The fictitious m + 1 agents’ economy

We have created a fictitious m + 1 agents economy. To define a concept
of equilibrium for that economy, we assume that agent 0 is endowed with
W0 =

∑l

i=1Wi. An allocation and a price ((X̃∗
i ), z∗) ∈ (L∞)m+1 × L1

+ is an

equilibrium if X∗
0 +

∑l+m

i=l+1 X̃
∗
i =

∑l+m

i=1 Wi and for any i ∈ H, X̃∗
i solves

maxui(Xi) s.t. E(z∗Xi) ≤ E(z∗Wi), Xi ∈ L∞

4.2 The excess utility correspondence

For λ̃ ∈ D, the excess utility correspondence Ẽ : D → R
m+1 is defined by

Ei(λ̃,W ) =

{
z · (X̃i(λ̃,W ) −Wi)

λi

, z ∈ ∂2h(λ̃,W )

}
, for all i (13)

Restricting attention to agent i, from (10), we have that for all i

ṽi(λ̃,W ) − ui(Wi) ≥
z · (Xi(λ̃,W ) −Wi)

λi

, z ∈ ∂2h(λ̃,W ) (14)

We next show that Ẽ has the properties of a finite dimensional excess demand
correspondence.

Proposition 7 1. For any W ∈ L∞, λ̃ ∈ D, Ẽ(.,W ) is a convex, com-
pact, non empty valued, upper hemi-continuous correspondence, which
satisfies Walras-law λ̃ · Ẽ(λ̃,W ) = 0.

2. If λ̃n ∈ D → λ̃ ∈ ∂D, then for some i, Ẽi(λ̃
n,W ) → −∞.

Proof. The proof of assertion 1 is similar to that of proposition 3.5 in Dana
and Le Van [15]. To prove the second assertion, let λ̃n ∈ D → λ̃ ∈ ∂D. We

then have for any tni ∈ Ẽi(λ̃
n,W )

ṽi(λ̃
n,W ) − ui(Wi) ≥ tni

14



From proposition 6, for some j, ṽj(λ̃
n,W ) → −∞, hence tnj → −∞ as was

to be proven.

4.3 Existence of equilibrium

For sake of completeness, a generalization of the Gale-Nikkaido’s lemma
proven by Florenzano and Le Van [22] is first recalled. Given a subset
C ⊆ R

m, C0 = {p ∈ R
m | p · X ≤ 0, for all X ∈ C} is the polar of

C.

Lemma 2 Let C be a closed convex cone in R
m which is not a half-space.

Let S denote the unit sphere of Rm. Let Z be an upper-semi-continuous, non
empty convex compact valued correspondence from C ∩ S into R

m such that

for all λ ∈ C ∩ S, ∃ z ∈ Z(λ), z · λ ≤ 0.

Then there exists λ ∈ C ∩ S such that Z(λ) ∩ C◦ 6= ∅.

Theorem 2 There exists an equilibrium where agents’ wealths are comono-
tone. At any equilibrium, the wealths of the agents with strictly concave
utilities and the aggregate monetary wealth are comonotone. At each equilib-
rium, the monetary agents have a representative agent with a monetary law
invariant utility independent of the equilibrium. The whole economy has a
representative agent with a law invariant, concave, norm continuous utility.

The proof includes two steps. The equilibria of the fictituous m+ 1 economy
in which the monetary agent with utility u0 is endowed with the aggregate
monetary endowment and the strictly concave agents are endowed with their
initial endowments is first constructed. The proof requires the generalization
of the Gale-Nikkaido’s lemma quoted above unless the asymptotic slopes ver-
ify u′

i(∞) = 0, u′
i(−∞) = ∞ for all i, case in which D is the interior of the

positive orthant of Rm+1 and the classical version may be used. This step
determines the strictly concave agents’ equilibrium wealths and the aggre-
gate monetary equilibrium wealth and the equilibrium pricing density. We
then select equilibrium monetary wealths for the first l agents from the effi-
cient sharings of the monetary equilibrium wealth. This second step which
is equivalent to determining the equilibria of a monetary economy does not
require the use of a fixed point theorem.

At equilibrium, the representative monetary utility is u0. It is indepen-
dent of the equilibrium. The overall representative agent’s utility is h(λ,W )

15



where λ is an equilibrium weight. It depends on the equilibrium. From propo-
sition 5, it is law invariant, concave, norm continuous and fulfills U. While
it follows from theorem 1 that the set of utility weights for which problems
characterizing efficiency have solutions is the same as if agents were expected
utility maximizers with utility indices ui(x), x ∈ R, i = 1, . . . , l+m, we want
to emphasize that the computation of efficient allocations (and of equilibrium
prices) is a hard problem which has only been adressed for specific utilities
in a number of papers for monetary utilities (for example [28], [21]), by Car-
lier and Dana [9] for the case of two agents and Carlier and Lachapelle [11]
for n agents for consumption models and strictly concave utilities. An open
question is under which conditions on utilities, prices are anti-comonotone
to aggregate risk as in a standard strictly concave expected utility model.
From Carlier and Dana [9], this holds true if for example some agent has
a utility of the type Green and Jullien, but we believe that they are more
general utilities.

5 Appendix

5.1 Proof of theorem 1

Proof. 1 implies 2, since, from assertion 2 of proposition 3, to show exis-
tence of a solution, we may restrict attention to comonotone allocations. As
a comonotone allocation of a constant is a vector of Rl+m, we are brought
down to consider problem Pλ(x).
Let us next show that 2 implies 3. If problem Pλ(x) has a solution (x∗

i )
m
i=1,

from the first order conditions, we have λiu
′
i(x

∗
i ) = λju

′
j(x

∗
i ) for any pair of

agents. This implies that for any pair (i, j) of monetary agents, λi = λj , for

any pair (i, j) of risk averse agents λi

λj
<

u′

j
(−∞)

u′

i
(+∞)

and any pair (i, j) of risk

neutral-risk averse agents λju
′
j(+∞) < λi < λju

′
j(−∞).

To prove that 3 implies 1, let X0 =
∑l

i=1Xi. As λi = λj, let

u0(X0) = sup {u1(X1) + u2(X2) . . . + ul(Xl), X1 + . . . + Xl = X0}

be the sup-convolution of the law-invariant monetary utilities ui, i = 1, . . . , l.
From Filipovic and Swidland [21], u0 is concave finite valued, exact, law
invariant, ‖‖∞ continuous. When the weights fulfill (4) , (5), (6) solving
problem Pλ(W ) may be brought down to solving an m+1 agents risk sharing

problem of W P̃
λ̃
(W ) where the last m agents have the utilities ui and the
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agent with index 0 has a monetary utility u0:

P̃
λ̃
(W ) : sup

{
λ0u0(X0) +

∑

i≥l+1

λiui(Xi), X0 +
∑

i≥l+1

Xi = W

}

with λ0 = λi, 1 ≤ i ≤ l and solving the sup-convolution at the solution
X0(λ,W ) of Pλ(W ). To show existence of a solution to P̃λ(W ), from assertion
2 of proposition 3, we may restrict attention to comonotone allocations of
W and from corollary 1, the solution if it exists is unique. Let H = {0, l +

1, . . . , l+m} and (X̃i(W ))i∈H be an m+1 comonotone allocations of W . We
have for all i ∈ H :

X̃i(0) − ‖W‖∞ ≤ X̃i(W ) ≤ Xi(0) + ‖W‖∞ (15)

Let us first show that P̃λ(W ) has a finite value. From assertion (5) and (6),
there exists B > 0, A > 0, such that

min
i

λiu
′
i(−B) > λ0 > max

j
λju

′
j(A) (16)

Let Yi = X̃i(0) + ‖W‖∞ and I = {i ∈ H | Yi ≤ 0} and J = {i ∈ H | Yi > 0}.

W.l.o.g. assume that 0 ∈ I. Note that from 15, Yi ≥ X̃i(W ) for all i ∈ H .
From (16), we first have for i ∈ I,

λi(ui(−B) − ui(Yi)) > u′
i(−B)(B − Yi)

hence

λiui(−B) + λiu
′
i(−B)B + (max

i∈J
λju

′
j(A))Yi ≥ λiui(Yi)

For j ∈ J , we similarly have

λjuj(A) − λju
′
j(A)A + (max

j∈J
λju

′
j(A))Yj ≥ λjuj(Yj)

Summing over i, j, we thus have since
∑

i Yi = ‖W‖∞,
∑

i∈I

λiui(−B) +
∑

i∈J

λiui(A) −
∑

i∈J

λiu
′
i(A)A +

∑

i∈I

λiu
′
i(−B)B

(max
j∈J

λju
′
j(A))‖W‖∞ ≥

∑

i∈H

λiui(Yi) ≥
∑

i∈H

λiui(X̃i(W ))

Taking the supremum over partitions I, J of H on the left hand side and the
supremum over comonotone allocations of W , we thus obtain that

sup
(Xi(W ))

∑

i∈H

λiui(X̃i(W )) < ∞
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Let us now show existence of an optimal solution for P̃λ(W ). Let (X̃n
i (W ))i∈H

be a maximizing sequence of P̃
λ̃
(W ). If this sequence is such that for all

i ∈ H, X̃n
i (0) is bounded, from (15), (X̃n

i ) is uniformly bounded on compact

sets. From Ascoli’s theorem, for every i, (X̃n
i ) has a subsequence converging

to (X̃i) uniformly. Hence X̃n
i (W ) → X̃i(W ) for the L∞ norm and (X̃i(W ))

solves P̃
λ̃
(W ).

Suppose now that there exists a subsequence such that for some i, X̃n
i (0) →

−∞. Let I, J,K be such that X̃n
i (0) → −∞, i ∈ I, X̃n

i (0) → +∞, j ∈

J, X̃n
j (0) is bounded, k ∈ K. From our assumption I 6= ∅. As

∑
i∈H X̃n

i (0) =
0, J 6= ∅. We further assume that K 6= ∅ and that 0 ∈ K (if not the proof

that follows has to be slightly modified ). Note that, as
∑

i X̃
n
i (0) = 0 and∑

i∈K X̃n
i (0) is bounded,

∑
I∪J X̃

n
i (0) is bounded. From (4) and (5), there

exists ε > 0, B > 0 and A > 0, such that

λiu
′
i(−B) > λ0 > (max

j∈J
λju

′
j(A)) + ε, for all i ∈ I (17)

Let us show that for n large enough, the sequence X̃n
i (W ) is dominated.

Let card(A) denote the cardinal of the set A. Let Y n
0 = X̃n

0 +
∑

i∈I∪J X̃
n
i +

Bcard(I) − Acard(J), Y n
i (W ) = −B if i ∈ I, Y n

i (W ) = A, i ∈ J, Y n
i (W ) =

X̃n
i (W ) otherwise. The allocation (Y n

i (W ))i∈H is feasible. From (15), we
have with m0 = −‖W‖∞card(I ∪ J) + Bcard(I) − Acard(J),

λ0(u0(Y
n
0 (W )) − u0(X̃

n
0 (W ))) ≥ λ0(

∑

i∈I∪J

X̃n
i (0) + m0) =: M0 (18)

For i ∈ I, we have from (15) and (17), with M = −B − ‖W‖∞

λi(ui(−B) − ui(X̃
n
i (W ))) ≥ λi(ui(−B) − ui(X̃

n
i (0) + ‖W‖∞) >

λiu
′
i(−B)(M − X̃n

i (0)) > (maxi∈J λju
′
j(A) + ε)(M − X̃n

i (0))
(19)

for n large enough since X̃n
i (0) → −∞ and M − X̃n

i (0) > 0.
For j ∈ J , we have from (15), with M ′ = A− ‖W‖∞,

λj(uj(A) − uj(X̃
n
j (W ))) ≥ λj(uj(A) − uj(X̃

n
j (0) + ‖W‖∞))

λju
′
j(A)(M ′ − X̃n

j (0)) ≥ (maxj∈J λju
′
j(A))(M ′ − X̃n

j (0))
(20)

for n large enough since X̃n
j (0) → ∞ and (M ′ −Xn

j (0)) < 0. Summing over
the m + 1 agents, we obtain that for some m ∈ R,

∑

i

λi(ui(Y
n
i (W )) − ui(X̃

n
i (W ))) > ε

(
∑

i∈I

(M − X̃n
i (0))

)
+ m
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As for n large enough, the right hand side is arbitrarely large, this contradicts
the definition of (X̃n

i (W )). Hence (X̃n
i (0)) must be bounded, a case already

studied and assertion 1 is fulfilled.

5.2 Proof of theorem 2

Proof. Let

Kn =

{
λ̃ ∈ R

m+1
+ | 1/n ≤

λi

λj

≤
u′
j(−∞)

u′
i(+∞)

− 1/n

}

Then Kn is a closed convex cone and Kn ⊆ D. From proposition 7 and
lemma 2 applied on Kn to the upper-hemicontinuous and compact valued
correspondence −Ẽ which verifies Walras-law, for any n, there exists λ̃n ∈ Kn

and en ∈ Ẽ(λ̃n) such that −λ̃n · en ≤ 0 for all λ̃ ∈ Kn. Let λ be a limit point

of λ̃n. There are two cases:

Case 1) λ ∈ D. Then by proposition 7, en → e ∈ Ẽ(λ). Since −λ̃ · en ≤ 0 for

all λ̃ ∈ Kn, we have −λ̃ · e ≤ 0 for all λ̃ ∈ D. Since D is open, we must have
−λ · e < 0 if e 6= 0 which contradicts Walras-Law. Hence e = 0. This means
that there exists z ∈ ∂2h̃(λ,W ) such that 0 = E(z(Xi(λ,W )−Wi)) for i = 0
or i ≥ l + 1. Furthermore, since z ∈ λi∂2ui(Xi(λ,W )), for all Xi ∈ L∞, we
have

λi(ui(Xi(λ,W )) − ui(Xi))) ≥ E(z(Xi(λ,W ) −Xi)) = E(z(Wi −Xi))

thus E(zXi) ≤ E(zWi) implies ui(Xi) ≤ ui(Xi(λ,W )) for i = 0 or i ≥ l + 1.
Hence ((Xi(λ,W )), z) is an equilibrium for the fictituous m+ 1 agents econ-
omy.

Case 2) λ ∈ ∂D and ‖en‖ → ∞. Since (en)i + ui(Wi) ≤ vi(λ̃n,W ) for all i

((en)i + ui(Wi)) ∈ Ũ(W ) for all n where Ũ(W ) the utility set of the m + 1
agents economy is defined by.

Ũ(W ) =

{
v ∈ R

m+1 | vi ≤ ui(Xi), ∀i ∈ H,
∑

i∈H

Xi = W

}

Hence ( (en)i
‖en‖

) → t ∈ Ũ∞(W ) − {0} the asymptotic cone of Ũ(W ). Therefore

λ̃ · t ≤ 0 for any λ̃ ∈ D. Furthermore, since −λ̃ · en ≤ 0, for all λ̃ ∈ Kn, we
obtain at the limit −λ̃ · t ≤ 0, for all λ̃ ∈ D. We thus have λ̃ · t = 0 for all
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λ̃ ∈ D which is impossible since D is open. Hence only case 1 is possible.

Let us now construct an equilibrium for the l + m agents economy.
Let λi = λ0, i = 1, . . . , l. As an equilibrium allocation is efficient, from
theorem 1, (Xi(λ,W ))li=1 must be an optimal solution of (7) at X0(λ,W )
that fulfills E(z Xi) = E(zWi) for all 1 ≤ i ≤ l. Indeed from lemma 1,
z ∈ λi∂ui(Xi(λ,W )) for all 1 ≤ i ≤ l, hence Xi(λ,W ) solves

max ui(Xi) s.t. E(zXi) ≤ E(zWi), Xi ∈ L∞

Let us show that from the monetary assumption, the equilibrium allocation
may be constructed without using a fixed point theorem. Let 1 ∈ R

l be such
that (1)i = 1 for all i = 1, . . . , l. Since z ∈ λ0∂u0(X0(λ,W )) and u0 is cash
invariant, we have

λ0u0(X0(λ,W )) − λ0u0(X0(λ,W ) + 1) = −λ0 ≥ −E(z)

λ0u0(X0(λ,W )) − λ0u0(X0(λ,W ) − 1) = λ0 ≥ E(z)

hence E(z) = λ0.

Let ((Xi(λ,W )) be any solution of (7) at X0(λ,W ). We claim that the
allocation (Xi(λ,W ) + E( z

λ0

(Wi −Xi(λ,W ))) solves (7). Indeed

l∑

i=1

ui(Xi(λ,W ) + E(
z

λ0
(Wi −Xi(λ,W ))) =

l∑

i=1

ui(Xi(λ,W )) +

l∑

i=1

E(
z

λ0
(Wi −Xi(λ,W ))) =

l∑

i=1

ui(Xi(λ,W ))

the first equality holds true since ui is monetary, the second since X0(λ,W ) =∑l

i=1Xi(λ,W ) and E(zX0(λ,W )) = E(z
∑l

i=1Wi) (z being an equilibrium
price for the m + 1 agents economy). We also have since E(z) = λ0,

E(z(Xi(λ,W )) + E(z)E(
z

λ0

(Wi −Xi(λ,W ))) = E(zWi) for all 1 ≤ i ≤ l

Finally we claim that (Xi(λ,W ))l+m
i=1 , z) is an equilibrium of the l+m agents

economy. Indeed markets clear (
∑

i Xi(λ,W ) =
∑

iWi) and for all i, we
have that E(zXi) ≤ E(zWi) implies ui(Xi) ≤ ui(Xi(λ,W )).
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