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ABSTRACT

Joint demosaicking and denoising consists in reconstrgcti
a color image from the noisy raw data output by the sen-
sor of a digital camera. We adopt a variational formulation
in which the reconstructed image has minimal total variatio
under the constraint of consistency with the available mea-
surements. This way, the recovered color image has smoot

chrominance but the sharp edges are maintained and the noise (a)
is transferred to the luminance channel. This channel is de-
noised subsequently. Fig. 1. (a) The Bayer CFA and (b) schematic representation of

the spectrum of a mosaicked image, with the spectrum of the
luminanceu” in the baseband and the replicas of the spectra of
chrominance with hatched fill.

Index Terms— Demosaicking, denoising, Bayer color
filter array, frequency selection, spatio-spectral sangpli

1. INTRODUCTION the noisy mosaicked imagesuch that

_ XK 2
Color images are acquired in digital cameras by means of a vik] = v Hk] +efkd, - ¥k € 27, @)

single sensor on which the Bayer color filter array (CFA) iswhereX [k] € {R, G, B} is the color of the filter in the Bayer
overlaid [1]. In order to reconstruct a full-color imageriio  pattern at locatiork (see Fig. 1a)g[k] ~ N(0,02) for ev-
the raw data delivered by the sensor, an interpolation g®ceery k and 2 is the noise variance. Then, the problem is
called demosaicking is performed. There is an abundantliteto reconstruct a color imagé from v, which is a good es-
ature on demosaicking and we direct the readers to the go@ghate ofu. In real conditions, the AWGN assumption is not
survey by Menon [2]. However, most demosaicking methodsnet; real noise is more accurately modeled by the sum of a
are developed under the unrealistic assumption of noe-fr Gaussian and a Poissonian components [4]. Moreover, the
data. In the presence of noise, the performances of the ahserved values are photon counts, which have to be tone
gorithms degrade drastically, since their sophisticatedin-  mapped/gamma corrected. However, variance stabilization
ear mechanisms are generally not robust to noise. Moreovegchniques can be efficiently employed [5], so that the prob-
denoising after demosaicking is untractable, because demgm can be recast in the AWGN context.
saicking distorts the characteristics of the noise inadermp  The article is organized as follows. In sect. 2, we recall the
and hardly computable form. Thus, demosaicking and deproperties of the joint demosaicking and denoising apgroac
nOiSing have to be handled jOlntly We refer to the intrOdUC'by frequency selection we proposed in [3] To improve upon
tion of [3] for a survey of the relevant literature. this method, we formulate a new optimization problem us-
To formulate the problem, let us first introduce some no-ng total variation and we propose an algorithm to solve it in
tations. Boldface letters denote vectors, eag= [a1,a2]” €  sect. 3. The approach is validated by experiments in sect. 4.
C? with norm|a| = y/]a1|? + |az|2. We define the color im-
ageu = (u[k])k622 as the ground-truth to be estimated. Forzl SPATIO-SPECTRAL MODEL OF SAMPLING AND
everyk, ulk] = [u”[k],u¢[k],u5[k]]" is the color of the  DEMOSAICKING BY FREQUENCY SELECTION
pixel of u at locationk, in the canonicaR, G, B (red, green,
blue) basis. In this paper, we adopt an additive white Gaudt is well known that the R, G, B components of natu-
sian noise (AWGN) model; that is, we have at our disposatal images are strongly correlated [1]. That is why we



define the components of luminance, green/magenta andlue outside the image domain. We also introduce the dis-
red/blue chrominances of a color imageasa” = (a,L), crete divergence operatdiv = —V* as
a®/M = (a, CE/M) anda¥B = (a, CT/P), respectively,

using the orthonormal bask = =[1,1,1]7,Ce/M = div alk] = ai[ki1+1, ko] —ai[k|+az[k1, k2 +1]—az[k]. (5)
1 T R/B _ 1 T 1 i
1.2, =T, CHE = 01,0, ~1]T. In first approxi- The parametey, in (3) plays a crucial role; it controls the

mation, the luminance and chrominance channels of naturgljance between the smoothness of the luminance and of the
images in this basis are statistically decorrelated. A majosnrominance in the reconstructed imagey I close to zero,
contribution of Alleyssoret al. [6] consisted in showing that hend will be close to a monochrome image, since all the high
the basidL, C¢/M | CF/EB is appropriate to characterize the frequency energy of will be assigned tal“. On the con-
Bayer CFA and that the mosaicked image is the sum of thgay for, = 1, the regularization functional is diagonal in
modulated luminance and chrominance componenis of  {he R, G, B basis and the process amounts to reconstructing
the R, G, B channels independently by interpolation, a naive

ow) = %ﬁL(“’) + ﬁﬁc/wj(w) + @ﬁG/M(w = [m,7]") solution which yields bad results. Consequentlghould be
+ \/T%R/B(w —[0,7]T) — %QR/B(W — [, 0]T) + E(w), chosen relatively small in order to get a smooth hue [9]. This

2) way, the inter-correlations between color channels in nahtu
images are automatically taken into account.

for everyw € R?, where the Fourier transfori(w) of an In the noisy case, by further reducipgind keeping exact
imagea is defined asi(w) = 3z a[k]eﬂ-wTk and an consistency withy, we reconstruct an imagewith almost all

image with finite support is implicitely extended to an intfni the noise oty a_ssigned tp the Iuminapce bautl prever,
one by zero-padding. when decreasing, the high frequencies of chrominance are

This frequency analysis of the spatio-spectral samplin istakenlyla_lssigned to the luminance channel. Thus,_apshar
induced by the Bayer CFA, illustrated in Fig. 1b, sheds a olor transitions, the edges are over-smoothed and zigper a

interesting light on the problem: it aims at separating thé'factS appearin the luminance. Th|s_ motlvate_s a_formutatl
of the problem using a non-quadratic regularization, ngmel

three images.”, /¥ andu®/M from their noisy mixing in al variati h e rorat b
v. This is exactly what demosaicking by frequency selecti(\)/jg al variation, whose superiority in restoration probsem

does in the noise-free case, as proposed by Dubois [7]. eeping sharp edges is well known.

extended the method to the noisy case in our last paper [3]. In

short, the approach consists in estimatifig” andu&/M by 3. AVARIATIONAL FORMULATION BASED ON
modulation and lowpass filtering. Then, the residuab iis TOTAL VARIATION MINIMIZATION

known to be an estimate ef-u” + ¢, fromegn. (2). Thus,in o S
first approximation, the noise is completely contained i th First, we remark that the regularization in (3) is invariath
luminance channel of the demosaicked image and this cha_ﬁQSpeCt t(_) a rotat_lo_n In every |so-I_um|nance color planat th
nel can be subsequently denoised using any method adap'ﬂéol_the_re_'S no privileged color axis and the prob_lem formu-_
to grayscale images and AWGN. This approach yields staté@gojr\L'S |r}1¥deBpendent on the ch0|<_:e of the chrominance basis
of-the-art results but, due to the estimation of the chramiae  C ' » /¥ We have the equality

using very lowpass filters, the sharp color edges are blurred G/M |2 R/B |2 o2

So,t%ere%/s stillproomforimprovemerr)noverthegmethod of [3] IVaS M2, + [IVa™ 2|17, = [IVa®|F, (6)

which motivates this work. wherea® = a%/M + j.of*/B andj is the complex square

_ In [8]'_ we have shown that,_ W_'th minor mod|f|cat|ons_, root of —1. In this work, we propose a new formulation of the
in the noise-free case, demosaicking by frequency serectlomtal variation (TV) of a color image:

yields the solution of the following variational problemrco
sidered in 3] lalrv = pllVa®(le, +[IVaC|le, ()

. G ]
d = argmin p||Va®[[7, + Va7, + IVa™P||7, (3)  for some parameter > 0, where thef; norm of a vector-
a

valued imagen is [|al|,, = > yc2 v/alk]Halk] and-" indi-

cates the complex conjugate of the transpose of a vector.

: . . L Then, we formulate demosaicking as the following opti-
where we introduce the discrete gradient vector using finite . " .
differences as mization problem, for some parametex p < 1 to choose,

subject toa® k] = v[k], Vk € 72,

d = argmin |allpy  s.t. a¥M[k] = o[k], Vk € Z2.
(8)

for everyk € Z?, using Neumann boundary conditions; that  Note the difference with usual variational formulations in
is, a finite difference is set to zero when it involves a pixelwhich we trade the fit to the data and the smoothness of the

Valk] = [ak] — a[ky — 1, ko), alk] — alki, ks — 1], (4)



solution. Here we keep the exact consistency with the data, s AN o 1 5 10 20
that the noise is not removed but is transfered to the lunti@an Method ™\ 1] 05 | 045| 04 | 0.35
channel”. [3] 38.49| 35.35| 32.56| 29.57
Minimizing a quadratic penalty like in (3) boils down to [3]+mosaicking+ [15] || 39.42| 35.66| 32.73| 29.68
solving a linear system and a direct implementation can be proposed 38.41| 35.36| 32.63| 29.70
designed [3, 8]. With the non-quadratic TV, there is no direc  prop.+mosaicking+ [15] 39.43| 35.70| 32.80| 29.78

way to obtain the solution and an iterative method has to be

designed. Note that the TV is convex so that the problem (gjable 1. Average CPSNR (in dB) over the 24 images of the
is well posed. However, the TV is not differentiable so that<odak test set for different denoisaicking methods.
conventional smooth optimization techniques are not appli

ble. Actually, very few methods are available to minimize th _mosaicked with the Bayer CFA and corrupted with different
TV under an affine constraint, see [10] and references therei _ . . . .
noise levels. 50 iterations of the proposed algorithm wene r

Very recently, a breakthrough in the field has appeared und%fwas settd).1 and the initial guesd o, was set as the result

the form of new primal-dual methods proposed independentlgf the method of [3]. The state-of-the-art BM3D denoising

by several authors [11, 12, 13]. In this work, we apply the al- : : .
gorithm of [11] to our problem. This yields the following method [14] was used to denaise the luminance imgdn

implementation: Tab. 1, we report the CPSNRetweenu andd, averaged

' over the 24 images. We also propose an extended variant of
Demosaicking Algorithm our approach in which the denoisaicked image is mosaicked
again and then demosaicked using the method of [15]. In-

1. Choose the initial estimat,) and the constant > 0 deed, the re-mosaicked image is relatively free of noisesand
e L A ) classical demosaicking method can be applied to it. From the
2. n:=0; by :=dg); f:=1/(8.01a); numerical results in Tab. 1, we see that the proposed apiproac

vk € Z?,YX € {R, G, B}, aj, k] :== [0,0]" is only slightly better than the method of [3]. However, as
shown in Fig. 2, the proposed TV-based method yields cleaner

3. Repeat until stopping criterion is met ) . o .
P PRIng edges. The extended variant provides a significant gain for

4. VX €{R,G,B}, a¥ | =a’, +aVb} low noise levels, where the denoising process has a nelgligib
(n+1) (n) (n) . L .
effectand the nonlinear demosaicking methods can show thei
5. VkeZz? al [k a(LnH) k] superiority. This gain vanishes as the noise level inciease
. S y an, =
(n+1) max(l, |a(Ln+1)[k]|/u)
c 5. CONCLUSION
6 vk € Z2 aC [k] - a(n+1)[k]
' P DT ax(1, |a(cn+1) k) In this work, we proposed a new expression of the total vari-
ation of a color image and a new primal-dual algorithm to
7. VX €{R,G,B}, df},, =d{}, + Bdivaj minimize it under a consistency constraint. Applied to the |
XK posed inverse problem of demosaicking noisy data, the pro-
8. VkeZ? d, k] = v[k| posed variational approach yields even better resultsthieat
_ state-of-the-art method of [3], with sharp color edges fike
9. bty = 2d(ir) — dewy noticeable artifacts. Moreover, our method is generic amd ¢
10. n:=n+1 be applied to images acquired with an arbitrary CFA [16]. A

Matlab implementation of our approach is available online.
It can be shown [11, Theorem 1] that the algorithm con-
verges to the solutiod of (8) with a convergence speed in

O(1/n), which is optimal for this class of problems [11]. 6. REFERENCES
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