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An axisymmetric jet at a diameter-based Reynolds number of 1.1 × 104 is computed
by a large eddy simulation (LES) in order to investigate its self-similarity region. The
LES combines low-dissipation numerical schemes and explicit filtering of the flow
variables to relax energy through the smaller scales discretized. The computational
domain extends up to 150 jet radii in the downstream direction, which is found to be
large enough to discretize a part of this region. Turbulence in the self-preserving jet is
characterized by evaluating explicitly from the LES fields the second- and third-order
moments of velocity, the pressure–velocity correlations as well as the budgets for
the turbulent kinetic energy and for its components. Reference solutions are thus
obtained. They agree well with the experimental data given by Panchapakesan &
Lumley (J. Fluid Mech., vol. 246, 1963, p. 197) for a jet at the same Reynolds number.
The distance required to achieve self-similarity in the LES, around 120 radii from the
inflow, is particularly similar to that in the experiment. The discrepancies observed
with respect to the data provided by Panchapakesan & Lumley and by Hussein,
Capp & George (J. Fluid Mech., vol. 258, 1994, p. 31) for a jet at a higher Reynolds
number, specially regarding the turbulence diffusion and the dissipation, are discussed.
They appear largely resulting from the approximations made in the experiments to
estimate the quantities that cannot be measured with accuracy. The role of the
pressure terms in the energy redistribution is also clarified by the LES. Moreover,
the turbulent energy budget is calculated in the jet from an equation derived from
the filtered compressible Navier–Stokes equations, which includes the dissipation due
to the explicit filtering. This has allowed us to assess the behaviour of the LES
approach based on relaxation filtering (LES-RF) from the contributions of filtering
and viscosity to energy dissipation. The filtering activity is particularly shown to
adjust by itself to the grid and flow properties.

1. Introduction
The turbulent round jet is a model flow that has been investigated experimentally

extensively over the last 50 years. Two flow regions have been distinguished: the flow-
establishment region and, farther in the downstream direction, the self-preservation or
self-similarity region where the flow profiles across the jet are self-similar. During the
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sixties, some researchers including Davies, Fisher & Barratt (1962), Sami, Carmody &
Rouse (1967) and Sami (1967) studied turbulence in the first jet region. Wygnanski &
Fiedler (1969) also made some measurements of flow quantities in the self-similarity
region of a jet at Reynolds number ReD = ujD/ν = 105, where uj is the jet nozzle exit
velocity, D the diameter and ν the molecular viscosity. The self-preservation region
was attained at 70 diameters downstream of the jet nozzle and is characterized by the
linear increase of uj/uc, where uc is the centreline mean axial velocity, and by constant
turbulence intensities along the jet axis. In this jet region, the mass flow rate was
moreover found by Ricou & Spalding (1961) to grow linearly, and two-point statistics
were recently described by Burattini, Antonia & Danaila (2005). In the early nineties,
the solutions of Wygnanski & Fiedler (1969) were complemented by the experimental
data obtained by Panchapakesan & Lumley (1993) and by Hussein, Capp & George
(1994) in self-preserving jets, respectively, at Reynolds numbers ReD = 1.1 × 104 and
ReD = 105. Careful measurements of the second- and third-order velocity moments
were especially provided and were used to evaluate the budget for the turbulent
kinetic energy.

The determination of the turbulent energy budget in jets, however, remains difficult
due to differences and uncertainties in the experimental techniques. In addition, some
turbulent quantities involved in the budget, such as the pressure–velocity correlations,
cannot be easily measured, which has led to the use of different approximations and
modellings for the estimation of the energy terms. In the energy budgets calculated
by Sami (1967) and by Weisgraber & Liepmann (1998) in the flow-establishment
region of round jets, the pressure-transport terms were for instance obtained by
difference by the former and simply neglected by the latter. In the same way, energy
dissipation cannot be usually evaluated directly and must be inferred from turbulence
considerations. Expressions assuming isotropic or semi-isotropic turbulence were
consequently used for calculating dissipation in planar and round turbulent jets
by Bradbury (1965), Gutmark & Wygnanski (1976) and Wygnanski & Fiedler (1969).
Relations for axisymmetric turbulence were also derived later by George & Hussein
(1991). In the particular works of Panchapakesan & Lumley (1993) and Hussein
et al. (1994), different processes were applied for the computation of the energy terms
in the self-preserving circular jets: Panchapakesan & Lumley removed the pressure
diffusion in the energy budget and obtained the dissipation as the closing balance,
whereas Hussein et al. estimated the energy dissipation from measurements using the
assumption of local axisymmetry of small scales, and then evaluated the pressure
diffusion as the remaining term. This resulted in serious discrepancies between the
solutions, the pressure diffusion neglected by Panchapakesan & Lumley being for
example significant in the energy budget of Hussein et al.

Given the experimental weaknesses, numerical simulations may be an appropriate
way to describe exhaustively the turbulence developing in jets, because theoretically
they give access to all flow quantities. The limitations are then due to the
computational resources, and errors might originate from the numerical methods
and turbulence modellings. Direct numerical simulation (DNS) can be used for flows
at low Reynolds numbers, as successfully shown for instance by Mansour, Kim &
Moin (1988) for a turbulent channel flow, and by Boersma, Brethouwer & Nieuwstadt
(1998) and Stanley, Sarkar & Mellado (2002) for round and planar jets. However,
for flows at higher Reynolds numbers, which are typically dealt with in experiments,
large eddy simulation (LES) must be performed. In LES, as reported in detail in
the books of Geurts (2004) and Sagaut (2005), the complexity of turbulent flows is
reduced by applying a low-pass filtering to the Navier–Stokes equations. The filter
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width is usually taken as the mesh size so that in practice one aims at providing
solutions for the scales larger than the grid spacing, whereas the smaller scales are
removed. Jets have been recently examined in this way. Among other studies, Dejoan
& Leschziner (2005) computed the energy budget in a plane turbulent wall jet, and
Uddin & Pollard (2007) discussed the existence of the virtual origin of round jets.
Bogey & Bailly (2006a,c, 2007) and Berland, Bogey & Bailly (2007) also investigated
the initial flow development and noise generation in subsonic and supersonic jets.

LES is a powerful method, but there must be a constant care to ensure that the
solutions obtained for turbulent flows are physically correct. Energy dissipation is
in particular a key point to consider, because an artificial dissipation is required
to regularize the flow. The various subgrid-scale (SGS) models that have been
proposed to reproduce the effects of the SGS terms generated by the filtering of
the flow equations have, for instance, difficulty in accounting for the SGS dissipation,
which might be under- or overestimated as noted by Vreman, Geurts & Kuerten
(1997) and by Le Ribault, Sarkar & Stanley (1999). Among the SGS models, eddy
viscosity models are widely used, but they might be inappropriate as pointed out
by Domaradzki & Yee (2000) and by Bogey & Bailly (2005a,b) because eddy
viscosity is similar to molecular viscosity. This observation has led to SGS models
involving higher order viscosities, such as hyperviscosity in Dantinne et al. (1998) or
spectral vanishing viscosity in Pasquetti (2006), designed to be active mainly in the
high-frequency range. Another LES approach consists in employing the numerical
dissipation of discretization schemes as an implicit SGS model (see e.g. Grinstein &
Fureby 2002). This approach is often referred to as implicit LES (ILES), because
an explicit calculation of the SGS terms is unnecessary. The reliability of an ILES
depends however on the numerical schemes, whose dissipation has to be characterized
in terms of magnitude and spectral properties. Garnier et al. (1999) obtained, for
example, excessive damping using shock-capturing schemes, while Domaradzki, Xiao
& Smolarkiewicz (2003) showed that it is possible to estimate the effective eddy
viscosity acting in an ILES. A method has also been proposed recently by Hickel,
Adams & Domaradzki (2006) to match the numerical viscosity of ILES schemes with
theoretical viscosity for isotropic turbulence.

Following the basic ILES idea of dissipating energy through a numerical SGS
functional model, an LES method combining low-dissipation schemes and a high-
order/selective filtering of the flow variables has been developed, specially by Stolz,
Adams & Kleiser (2001), Rizzetta, Visbal & Blaisdell (2003), Mathew et al. (2003)
and Bogey & Bailly (2006c). Mathew et al. (2003), in particular, derived an explicit
filtering of the variables from the deconvolution model of Stolz et al. (2001). To
extend the terminology of the latter authors, the present methodology is defined
here as LES based on relaxation filtering (LES-RF), because the filtering aims at
diffusing energy through the smaller scales discretized. In practice the filtering can be
performed explicitly or implicitly by adding terms into the flow equations. Works are
still on to study the LES-RF method. They resort naturally to the quantification of
subgrid dissipation in energy budgets, as it has been performed in channel flows by
Schlatter, Stolz & Kleiser (2006) and in round jets by Bogey & Bailly (2006c).

In the present study, a circular jet at a Mach number M = uj/c0 = 0.9, where c0 is
the sound speed in the ambient medium, and at a Reynolds number ReD = 1.1 × 104

is simulated by the LES-RF method. The LES is performed using space and time
discretization schemes with low dissipation and low dispersion designed in Bogey
& Bailly (2004), and makes use of explicit selective filtering as subgrid modelling.
The computational domain extending up to 150 jet radii in the axial direction
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is sufficiently large to contain a part of the self-similarity region of the jet. The
main motivation is thus to provide reference solutions for the turbulence properties
and energy budgets in the self-preserving jet, directly from the LES data without
using any physical modelling for the turbulence statistics. Some quantities such as
the second- and third-order moments of velocity fluctuations, the pressure–velocity
correlations and the terms in the turbulent kinetic energy budget are calculated. As
a validation, they are systematically compared with the experimental data given by
Panchapakesan & Lumley (1993) for a jet at the same Reynolds number, when those
data are available. The energy budget is also presented against the budget provided by
Hussein et al. (1994). In this way, the assumptions made by Panchapakesan & Lumley
and Hussein et al. for evaluating the energy terms across the jets will be discussed.
Reliable information on jet turbulence physics are also expected by displaying, for
instance, the role of pressure in the redistribution of energy between the velocity
components. The relevance of some turbulence modellings will also be evaluated from
the simulation results. For the characterization of the turbulent energy budget in the
LES, an equation is derived from the compressible filtered Navier–Stokes equations
and solved. The equation includes the dissipation due to the explicit filtering so that
all the energy terms, whose sum will have to be nil, are directly computed. In Bogey
& Bailly (2006c), which is a previous study dealing with the influence of the Reynolds
number on energy dissipation in LES of round jets, the filtering dissipation was indeed
obtained by difference. In the present work, it is then possible to assess the LES-RF
method in a model flow by giving straightforward evidence of the filtering dissipation.
The results obtained will allow us to investigate the filtering activity within the jet,
and the way how it adjusts to the grid and to the flow features.

The present article is organized as follows. The LES equations and the equation
for the turbulent kinetic energy, as well as the parameters of the simulation and of
the jet flow, are provided in § 2. The establishment of self-similarity along the jet axis
is studied in § 3, where the convergence of the turbulence statistics is also checked.
Energy dissipation in the jet is then examined from the contributions of the filtering
and of molecular viscosity. The features of turbulence and energy budgets across the
jet self-similarity region are represented in § 4. Concluding remarks are finally drawn,
and the derivation of the energy budget equation including the filtering dissipation is
reported in the Appendix.

2. Simulation parameters
2.1. LES methodology

LES is based on the filtered compressible Navier–Stokes equations, which can be
written, following Vreman et al. (1997), in the following forms:

∂ρ

∂t
+

∂ρũj

∂xj

= 0, (2.1)

∂ρũi

∂t
+

∂ρũi ũj

∂xj

= − ∂p

∂xi

+
∂τ̃ij

∂xj

+
∂Tij

∂xj

+ Ri , (2.2)

∂ρẽt

∂t
+

∂((ρẽt + p)ũj )

∂xj

= −∂q̃j

∂xj

+
∂τ̃ij ũi

∂xj

+
∂Tij ũi

∂xj

+ Re, (2.3)
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where ρ represents the density, ui the velocity, p the pressure, τij the viscous stress
tensor, et the total energy density and qj the heat flux. The overbar denotes a filtered
quantity, and the filtering is assumed to commute with time and spatial derivatives.
The tilde denotes a quantity calculated from the filtered variables ρ, ρui and p.
Thus the calculated velocity is ũi = ρui/ρ using Favre filtering, and the calculated
total energy is ρẽt = p/(γ − 1) + ρũi ũi/2 for a perfect gas, where γ is the specific
heat ratio. The viscous stress tensor is defined by τ̃ij =2μ̃(̃sij − s̃kkδij /3), where
s̃ij =(∂ũi/∂xj + ∂ũj /∂xi)/2. The viscosity μ̃ = μ(T̃ ) is provided by Sutherland’s law,

and the temperature T̃ is obtained using the state equation p = ρrT̃ . The heat flux is
given by q̃j = −λ∂T̃ /∂xj , where λ= μ̃cp/σ is the thermal conductivity, σ is the Prandtl
number and cp is the specific heat at constant pressure. The low-pass filtering of the
Navier–Stokes equations makes the so-called SGS terms appear in the right-hand
side of (2.2) and (2.3). The most important term is the SGS turbulent stress tensor
Tij = ρũi ũj − ρuiuj , whereas the other terms are included in Ri and Re. They are
described in Vreman, Geurts & Kuerten (1995) and in Geurts (2004).

Various SGS models are presented in Lesieur & Métais (1996), Meneveau & Katz
(2000) and Domaradzki & Adams (2002). They have been specially analysed by a
priori tests of their correlations with the SGS stress tensor. Most of the models are
based on the use of eddy viscosity to account for the effects of the energy-dissipating
scales. However, eddy viscosity, having the same functional form as molecular viscosity
as pointed out by Domaradzki & Yee (2000), might be inappropriate and lead to an
excessive damping of the larger scales and to an artificial decrease of the effective
Reynolds number of the flow as shown by Bogey & Bailly (2005a,b). LES involving
high-order/selective filterings have therefore been developed and applied successfully
to isotropic turbulence, channel flows, jets and flow around an airfoil by Rizzetta
et al. (2003), Mathew et al. (2003), Schlatter, Stolz & Kleiser (2004), Bogey & Bailly
(2006c) and Marsden, Bogey & Bailly (2008). The basic idea in this LES approach
based on relaxation filtering (LES-RF) is to control energy dissipation by minimizing
the amount of dissipation on the larger scales and to diffuse energy only when it is
transferred to the smaller scales discretized.

In the present simulation, the LES-RF approach is followed by using no structural
modelling for the SGS stress tensor, but a selective filtering as a functional modelling
of the subgrid dissipation. The filtering is applied explicitly to the density, momentum
and pressure variables, ρ, ρui and p, sequentially in the three Cartesian directions in
order to remove the wavenumbers located near the grid cutoff wavenumber without
significantly affecting the low wavenumbers accurately resolved by the numerical
methods. In addition, for turbulent flows that are statistically stationary, the filtering
process can deal with the fluctuating quantities only, which implies that it has no
effect in a steady laminar flow.

The filtering of the density variable ρ in the x1 direction yields, for instance, the
following filtered quantity at grid point (x1(i1), x2(i2), x3(i3)),

ρ
sf
i1,i2,i3

= ρi1,i2,i3
− σd

n∑
j=−n

dj

(
ρi1+j,i2,i3

−
〈
ρi1+j,i2,i3

〉)
, (2.4)

where σd is the filtering strength between 0 and 1, 〈·〉 represents statistical averaging
and dj is the coefficient of a centred (2n + 1) point filter. The mean quantities 〈·〉
are computed by time averaging, using a moving window during the flow transient
period.
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2.2. Equation for the turbulent kinetic energy

An equation for the budget of the turbulent kinetic energy in compressible LES
based on explicit filtering is derived. In order to include the terms associated with
the filtering in the budget equation, one may notice that the filtering process (2.4)
of the density variable is equivalent to the second-order explicit integration over the
simulation time step 	t of the operator

D1
sf (ρ)i1,i2,i3 = − σd

	t

n∑
j=−n

dj

(
ρi1+j,i2,i3

−
〈
ρi1+j,i2,i3

〉)
, (2.5)

in the mass conservation equation, and that a similar remark can be made for the
filtering of the momentum variables. This operator is similar to an operator of
viscosity with high-order/optimized properties and to the relaxation term introduced
by Stolz et al. (2001) in the LES equations.

The application of the explicit filtering to the density and the momentum variables
can therefore be integrated into the right-hand side of (2.1) and (2.2) in the following
way in the present study,

∂ρ

∂t
+

∂ρũj

∂xj

= Dsf (ρ) , (2.6)

∂ρũi

∂t
+

∂ρũi ũj

∂xj

= − ∂p

∂xi

+
∂τ̃ij

∂xj

+ Dsf (ρui) , (2.7)

and the filtering operator Dsf is defined as

Dsf (·) = D1
sf (·) + D2

sf (·) + D3
sf (·) . (2.8)

The developments required to derive the equations for the budgets of the turbulent
kinetic energy are detailed in the Appendix. The budget equations obtained from (2.6)
and (2.7) for the energy components are then given by

0 = − ∂

∂xj

(
1

2

〈
ρu′2

i

〉
[uj ]

)
︸ ︷︷ ︸

Mean flow convection

−
〈
ρu′

iu
′
j

〉 ∂ [ui]

∂xj︸ ︷︷ ︸
Production

−1

2

∂

∂xj

〈
ρu′2

i u′
j

〉
︸ ︷︷ ︸
Turbulence diffusion

− ∂

∂xi

〈p′u′
i〉︸ ︷︷ ︸

Pressure diffusion

+

〈
p′ ∂u′

i

∂xi

〉
︸ ︷︷ ︸

Pressure-dilatation term

− 〈u′
i〉

∂ 〈p〉
∂xi

−
〈

τ̃ij

∂u′
i

∂xj

〉
︸ ︷︷ ︸
Viscous dissipation

+
∂

∂xj

〈u′
i τ̃ij 〉 + 〈u′

iDsf (ρui)〉︸ ︷︷ ︸
Filtering dissipation

− 〈u′
i ũiDsf (ρ)〉 +

1

2

〈
u′2

i Dsf (ρ)
〉
, (2.9)

where statistical averaging is denoted by 〈·〉 and Favre averaging by [·], yielding
[ui] = 〈ρui〉/〈ρ〉 for instance. The fluctuating velocity is defined by u′

i = ũi − [ui], and
the turbulent kinetic energy by 〈ρ〉k = 〈ρu′2

i /2〉. The second- and third-order moments
of velocity are also evaluated using Favre averaging as

[u′
iu

′
j ] =

〈
ρu′

iu
′
j

〉
/ 〈ρ〉 and

[
u′2

i u′
j

]
=

〈
ρu′2

i u′
j

〉
/〈ρ〉.

The main terms in the energy equation are underlined and correspond to mean flow
convection, production, turbulence diffusion, pressure diffusion, the pressure-dilatation
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Figure 1. Representation using logarithmic scales: (a) phase error |k∗ − k|	x/π introduced
by ( ) the present 11-point finite differences and ( ) the second-order central finite
differences, and damping rate D∗

sf of ( ) the present 11-point selective filter and ( )
the second-order central filter for a wavenumber k on a uniform 	x grid; (b) damping rate
1 − |G∗

RK | due to time integration, per iteration, for a wavenumber k convected at the jet exit
velocity uj on the 	y0 grid in the present LES.

term, viscous dissipation and filtering dissipation, which can be calculated directly
during the simulation.

In the same way, the equation for the budget of the Reynolds stress [u′
1u

′
2] in the

present LES writes as

0 = − ∂

∂xj

(
〈ρu′

1u
′
2〉 [uj ]

)
−

〈
ρu′

2u
′
j

〉 ∂ [u1]

∂xj

−
〈
ρu′

1u
′
j

〉 ∂ [u2]

∂xj

− ∂

∂xj

〈
ρu′

1u
′
2u

′
j

〉
− ∂

∂x1

〈p′u′
2〉 − ∂

∂x2

〈p′u′
1〉 +

〈
p′ ∂u′

2

∂x1

〉
+

〈
p′ ∂u′

1

∂x2

〉
− 〈u′

2〉 ∂ 〈p〉
∂x1

− 〈u′
1〉 ∂ 〈p〉

∂x2

−
〈

τ̃1j

∂u′
2

∂xj

〉
−

〈
τ̃2j

∂u′
1

∂xj

〉
+

∂

∂xj

〈u′
2τ̃1j 〉 +

∂

∂xj

〈u′
1τ̃2j 〉 + 〈u′

2Dsf (ρu1)〉 + 〈u′
1Dsf (ρu2)〉

− 〈u′
2ũ1Dsf (ρ)〉 − 〈u′

1ũ2Dsf (ρ)〉 + 〈u′
1u

′
2Dsf (ρ)〉 . (2.10)

2.3. Numerical algorithm

The LES is performed using schemes designed in Bogey & Bailly (2004), displaying
low dissipation and low dispersion so that the scales discretized at least by four
points are neither significantly distorted nor dissipated by the numerical algorithm.
Fourth-order 11-point centred finite differences are used for space discretization, and
a second-order 11-point selective filtering is applied explicitly to the flow variables
as described previously, in order to remove grid-to-grid oscillations and to take into
account the effects of the subgrid energy-dissipating scales. Time integration is carried
out using a low-storage 6-stage Runge–Kutta algorithm. Moreover, due to the form
of (2.1), (2.2) and (2.3), no second-derivation scheme is used.

The properties in the Fourier space of the finite differences and of the filter are
illustrated in figure 1(a), where the phase error |k∗ − k|	x/π of the derivation scheme
and the damping rate D∗

sf of the filter are presented as functions of the wavenumber
k for a uniform grid 	x. For the comparison, the phase error and the damping rate
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obtained respectively for the second-order central finite differences and filter are also
displayed. The phase error is based on the wavenumber k∗ estimated by the finite
differences, as defined in Tam & Webb (1993). The damping function D∗

sf of the
filter is

D∗
sf (k	x) = d0 +

5∑
j=1

2dj cos (jk	x) , (2.11)

where dj is the coefficient of the filtering process described by (2.4). The limits of
accuracy of the derivation and the filtering schemes are both around k	x = π/2. The
larger scales which are accurately discretized by the finite differences are therefore
expected to be affected in a negligible manner by the filtering, whereas the smaller
scales which are badly calculated are damped.

The low dissipation of the Runge–Kutta scheme in the present jet simulation is now
emphasized. Consider a perturbation characterized by the wavenumber k, convected
at the velocity uj in the grid region with the smaller mesh spacing, that is 	y0 = D/16,

near the jet axis. The amplification rate per time step 	t of this wave is given by
the amplification factor |G∗

RK | of the Runge–Kutta scheme for the angular frequency
ω	t = k∗uj	t , where k∗ is the wavenumber evaluated by the finite differences for the
wavenumber k. The damping rate 1 − |G∗

RK | then obtained is plotted in figure 1(b).
It is negligible for the whole range of wavenumbers 0 � k	y0 � π, with a maximum
value that is only around 10−5. The dissipation due to the discretization schemes is
thus very small, which can be essential for the computation of energy budgets.

2.4. Jet specifications

The isothermal round jet computed by LES in order to investigate its self-similarity
region is characterized initially by a radius r0 =D/2 and a velocity uj , which provide
a Mach number M = 0.9 and a Reynolds number ReD = 1.1 × 104. This Reynolds
number corresponds to that of the jet studied experimentally by Panchapakesan &
Lumley (1993), whereas the Reynolds number of the jet of Hussein et al. (1994) is
105. Regarding the jet Mach number, it is significantly higher than in the two latter
experiments, where inlet velocities of 27 m s−1 and 51 m s−1 were respectively specified.
The difference in Mach number is however expected to have a negligible influence on
the results obtained in the self-similar jets. In the self-similar region of the simulated
jet, the centreline mean velocity will be about uj/10 due to the velocity decay in the
axial direction, implying that no appreciable compressible effect occurs.

The jet inflow conditions are modelled by imposing mean flow profiles while the
random excitation described in Bogey, Bailly & Juvé (2003) is used to seed the
turbulence. In practice, the mean axial velocity u0 (r) at the jet inflow boundary is
given by the following hyperbolic tangent profile:

u0 (r)

uj

=
1

2
+

1

2
tanh

(
r0 − r

2δθ

)
,

where r =
√

y2 + z2, and δθ = r0/16 is the initial momentum thickness of the annular
shear layer. Pressure is taken as the ambient pressure, radial and azimuthal velocities
are set to zero. The mean density profile ρ0 (r) at the inflow is defined by the
Crocco–Busemann relation

ρ0(r)

ρj

=

(
1 +

γ − 1

2
M 2 u0(r)

uj

(
1 − u0(r)

uj

))−1

,
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for an isothermal jet, where ρj is the inflow centreline density. In order to trigger the
turbulence development, disturbances random in both time and space are added to
the mean velocity profiles in the shear region for x � r0 throughout the simulation.
The forcing has been developed to directly compute the noise generated by jets.
Therefore the forcing disturbances are solenöıdal velocity fluctuations involving
various azimuthal modes with amplitude α =0.01, so that no significant spurious
sound waves are generated. The azimuthal modes considered are modes from n=4
to n= 15, as recommended by Bogey & Bailly (2005b) in a study of the influence of
initial conditions on jet flow and noise.

At the boundaries except at the jet inflow, non-reflective conditions are applied. They
consist of the far-field formulation of acoustic waves and rely on equations written
for the fluctuating quantities. Small adjustment terms are consequently introduced
near the limits of the domain with the aim of imposing mean ambient density and
pressure. Note that the mean velocity is not specified outside the jet in order to allow
the incoming of fluid into the computational domain and to ensure the entrainment
of the fluid surrounding the jet into the flow. The detailed implementation can be
found in Bogey & Bailly (2006d). A sponge zone combining grid stretching and
Laplacian filtering is used at the jet outflow to dissipate turbulence before it reaches
the boundary. The Laplacian filtering is applied to the flow fluctuations at a strength
growing exponentially in the axial direction as in Bogey & Bailly (2002). In the same
way as for pressure and density at the radiation boundaries, the mean flow variables
in the sponge zone are also adjusted to match values following classical laws observed
in self-similar jets, such as those given by (3.1) for the centreline velocity and the jet
half-width.

2.5. Simulation parameters

The jet self-similarity region being reached 50 diameters downstream of the nozzle in
the experiment by Panchapakesan & Lumley (1993), the present LES is performed
using a Cartesian grid extending up to 150 radii in the axial direction x. A Cartesian
coordinate system (x1, x2, x3) = (x, y, z), in which the velocity components are denoted
equally as (u1, u2, u3) and as (u, v, w), is indeed chosen for its accuracy and its
simplicity. It allows us in particular to avoid the axis singularity of a cylindrical system.
The mesh grid contains nx × ny × nz = 651 × 261 × 261 nodes, and the discretizations
in the y and z directions are identical and symmetrical relative to the jet centreline.
The mesh spacings in the x and y directions are illustrated in figure 2. In the axial
direction, the grid spacing is initially 	x = r0/5, and is then uniform with 	x = r0/4
up to the mesh stretching used to form the sponge zone at the jet outflow. In the
transverse direction, the grid spacing is also 	y = r0/4 for 6.5r0 � y � 23r0, but is
smaller on the jet axis with 	y =	y0 = r0/8. It increases for y � 23r0 so that the
sideline boundaries are located at y =33.5r0 from the jet axis.

Due to the explicit time integration, the time step is 	t = 0.85	y0/c0. To ensure
the convergence of high-order turbulence statistics, a very long simulation time was
found to be necessary. The results reported in the article are obtained from 2.8 × 106

time steps, leading to a physical time T uj/D =1.2 × 105. The statistical averages of
the turbulent quantities are more precisely evaluated by computing time averages
after a transitory period of 105 time steps, when mean flow values are stationary.
The statics are calculated using the Cartesian coordinates in the Oxy and Oxz

sections, and then averaged and represented in the Oxy section. In what follows,
(u, v, w) are therefore also used to denote the axial, radial and azimuthal velocities
of the jet flow. Regarding the computational requirements, 22.4 Go of memory is
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Figure 2. Mesh spacing: (a) in the axial direction, (b) in the transverse direction. The grid is
symmetrically relative to the jet axis, and y = z.

necessary, and about 10 000 CPU hours have been consumed on SX5 and SX8 Nec
computers.

Finally, the filtering is applied every second iteration to save computational time,
with a strength σd = 0.99. The frequency of filtering and the value of σd are arbitrary,
but from previous studies they are expected to have a weak influence on the results
due to the selectivity of the filter. In Bogey & Bailly (2006b) indeed, applying the
filtering every second or third time step provided very similar flow and dissipation
features for transitional round turbulent jets. The dissipation rates obtained in the
two cases in particular nearly collapse. In addition, the time step is small with respect
to the characteristic time scales of the jet flow, especially in the self-similarity region.
The frequency of application of the selective filtering, every second iteration, therefore
appears appropriate for preventing an accumulation of energy at the smaller scales
discretized.

3. Jet flow development and energy dissipation
3.1. Initial flow development

A snapshot of the vorticity field is presented in figure 3 in order to illustrate
the development of the jet from the potential core region to a fully turbulent
state. Vortical structures are initially generated in the shear layers, which merge
at the end of the potential core. Farther downstream the radial spreading of the
jet is visible, with turbulent structures found for instance at y � 20r0 from the
centreline for 120r0 � x � 150r0. The increase of the turbulent length scales as the jet
develops, which follows a linear law according to Wygnanski & Fiedler (1969), is also
noticed.

Some flow features obtained for x � 50r0 are shown in figure 4. In the same
way as the inflow parameters themselves, the early development of the jet can also
be regarded as initial conditions of the self-similar jet. The results in figure 4 are
presented with this aim in view. They are not compared with experimental data
because no corresponding data are provided by Panchapakesan & Lumley (1993).
The momentum thickness δθ = r0/16 of the inflow shear layer in the present jet is
also quite large with respect to the values observed in experiments, and the initial
development of transitional jets depends strongly on the inflow parameters as it has
been evidenced in Bogey & Bailly (2005b).
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Figure 3. Snapshot of the vorticity field in the plane z = 0. Representation of the two
contours associated with the magnitudes of vorticity norm |ω| × x/uj = [4, 40].
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Figure 4. Axial variations for x � 50r0: (a) , inverse of centreline mean axial velocity
uj/uc and , jet half-width δ0.5/r0; (b) centreline turbulence intensities: ,

[u′u′]1/2/uc and , [v′v′]1/2/uc .

The variations of the inverse of the centreline mean velocity uc = [u](y =0), and of
the jet half-width δ0.5, defined by [u](y = δ0.5) = uc/2, are plotted in figure 4(a). The
end of the potential core, indicated here by uc(xc) = 0.95uj , is located at xc =13.5r0.
The mean flow development, namely the velocity decay and the growth of the jet
half-width, is seen to be rapid just downstream of the end of the potential core, and
then occurs more slowly for x � 25r0. The profiles of the axial and radial turbulence
intensities along the jet centreline are presented in figure 4(b). Both components
initially rise and reach a peak around x = 20r0. They finally increase again from
x � 35r0 at a low rate, as they progressively tend towards the self-similarity values
which will be exhibited later in figure 7.

3.2. Establishment of self-similarity

The establishment of self-similarity in the jet is investigated by considering the
evolution of some flow features in the axial direction for x � 50r0. The aim here is to
determine whether the mean and the turbulent flows achieve similarity in the present
finite computational domain, and whether the axial distances required are comparable
with the experimental results of Panchapakesan & Lumley (1993). The convergence
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Figure 5. Axial variations over 50r0 � x � 150r0: (a) inverse of centreline mean axial velocity
uj/uc (o, Panchapakesan & Lumley (1993) data shifted by 10r0 in the axial direction for the
comparison); (b) jet half-width δ0.5/r0.

of the turbulence statistics, including the third-order velocity moments and the terms
of the energy budget, is also examined.

The mean flow is characterized from the centreline mean velocity uc and the jet
half-width δ0.5, which are given, in a self-preserving jet, respectively by

uc

uj

= B × D

(x − x0)
and δ0.5 = A × (x − x0), (3.1)

where B and A, namely the decay constant and the spreading rate, are two constants,
and x0 denotes a virtual origin. The profiles calculated for uj/uc and δ0.5/r0 are plotted
in figure 5. Both appear to roughly increase linearly for x � 50r0. In addition, the
centreline velocity in figure 5(a) seems to agree fairly well with the corresponding data
of Panchapakesan & Lumley (1993). For the comparison, the data of Panchapakesan
& Lumley are however shifted by 10r0 in the axial direction, which is indicative
of different lengths of potential core in the simulation and in the experiment. This
discrepancy is certainly due to differences in the inflow conditions.

To investigate more quantitatively the mean flow self-similarity, the local decay
constant B ′ and the local spreading rate A′ are considered. They are evaluated from
the profiles of figure 5 in the following way,

1

B ′ =
d(uj/uc)

d(x/D)
and A′ =

dδ0.5

dx
, (3.2)

and represented in figure 6. The two curves of 1/B ′ and A′, albeit not perfectly
smooth because of the derivations in expressions (3.2), are found to display asymptotic
values for about x � 100r0. The mean flow therefore becomes self-similar at 100 radii
from the inflow boundaries. The constants in the self-preserving region, obtained
by averaging B ′ and A′ over 100r0 � x � 140r0, are B = 6.4 and A= 0.087. For
comparison, Panchapakesan & Lumley (1993) measured constants B = 6.06 and
A= 0.096 in their self-preserving jet. The present results are slightly different, which
can be due to the fact that the details of self-similarity may depend on the jet initial
conditions, as supported by the DNS results of Boersma et al. (1998). Further works
would be required to clarify this point.

Our attention now turns to the self-similarity of the turbulent flow, which is
usually observed in experiments when the turbulence intensities [u′

iu
′
i]

1/2/uc are
constant on the jet axis. The axial variations of the centreline values and of the
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Figure 7. Axial variations over 50r0 � x � 150r0 of turbulence intensities (a) along the jet
centreline and (b) peak values across the jet: [u′u′]1/2/uc ( , LES; �, Panchapakesan
& Lumley (1993)), [v′v′]1/2/uc ( , LES; �, Panchapakesan & Lumley), [w′w′]1/2/uc

( , LES) and [−u′v′]1/2/uc ( , LES).

peak values across the present jet of the turbulence intensities are presented in
figure 7. As reported in Wygnanski & Fiedler (1969) and in Panchapakesan &
Lumley (1993), the axial component may reach its self-similarity value slightly before
the other components. Nevertheless, all the components display fairly constant values
from x = 120r0, which suggests that turbulence becomes self-similar around this
axial location. This behaviour is in good agreement with the measurements of
Panchapakesan & Lumley obtained for a jet at the same Reynolds number, as
indicated by the centreline profiles of figure 7(a). Therefore, the use of the explicit
filtering, unlike that of an eddy viscosity SGS model in Bogey & Bailly (2006b,c),
does not appear to artificially accelerate the transition towards self-similarity, and
decrease the Reynolds number of the flow. Self-similarity values [u′u′]1/2/uc = 0.24
and [v′v′]1/2/uc = 0.20 are noted on the jet axis, which compare well with the data of
Panchapakesan & Lumley exhibiting [u′u′]1/2/uc = 0.24 and [v′v′]1/2/uc = 0.19.

The variations of the peak values across the jet of the third-order velocity moments
[u′

iu
′
iu

′
j ]/u

3
c , and of the dominant terms in the energy budget, are finally drawn in

figures 8 and 9 to check the self-similarity and the convergence of the higher order
statistics. The energy terms are computed explicitly from (2.9). They correspond
to mean convection, production, dissipation, turbulence diffusion, pressure diffusion
and dissipation, where dissipation is the sum of the viscous dissipation and of the
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Figure 9. Axial variations over 50r0 � x � 150r0 of peak values across the jet of terms in the
turbulent kinetic energy budget: , mean flow convection; , production; ,
turbulence diffusion; , pressure diffusion; , dissipation (curves normalized by
ρcu

3
cδ0.5, ρc: centreline mean density).

filtering dissipation. The profiles show short oscillations that are of low magnitude,
which supports the assertion that the convergence in time of the different terms is
satisfactory. The convergence is however much higher in figure 8 for the component
[v′v′v′]/u3

c than for the component [u′u′u′]/u3
c , and in figure 9 for production and

dissipation than for turbulence and pressure diffusions. Furthermore, as the turbulence
intensities in figure 7, the different terms in figures 8 and 9 appear to tend to constant
values as the axial distance increases, asymptotic values being obtained around
x = 120r0.

Based on the present trends in the axial direction, self-similarity is found for
x � 100r0 for the mean flow, but farther downstream for the turbulent flow. The
profiles across the self-preserving jet presented in what follows have therefore been
obtained by averaging the LES results over 100r0 � x � 140r0 for the mean flow, but
over 125r0 � x � 145r0 for the turbulent statistics.

To further quantify the deviation from self-similarity, the percentage difference
between flow quantities over 50r0 � x � 150r0 and their assumed self-similar values
are calculated. The rates obtained for the centreline mean velocity and the jet half-
width with respect to the self-similarity expressions (3.1) in which constants A,
B and x0 are evaluated over 100r0 � x � 140r0 are presented in figure 10(a). For
x � 90r0, the percentage deviations are very small. The mean absolute deviations
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Figure 10. Percentage of deviation between flow quantities over 50r0 � x � 150r0 and
their self-similarity values: (a) , centreline mean axial velocity uc; , jet
half-width δ0.5; (b) centreline turbulence intensities: , [u′u′]1/2/uc; , [v′v′]1/2/uc .

over 100r0 � x � 140r0 are even more precisely 0.21 % for uc and 0.11 % for δ0.5.
The percentage differences between the centreline turbulence intensities and their
asymptotic values averaged over 125r0 � x � 145r0 are also shown in figure 10(b). As
shown previously, the deviations decrease with the axial position and become small
for x � 120r0. In this case, the mean absolute deviations over 125r0 � x � 145r0 are
respectively 0.16 % and 0.14 % for the axial and the radial components.

3.3. Energy dissipation and filtering activity

This section focuses on the dissipation mechanisms involved in the LES, namely the
viscous and the filtering dissipations, given respectively by

〈εμ〉 = −
〈

τ̃ij

∂u′
i

∂xj

〉
and 〈εsf 〉 =

〈
u′

iD
j
sf (ρui)

〉
(3.3)

in (2.9). In Bogey & Bailly (2006c), their contributions were evaluated in jets to
examine the Reynolds number effects on energy dissipation. The filtering dissipation
was however obtained by difference. In the present study, this dissipation is estimated
explicitly from the LES fields, and to assess the importance of the filtering, we define,
following Geurts & Fröhlich (2002), the subgrid activity parameter

s =
〈εsf 〉

〈εsf 〉 + 〈εμ〉 , (3.4)

which represents also the filtering activity parameter in the present work.
The profiles of the viscous and filtering dissipations along the jet axis are presented

in figure 11(a). The sum of the different terms in (2.9) is plotted as well. It is nearly zero,
which suggests that the computation of the energy budget is performed in a suitable
manner, and that energy is not significantly damped by the low-dissipation Runge–
Kutta algorithm. The magnitudes of viscous and filtering dissipations vary with the
axial distance. As the jet develops in the downstream direction, the contribution of the
filtering decreases, whereas that of viscosity increases, which leads to the lowering of
the filtering activity parameter s in figure 11(b). Indeed, about two-thirds of the energy
dissipation is provided by the filtering at x = 50r0, but only one-third at x = 150r0.
This behaviour is due to the growth of the turbulent length scales along the jet axis.
The mesh spacing being uniform between x = 50r0 and 150r0, a more important part
of the energy-dissipating scales is then calculated, which reduced the subgrid activity,
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Figure 11. Variations along the jet centreline: (a) , viscous dissipation; ,
filtering dissipation; , total dissipation; , sum of all the terms in the turbulent
kinetic energy budget (curves normalized by ρcu
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Figure 12. Variations along the jet centreline of the ratios between the axial integral length
scale, the transverse Taylor and Kolmogorov scales and the axial mesh spacing: ,
Lf /	x; , λg/	x; , η/	x.

and hence the role played by the filtering. The contribution of the explicit filtering
therefore appears to adjust by itself to the flow development as expected.

To illustrate quantitatively both the growth of the flow length scales in the
downstream direction and the LES resolution, the ratios between typical turbulence
length scales and the mesh spacing 	x along the jet axis are represented in figure 12.
The axial integral length scale is evaluated from the law Lf = 0.0385x observed
experimentally in Wygnanski & Fiedler (1969) as well as numerically in Bogey & Bailly
(2006d), while the transverse Taylor scale and the Kolmogorov scale are calculated
using the relations of isotropic turbulence, which are λg = (15Lf ν/[u′u′]1/2)1/2 and

η = (L1/4
f (ν/[u′u′]1/2)3/4. As the jet develops, the length scales increase as expected,

and consequently Lf /	x = 7.7, λg/	x =1.2 and η/	x = 0.06 at x = 50r0, whereas
Lf /	x = 21, λg/	x =3.1 and η/	x = 0.16 at x =135r0 in the self-similar jet. In
this region, the integral length scale is well resolved, and the Taylor scale is
discretized.

The dissipation rates obtained across the self-preserving jet for the turbulent
kinetic energy are represented in figure 13. As previously in figure 11(a), the sum
of the different energy terms is checked to be nearly zero. The viscous dissipation
is higher than the filtering dissipation, whatever the radial position may be. The
ratio between the two contributions however seems to vary with the radial position,
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Figure 14. Profiles across the self-similar jet, averaged over 125r0 � x � 145r0, of the filtering
activity parameter s calculated for (a) k, (b) [u′u′], (c) [v′v′] and (d) [w′w′].

the filtering contribution appearing, for instance, to decrease in the vicinity of the
centreline.

To quantify the variations of the dissipation rates across the jet, the filtering
activity parameter s is computed for the turbulent kinetic energy and for the energy
components, and is presented in figure 14. The shapes of the curves obtained are
very similar, with a minimum value close to the centreline, a slight increase before
a zone displaying nearly constant values for 0.6 � y/δ0.5 � 2 and a final growth for
y/δ0.5 � 2. The filtering activity is therefore connected with the radial grid spacing
shown previously in figure 2(b). It is lower on the jet axis where the radial grid
spacing is smaller with 	y = r0/8, it does not vary significantly in the central zone



146 C. Bogey and C. Bailly

k [u′u′] [v′v′] [w′w′]

s(y = 0) 0.334 0.291 0.354 0.358
s(y/δ0.5 = 1.25) 0.414 0.407 0.385 0.449

Table 1. Filtering activity parameter s calculated for the turbulent kinetic energy and for the
three energy components, averaged over 125r0 � x � 145r0, at y = 0 and at y/δ0.5 = 1.25.
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Figure 15. Profiles across the self-similar jet at x =135r0 of the ratios: , Lf /	y;
, λg/	y; , η/	y.

where the grid spacing is uniform with 	y = r0/4 and it increases in the vicinity of
the sideline boundary where the grid is stretched. The influence of the mesh grid is
also illustrated in table 1 reporting the values of the parameter s at y = 0 and at
y/δ0.5 = 1.25. Values of 0.335 and 0.415 are for instance respectively found from the
turbulent kinetic energy.

Table 1 allows us also to compare the filtering activity for the different energy
components. On the jet axis, where 	y = 	z, the filtering activities are the same
for the components [v′v′] and [w′w′] due to the rotation invariance of the flow
in a cross-section. The filtering activity for the component [u′u′] displays another
value because of the anisotropy of the flow and of the mesh (	x = 2	y) in the x–y
section. At the radial position y/δ0.5 = 1.25, both the grid and the flow are anisotropic
(	y =	x = 	z/2 in particular). As a result, the filtering activity differs according to
the energy components, ranging from 0.385 for the component [v′v′] to 0.449 for the
component [w′w′]. The contribution of the explicit filtering to energy dissipation is
thus shown to depend on both the grid spacing and the flow features.

The ratios between turbulence length scales and the radial grid spacing across the
self-similar jet at x = 135r0 are moreover displayed in figure 15. The length scales
being assumed to vary in a negligible manner across a given section, their values are
those calculated on the centreline. The ratios in figure 15 thus decrease with the radial
position as 	y increases. However, whatever the radial position may be, the integral
length scale is well resolved, and the Taylor scale is discretized, with for instance
λg/	y = 3.1 at the position y/δ0.5 = 1.25.

4. Turbulence across the self-similarity flow region
4.1. Mean velocity

The profiles across the jet of the mean axial and radial velocities normalized with
uc, obtained over the range 100r0 � x � 140r0, are represented in figure 16. The LES
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Figure 16. Profiles across the self-similar jet. (a) mean axial velocity [u]/uc and (b) mean
radial velocity [v]/uc: , LES; o, Panchapakesan & Lumley (1993). The LES profiles
are averaged over 100r0 � x � 140r0.

mean axial velocity agrees very well with the self-similarity profile measured by
Panchapakesan & Lumley (1993). A good similarity is also seen for the mean radial
velocity profile predicted by the LES and the profile calculated by Panchapakesan
& Lumley from the mean axial velocity using the continuity equation. The negative
values of the mean radial velocity for large distances from the centreline indicate that
the fluid surrounding the jet fluid is entrained into the flow. The boundary conditions
in the simulation therefore appear appropriate for allowing the incoming of fluid into
the computational domain.

4.2. Second-order velocity moments

The radial profiles of the turbulence intensities, computed by averaging over
125r0 � x � 145r0, are shown in figure 17. Their shapes and their magnitudes compare
well with the experimental results of Panchapakesan & Lumley (1993) measured
using a shuttle-mounted x -wire hot-wire probe in a self-preserving jet at the same
Reynolds number as the simulated jet. The agreement is particularly good for the
axial component [u′u′] and for the Reynolds stress [−u′v′]. The radial and azimuthal
components [v′v′] and [w′w′] are slightly higher than the measurements, but their
difference in shape is remarkably reproduced. The profiles of turbulence intensities
measured by Wygnanski & Fiedler (1969) using SHW (stationary hot-wire) and
by Hussein et al. (1994) using both SHW and LDA (laser-Doppler anenometry)
are not plotted here, because they have been obtained for jets at Reynolds number
ReD = 105. They have been however found to display higher values with peaks around
[u′u′]1/2/uc = 0.28 and [v′v′]1/2/uc = 0.23 for instance, which could be attributed at
least partially to Reynolds number effects, as suggested by recent results obtained by
Deo, Mi & Nathan (2008) for plane jets.

4.3. Third-order velocity moments

The third-order moments of velocity fluctuations [u′
iu

′
iu

′
j ]/u

3
c calculated in the self-

preserving jet are presented in figure 18. These terms are important because their
gradients determine the turbulence diffusion of turbulent kinetic energy in (2.9). The
axial fluxes of the energy components, which are [u′u′u′], [v′v′u′] and [w′w′u′], are
shown in figures 18(a) and 18(d), and the radial fluxes [u′u′v′], [v′v′v′] and [w′w′v′]
in figures 18(b) and 18(c).

Compared with Panchapakesan & Lumley (1993) measurements, the agreement is
generally good, as illustrated for example by results in figure 18(d). The profile for
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Figure 17. Profiles of turbulence intensities across the self-similar jet; (a) [u′u′]1/2/uc ,
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3
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ings suggested by Lumley (1978): (a) −[u′
iu

′
iu

′]/(5u3
c) and (b) −[u′

iu
′
iv

′]/(5u3
c), and

terms: (a) −[u′u′u′]/(2u3
c) and (b) −[v′v′v′]/(2u3

c).

[u′u′u′] in figure 18(a) also exhibits a shape similar to the Panchapakesan & Lumley
curve, but with a lower magnitude. At this stage it is difficult to state about the origin
of the discrepancy, but it can be mentioned that the corresponding profiles obtained
by Wygnanski & Fiedler (1969) and Hussein et al. (1994) using SHW display peaks
around 4 × 10−3 as the LES profile. For the third-order velocity moments, the data are
indeed scattered according to the experimental techniques, as pointed out by Hussein
et al. and Panchapakesan & Lumley. Hussein et al. obtained for instance significant
differences in shape, slope and amplitude between the SHW and LDA measurements,
with the SHW failing in particular to detect negative values of [u′u′v′] near the
centreline. The LES results in figure 18 therefore tend to support the accuracy of
the data of Panchapakesan & Lumley for the jet considered at Reynolds number
ReD = 1.1 × 104.

Furthermore, the curve for [w′w′v′] in figure 18(c) has a magnitude which is
about half that obtained for [v′v′v′]. With this result in mind, it is useful recalling
that the approximation [w′w′v′] = [v′v′v′] is frequently made in experimental works,
including Panchapakesan & Lumley (1993) and Hussein et al. (1994), to evaluate the
turbulence diffusion term in the energy budget because of the difficulty to measure
the former quantity. The numerical results indicate that this approximation is very
crude, which might generate inaccuracies in experimental energy budgets. This point
will be discussed later in § 4.5.

4.4. Pressure–velocity correlations

The pressure–velocity correlations <p′u′> and <p′v′> normalized by ρcu
3
c , obtained

across the self-similarity jet flow, are shown in figure 19. The LES solutions are
of interest because the gradients of pressure–velocity correlations govern pressure
diffusion in (2.9) for the turbulent energy budget. As in the previous section for
the velocity moment [w′w′v′], they can also be considered as reference solutions
because the measurements of such quantities are complicated, which usually leads to
indirect approximations. Sami (1967) for instance evaluated the correlations <p′u′>
in jets by the substraction of terms involving second-order moments of pressure and
axial velocity, whereas Hussein et al. (1994) estimated <p′v′> from energy dissipation
curves assuming isotropic or axisymmetric turbulence.
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Figure 20. Budget for the turbulent kinetic energy k across the self-similar jet, compared
with data of Panchapakesan & Lumley (1993): mean flow convection ( , LES;
�, Panchapakesan & Lumley), production ( , LES; �, Panchapakesan & Lumley),
dissipation ( , LES; �, Panchapakesan & Lumley), turbulence diffusion ( , LES;
�, Panchapakesan & Lumley) and pressure diffusion ( , LES). The curves are normalized
by ρcu

3
cδ0.5, and averaged over 125r0 � x � 145r0 for the LES.

As reported by Pope (2000), Lumley (1978) proposed to model the pressure–velocity
correlations using third-order velocity moments as

<p′u′
i> = − 1

5
ρ <u′

ju
′
ju

′
i>. (4.1)

Following this suggestion, the quantities −[u′
ju

′
ju

′]/5 and −[u′
ju

′
j v

′]/5, normalized

by u3
c , are represented in figure 19. Similarities are observed respectively with the

correlations <p′u′> and <p′v′>, but appreciable discrepancies are seen both in shape
and in magnitude, especially near the centreline. Other modellings of pressure–velocity
correlations based on third-order velocity moments have therefore been arbitrarily
tested. Fairly good comparisons are obtained in figure 19(a) between the correlation
<p′u′> and the term −[u′u′u′]/2, and in figure 19(b) between <p′v′> and −[v′v′v′]/2.

4.5. Turbulent kinetic energy budget

The budget for the turbulent kinetic energy in the jet self-similarity region is presented
in figures 20 and 21. All the terms in (2.9) are calculated explicitly from the LES
data, and their sum is checked to be nearly zero in figure 13. Reference solutions are
obtained because no a priori assumption on the turbulence field is made, which allows
us to complement the experimental data and to discuss the turbulence modellings used
in Panchapakesan & Lumley (1993) and Hussein et al. (1994). The main energy terms
correspond to mean flow convection, production, dissipation, turbulence diffusion and
pressure diffusion. The pressure–strain correlation term is negligible because of the
incompressibility of the flow in the self-preserving region, where, according to the
velocity decay of figure 5(a), the centreline mean axial velocity is for instance only
[u]/c0 � 0.1 at x = 130r0. The dissipation term itself includes the viscous dissipation
and the dissipation due to the explicit filtering.

The LES budget is compared in figure 20 with the energy budget obtained
by Panchapakesan & Lumley (1993) for a jet at the same Reynolds number
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Figure 21. Budget for k across the self-similar jet, compared with data of Hussein et al.
(1994): mean flow convection ( , LES; �, Hussein et al.), production ( , LES;
�, Hussein et al.), dissipation ( , LES; �, Hussein et al.), turbulence diffusion ( ,
LES; �, Hussein et al.) and pressure diffusion ( , LES; �, Hussein et al.).

ReD = 1.1 × 104. A very good agreement is displayed for the terms associated
with mean flow convection, production, dissipation and turbulence diffusion. This
is remarkable, especially since Panchapakesan & Lumley neglected pressure diffusion
and predicted dissipation as the balance of the other terms. The Panchapakesan &
Lumley hypothesis that the pressure diffusion term can be neglected in the evaluation
of the energy budget in a self-similarity jet is thus strengthened, because this term,
albeit not negligible, is shown by the simulation to be small with respect to the other
energy terms.

The LES results may consequently cast doubt on some assumptions used by
Hussein et al. (1994) to estimate the energy budget for a jet at a Reynolds number
ReD = 105 higher than the jet simulated, in which pressure diffusion has been found
to be dominant. More precisely, in figure 20, the energy terms that are determined
by Hussein et al. directly from measurements, namely the mean flow convection,
production and turbulence diffusion terms, are roughly similar to the simulation
results, whereas the terms which are inferred from turbulence modellings differ
significantly. This is the case for the dissipation term, evaluated by Hussein et al.
using the assumption of axisymmetric turbulence, which is about twice as large as
predicted by the simulation, and for the pressure diffusion term, obtained by Hussein
et al. by difference, which is of the order of mean flow convection whereas this term
is small in the LES budget.

In order to clarify the role of the different mechanisms in redistributing the turbulent
kinetic energy within the jet, the budgets for the three energy components [u′u′]/2,
[v′v′]/2 and [w′w′]/2 are presented in figures 22(a), 22(b) and 22(c). They are compared
with the energy component budgets obtained by Panchapakesan & Lumley (1993) by
neglecting pressure diffusion, assuming [w′w′v′] = [v′v′v′] for the turbulence diffusion,
and small-scale isotropy for the dissipation components, and finally evaluating the
remaining pressure terms as the balance.

For the three energy components, there is a good collapse between the LES and
Panchapakesan & Lumley (1993) terms associated with mean flow convection (black
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Figure 22. Budgets across the self-simular jet for (a) [u′u′]/2, (b) [v′v′]/2, (c) [w′w′]/2: mean
flow convection ( , LES; �, Panchapakesan & Lumley (1993)), production ( ,
LES; �, Panchapakesan & Lumley), dissipation ( , LES; �, Panchapakesan & Lumley),
turbulence diffusion ( , LES; �, Panchapakesan & Lumley), pressure diffusion ( ,
LES) and pressure–strain correlation term ( , LES; �, Panchapakesan & Lumley).

dashed-dotted lines), production (black dashed lines) and dissipation (black solid
lines), which supports in particular that the hypothesis of isotropy applies well for the
dissipation. As already evidenced by Panchapakesan & Lumley (1993), the turbulent
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energy is produced predominantly in the shear zone, and is tranferred from the axial
component to the radial and azimuthal components mainly by the pressure terms
(grey lines).

Regarding turbulence diffusion (black dotted line) and the pressure terms, the
agreement between the simulation and Panchapakesan & Lumley (1993) data are
satisfactory for the axial component in figure 22(a), but disappointing for the
radial and azimuthal components in figures 22(b) and 22(c). For the component
[u′u′]/2, no turbulence modelling, with the exception of the isotropy hypothesis
for the dissipation, is involved in the determination of the Panchapakesan &
Lumley (1993) energy terms, because turbulence diffusion is calculated explicitly
from measurements. For the other two components, Panchapakesan & Lumley (1993)
however assumed [w′w′v′] = [v′v′v′] for evaluating turbulence diffusion. This results in
turbulence diffusion terms near the jet centreline respectively negligible for [v′v′]/2 and
significant for [w′w′]/2, and, indirectly, in pressure terms with rather low magnitude
in figure 22(b) but high magnitude in figure 22(c). The assumption [w′w′v′] = [v′v′v′]
that is not justified by the LES data in § 4.4 thus appears as the main cause for
the discrepancies with the simulation results, which exhibit for instance a turbulence
diffusion near the jet axis which is noticeable for the radial component, and is
not as large as in the Panchapakesan & Lumley (1993) data for the azimuthal
component.

It must be pointed out that the pressure diffusion terms (grey solid lines) and
the pressure–strain correlation terms (grey dash lines) are computed separately by
the simulation. These terms are also represented in figure 23. Pressure diffusion is
negligible for the axial energy component, whereas the pressure–strain correlation
terms are dominant terms for the three energy components. Moreover, the pressure
diffusion terms obtained for the radial and azimuthal components in figure 23(a)
have similar amplitudes, the pressure–strain correlation terms displaying the same
behaviour in figure 23(b). The transfers of energy by the pressure redistribution terms
from the axial component to the radial component and to the azimuthal component
are then nearly equal. This is somewhat at variance with the finding of Panchapakesan
& Lumley (1993) that the pressure terms are higher for the azimuthal component than
for the radial component, which might be due to their estimation of the turbulence
diffusion terms discussed above.

The budget computed for the Reynolds stress [u′v′] is finally presented in figure 24.
The four dominant terms, which are the production, pressure–strain correlation,
turbulence diffusion and mean convection terms, compare very well with the
experimental data of Panchapakesan & Lumley (1993). The pressure diffusion term
is also shown to be small but not negligible.

5. Conclusion
In the present study, turbulence properties and the budgets for the turbulent kinetic

energy and for its components have been characterized in the self-similarity region
of a round jet at Reynolds number ReD = 1.1 × 104 using an LES combining low-
dissipation discretization schemes and an explicit filtering to relax energy through the
smaller scales discretized. The flow statistics have been obtained directly from the LES
fields, notably without hypothesis on the energy budget terms. Thus they constitute
reference solutions which have been systematically compared with the experimental
data of Panchapakesan & Lumley (1993) for a jet at the same Reynolds number.
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Figure 23. Profiles across the self-similar jet of (a) the pressure diffusion terms and (b) the
pressure–strain correlation terms in the budgets for , [u′u′]/2; , [v′v′]/2;

, [w′w′]/2.
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Figure 24. Budget across the self-simular jet for [u′v′]: mean flow convection ( , LES;
�, Panchapakesan & Lumley (1993)), production ( , LES; �, Panchapakesan & Lumley),
dissipation ( , LES; �, Panchapakesan & Lumley), turbulence diffusion ( , LES;
�, Panchapakesan & Lumley), pressure diffusion ( , LES) and pressure–strain correlation
term ( , LES; �, Panchapakesan & Lumley).

Good agreement is generally found both for the self-similarity establishment and for
the radial profiles across the self-similar jet.

The validity of the LES approach is strengthened by the results obtained for the
present jet, but also by the fact that the energy dissipation due to the explicit filtering
is evaluated directly in the turbulent kinetic energy budget derived from the filtered
compressible Navier–Stokes equations. The sum of the energy terms has been checked
to be nearly zero, which supports the relevance of the energy equation including
the filtering dissipation, and indicates that there is negligible spurious numerical
dissipation. The filtering activity has then been examined from the variations of the
filtering dissipation and of the viscous dissipation within the jet. It has been shown
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in particular to adjust itself to the grid spacing, to the flow development and to the
turbulence anisotropy.

In the present jet, the third-order moments of the azimuthal velocity and the
pressure–velocity correlations, which have been obtained in the self-preserving jets
of Wygnanski & Fiedler (1969), Panchapakesan & Lumley (1993) and Hussein et al.
(1994) using turbulence considerations, have been predicted directly by the LES.
The justification of the assumptions made by these authors has thus been discussed.
The LES has for instance shown that the approximation [w′w′v′] = [v′v′v′] used by
Panchapakesan & Lumley and Hussein et al. is very rough, and that the pressure–
velocity correlations can be estimated fairly well from third-order velocity moments.
Turbulence diffusion has also been found to be small in the budget for the turbulent
kinetic energy, which is in agreement with an hypothesis of Panchapakesan & Lumley,
but may cast doubt on the dissipation and turbulence diffusion terms evaluated in
the energy budget of Hussein et al. In the same way, the redistribution of turbulent
energy between the velocity components has been clarified by the LES budgets, which
has permitted to lift some uncertainties associated with the approximations made
in the experiments. The roles of the pressure diffusion and of the pressure–strain
correlation terms have also been quantified separately. These terms associated with
pressure appear to transfer turbulent energy from the axial velocity component to the
radial component and to the azimuthal component in similar proportions.

Finally, the present LES has been computationally expensive, but provides reference
solutions for further studies. Future simulations could for instance be performed in
order to study the influence of the discretization, of the inflow conditions and of the
Reynolds number of the jets on the properties of the self-similarity flow region. These
issues are indeed still matters of debate. It will be also interesting to apply the present
LES method to other flow configurations because it appears as an appropriate tool for
investigating the quality of simulations, as well as physical mechanisms encountered
in practical flows.

The authors gratefully acknowledge the Institut du Développement et des Ressources
en Informatique Scientifique (IDRIS) of the CNRS and the Centre de Calcul Recherche
et Technologie of the CEA (the French Atomic Energy Agency) for providing CPU
time on Nec computers and technical assistance.

Appendix. Derivation of the equations for the budgets of the turbulent kinetic
energy

The developments of the energy budget equations in compressible LES involving
explicit filtering of the flow variables are presented in detail in this appendix. The
budget equations are determined from the following equations,

∂ρ

∂t
+

∂ρũj

∂xj

= Dsf (ρ) , (5.1)

∂ρũi

∂t
+

∂ρũi ũj

∂xj

= − ∂p

∂xi

+
∂τ̃ij

∂xj

+
∂Tij

∂xj

+ Dsf (ρui) , (5.2)

which are the LES equations (2.1) and (2.2) including the operators Dsf associated
with the filterings of the density and of the momentum variables (see expressions (2.5)
and (2.8)), where the SGS term Ri is removed.
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In what follows, statistical averaging is denoted by 〈·〉 and Favre averaging by [·],
yielding [ui] = 〈ρui〉/〈ρ〉. The fluctuating velocity is then defined by u′

i = ũi − [ui], and
the turbulent kinetic energy by 〈ρ〉k = 〈ρu′2

i /2〉. Equation (5.2) is first written in the
non-conservative form

ũi

(
∂ρ

∂t
+

∂ρũj

∂xj

)
︸ ︷︷ ︸

=Dsf (ρ)

+ρ
∂ũi

∂t
+ ρũj

∂ũi

∂xj

= − ∂p

∂xi

+
∂τ̃ij

∂xj

+
∂Tij

∂xj

+ Dsf (ρui), (5.3)

and multiplied by u′
i . Then it follows that

ρu′
i

∂ũi

∂t︸ ︷︷ ︸
A

+ ρu′
i ũj

∂ũi

∂xj︸ ︷︷ ︸
B

= −u′
i

∂p

∂xi︸ ︷︷ ︸
C

+ u′
i

∂τ̃ij

∂xj︸ ︷︷ ︸
D

+ u′
i

∂Tij

∂xj︸ ︷︷ ︸
E

+ u′
iDsf (ρui) − u′

i ũiDsf (ρ) . (5.4)

Term A in (5.4) is decomposed as

A = ρu′
i

∂ [ui]

∂t
+ ρu′

i

∂u′
i

∂t
, (5.5)

= ρu′
i

∂ [ui]

∂t
+ ρ

∂

∂t

(
u′2

i

2

)
, (5.6)

= ρu′
i

∂ [ui]

∂t
+

∂

∂t

(
1

2
ρu′2

i

)
− u′2

i

2

∂ρ

∂t
, (5.7)

and averaged, giving

〈A〉 = −
〈

u′2
i

2

∂ρ

∂t

〉
. (5.8)

Term B in (5.4) becomes

B = ρu′
i[uj ]

∂[ui]

∂xj

+ ρu′
iu

′
j

∂[ui]

∂xj

+ ρu′
i ũj
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i

∂xj

, (5.9)
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ρu′
i ũj
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j
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2

)
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∂ρũj
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, (5.12)

and one gets after statistical averaging

〈B〉 =
〈
ρu′

iu
′
j

〉 ∂[ui]

∂xj
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〈
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2

〉
−

〈
u′2

i

2

∂ρũj

∂xj

〉
. (5.13)
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The sum of expressions (5.8) and (5.13) yields

〈A〉 + 〈B〉 =
∂

∂xj
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ρu′2
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〉
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i u′
j
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〈
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i

2

(
∂ρ

∂t
+

∂ρũj

∂xj
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=Dsf (ρ)

〉
. (5.14)

Using averaging, the term C involving pressure in (5.4) provides

〈C〉 = − 〈u′
i〉

∂ 〈p〉
∂xi

−
〈

u′
i

∂p′

∂xi

〉
= − 〈u′

i〉
∂ 〈p〉
∂xi

− ∂

∂xi

〈p′u′
i〉 +

〈
p′ ∂u′

i

∂xi

〉
, (5.15)

where the fluctuating pressure is p′ = p − 〈p〉. The terms 〈D〉 and 〈E〉 involving the
viscous and the subgrid stress tensors are also written as

〈D〉 =
∂

∂xj

〈u′
i τ̃ij 〉 −

〈
τ̃ij

∂u′
i

∂xj

〉
, (5.16)

〈E〉 =
∂

∂xj

〈u′
iTij 〉 −

〈
Tij

∂u′
i

∂xj

〉
. (5.17)

The budgets for the three components of the turbulent kinetic energy are finally
obtained by averaging (5.4):
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1
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〈
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i Dsf (ρ)
〉
. (5.18)

Similar developments can be performed from (5.1) and (5.2) to derive the
budget equations for the Reynolds stresses. The equation for the stress component
[u′

1u
′
2] = 〈ρu′

1u
′
2〉/〈ρ〉 is for instance given by
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+
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∂xj
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2
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