
HAL Id: hal-00498788
https://hal.science/hal-00498788v1

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component Selection Framework for COTS Libraries
Bart George, Régis Fleurquin, Salah Sadou

To cite this version:
Bart George, Régis Fleurquin, Salah Sadou. A Component Selection Framework for COTS Libraries.
11th International Symposium on Component-Based Software Engineering (CBSE’08), Oct 2008, Karl-
sruhe, Germany. pp.286-301. �hal-00498788�

https://hal.science/hal-00498788v1
https://hal.archives-ouvertes.fr

A Component Selection Framework for COTS
Libraries

Bart George, Régis Fleurquin, and Salah Sadou

VALORIA Laboratory, University of South Brittany, 56017 Vannes, France
{george,fleurqui,sadou}@univ-ubs.fr
http://www-valoria.univ-ubs.fr/s

Abstract. Component-based software engineering proposes building
complex applications from COTS (Commercial Off-The-Shelf) organized
into component markets. Therefore, the main development effort is re-
quired in selection of the components that fit the specific needs of an ap-
plication. In this article, we propose a mechanism allowing the automatic
selection of a component among a set of candidate COTS, according to
functional and non-functional properties. This mechanism has been val-
idated on an example using the ComponentSource component market.

1 Introduction

Component-Based Software Engineering allows developers to build a system
from reusable pre-existing commercial off-the-shelf (COTS) components. The
two immediate potential benefits for such an approach are reduced development
costs and shorter time-to-market [1]. For this reason, more and more software
applications are built using COTS rather than being developed from scratch, as
this is something that fewer and fewer companies can afford [2]. However, due to
the intrisic nature of COTS as “black-box” units put into markets by third party
publishers, software development life-cycle must be rethought in depth [3,4]. In
fact, COTS-based software development leads to constant trade-offs between
requirement specification, architecture specification and COTS selection [5]. In
this context, it becomes impossible to specify requirements without asking if the
marketplace provides COTS that can satisfy them. And one cannot specify an
architecture without asking if there are COTS to integrate it.

In such a context, COTS selection becomes particularly important [6]. So
important that a bad requirements definition associated to a poor selection of
COTS products can lead to major failures [7]. There are also extra costs due to
the investigation of hundreds of candidates disseminated into several different
markets and libraries, not to mention the diversity of components’ description
formats. Finally, this phase can become so time-consuming that it may annihilate
the initial promise of cost and time reductions [6]. Therefore, the only solution to
maintain these gains is to have a selection process [1] that would be well-defined,
repeatable, and as automated as possible.

In this paper, we propose a mechanism that allows application designers to
select, among a vast library of candidates, the one that best satisfies a specific

M.R.V. Chaudron and C. Szyperski (Eds.): CBSE 2008, LNCS 5282, pp. 286–301, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Component Selection Framework for COTS Libraries 287

need, modeled by a virtual component called a “target component”. Section 2
will detail existing approaches, as well as their limits. In section 3 we will present
our own approach. Then, before concluding, in section 4 we will present a valida-
tion of this approach using ComponentSource [8] as a component marketplace.

2 COTS Selection Techniques

The issue is the following one: given a vast number of COTS components from
all origins, disseminated in several different markets, how can the one that will
best satisfy an application’s specific need be chosen ?

2.1 Presentation of Current Selection Processes

Works in the field of component selection are trying to answer this fundamen-
tal question. C. Güngör En and H. Baraçli [6] listed many of these works. This
study shows that most selection processes provide at least the three following
phases: evaluation criteria definition, prioritization of these criteria, and COTS
candidates’ evaluation according to these criteria. Usually, in order to achieve
these phases, selection processes use multi-criteria decision making techniques
(MCDM). The most used MCDM techniques are Weighted Scoring Method or
WSM [9] and Analytic Hierarchy Process or AHP [10]. WSM consists in using
the following formula: scorec=Σn

j=1(weightj ∗ scorecj), where weight weightj
represents the importance of j-th criterion compared to the n-1 other evalua-
tion criteria, and local score scorecj evaluates the satisfaction level of the j-th
criterion by candidate c. Thus, total score scorec represents the global evalu-
ation value for candidate c. Therefore, the best candidate is the one that has
the highest total score. AHP is a technique that organizes the definition and
prioritization of evaluation criteria. It consists in decomposing a goal in a hier-
archical tree of criteria and sub-criteria whose leaves are available candidates.
Inside each criteria-node, the importance of each sub-criterion is estimated com-
pared to others. For example, the criterion “performance” can be divided in two
sub-criteria “response time” and “resource consumption”, the first sub-criterion
having a weight twice higher than the second one. Then, one can use a for-
mula such as WSM to evaluate each candidate c by aggregating local scores
scorecj1, ..., scorecjn inside each node j, and propagating all these sums to the
root of the tree to get c’s total score.

Now, let us take a look at the contributions made by main works in the
field of component selection. OTSO [11] is considered as one of the first selec-
tion processes dedicated to COTS components. In addition to the three phases
described above, it adds other ones such as pre-selection of COTS to identify
potentially relevant candidates and limit their number (therefore it acknowl-
edges the difficulty to manually evaluate too many candidates). PORE [7] is a
selection process that pleads in favor of a progressive selection. Candidates are
filtered and their number decreases while the description of the needs becomes
more accurate. DEER [12] is aimed at selecting single components, or assemblies

288 B. George, R. Fleurquin, and S. Sadou

of components, which satisfy requirements while minimizing costs. Other pro-
cesses propose new steps in order to facilitate selection. For example, PECA [13]
adds an extra phase : evaluation planning. It consists in choosing the people
responsible for the evaluation of candidates and the techniques they will use.
Other approaches focus on the definition of evaluation criteria [14]. For example,
STACE [15] proposes taking into account “socio-technical” criteria. Such criteria
can be, for instance: product quality, product technology, business aspects (for
example, supplier reputation on the marketplace), etc... BAREMO [16] adapts
AHP to COTS by defining a set of specific criteria and sub-criteria dedicated
to these kind of components. COTSRE [17] proposes to create reusable “criteria
catalogs”. And CAP [18] proposes specific non-functional criteria inspired by
ISO-9126 quality standard [19].

2.2 Limits of These Approaches

The main inconvenience of these processes is their lack of automation. Even if
candidates’ total scores are calculated with an automated formula such as WSM,
local scores scorecj are estimated manually by evaluators for each candidate c.
Coming back to the example of sub-criteria “response time” and “resource con-
sumption”, it is clear that if we want a precise evaluation, it would be much
better to measure them automatically with the help of metrics instead of letting
a user enter arbitrary local scores. Furthermore, even if we limited ourselves to
only one market, or a particular section of a market, we would face more than one
hundred candidates anyway. For instance, the single ComponentSource’s “inter-
net communication” section [8] contains more than 120 candidates. Therefore,
it is important to automate local score measurements as much as possible. It
is not only a matter of precision, but also an efficient way to deal with a huge
amount of information. A high number of candidates becomes quickly fastidious
in the case of a manual evaluation [20].

All local score calculations are not automatable the same way, though. Pre-
selection phase usually uses a small number of general criteria, such as key-
words. In this case, local score calculations are simple, but they can apply to
a large number of candidates. Component search and retrieval techniques [21],
whose goal is to formulate a specific query and then retrieve all the components
matching this query, provide adapted algorithms for this kind of local scores,
for instance, keyword search or facet-based classification [22]. However, during
detailed evaluation phase, there can be many complex criteria, each one concern-
ing a specific property (signature matching, metric value comparison...). In this
case, local score calculations are much more complex because they require the
aggregation of many values of different nature, but they apply to a smaller num-
ber of candidates. Fine-grained comparisons such as signature subtyping [23] fit
this kind of comparison. And non-functional properties, in order to be evaluated,
can be described with techniques such as quality of service contracts [24,25,26]
or COTS-based quality models [27].

The mechanism we propose allows for the automation of these local score
calculations by taking into account the need for flexibility on the criteria detail

A Component Selection Framework for COTS Libraries 289

level. The originality of our approach consists in automating COTS selection by
using existing works from other domains. All these techniques cohabitate into a
unique concept: target component.

3 Component Selection

Our selection approach takes place in a component-based software development
context, as defined in [3]. In this context, a component-based application is built
incrementally. When a component is added into the application, it brings its own
constraints. Then, its required interfaces become part of the new requirements
that must be satisfied by the next component to be integrated. Therefore, the
application’s current requirements are dictated, among other things, by compo-
nents currently integrated in it.

We chose to model the application’s requirements by virtual “target” com-
ponents. A target component represents the “ideal” answer for a specific need,
and has to be replaced by the closest “concrete” candidate component. Eval-
uation criteria are components’ functional and non-functional properties. Such
a representation allows the designer to have criteria that are closer to the ap-
plication’s true needs. It also allows for the use of many techniques dedicated
to automatic component search and comparison. However, such a mechanism
implies two problems: i) the choice of a description format for candidate compo-
nents as well as target ones; ii) the definition of a comparison function for such
component descriptions to measure their “similarity”. In this section, we will
successively present the solutions we propose to address these two problems.

3.1 Component Description Format

Nowadays, there is no consensus on component description format. Each mar-
ket has its own way to document its components, often developed from several
different models. For instance, ComponentSource stores ActiveX, JavaBeans or
.NET components. However, all candidates must be compared to a target com-
ponent according to a same description format. Furthermore, this format must
be abstract enough to encompass concepts that are common to most existing
models. This is why we defined our own format dedicated to COTS components.
It is described with a UML model (figure 1), whose elements will be presented
in the following pages.

Architectural artifacts. Three kinds of artifacts have been selected: com-
ponents, interfaces, and operations. Components contain two sets of interfaces
(provided and required), and interfaces are constituted by a set of operations.
This representation is inspired by the standard definition used by many models
such as UML 2.0 [28]. As COTS components are represented as “black-boxes”,
we will not take into account “composite” components.

For each (target) operation, we associate several signatures. It is useful to
anticipate many to improve performance during the search for a specific ser-
vice. A signature S = ParamTypes → ResultT ype details parameters’ types,

290 B. George, R. Fleurquin, and S. Sadou

Fig. 1. Description format for COTS components

denoted ParamTypes = (τ1, ..., τn), and the result’s type denoted ResultT ype.
Let us take the example of an operation dedicated to folder creation. It could
have a signature string → void, like the MakeDirectory operation provided
by PowerTCP FTP component, which can be found on the ComponentSource
website. However, another signature for a folder creation operation could be
string → boolean, like for the CreateDirectory operation provided by the FT-
PWizard component, which can be found at the same place.

Information associated to artifacts. Two sets of information are common
to all artifacts: a set of its possible names, and a documentation. The first set
is here because a same artifact can be proposed under several different names.
For example, a download operation can be named Download or GetF ile. This is
the case, respectively, for ComponentSpace’s FTP component and Xceed ’s, both
being available on ComponentSource’s website. The second set of information
represents the artefact’s documentation. Each one of the information elements
included in this documentation is called “typed keywords”. A keyword is typed
because it positions its value in a specific interpretation domain called facet.
For example, a component developed in EJB whose publisher is NBOS Inc. can
be documented with two typed keywords: i) one that will have “Publisher” as
facet, and “NBOS Inc.” as value; ii) one that will have “Technology” as facet,
and “EJB” as value.

It is possible to associate other information to artifacts, in particular behav-
ioral information such as pre- and post-conditions. However, the primary goal of
our approach is to bring a concrete answer to an industrial concern. To do so,
consider the context of COTS component markets such as ComponentSource.

A Component Selection Framework for COTS Libraries 291

Unfortunately, in such markets, the documentation of components’ behavior is
very poor. This is why we currently do not address these aspects.

3.2 Non-functional Properties Associated to Artifacts

Each artifact can have a “quality field”, i.e. a set of non-functional properties
(NFP in figure 1). The idea that every architectural artifact can have non-
functional properties is inspired by quality of service description languages such
as QML [24] and QoSCL [26]. A non-functional property represents the result
(resultP) obtained by measuring the “level” of a quality attribute on an arti-
fact. This measure is made by a metric. Such a structure is inspired by quality
models dedicated to COTS components [27,29]. Such models extend ISO-9126
quality standard [19] by associating quality attributes and metrics to its char-
acteristics and sub-characteristics. We chose metrics to represent and compare
non-functional properites, because contrary to other methods focusing on one
specific property or family of properties [26], metrics seem to be the simplest
evaluation tool for quality in the largest sense.

There are several standards for metrics, such as IEEE 1061-1998 [30], for which
a same quality characteristic or sub-characteristic can be measured by severalmet-
rics, and conversely. However, there is a problem when a same quality attribute is
measured by metrics of a different kind from one quality model to another. Let us
take the example of two different quality models: Bertoa’s and Vallecillo’s model
[29] and CQM [27]. Sometimes, both models associate the same quality attributes
to ISO-9126’s sub-characteristics, but measure them with different metrics. For in-
stance, the Controllability attribute, associated to sub-characteristic Security, is
measured by a percent value in Bertoa’s and Vallecillo’s model, whereas it is mea-
sured by a boolean in CQM. But even though metrics measuring the same attribute
may have the same type, it does not mean they are semantically comparable. And
there are no systematic methods allowing one to compare values obtained for a
same quality attribute with different kinds of metrics. Consequently, we will con-
sider for our description format that one quality attribute can be measured by only
one metric, even though a same metric can measure several quality attributes. We
can use attributes and metrics from one existing quality model. It can either be an
academic one, or one provided by a component market such as ComponentSource.
In any case, it must be the same for all components.

A metric can be numeric or ordinal. This distinction is inspired by the CLAR-
IFI project [31]. The domain of a numeric metric is a subset of real numbers
(integers, percent values...). As the quality models we surveyed do not propose
metrics with negative values, we take as a hypothesis that the domain of a nu-
meric metric is always positive. About the domain of an ordinal metric, it is a
finite and totally ordered set. A numeric metric has a supplementary attribute
called “direction”. This direction allows for the interpretation of a metric’s result.
Available directions are increasing and decreasing. This distinction is inspired
by quality of service contract languages [24,26]. An increasing (resp. decreasing)
direction means that the higher (resp. the lower) the metric’s value, the better
the corresponding quality. For example, an operation’s execution time has a

292 B. George, R. Fleurquin, and S. Sadou

decreasing direction. An ordinal metric has one supplement attribute called
“hierarchy”. It gathers and ranks all the metric’s possible values by associating
a key to each one of them. This key, or rank, defines the total order relation on
the metric’s domain. When a value is “better” than another, the first one’s rank
is strictly superior than the second one’s rank in the associated hierarchy. For
example, if an ordinal metric M has {very bad, bad, average, good, excellent} as
a domain, corresponding hierarchy is: Hierarchy(M)=[(0, very bad), (1, bad),
(2, average), (3, good), (4, excellent)].

3.3 Satisfaction Index between Components

Using the same description format given above for candidate and target com-
ponents, we can address the problem of component comparison. In selection
processes and multi-criteria decision making techniques, after total score calcu-
lations are performed, the candidate with the highest total score is selected as
the best one. This is why we chose to define a satisfaction index based on the
same principle. This index allows one to determine how much a candidate com-
ponent fits the target one. That means, how many functional and non-functional
properties this candidate has in common with the target component. First, we
will present the principle and the general formula for this satisfaction index,
before giving the details for some elements of the description format.

General definition. A careful analysis of description format allows us to distin-
guish a hierarchical description. In this format, a component is described by a tree
whose root is a component artifact and child nodes are potentially: Interface,
Documentation, PossibleNames and QualityF ield. Among them, an Interface
node can have the following child nodes: Operation, Documentation,
PossibleNames and QualityF ield. Therefore, the satisfaction index must com-
pare recursively two nodes from different trees by comparing their respective
child nodes pair by pair, then “aggregate” the result of sub-nodes’ comparisons
to measure similarity score. This calculus is the same whatever the nature of the
compared nodes is (as long as they are both of the same nature). Therefore, we
will give a generic description of this calculus independently of their nature.

To each node, we associate a type and a weighting function. For example, a
node can have Interface, Operation or Documentation as a type. Only two
nodes of a same type can be compared, otherwise the satisfaction index between
them will return 0. On the opposite, the maximum value for a satisfaction index
is fixed to 1, which means the candidate element completely fits the target one.
Weighting function Weight(E) allows the designer to associate to each node E
a numeric value called “weight”, which gives its importance compared to other
nodes. General satisfaction index calculus for a target node E0 and a comparable
candidate node E1 is described in figure 2. For each node e0, child of E0, we
measure satisfaction indices with each child node of E1 that is comparable to e0
(respectively, index1, index2 and index3). The best result is the highest satisfac-
tion index among them. This measurement is repeated for all E0’s other child
nodes. Finally, all these best indices, with their corresponding weight, are added

A Component Selection Framework for COTS Libraries 293

Fig. 2. Satisfaction index between two elements

to obtain a total satisfaction index between E1 and E0. In order to compare leaf
nodes, we use a specific function to each kind of them.

Formally, the satisfaction index between a candidate element E1 and a target
one E0, denoted Index, is defined as follows:

Index(E1, E0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� 0 if Type(E1) �= Type(E0).
� Comp(E1, E0) if E0 is a leaf node.
� Σ({Weight(e0) ∗ MAX({Index(e1, e0) | e1 ∈ E1}) | e0 ∈ E0})
if E0is an inner node.

(1)

Selection is performed by calculating satisfaction indices between each available
candidate component and the target one, then choosing the candidate whose
satisfaction index is the highest one.

Chosen weighting and comparison functions. Now that the general satis-
faction index formula has been defined, we have to detail comparison functions
we have chosen for each type of leaf node (NFPs, sets of possible names, typed
keywords and operation signatures), as well as the weighting function we have
chosen for every type of node.

Comparison function between NFPs: Let A0 be a target artifact, P0 be an NFP
belonging to A0’s quality field, A1 be a candidate artifact having the same type
as A0, and P1 be an NFP belonging to A1’s quality field. P1 is comparable to
P0 only if they measure the same quality attribute. In this case, the metric they
both use will be denoted M . If M is numeric, comparison function will measure
the similarity of P1’s result value with P0’s, with respect to M ’s direction. If M
is ordinal, the comparison function will measure the similarity of P1’s result’s
rank with P0’s result’s rank, with respect to M ’s hierarchy.

Formally, the comparison function between P1 and P0 is defined as follows:

Comp(P1, P0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� 0 if P1 and P0 do not measure the same quality attribute.
� Compinc(P1, P0) if M is numeric with an increasing direction.
� Compdec(P1, P0) if M is numeric with a decreasing direction.
� Compord(P1, P0) if M is ordinal, and if rank(resultP0) > 0.

� 1 if M is ordinal, and if rank(resultP0) = 0.
(2)

294 B. George, R. Fleurquin, and S. Sadou

With:

Compinc(P1, P0) = MIN(
resultP1

resultP0

, 1) (3)

Compdec(P1, P0) = MIN(
resultP0

resultP1

, 1) (4)

Compord(P1, P0) = MIN(
rank(resultP1)
rank(resultP0)

, 1) (5)

Let us suppose that P0 and P1 both measure the “quality level” of a particular
attribute with an ordinal metric whose domain is {very bad, bad, average, good,
excellent}. If P0’s result value is good, its rank is 3. If P1’s result value equals
bad, its rank equals 1 and the comparison function between P1 and P0 gives 1/3.

Comparison function between sets of possible names: For simplicity reasons, we
consider that for one candidate set of possible names N1 and one target set possible
names N0, Comp(N1, N0) equals 1 if one ofN1’s names is contained in N0 (i.e. there
is at least one common element between N1’s values and N0’s), regardless of differ-
ences between uppercases and lowercases. In any other case, Comp(N1, N0)=0.

Comparison function between typed keywords: For a candidate typed keyword
K1 associated to a facet F1 and a target typed keyword K0 associated to a facet
F0, Comp(K1, K0)=1 if F1’s value equals F0’s (unless F0’s value is “”, in this
case facets are not compared) and if K1’s value equals K0’s. In any other case,
Comp(K1, K0)=0.

Comparison function between operation signatures: To automate comparison
between operation signatures, we chose to use signature subtyping, in partic-
ular contravariance and covariance rules [23]. Therefore, we consider that a
candidate signature S1=ParamTypes1 → ResultT ype1 is subtype of a tar-
get signature S0=ParamTypes0 → ResultT ype0 if ParamTypes0 is subtype
of ParamTypes1 and if ResultT ype1 is subtype of ResultT ype0. Consequently,
Comp(S1, S0)=1 if and only if S1 is subtype of S0. Otherwise, Comp(S1, S0)=0.

Let us consider, for example, target signature S0: float → int. If S1 = float →
float, it will be a subtype of S0 and the comparison function will give 1. However,
if S1: boolean → int, the comparison function will give 0.

There are other existing techniques to compare operation signatures, in partic-
ular signature matching as defined by A. Zaremski and J. Wing [32] or S. Sadou
et al. [33,34]. However, all matching rules are not fully automatable, because
they require a collaborative approach.

Weighting function: For every type of node, we will use “weighting by distribu-
tion”. It consists, for the application designer, in giving a percent weight and
sharing the totality of each node’s weight between its direct child nodes, from the
root (the component whose weight is 1) to the leaves. For example, an interface
will share its weight between its set of possible names, its documentation, its
operations and its quality field, so that the sum of all these nodes’ weights will
equal 100% of the interface’s weight. The only exception is the set of possible

A Component Selection Framework for COTS Libraries 295

signatures for an operation. As we look for only one correct signature among all
the ones we propose, all of them will count for one. Let us suppose we described a
target operation with three possible signatures and a quality field. If the quality
field takes 40% of the interface’s weight, then each signature will have a weight
equal to 60% of the interface’s weight.

4 Selection in ComponentSource

In this section, we present an experiment conducted on a concrete component
market. This experiment shows practical feasability and interest of an automatic,
multi-level, selection approach. We consider the following context: a designer
needs for her/his application a component dedicated to FTP (File Transfer Pro-
tocol) among all the candidates available in the ComponentSource component
market’s “internet communication” section1. For each candidate we produced a
description in our format. In particular, the quality model we used corresponds
to the non-functional information available on ComponentSource web pages for
each of its components. Then, we tested the selection mechanism on these trans-
lated descriptions, and produced the results presented in this section. Translation
from original components’ descriptions to our description format has been done
using model transformation techniques. Because of article size, this work will
not be presented in this paper, but it will be the subject of a future publication.

4.1 Non-negotiable Requirements

Let us consider the development of a component-based application. Some con-
straints are specific to the development context. They are often imposed and
non-negotiable. For example, if the chosen development tool is Visual Studio,
then the candidate components must have Visual Studio as a compatible con-
tainer2. Therefore, we must filter candidates to keep only the ones that fit these
technological constraints. We can model this filter with our framework. To do
so, we can use this constraint on compatible containers as a property whose
values are either “True” or “False”. Then, we can specify a target component
with an NFP corresponding to the compatibility with the Visual Studio con-
tainer. Therefore, with only one constraint whose value is “True” or “False”, the
possible satisfaction index values are 1 or 0. Only the candidates whose satisfac-
tion index equals 1 will be pre-selected. Thus, only 35 “compatible” candidates
from ComponentSource remain. In the following pages, measurements will be
performed only on these compatible candidates.

4.2 Initial Requirements

The application being in development, its current “concrete” architecture has re-
quirements. That means, the designer needs to find a FTP component that
1 For more information: http://www.componentsource.com/index.html
2 There may be other non-negotiable requirements and filters, but for reasons of sim-

plicity and clarity, we will use only this one as an example.

296 B. George, R. Fleurquin, and S. Sadou

Fig. 3. Example of target component

provides operations whose signatures are required by “concrete” components al-
ready included in the architecture. Moreover, the application has security require-
ments, which imposes that the FTP component enables SSL protocol. It corre-
sponds to quality attribute SecuritySSL, measured by an ordinal metric with a
boolean domain (see figure 1). The target component that models all these re-
quirements is shown in figure 3. From a functional point of view, it provides one
interface containing 10 operations. Each one of them is dedicated to a specific FTP
task (folder creation, login, download...), and has a signature imposed by the ap-
plication’s concrete architecture. However, it can have many possible names. From
a non-functional point of view, the target component’s quality field contains a
unique NFP concerning the need of SSL protocol. This NFP represents quality
attribute SecuritySSL with value True. We estimate that the provided interface
takes 70% of the component’s weight, while the quality field takes the remaining
30%. Therefore, provided interface and quality field weights equal respectively 0.7
and 0.3 (see figure 3). We also consider that all 10 operations are of equal impor-
tance, so each one’s weight equals 0.1 in the context of the provided interface. Of
course, this is only an example of possible weighting: other weights can be esti-
mated according to the context of the application.

4.3 Results for Initial Requirements

Satisfaction indices have been measured for each of the 35 candidates on our
tool Substitute3. This tool takes as parameters XML files describing the chosen
3 Because of article size, we cannot give details of Substitute tool. However, inter-

ested readers can download it at the following address: http://www-valoria.univ-
ubs.fr/SE/Substitute/

A Component Selection Framework for COTS Libraries 297

Table 1. First satisfaction index measurements

Candidate name Operations NFP SSL Total

IP*Works! SSL v6 .NET 0.73 1.0 0.81
IP*Works! SSL v6 ActiveX/VB 0.73 1.0 0.81
IP*Works! SSL v6 .NET Compact Framework 0.73 1.0 0.81
IP*Works! SSL v6 ASP/.NET 0.73 1.0 0.81
PowerTCP SSL for ActiveX 0.65 1.0 0.75
IP*Works! v6 .NET 0.73 0.0 0.51
IP*Works! v6 ActiveX/VB 0.73 0.0 0.51
IP*Works! v6 .NET Compact Framework 0.73 0.0 0.51
IP*Works! v6 ASP/.NET 0.73 0.0 0.51
PowerTCP FTP for ActiveX 0.65 0.0 0.45
Aspose Network .NET 0.65 0.0 0.45
IP*Works! SSL v6 C++ 0.14 1.0 0.39
SocketTools Secure Visual Edition 0.12 1.0 0.38
SocketTools Secure .NET Edition 0.12 1.0 0.38
Xceed FTP Library 0.52 0.0 0.36

quality model and the set of all the component descriptions that will be used
(the target component, and candidate ones). For target components, only needed
properties are specified and weighted. Properties that are not specified take
implicitly a null weight in our calculus. Once all XML component descriptions
are loaded, Substitute returns satisfaction indices between each candidate of the
library and the target component. Not only global indices, but also local ones
for child nodes (interfaces, operations, NFPs...).

Table 1 shows the measurements for the 15 best candidates. First, there are
5 secure (SSL) and 4 non-secure (without SSL) versions of a FTP component
provided by the IP*Works! component suite. These different versions are identi-
fied according to their language (C++), their framework (.NET, ActiveX) or the
context they were developed for. For example, the .NET Compact Framework
is made specifically for mobile phones, while the ASP/.NET version is better
suited for Web applications. Then, there are the secure and non-secure ActiveX
versions of a FTP component provided by PowerTCP component suite. There
are also other FTP components provided by component suites Aspose Network,
SocketTools and Xceed. At first, we ignored the candidates’ development context.
However, the first four candidates all have the same satisfaction index. The rea-
son is that they all represent the same secure FTP component, but for different
development contexts (ActiveX, .NEt...). Thus, they provide the same opera-
tions with the same signature. Then, we must consider a precise context, such
as the development of a client/server application based on ActiveX. In order to
choose between the remaining candidates, a more in-depth analysis of them is
necessary.

298 B. George, R. Fleurquin, and S. Sadou

Table 2. New satisfaction index measurements

Candidate name Operations NFP SSL NFP TD Total

IP*Works! SSL v6 ActiveX/VB 0.73 1.0 1.0 0.81
PowerTCP SSL for ActiveX 0.65 1.0 1.0 0.75
IP*Works! v6 ActiveX/VB 0.73 0.0 1.0 0.61
PowerTCP for ActiveX 0.65 0.0 1.0 0.55
Xceed FTP Library 0.52 0.0 0.88 0.45

4.4 Requirement Evolution

By focusing on a precise development context, thus removing the versions of a
same component made for a different context, further exploration becomes con-
ceivable on a remaining candidate. Thus, we can notice they have some properties
which were not considered first, but may be very interesting. A good example of
such unexpected properties is the tests performed on these components before
they were brought to the market. As the application has security requirements,
it would be better if the candidates were tested before being integrated. In-
deed, ComponentSource provides for each component some information about
the tests performed on it: installation test, uninstall test, antivirus scan, sample
code review, etc... Therefore, it would be interesting to check the “test degree”
of each candidate, i.e. the number of tests, among the eight ones recognized by
ComponentSource, which were performed on it.

This new requirement leads to a modification of the target component. Its
quality field now contains a new NFP representing test degree and asking for
the maximal value, 8. Provided interface and quality field weight do not change.
However, inside the quality field, the weight of NFP representing SSL enabling
must decrease a bit. It will equal 0.665 (two thirds of the quality field’s weight),
while the new NFP representing test degree will take the remaining 0.335.

4.5 Results for New Requirements

Satisfaction indices for the remaining candidates (i.e. those that are developed
for ActiveX) have been calculated with Substitute. Table 2 shows the new mea-
surements of satisfaction indices for the five best candidates. The new column,
NFP TD, shows the results for NFP representing test degree. All the tests recog-
nized by ComponentSource were performed on the IP*Works! and PowerTCP
components in their secure and non-secure versions (index for NFP TD equals 1).
The last candidate did not pass some of these tests, which decrease its satisfac-
tion index. Finally, it seems obvious that, for the specified requirements, secure
ActiveX/VB version of IP*Works! FTP component is the best candidate.

Usually, when we try to select the “best” candidate for an application’s current
requirements, we are limited by our initial knowledge. With a way to navigate
through the library, it is possible to discover properties offered by the components
which we did not originally think about. This is typically one of the trade-offs

A Component Selection Framework for COTS Libraries 299

predicted by L. Brownsword et al. [5] between requirement specification and
COTS selection. Our easy-to-use way to specify requirements and select good
candidates makes this navigation possible.

5 Conclusion and Future Work

We proposed an approach that allows us to automate the component evaluation
phase, including: i) a description format for COTS components’ functional and
non-functional properties; ii) a satisfaction index that measures the similarity
level between a candidate component and a target one. This approach has been
validated on ComponentSource component market with the help of a tool that
measures local and global satisfaction indices for a whole library of candidate
components. This study showed that an automated comparison improves the
performance of selection process. It also showed the importance of weighting.

Such an automated mechanism is adapted to an incremental construction of
a component-based software, because “back-tracking” is possible. Each target
component’s specification depends on the components already integrated into
the application. So if the situation is blocking (i.e. there is no candidate that
can satisfy current target component), we can go back to previous ones and
choose other candidates for them. It will lead to modified requirements, which
may be better satisfied by candidates.

This paper follows and improves a previous work [35,36], whose goal was to
find how a component could substitute another one. At that time, we considered
no particular context. Since then, we adapted and improved our framework by
considering an industrial problem, such as selection in COTS markets. Therefore,
the work we present in this paper is better suited to a concrete component-based
development context. Considering this context, our description format is inspired
by what we do (and do not) find in documentation provided by COTS publishers.
For this reason, we have not yet dealt with some component properties, partic-
ularly behavioral ones. Because of the importance of these aspects, we plan to
take them into account in future versions of our framework. However, in order
to achieve this goal, these properties should be documented more explicitly in
component markets.

References

1. Voas, J.: COTS software - the economical choice? IEEE Software 15 (3), 16–19
(1998)

2. Ye, F., Kelly, T.: COTS product selection for safety-critical systems. In: Proc. of
3rd Int. Conf. on COTS-Based Soft. Systems (ICCBSS), pp. 53–62 (2004)

3. Crnkovic, I., Larsson, S., Chaudron, M.: Component-based development process
and component lifecycle. In: 27th International Conference on Information Tech-
nology Interfaces (ITI), Cavtat, Croatia. IEEE, Los Alamitos (2005)

4. Tran, V., Liu, D.B.: A procurement-centric model for engineering CBSE. In: Proc.
of the 5th IEEE Int. Symp. on Assessment of Soft. Tools (SAST) (June 1997)

300 B. George, R. Fleurquin, and S. Sadou

5. Brownsword, L., Obendorf, P., Sledge, C.: Developing new processes for COTS-
based systems. IEEE Software 34 (4), 48–55 (2000)

6. En, C.G., Baraçli, H.: A brief literature review of enterprise software evaluation and
selection methodologices: A comparison in the context of decision-making methods.
In: Proc. of the 5th Int. Symp. on Intelligent Manufacturing Systems (May 2006)

7. Maiden, N., Ncube, C.: Acquiring cots software selection requirements. IEEE
Transactions on Software Engineering 24 (3), 46–56 (1998)

8. ComponentSource: Website (2005), http://www.componentsource.com
9. Mosley, V.: How to assess tools efficiently and quantitatively. IEEE Software 8 (5),

29–32 (1992)
10. Saaty, T.: How to make a decision: The analytic hierarchy process. European Jour-

nal of Operational Research 48, 9–26 (1990)
11. Kontio, J.: A case study in applying a systematic method for COTS selection. In:

Proceedings of International Conference on Software Engineering (ICSE) (1996)
12. Cortellessa, V., Crnkovic, I., Marinelli, F., Potena, P.: Driving the selection of

COTS components on the basis of system requirements. In: Proceedings of ACM
Symposium on Automated Software Engineering (ASE) (November 2007)

13. Comella-Dorda, S., Dean, J., Morris, E., Oberndorf, T.: A process for COTS soft-
ware product evaluation. In: Proc. of 1st Int. Conf. on COTS-Based Soft. Systems
(ICCBSS), Orlando, Florida, USA, pp. 46–56 (2002)

14. Carvallo, J.P., Franch, X., Quer, C.: Determining criteria for selecting software
components: Lessons learned. IEEE Software 24 (3), 84–94 (2007)

15. Kunda, D., Brooks, L.: Applying social-technical approach for COTS selection. In:
UK Academy for Information Systems Conf. (UKAIS 1999) (April 1999)

16. Lozano-Tello, A., Gómez-Pérez, A.: Baremo: How to choose the appropriate soft-
ware component using the analytic hierarchy process. In: Proc. of Int. Conf. on
Soft. Eng. and Knowledge Eng (SEKE), Ischia, Italy (July 2002)

17. Martinez, M., Toval, A.: COTSRE: A components selection method based on re-
quirements engineering. In: Proceedings of the 7th Int. Conf. on COTS-Based Soft.
Systems (ICCBSS), February 2008, pp. 220–223 (2008)

18. Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothelfer-Kolb, B.: A COTS acqui-
sition process: Definition and application experience. In: Proceedings of the 11th
European Software Control and Metrics Conference (ESCOM), pp. 335–343 (2000)

19. ISO International Standards Organisation Geneva, Switzerland: ISO/IEC 9126-
1:2001 Software Engineering - Product Quality - Part I: Quality model (2001)

20. Ncube, C., Dean, J.: The limitations of current decision-making techniques in the
procurement of COTS software component. In: Proc. of the 1st Int. Conf. on COTS-
Based Software Systems (ICCBSS), Orlando, Florida, USA, pp. 176–187 (2002)

21. Mili, H., Mili, F., Mili, A.: Reusing software: Issues and research directions. IEEE
Transactions On Software Engineering 21(6), 528–562 (1995)

22. Pŕıeto-Diaz, R.: Implementing faceted classification for software reuse. Communi-
cations of the ACM 34(5), 88–97 (1991)

23. Cardelli, L.: A semantics of multiple inheritance. Information and Computa-
tion 76(2), 138–164 (1988)

24. Frolund, S., Koistinen, J.: QML: A language for quality of service specification.
Technical report, Hewlett-Packard Laboratories, Palo Alto, California, USA (1998)

25. Beugnard, A., Sadou, S., Jul, E., Fiege, L., Filman, R.: Concrete communication ab-
stractions for distributed systems. In: Object-Oriented Technology, ECOOP 2003
Workshop Reader, Darmstadt, Germany, November 2003, pp. 17–29 (2003)

26. Defour, O., Jézéquel, J.M., Plouzeau, N.: Extra-functional contract support in
components. In: Proc. of 7th Int. Symp. on CBSE (May 2004)

http://www.componentsource.com

A Component Selection Framework for COTS Libraries 301

27. Alvaro, A., de Almeida, E.S., Meira, S.: A software component quality model: A
preliminary evaluation. In: Proc. of the 32nd EUROMICRO Conf. on Soft. Eng.
and Advanced Applications (SEAA) (August 2006)

28. OMG: UML 2.0 superstructure final adopted specification, document ptc/03-08-02
(August 2003), http://www.omg.org/docs/ptc/03-08-02.pdf

29. Bertoa, M., Vallecillo, A.: Quality attributes for COTS components. I+D Com-
putación 1(2), 128–144 (2002)

30. IEEE: IEEE Std. 1061-1998: IEEE Standard for a Software Quality Metrics
Methodology. IEEE computer society press edn (1998)

31. Boegh, J.: Certifying software component attributes. IEEE Software 40(5), 74–81
(2006)

32. Zaremski, A., Wing, J.: Signature matching: a tool for using software libraries.
ACM Trans. On Soft. Eng. and Methodology (TOSEM) 4(2), 146–170 (1995)

33. Sadou, S., Mili, H.: Unanticipated evolution for distributed applications. In: 1st
Int. Workshop on Unanticipated Software Evolution (USE) (June 2002)

34. Sadou, S., Koscielny, G., Mili, H.: Abstracting services in a heterogeneous environ-
ment. In: IFIP/ACM International Conference on Distributed Systems Platforms,
Middleware 2001, Heidelberg, Allemagne (November 2001)

35. George, B., Fleurquin, R., Sadou, S.: A component-oriented substitution model.
In: Proceedings of 9th Int. Conf. on Software Reuse (ICSR 9) (June 2006)

36. George, B., Fleurquin, R., Sadou, S.: A methodological approach for selecting com-
ponents in development and evolution process. Electronic Notes on Theoretical
Computer Science (ENTCS) 6(2), 111–140 (2007)

 http://www.omg.org/docs/ptc/03-08-02.pdf

	Introduction
	COTS Selection Techniques
	Presentation of Current Selection Processes
	Limits of These Approaches

	Component Selection
	Component Description Format
	Architectural artifacts.
	Information associated to artifacts.

	Non-functional Properties Associated to Artifacts
	Satisfaction Index between Components
	General definition.
	Chosen weighting and comparison functions.

	Selection in ComponentSource
	Non-negotiable Requirements
	Initial Requirements
	Results for Initial Requirements
	Requirement Evolution
	Results for New Requirements

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

