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The Rényi Entropy Function and the Large Deviation of Short

Return Times

Nicolai Haydn∗ Sandro Vaienti†

July 9, 2008

Abstract

We consider the Rényi entropy function for weakly ψ-mixing systems. The first main result
proves existence and regularity properties. The second main result of the paper is to get the decay
rate for the large deviation of the return time to cylinder sets. We show it to be exponential with
a rate given by the Rényi entropy function. Finally we also obtain bounds for the free energy.

1 Introduction

The Rényi entropies [32] have been extensively studied in the eighties for their connections with various
generalized spectra for dimensions of dynamically invariant sets, see for instance [23, 9, 18, 10, 22,
16, 29]. The commonly adopted definition generalizes the usual measure-theoretic entropy. Let T be
a transformation on the measurable space Ω and µ a T -invariant probability measure on Ω. Assume
Ω has a finite measurable partition A whose joins we denote by Ak =

∨k−1
j=0 T

−jA, k = 1, 2, . . . (the
elements of Ak are commonly referred to as n-cylinders). We assume A is generating, i.e. the elements
of A∞ are single points. For t > 0 we put

Zn(t) =
∑

An∈An

µ(An)1+t

and define the Rényi entropy function RA with respect to the partition A by

RA(t) = lim inf
n→∞

1
tn
| logZn(t)|. (1) {Re}

Up to now the limit above has been proved to exist only in a few special situations: Bernoulli measures,
Markov measures and more generally for Gibbs measures with Hölder continuous potentials φ: in fact
in these cases the Rényi entropies can be expressed easily in terms of the topological pressure P (φ) of
φ (see sect. 2.2 below) independently of the partition A (provided it is generating).

The first main result of our paper (Theorem 1) is to show the existence of the limit (1) for a wide
class of measures (dynamically weakly ψ-mixing measures, see sect. 2.1). Moreover we prove that for
t→ 0+ the entropy RA(t) converges to the metric-theoretic entropy h(µ), and that the function tRA(t)
is locally Lipschitz continuous.

In [34] Takens and Verbitsky suggested to define the Rényi entropy of order t of the measure-
preserving transformation T as the function R̂(t) = supARA(t) where the supremum is taken over
all finite partitions A of Ω. This achieves that R̂(t) is a measure-theoretic invariant, but at the same

∗Mathematics Department, USC, Los Angeles, 90089-1113. E-mail: <nhaydn@math.usc.edu>. This work was sup-
ported by a grant from the NSF (DMS-0301910) and by the CNRS unité FR2291 FRUMAN (#64636).
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time becomes trivial since it was shown [34] that for ergodic measures µ the function R̂(t) is (for
all t > 0) identically equal to the entropy h(µ). In order to “extract new information about the
dynamics from the generalized entropies” [34], they introduced the correlations entropies by replacing
cylinders by dynamical (Bowen) balls. The main application of correlation entropies was the complete
characterization of the multifractal spectrum of local entropies for expansive homeomorphisms with
specification [35] (see also [8, 31] for another approach). In fact in the latter case the correlation
entropies coincide with the Rényi entropies RA(t) computed with respect to any generating partition
A.

For the remainder of the paper we denote the Rényi entropy by R(t) assuming that a given finite
generating partition A has been chosen once and for all. The second main result of this paper (Theorem
4 and Corollary 5) uses the Rényi entropies to compute the large deviations of the first returns of
cylinders An of length n. For this purpose let us introduce the return times function

τA(x) = min
{
k ≥ 1 : T kx ∈ A

}
which is finite for µ-almost every x ∈ A (Poincaré’s theorem) and has expectation (on A) equal to 1
(Kac’s theorem) when µ is ergodic.

For n = 1, 2, . . . let us put τn(x) = miny∈An(x) τAn(x)(y), where An(x) denotes the n-cylinder that
contains x. This quantity arose in several circumstances:
—Since it controls the short returns, it plays a crucial role to establish the asymptotic (exponential)
distribution of the return times function τA(x) when the measure of the set A goes to zero [21, 3, 1, 2,
26, 25, 24].
—It has been used to define the recurrence dimension since it served as the gauge set function to
construct a suitable Carathéodory measure [5, 30, 7].
—It has been related to the Algorithmic Information Content in [12].

The first result on the asymptotic behavior of τn(x) was proved in [33] (see also [6] for a different
proof): for an ergodic measure µ of positive metric entropy h(µ), we have

lim inf
n→∞

τn(x)
n

≥ 1 (2) {SR}

for µ-almost every x ∈ Ω. For systems which enjoy the specification property the preceding limit exists
and is equal to 1 almost everywhere [33, 6]. The same result holds for a large class of maps on the
interval with indifferent fixed points [20].

The situation changes considerably for systems with zero entropy. In general the limit (2) does not
exist anymore and the values of the lim inf and lim sup depend upon the arithmetic properties of the
map: see [27, 28, 14] for a careful investigation of Sturmian shifts and substitutive systems.

We will prove in Sect. 3 that the limit (2) exists almost surely and is equal to 1 even for weakly
ψ-mixing measures. This leads immediately to the natural question of computing the large deviations
for the process τn(x)

n , namely to check the existence of the limit defining the lower deviation function

lim
n→∞

1
n

logµ(x; τn(x) ≤ [δn]) (3) {DF}

for δ ≤ 1. The case δ > 1 is not interesting: it gives the value 0 to the above limit since τn(x) ≤ n+∆,
where ∆ is a constant independent of x and n, see Sect. 3.

The existence of the lower deviation function (3) was first established in [4] for classical ψ-mixing
measures. These are special cases of the measures considered in this paper; they must satisfy the
stronger mixing condition ∣∣∣∣µ(U ∩ T−n−kV )

µ(U)µ(V )
− 1
∣∣∣∣ ≤ ψ(k) (4) {FM}

for all U in σ(An), for all n and all V ∈ σ(A∗) (the σ-algebra generated by An), where we put
A∗ =

⋃∞
j=1Aj (compare this with the definition of weakly ψ-mixing measure introduced in subsection 2
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below). The rate function ψ(k), k ≥ 0 must converges to zero, and, moreover, in order to achieve the
existence of the limit (3) the additional assumption ψ(0) < 1 was required in [4]. This in particular
implies (see Lemma 2.1 in [4]), that after having coded the elements of the initial finite partition (of
cardinality |A| = M , say) A =

⋃M
i=1Ai over the alphabet G = {1, 2, . . . ,M} then for every string

{i0, . . . , in−1} ∈ Gn, n ≥ 1 the cylinder Ai0 ∩ T−1Ai1 ∩ . . . ∩ T (n−1)Ain−1 has positive measure, which
essentially means that the grammar associated to the coding is complete. We will not anymore need
this condition even for our larger class of weakly ψ-mixing measure. The key result in [4] was to relate
the lower deviation function to the Rényi entropies for any ψ-mixing measure verifying the condition
ψ(0) < 1, but in that paper the Rényi entropies were assumed to exist, since no general result was
known.

It is well known that the deviation function could be computed as the Legendre transform of the
free energy of the process, provided the free energy exists and is differentiable w.r.t. the parameter β
(see (5) below). We show in Sect. 4 that this is not the case for our process: the free energy will be
continuous but not differentiable at the point β = −γµ, where γµ is the exponential decay rate of the
measures of n-cylinders from Theorem 1. Even if the free energy is not differentiable, one can still
derive an upper bound for the lower deviation function, which we will show to be consistent with the
rigorous expression of the lower deviation function in terms of the Rényi entropies. It is interesting
to note that the free energy function was also computed in [4], but the proof needed an additional
assumption, namely the existence of a sequence of cylinders whose measure decays exponentially to
zero with a rate which is exactly the constant γµ and whose first return is sublinear. We do not need
anymore this hypothesis since we will prove the existence of such a sequence in full generality.

We gladly acknowledge numerous fruitful discussions with M Abadi about the Rényi entropy and its
applications.

2 Rényi entropy function
{renyi}

2.1 Existence and regularity

We say the T -invariant probability measure µ on Ω is weakly ψ-mixing with respect to the (finite)
partition A if there exist positive functions ψ−, ψ+ : N → R+, where ψ−(k) < 1 ∀ k ≥ ∆0 for some ∆0,
so that

1− ψ−(k) ≤ µ(U ∩ T−n−kV )
µ(U)µ(V )

≤ 1 + ψ+(k)

for all U in σ(An), for all n and all V ∈ σ(A∗) (where A∗ =
⋃∞

j=1Aj). From now on we assume that
the measure µ on Ω is a T -invariant non-atomic probability measure which is weakly ψ-mixing where
the functions 1− ψ−, 1 + ψ+ are subexponential, which means lim supk→∞

1
n | log(1− ψ−(k))| = 0 and

lim supk→∞
1
n log(1+ψ+(k)) = 0. Lemma 3 shows that the measures of cylinder sets decay exponentially

fast. Classical ψ-mixing measures correspond to the special case when ψ−(k) = ψ+(k) = ψ(k) where
ψ(k) ↘ 0 as k → ∞ [11, 17, 15]. The classical ψ-mixing property implies in particular that µ cannot
have any atoms.

Put bn = maxAn∈An µ(An) and let γµ = lim infn
1
n | log bn| be the exponential decay rate of the

measures of n-cylinders. We will now establish the following properties of the Rényi entropy:
{renyi.entropy}

Theorem 1 Assume the (non-atomic) measure µ is weakly ψ-mixing and the functions 1−ψ−, 1+ψ+

are subexponential. Then
(I) The limit R(t) = limn→∞

1
tn | logZn(t)| exists for t > 0. Convergence is uniform for t on compact

subsets of R+.
(II) The function W (t) = tR(t) is locally Lipschitz continuous.
(III) R(0) = limt→0+ R(t) = h(µ).
(IV) R(t) is monotonically decreasing on (0,∞) and R(t) → γµ as t→∞, where γµ = lim infn→∞

1
n | log bn|

is positive.
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2.2 Examples
{examples}

(I) Bernoulli shift. If Ω is the full shift space over a finite alphabet {1, 2, . . . ,M}, σ the left shift
transformation, the partition A is the collection of one-element cylinders and the invariant probability
measure µ is given by a probability vector ~p = (p1, p2, . . . , pM ) (

∑
i pi = 1, pi > 0), then Zn(t) =(∑

i p
1+t
i

)n
and the Rényi entropy is R(t) = 1

t log
∑

i p
1+t
i for t > 0 and equal to the metric entropy

hµ =
∑

i pi| log pi| for t = 0.

(II) Markov chains. Again Ω is the shift space over the alphabet {1, 2, . . . ,M} and A is the usual
partition of one-element cylinders. The invariant probability measure µ is now given by an M ×M
stochastic matrix P (we assume P is irreducible) and probability vector ~p: ~pP = ~p and P1 = 1.
The cylinder set U(x1 . . . xn) ∈ An which is given by the n-word x1x2 . . . xn then has the measure
µ(x1 . . . xn) = px1Px1x2Px2x3 · · ·Pxn−1xn

. Hence

Zn(t) =
∑

x1x2...xn

p1+t
x1

P 1+t
x1x2

· · ·P 1+t
xn−1xn

where the sum is over all (admissable) n-words. The non-negative M ×M -matrix P (t) whose entries
are Pij(t) = P 1+t

ij has by the Perron-Frobenius theorem a single largest positive eigenvalue λt and a
strictly positive (and normalised) left eigen vector ~w(t). (Note that λt is a continuous function of t and
λ0 = 1.) Thus (pi(t) = p1+t

i , i = 1, . . .M)

λ−n
t ~p(t)P (t)n → (~p · ~w(t))~w(t)

(exponentially fast) as n → ∞. We thus obtain that R(t) = 1
t log λt if t is positive and R(0) = hµ =∑

ij piPij | logPij | if t = 0.

(III) Gibbs measures. [34, 10] If µ is a Gibbs measure for the potential function φ [13], then the
Rényi entropy R(t) = 1

t ((1 + t)P (φ) − P ((1 + t)φ)) (where P is the pressure function) is analytic for
t > 0.

2.3 Proof of Theorem 1

Before we proof Theorem 1 we will need the following technical lemma about ψ-mixing measures. The
notation ψ± means that ψ+ applies when the left side inside the absolute value is positive and ψ−

applies when the argument inside the absolute value is negative.
{product.mixing}

Lemma 2 Assume there are sets Bj ∈ σ(Anj ), j = 1, 2, . . . , k for some integers nj. If µ is weakly
ψ-mixing then ∣∣∣∣∣∣µ

 k⋂
j=1

T−NjBj

−
k∏

j=1

µ(Bj)

∣∣∣∣∣∣ ≤
((

1 + ψ±(∆)
)k−1 − 1

) k∏
j=1

µ(Bj),

for all ∆ ≥ 0, where Nj = n1 + n2 + · · ·+ nj−1 + (j − 1)∆ (N0 = 0).

Proof. Put for ` = 1, 2, . . . , k:

D` =
k⋂

j=`

T−(Nj−N`)Bj .

In particular
⋂k

j=1 T
−NjBj = D1, Dk = Bk and note that

D` = B` ∩ T−n`−∆D`+1.
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By the mixing property |µ(D`)− µ(B`)µ(D`+1)| ≤ ψ±(∆)µ(B`)µ(D`+1) which repeatedly applied
yields by the triangle inequality:∣∣∣∣∣∣µ

 k⋂
j=1

T−NjBj

−
k∏

j=1

µ(Bj)

∣∣∣∣∣∣ ≤ ψ±(∆)
k−1∑
`=1

µ

`−1⋂
j=1

T−NjBj

 k−1∏
j=`

µ(Bj)

≤
((

1 + ψ±(∆)
)k−1 − 1

) k∏
j=1

µ(Bj).

{exponential.decay}
Lemma 3 There exists a constant η ∈ (0, 1) so that µ(An) ≤ ηn for all An ∈ An and all n.

Proof. Fix a ∆ > 0 and m so that bm = maxAm∈Am µ(Am) ≤ 1
2 (1 + ψ+(∆))−1 (note that bm ↘ 0 as

m→∞ since µ has no atoms). Then for any n (large) andAn ∈ An one hasAn ⊂
⋂k−1

j=0 T
−km′

Am(T jm′
An),

where k = [ n
m′ ], m′ = m + ∆ and Am(T jm′

An) is the m-cylinder that contains T jm′
An (j ≤ k − 1).

By Lemma 2

µ(An) ≤ µ

k−1⋂
j=0

T−km′
Am(T jm′

An)

 ≤
(
1 + ψ+(∆)

)k−1
k∏

j=1

µ(Am(T jm′
An)) ≤

(
1 + ψ+(∆)

)k
bkm ≤ 2−k.

Hence η ≤ 2−
1

m′ .

Remark. The exponential decay of cylinders implies in particular that the metric entropy of a weakly
ψ-mixing measure µ is positive. In fact h(µ) ≥ | log η| > 0.

Proof of (I). Let m and ∆ ≥ ∆0 (the ‘gap’) be integers, put m′ = m+ ∆ and let n = km′ −∆ be a
large integer. Put Ãn =

∨k−1
j=0 T

−jm′Am define for some β > 1

Gn =
{
An ∈ An : µ(An) ≥ e−k∆β

µ(Ãn)
}
,

where Ãn =
⋂k−1

j=0 T
−km′

Am(T jm′
An). Then for every An one has

µ

 ⋃
A′

n⊂Ãn,A′
n∈Gn

A′n

 = µ(Ãn)− µ

 ⋃
A′

n⊂Ãn,A′
n 6∈Gn

A′n

 ≥
(
1− |A|k∆e−k∆β

)
µ(Ãn)

as Ãn =
⋃

A′
n⊂Ãn,A′

n∈An A′n has k ‘gaps’ each of which is of length ∆. This implies that if |A|∆e−∆β

< 1

then for every Ãn ∈ Ãn there exists an A′n ⊂ Ãn, A′n ∈ An which also belongs to Gn. As ∆ ≥ ∆0 we
get

Zn(t) =
∑

An∈An

µ(An)1+t ≥ e−k∆β(1+t)
∑

Ãn∈Ãn

µ(Ãn)1+t = e−k∆β(1+t)Zm(t)k
((

1 +O(ψ−(∆))
)k−1

)1+t

where we have used µ(Ãn) = (1 +O(ψ±(∆)))k−1∏k−1
j=0 µ(Am(T jm′

Ãn)) (mixing property). Hence we
obtain

| logZn(t)| ≤ k| logZm(t)|+ k∆β(1 + t) + (1 + t)
∣∣∣log

(
1− ψ−(∆)

)k−1
∣∣∣

≤ k| logZm(t)|+O(k∆β(1 + t))
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If we put an = | logZn(t)| then an ≤ kam + ck∆β and

akm′

km′ ≤
am

m′ + c
∆β

m′ =
m

m′
am

m
+ c

∆β

m′ .

If we put ∆ ∼ mα so that αβ < 1 then lim supn
an

n ≤ m
m+∆

am

m +O(∆β

m ) for all m. Hence lim supn
an

n ≤
lim infm

am

m .
We also have

Zn(t) ≤ |A|k∆Zm(t)k(1 +O(ψ+(∆)))(k−1)(1+t)

which implies
| logZn(t)| ≥ k| logZm(t)|+O(k∆(1 + t)).

This ensures uniform convergence for t in compact subsets of R+.

Proof of (II). For t > 0 let us putHn(t) =
∑

An∈An µ(An)1+t| logµ(An)| (clearly h(µ) = limn→∞
1
nHn(0)

and d
dtZn(t) = Hn(t)). As above let Ãn =

∨k−1
j=0 T

−jm′Am and, in order to cut k gaps of lengths ∆,
put

Gn =
{
An ∈ An : µ(An) ≥ e−k∆β

µ(Ãn)
}
,

for some β > 1 where Ãn ∈ Ãn is so that An ⊂ Ãn and n = km′−∆ (m′ = m+ ∆). The sum over An

that defines Zn is split into two parts: (i) over Gn and (ii) over the complement of Gn.

(i) On the set An \ Gn we have µ(An) ≤ e−k∆β

µ(Ãn), where An ∈ Gn, An ⊂ Ãn ∈ Ãn. Choose
γ ∈ (1, β) and let G′n =

{
A′n ∈ An : µ(A′n) ≥ e−k∆γ

µ(Ãn)
}

. Then we get for all An 6∈ Gn:

µ(An) ≤ e−k∆β

µ(Ãn) ≤ e−k∆β

e−k∆γ

µ(A′n),

where A′n ∈ G′n is so that A′n ⊂ Ãn (such an A′n exists since |A|∆e−∆γ

< 1 for ∆ large enough). Thus∑
An 6∈Gn

|logµ(An)|µ(An)1+t ≤ e−k(1+t)∆β ∑
An 6∈Gn

|logµ(An)|µ(Ãn)1+t

≤ e−k(1+t)(∆β−∆γ)
∑

A′
n∈G′n

|logµ(A′n)|µ(A′n)1+t

≤ e−k(1+t)(∆β−∆γ)Hn.

(ii) If An ∈ Gn then log µ(An) = logµ(Ãn) +O(k∆β) and we obtain

Hn(t) =
∑

An∈An

| logµ(An)|µ(An)1+t

=
∑

An∈Gn

(
| logµ(Ãn)|+O(k∆β)

)
µ(An)1+t +

∑
An 6∈Gn

|logµ(An)|µ(An)1+t

=
∑

An∈Gn

| logµ(Ãn)|µ(An)1+t +O(k∆β)Zn +O
(
e−k(1+t)(∆β−∆γ)

)
Hn

(in the last step we used the estimate from part (i)).

The mixing property µ(Ãn) = (1 + O(ψ±(∆)))k−1
∏k−1

j=0 µ(Am ◦ T jm′
) is applied to the principal

term: ∑
An∈An

| logµ(Ãn)|µ(An)1+t =
k−1∑
j=0

Xj +O(k(ψ−(∆) + ψ+(∆))),

6



where Xj =
∑

An∈An | logµ(Am ◦ T jm′
)|µ(An)1+t. To further examine Xj let us put

Ãn
j = Ajm′−∆ ∨ T−jm′

Am ∨ T−(j+1)m′−∆An−(j+1)m′−∆

where we opened up two gaps of lengths ∆ (∆ ≥ ∆0), the first after j blocks and the second one after
j + 1 blocks (j = 0, . . . , k− 1) with the obvious modification if j = 0, k− 1 in which cases there is only
a single gap. We now put

Gj
n =

{
An ∈ An : µ(An) ≥ e−∆β

µ(Ãj
n)
}

where Ãj
n ∈ Ãn

j is so that An ⊂ Ãj
n. The sum in Xj over An is split into two parts: (a) over Gj

n and
(b) over its complement An \ Gj

n.

(a) For the sum over Gj
n the mixing property

µ(Ãj
n) = (1 +O(ψ(∆)))µ(Ajm′−∆)µ(Am ◦ T jm′

)µ(An−(j+1)m′−∆ ◦ T−(j+1)m′−∆)

for Ãj
n ∈ An

j yields∑
An∈Gj

n

| logµ(Am ◦ T jm′
)|µ(An)1+t ∈

[
e−(1+t)∆β

, |A|2∆
] ∑

Ãn∈Ãn
j

| logµ(Am ◦ T jm′
)|µ(Ãj

n)1+t

=
[
e−(1+t)∆β

, |A|2∆
]
(1 +O(ψ±(∆)))Zjm′−∆HmZn−(j+1)m′−∆.

(b) For the sum over An \ Gj
n we estimate as follows∑

An 6∈Gj
n

| logµ(Am ◦ T jm′
)|µ(An)1+t ≤ |A|2∆e−(1+t)∆β ∑

Ãj
n∈An

j

| logµ(Am ◦ T jm′
)|µ(Ãj

n)1+t

≤ |A|2∆e−(1+t)∆β

(1 +O(ψ±(∆)))1+tZjm′−∆HmZn−(j+1)m′−∆

Similarly one shows that Zn ∈
[
|A|2∆e−(1+t)∆β

, |A|2∆
]
Zjm′−∆ZmZn−(j+1)m′−∆. Hence we get

Hn ∈
[

1
c1
, c1

] k−1∑
j=0

Zjm′−∆HmZn−(j+1)m′−∆

Zn
+O(k∆β)

for some constant c1 ≈ 2|A|2∆e(1+t)∆γ

and consequently

Hn ∈
[

1
c21
, c21

]
kHm +O(k∆β).

This implies that lim supn→∞
1
nHn ≤ c21

1
mHm and similarly lim infn→∞

1
nHn ≥ c−2

1
1
mHm. This implies

that c2c−2
1 |s| ≤ W (t + s) −W (t) ≤ c2c

2
1|s| for small s (e.g. −t ≤ s ≤ 1) for some positive constant c2

(equal to 1
mHm(t) for some m).

Proof of (III). With Hn(t) =
∑

An∈An µ(An)1+t| logµ(An)| as above we get

Hn+m(t) =
∑

An+m∈An+m

µ(An+m)1+t

∣∣∣∣log
µ(An+m)
µ(Am)

+ logµ(Am)
∣∣∣∣

=
∑

An+m∈An+m

µ(An+m)1+t |logµ(Am)|+ 1
1 + t

∑
An+m∈An+m

µ(An+m)1+t

∣∣∣∣∣log
(
µ(An+m)
µ(Am)

)1+t
∣∣∣∣∣

≤
∑

Am∈Am

µ(Am)1+t |logµ(Am)|+ 1
1 + t

∑
An∈An

Zm(t)
∑

Am∈Am

µ(Am)1+t

Zm(t)
φ

((
µ(An+m)
µ(Am)

)1+t
)
,
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where An+m stands for Am ∩ T−mAn and φ(s) = −s log s is concave on (0, 1) and increasing on (0, 1
e ).

Thus

Hn+m(t) ≤ Hm(t) +
Zm(t)
1 + t

∑
An∈An

φ

( ∑
Am∈Am

µ(An+m)1+t

Zm(t)

)

≤ Hm(t) +
Zm(t)
1 + t

∑
An∈An

φ

(
µ(An)1+t

Zm(t)

)
,

provided µ(An)1+t

Zm(t) ≤ 1
e for every An ∈ An. Hence

Hn+m(t) ≤ Hm(t) +
1

1 + t

∑
An∈An

µ(An)1+t

∣∣∣∣log
µ(An)1+t

Zm(t)

∣∣∣∣
= Hm(t) +Hn(t) +

1
1 + t

Zn(t)| logZm(t)|,

(as Zm ≤ 1). Now we apply this estimate repeatedly. In order to satisfy the condition µ(Ajm)1+t

Zm(t) ≤ 1
e

for every Ajm ∈ Ajm, j = 1, . . . , k let us note that the measure of the cylindersets goes to zero by

Lemma 3. Hence for a given m we can find an integer J so that µ(Ajm)1+t

Zm(t) ≤ 1
e for every Ajm ∈ Ajm,

and all j > J . Moreover since W (0) = 0 and 1
n logZn(t) converge uniformly to W (t) for t ∈ (0, δ) (for

δ > 0), we can let ε > 0 and choose δ > 0 so that |W (t)| < ε
2 and N so that | 1n logZn(t)−W (t)| < ε

2
for all n ≥ N and t ∈ (0, δ). Hence 1 ≥ Zn(t) ≥ e−εn for n ≥ N, t ∈ (0, δ). Assume m > N . Then we
get almost subadditivity for the sequence Hn(t):

Hkm(t) = HJm(t) + (k − J)Hm(t) +O(kεm)

and consequently (as k →∞)

lim
n→∞

Hn(t)
n

=
Hm(t)
m

+O(ε)

for every m > N . Therefore if t ∈ (0, δ):

W (t) = lim
n→∞

logZn(t)
n

= lim
n→∞

1
n

∫ t

0

Hn(s) ds =
1
m

∫ t

0

Hm(s) ds+O(εt)

and consequently

R(0) = W ′(0) = lim
t→0+

1
tm

∫ t

0

Hm(s) ds+O(ε) =
1
m
Hm(0) ds+O(ε).

Since ε > 0 was arbitrary we get that R(0) = limm→∞
1
mHm(0) (we need that m > Nε, where Nε →∞

as ε→ 0+).

Proof of (IV). The fact that R is decreasing was noted in e.g. [34, 9]. Since

b1+t
n ≤ Zn(t) ≤

∑
An∈An

µ(An)btn = btn,

we obtain that 1
n | log bn| ≤ R(t) ≤ 1+t

t
1
n | log bn| for all n (this estimate is true universally, independent

of mixing properties). Hence γµ ≤ R(t) ≤ 1+t
t γµ for all t > 0 where γµ is strictly positive since, by

Lemma 3, γµ ≥ | log η| > 0.

As Lemma 3 shows the measure of cylinder sets always decays exponentially fast for weakly ψ-mixing
measures. Clearly, if the measure of cylinder sets decays subexponentially (i.e. γµ = 0) then the Rényi
entropy R(t) is identically zero on (0,∞).
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3 Short return times

In the introduction we recalled that for every ergodic measure µ with positive entropy lim infn→∞
1
nτn(x) ≥

1 almost everywhere. Since a weakly ψ-mixing measure µ has positive entropy (see the remark following
Lemma 3), we obtain lim infn→∞

1
nτn(x) ≥ 1 for µ-almost every x ∈ Ω. In order to get the upper bound

let x ∈ Ω, let us note that by the weak ψ-mixing property

µ(An(x) ∩ T−n−∆An(x))
µ(An(x))2

≥ 1− ψ−(∆) > 0

for ∆ ≥ ∆0. This implies τn(x) ≤ n+∆ and since ∆ ≥ ∆0 is fixed we obtain that lim supn→∞
1
nτn(x) ≤

1 for every x ∈ Ω. Hence

lim
n→∞

1
n
τn(x) = 1

almost everywhere. In this section we are concerned about the large deviations of the process τn,
namely we are interested in the asymptotic behavior of the distributions

P(τn ≤ [δn]) = µ({x : τn(x) ≤ [δn]}).

Since τn(x) is obviously constant for all the points in the same cylinder around x, we could replace the
set {x : τn(x) ≤ [δn]} with the following one

Cn(δ) = {An ∈ An : τn(An) ≤ [δn]}

which measures the probability of points to have very short returns and where τn(An) = min{k ≥ 1 :
An ∩ T−kAn 6= ∅} = τn(x), x ∈ An. In order to analyze its size let us, following [4], define the sets

Bn(j) =
{
An ∈ An :

j

τn(An)
∈ N

}
,

where n ∈ N, j = 1, . . . , n. Clearly Bn(j) ∈ σ(An) for all j and if we look at the symbolic representation
of the n-cylinders in Bn(j) we note that there are two cases, namely:
(i) If j ≤ n

2 and x is a point in Bn(j) then the first n symbols of points in it are

(x1x2 . . . xj)n′x1x2 . . . xr

where n′ = [n/j] and r = n− j[n/j] (r < j).
(ii) If j > n

2 and An is an n-cylinder in Bn(j) then the first n symbols of points in it are

x1x2 . . . xn−jx1x2 . . . x2j−nx1x2 . . . xn−j

where the (remainder) middle portion is of length n− 2(n− j) = 2j − n.
Let us put

Sn(λ) = {An ∈ An : τn(An) = [nλ]} .

The purpose of this section is to determine the decay rate of the measure of the set Sn(λ) as n goes to
infinity. As λ varies over the unit interval we obtain the short recurrence spectrum for the measure µ.
Let us note that for every n we have that Cn(δ) =

⋂
λ<δ Sn(λ)

For λ ∈ (0, 1] we define the function

M(λ) = (1− λ`) (W (`)−W (`− 1)) + δW (`− 1)

where d =
[
1
δ

]
(1 − δd linearly interpolates between the values 1

k+1 and 0 on the interval ( 1
k+1 ,

1
k )).

The function M(λ) is continuous on (0, 1), piecewise affine on the intevals ( 1
1+k ,

1
k ) and assumes the

values M( 1
k ) = 1

kW (k − 1), k = 1, 2, . . . (in particular M(1) = 0). The function M(λ) interpolated
M̂(λ) = λ

1+λW ( 1
λ ) between the values at the points λ = 1

k for k = 1, 2, . . .. Changing coordinates to

9



t = 1+λ
λ we get M̂(λ) = 1

tW (t − 1). This function is increasing for t > 1 as can be seen from the
derivatives of the approximating functions. To wit

d

dt

1
tn
| logZn(t− 1)| = 1

t2Zn(t− 1)

∑
An∈An

µ(An)t

∣∣∣∣log
µ(An)t

Zn(t− 1)

∣∣∣∣ ,
which is positive for every n. Since limn→∞

1
tn | logZn(t− 1)| = 1

tW (t− 1) we conclude that 1
tW (t− 1)

is increasing on (1,∞). Hence M(λ) is decreasing on (0, 1). We now prove our main result for the
density of short returns.

{main.result}
Theorem 4

lim sup
n→∞

1
n
| logµ(Sn(λ))| = M(λ)

The lower bound was proven in [4]. It remains to prove the upper bound. In [4] the bound was proven
under the assumption that ψ(0) be less than 1 which is essentially only satisfied for Bernoulli measures.
Here we obtain the lower bound for all weakly ψ-mixing measures. Theorem 4 gives rise to the following
corollary.

{C.limit}
Corollary 5

lim sup
n→∞

1
n
| logµ(Cn(δ))| = M(δ)

Proof. Clearly Cn(δ) ⊂
⋃[δn]

j=1Bn(j) which implies that Cn(δ) ⊂
⋃

0<λ≤δ Sn(λ). The union in fact
consists of no more than n distinct sets. Hence

µ(Cn(δ)) ≤ n max
0<λ≤δ

µ(Sn(λ))

which implies that lim supn→∞
1
n | logµ(Sn(λ))| ≤ min0<λ≤δ M(λ). The upper bound follows from the

fact that Sn(λ) ⊂ Cn(δ) for every λ ≤ δ. The statement now follows because M is monotonically
decreasing on (0, 1).

{upper.S.bound}
Proposition 6

lim sup
n→∞

1
n
| logµ(Sn(λ))| ≤M(λ)

Let us first prove the following inequality which by itself is of some interest.
{lower.Z.bound}

Lemma 7 Let γ ∈ (0, 1). Then for all λ ∈ (0, 1) and all large enough n:

µ(Bn(j)) ≥ eO(nγ)Zr(w)Zj−r(w − 1),

where j = [λn] and n = wj + r, 0 ≤ r < j, w = [n/j].

Proof. We do the two cases (A) λ ∈ (0, 1
2 ] and (B) λ ∈ ( 1

2 , 1) separately.

(A) Let us first deal with the case 0 < λ ≤ 1
2 . Put j = [λn] and w =

[
n
j

]
. Then n = wj + r where

r < j (r = 0 if λn ∈ N and 1/λ ∈ N). For an n-cylinder An ⊂ Bn(j) one has the decomposition

An =

(
w−1⋂
k=0

T−jkAj(An)

)
∩ T−wjAr(An),

where w =
[

n
j

]
and Aj(An) is the j-cylinder that contains the n-cylinder An etc. Let ∆ ≥ ∆0 be so

that ∆ < r, j − r and put

Ãn =

(
w⋂

k=0

T−jkAr−∆(An)

)
∩

(
w⋂

k=0

T−jk−rAj−r−∆(An)

)
.

10



Here we opened up gaps of lengths ∆ (i) at each occurrence of period after length j and (ii) then cut
each period of length j into two pieces of lengths r and r − j. Since An ⊂ Ãn clearly µ(Ãn) ≥ µ(An)
and in order to get a comparison in the opposite direction, let β > 1 and put

Gn,j =
{
An ∈ An : An ⊂ Bn(j), µ(An) ≥ e−2w∆β

µ(Ãn)
}
,

for the ‘good’ n-cylinders in Bn(j) whose measures are comparable to the measure of Ãn. Put Gn,j =⋃
An∈Gn,j

An. Then for every An ⊂ Bn(j) one has

µ

 ⋃
A′

n⊂Ãn∩Bn(j),A′
n∈An

A′n

 ≥
(
1− |A|2w∆e−2w∆β

)
µ(Ãn ∩Bn(j))

as Ãn ∩ Bn(j) =
⋃

A′
n⊂Ãn,A′

n∈Gn,j
A′n. This implies that if |A|2w∆e−2w∆β

< 1 then Ãn ∩ Bn(j) 6= ∅ if

and only if there exists an A′n ⊂ Ãn, A′n ∈ An, which also belongs to Gn,j . Hence

µ(Bn(j)) ≥ µ(Gn,j) ≥ e−2w∆β ∑
Ãn

µ(Ãn),

where the sum is over all Ãn for which there is an An ⊂ Bn(j). Since all An ⊂ Bn(j) are of the form
(x1 . . . xj)wx1 . . . xr where x1 . . . xj runs through all possible periodic words of lengths j, we get∑
Ãn

µ(Ãn) =
(
1 +O(ψ±(∆))

)2w+1 ∑
x1...xr−∆

∑
xr+1...xj−∆

µ(Ar−∆(x1 . . . xr−∆))w+1µ(Aj−r−∆(xr+1 . . . xj−∆))w

=
(
1 +O(ψ±(∆))

)2w+1
Zr−∆(w)Zj−r−∆(w − 1),

where the sum is over all (r − ∆)-words x1 . . . xr−∆ and all (j − n − ∆)-words xr+1 . . . xj−∆, where
Zm(k) =

∑
Am∈Am µ(Am)k+1. Hence

µ(Bn(j)) ≥ c1e
−2w∆β

Zr−∆(w)Zj−r−∆(w − 1)

for some c1 > 0. We have to choose ∆ ≥ ∆0 and need to have |A|∆e−∆β

< 1. This requires β to be
bigger than 1.

Next we compare Zr−∆(w) to Zr(w) as follows:

Zr−∆(w) =
∑

x1...xr−∆

µ(Ar−∆(x1 . . . xr−∆))w+1 ≥ 1
|A|∆

∑
x1...xr

µ(Ar−∆(x1 . . . xr))w+1

as µ(Ar(x1 . . . xr)) ≤ µ(Ar−∆(x1 . . . xr−∆)) and #{Ar : Ar ⊂ Ar−∆} ≤ |A|∆. Hence Zr−∆(w) ≥
|A|−∆Zr(w) and similarly Zj−r−∆(w − 1) ≥ |A|−∆Zj−r(w − 1). This implies

µ(Bn(j)) ≥ c1|A|−2∆e−2w∆β

Zr(w)Zj−r(w − 1) ≥ c1e
−c2∆

αβ

Zr(w)Zj−r(w − 1)

if we choose ∆ = [jα] for some α ∈ (0, 1). If α is small enough then γ ≥ αβ.

(B) The case when λ ∈ ( 1
2 , 1). Again we put j = [nλ] and n = j + r (note [1/λ] = 1). If An ⊂ Bn(j)

is an n-cylinder then An = Ar(An) ∩ T−jAr(An) ∩ T−rAn−2r(T rAn), where n− 2r ≥ 0. Let ∆ ≥ ∆0

(not too large) and define as above

Ãn = Ar−∆(An) ∩ T−jAr−∆(An) ∩ T−rAn−2r−∆(T rAn)

(of n− 2r −∆ > 0, otherwise we just put Ãn = Ar−∆(An) ∩ T−jAr−∆(An)). For β > 1 we introduce
as before the ‘good set’

Gn,j =
{
An ∈ An : An ⊂ Bn(j), µ(An) ≥ e−∆β

µ(Ãn)
}
.
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If |A|2∆e−∆β

< 1 then for every Ãn (of the form given above) there exists an An ∈ Gn,j so that An ⊂ Ãn

and therefore
µ(Bn(j)) ≥ µ(Gn,j) ≥ e−∆β ∑

Ãn

µ(Ãn),

where the sum is over all Ãn = Ar−∆(x1 . . . xr−∆) ∩ T−jAr−∆(x1 . . . xr−∆) ∩ T−rAr−∆(xr+1 . . . xn−j)
(in the case when n− 2r −∆ > 0) and x1 . . . xr−∆, xr+1 . . . xn−j are arbitrary words. Hence

µ(Bn(j)) ≥
(
1 +O(ψ−(∆))

)2
e−∆β ∑

x1...xr−∆

µ(Ar−∆(x1 . . . xr−∆))2
∑

xr+1...xj−∆

µ(Aj−r−∆(xr+1 . . . xj−∆))

=
(
1 +O(ψ−(∆))

)2
e−∆β

Zr−∆(1)Zj−r−∆(0)

=
(
1 +O(ψ−(∆))

)2 |A|−2∆e−∆β

Zr(1)Zj−r(0)

where in the last line we used the comparison from the end of part (A). Again we choose ∆ = [jα]
where α ∈ (0, 1) can be chosen small enough so that γ ≥ αβ.

Proof of Proposition 6. Obviously µ(Sn(λ)) ≥ Bn(j) and therefore by Lemma 7

logµ(Sn(λ))
n

≥ −O(nγ)
n

+
1
n

logZr(w) +
1
n

logZj−r(w − 1)

where γ < 1 can be chosen arbitrarily. As n→∞ the first term goes to zero. Thus

lim inf
n→∞

1
n

logµ(Sn(λ)) ≥ lim inf
n→∞

1
n

logZr(w) + lim inf
n→∞

1
n

logZj−r(w − 1)

Now notice that (as n = w[λn] + r)

1
n

logZr(w) =
r

n

1
r

logZr(w) → (1− λ`)W (`)

since r
n = n−[λn]w

n = 1 − [λn]
n w → 1 − λ` and w → ` as n → ∞ and W is continuous by Theorem 1.

Similarly
1
n

logZj−r(w) =
j − r

n

1
j − r

logZj−r(w) → (λ (1 + `)− 1)W (`− 1)

since j−r
n = [nλ]−(n−[λn])w

n = [nλ]
n (1 + w) − 1 → λ (1 + `) − 1. This implies the statement of the

proposition.
{lower.S.bound}

Lemma 8
lim sup

n→∞

1
n
| logµ(Sn(λ))| ≥M(λ)

Proof. Again we do the two cases (A) λ ∈ (0, 1
2 ] and (B) λ ∈ ( 1

2 , 1) separately.
(A) 0 < λ ≤ 1

2 : We decompose as above n = wj + r, where j = [λn] and w = [n/j], 0 ≤ r < j. Since
all An ⊂ Bn(j) are of the form (x1 . . . xj)wx1 . . . xr where x1 . . . xj runs through all possible periodic
words of lengths j, we get (summing over such An)∑

An

µ(An) ≤
(
1 + ψ+(0)

)2w+1 ∑
x1...xr

∑
xr+1...xj

µ(Ar(x1 . . . xr))w+1µ(Aj−r(xr+1 . . . xj))w,

where the sum is over all r-words x1 . . . xr and all (j − n)-words xr+1 . . . xj . Hence

µ(Sn(λ)) ≤
(
1 + ψ+(0)

)2w+1
Zr(w)Zj−r(w − 1)

and therefore as in the proof of Proposition 6

lim
n→∞

1
n
| logµ(Sn(λ)| ≥ lim

n→∞

1
n
| logZr(w)|+ lim

n→∞

1
n
| logZr(w − 1)| = M(λ).
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(B) λ ∈ ( 1
2 , 1): Again we put j = [nλ] and n = j + r, 0 ≤ r < j (as [1/λ] = 1). If An ⊂ Bn(j) is an

n-cylinder then An = Ar(An) ∩ T−jAr(An) ∩ T−rAn−2r(T rAn), where n− 2r ≥ 0. Hence

µ(Bn(j)) ≤
(
1 + ψ+(0)

)2 ∑
x1...xr

µ(Ar(x1 . . . xr))2
∑

xr+1...xj

µ(Aj−r(xr+1 . . . xj))

for arbitrary words x1 . . . xr, xr+1 . . . xn−j . This implies µ(Sn(λ)) ≤ c1Zr(1)Zj−r(0) (c1 > 0) and
limn→∞

1
n | logµ(Sn(λ)| ≥ limn→∞

1
n | logZr(1)| = M(λ).

Proof of Theorem 4. The theorem now follows from Proposition 6 and Lemma 8.

Apart from the exact limiting behaviour we get from Theorem 4 we can also proof the following simpler
bounds.

Lemma 9
lim inf
n→∞

1
n
| logµ(Cn(δ))| ≤ hµ(1− δ)

for all δ ∈ (0, 1).

Proof. As before j = [δn] and for an n-cylinder An in Bn(j) we put Ãn = Ar−∆(An)∩T−rAn−r(T rAn)
for a gap of length ∆ on the segment [r −∆ + 1, r]. As before we let β > 1,

G =
{
An ∈ An : An ⊂ Bn(j), µ(An) ≥ e−∆β

µ(Ãn)
}

and observe that if |A|∆e−∆β

< 1 then

Ãn ∩Bn(j) 6= ∅ ⇐⇒ ∃A′n ∈ G, A′n ⊂ Ãn

Hence (G =
⋃

An∈G An) if ∆ ≥ ∆0 then

µ(Bn(j)) ≥ µ(G)

≥ e−∆β ∑
Ãn

µ(Ãn)

≥
(
(1− ψ−(∆))

)
e−∆β ∑

x1...xj−∆

µ(Aj−∆(x1 . . . xj−∆))
∑

xj−∆+1...xj

µ(An−j(T j(x1 . . . xj)∞))

as Ãn = Aj−∆(x1 . . . xj−∆) ∩ An−j((x1 . . . xj)∞). By the Shannon-McMillan-Breiman theorem [?] for
every ε > 0 there exists a set Ωε ⊂ Ω with measure ≥ 1 − ε and so that µ(An−j((x1 . . . xj)∞)) ≥
e−(n−j)(hµ+ε) for all n large enough and for all (x1 . . . xj)∞ so that An−j((x1 . . . xj)∞)∩Ωε 6= ∅. Hence

µ(Cn(δ)) ≥ e−∆β

(1− ψ−(∆))
∑

An∈G,T jAn∩Ωε 6=∅

µ(Aj−∆(T jAn))e−(n−j)(hµ+ε)

≥ e−∆β

(1− ψ−(∆))e−(n−j)(hµ+ε)

 ∑
x1...xj−∆

µ(Aj−∆(x1 . . . xj−∆))− ε


≥ e−∆β−(n−j)(hµ+ε)(1− ψ−(∆)) (1− ε)

and consequently limn→∞
1
n logµ(Cn(δ)) ≥ −(1− δ)(hµ + ε) if we take ∆ = [nα] where α < 1 is so that

βα < 1. Now let ε→ 0+ in order to get the result.
{LB}

Lemma 10 Let γµ be as in Theorem 1. Then

lim inf
n→∞

1
n
| logµ(Cn(δ))| ≥ γµ(1− δ).

The proof is exactly the same as in [4] Proposition 1(a). It uses the mixing properties of ψ-mixing
measures without the assumption ψ(0) < 1.
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4 Uniform decay rate of cylinders and the free energy

In this section we compute the free energy F (β) of the process τn: it is defined by

F (β)
def
= lim

n→∞

1
n

log
∫

Ω

exp(βτn(An)) dµ = lim
n→∞

1
n

log
∞∑

j=1

eβjP(τn = j) (5) {FE}

whenever the limit exist.
{free.energy}

Theorem 11 Let µ be a weakly ψ-mixing measure. Then

F (β) =
{

β if − γµ ≤ β < 0
−γµ if β ≤ −γµ

.

Remark 1. Although F (β) is not differentiable, one could still take its Legendre transform LF (δ) and
produce an upper bound for the deviation function M(δ) (see [19]). We immediately get

M(δ) ≤ LF (δ) = −γµ(1− δ)

which is consistent with the bound obtained in Lemma 10.

Remark 2. The proof of the theorem splits into two parts. The first consists in getting an up-
per bound for the sum

∑∞
j=1 e

βjP(τn = j) which is achieved by using the mixing properties of
the measure. We defer to the proof of this bound in [4] Proposition 6 which applies verbatim (it
does not require the stringent condition ψ(0) < 1). This upper bound allows to show that the
lim supn→∞

1
n log

∫
Ω

exp(βτn(An)) dµ is piecewise constant as prescribed in Theorem 11. However
the lower bound is more interesting. Here we need an additional property of our measure, namely
the existence of a sequence of cylinders whose measures decay exponentially to zero at a rate which
is exactly the constant γµ given by Theorem 1 and whose first return is sublinear. This sequence is
explicitly constructed in Lemma 13 below. We will give the proof of the lower bound after having
proved Lemma 13.

As before let γµ = lim infn
1
n | log bn| be the exponential decay rate of the measures of n-cylinders, where

bn = maxAn∈An µ(An) and 0 < | log η| ≤ γµ ≤ hµ by Lemma 3.
{slowest.sequence}

Lemma 12 There exists a sequence of n-cylinders An, n = 1, 2, 3, . . ., so that γµ = limn→∞
1
n | logµ(An)|.

Proof. We have to show that lim inf is equal to the lim along a suitable sequence of cylinders. For this
purpose let Anj (nj increasing sequence) be a sequence of nj-cylinders so that γµ = limj

1
nj
| logµ(Anj

)|.

Let ε > 0 and J large enough so that
∣∣∣ 1
nj
| logµ(Anj

)| − γµ

∣∣∣ < ε/2 for all j ≥ J . Let α ∈ (0, 1) (to be

determined below), ∆ = [nα
j ] (∆ ≥ ∆0) and put Ãnj+(k−1)∆ =

⋂k−1
i=0 T

−i(nj+∆)Anj
which implies by

Lemma 2 that
µ(Ãnj+(k−1)∆) = µ(Anj )

k
(
1 +O(ψ±(∆))

)k−1

As before for β > 1 we put

Gk =
{
Aknj+(k−1)∆ ⊂ Ãknj+(k−1)∆ : µ(Aknj+(k−1)∆) ≥ e−k∆β

µ(Ãknj+(k−1)∆)
}
.

Then if |A|(k−1)∆e−k∆β

< 1 we get that ∃ at least one cylinderAknj+(k−1)∆ ⊂ Ãknj+(k−1)∆, Aknj+(k−1)∆ ∈
Aknj+(k−1)∆, so that µ(Aknj+(k−1)∆) ≥ e−k∆β

µ(Ãknj+(k−1)∆) and therefore

µ(Aknj+(k−1)∆)
knj + (k − 1)∆

≥ − k∆β

knj + (k − 1)∆
+

k logµ(Anj
)

knj + (k − 1)∆
+
k log(1− ψ−(∆))
knj + (k − 1)∆

≥ −2
∆β

nj
+

1
1 + ∆

nj

logµ(Anj
)

nj
− 2

ψ−(∆)
nj

≥ −cnβα−1
j +

logµ(Anj
)

nj

14



where we put ∆ = [nα
j ] and c ≈ 3 + 2γµ (as 1

1+∆/nj
≤ 1 + 2 ∆

nj
for j large enough) Hence∣∣∣∣ | logµ(Aknj+(k−1)∆)|

knj + (k − 1)∆
− γµ

∣∣∣∣ < ε

2
+

c

n1−βα
j

< ε

for all k if nj is large enough. Choose β so that |A|∆e−∆β

< 1 where ∆ ∼ nα (∆ ≥ ∆0). Then let
α < 1 be so that αβ < 1.

{GC}
Lemma 13 There exists a sequence of cylinders Bj ∈ Aj so that

lim
j→∞

1
j
| logµ(Bj)| = γµ and lim

j→∞

1
j
τ(Bj) = 0

Proof. By Lemma 12 there exists a sequence of cylinders An ∈ An so that 1
n | logµ(An)| → γµ as

n → ∞. Let ε > 0 and N so that
∣∣ 1
n | logµ(An)| − γµ

∣∣ ≤ ε/3 ∀ n ≥ N . Let α, α′ ∈ (0, 1) put
kn = [nα′ ], ∆n = [nα] and put for simplicity n′ = n+ ∆n, (n+ 1)′ = n+ 1 + ∆n+1. Then

kn+1(n+ 1)′ −∆n+1 − (knn
′ −∆n) ∈

{
[0, 3] if kn+1 = kn

[kn + ∆n, kn + ∆n + 3] if kn+1 = kn + 1 .

Let εn = kn+1 − kn (εn = 0, 1) and for j ∈ [knn
′ −∆n, kn+1(n+ 1)′ −∆n+1) put

Dj =
{
D ∈ A(kn+εn)n′−∆n : D ⊂ Ãn

}
,

where

D̃j =
kn+εn−1⋂

j=0

T−jn′An ∈
kn+εn−1∨

j=0

T−jn′An.

For β > 1 we define the ‘good’ set of cylinders in Ãj whose measures are comparable to the measure
of D̃n.

Gj =
{
D ∈ Aj : µ(D) ≥ e−(kn+εn)∆β

nµ(D̃j)
}

If |A|∆e−∆β

< 1 then Gj 6= ∅. Hence we can find a j-cylinder Bj ∈ Gj so that Bj ⊂ D̃j and moreover
has comparable measure: µ(Bj) ≥ e−(kn+εn)∆β

nµ(D̃j). By the mixing property

µ(D̃j) =
(
1 +O(ψ±(∆n))

)kn+εn−1
µ(An)kn+εn

which implies
logµ(Bj) ≥ −(kn + εn)∆β

n + kn logµ(An) + kn log(1− ψ−(∆n))

If α′ + βα < 1 and n is large enough then 1
j (kn + εn)∆α

n < ε
3 and 1

j kn log(1 − ψ−(∆n)) < ε
3 . Hence∣∣∣ 1j | logµ(Bj)| − γµ

∣∣∣ < ε for all large enough j. Moreover we note that τ(A′j) ≤ n + ∆n which implies

limj→∞
1
j τ(Bj) = 0.

Proof of Theorem 11 As described in Remark 2 it will be sufficient to show that

lim inf
n→∞

1
n

log
∫

Ω

exp(βτn(An))dµ ≥
{

β if − γµ ≤ β < 0
−γµ if β ≤ −γµ

.

We have two cases.
(i): −γµ ≤ β < 0. The result immediately follows since

∞∑
j=1

exp(βj)P(τn = j)) ≥ exp(βn+ ∆)

15



where ∆ was introduced at the beginning of Sect. 3.
(ii): β < −γµ. Let us choose in any partition An a cylinder A′n which verifies Lemma (13). Then

∞∑
j=1

eβjP(τn = j) ≥ exp(βτn(A′n))µ(A′n).

But µ(A′n) decays exponentially fast to zero with a rate given by −γµ, while 1
nτn(A′n) goes to zero.

This concludes the proof.
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Phys. A, 19 (1986), L997–L1001.
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