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Abstract

Though brittle, silicate glasses undergo plastic deformation at the microscopic scale.

Mechanical contact and indentation are the most common situations of interest. The

plasticity of glasses is characterized not only by shear flow but also by a perma-

nent densification process. After indentation, densification can locally reach 20% in

a pure silica glass. In this paper, a new constitutive model, derived from experi-

mental observations is presented to account for the plasticity of fused silica. The

use of nanoindentation tests to identify the plastic behavior of amorphous silica is

discussed. A set of material properties is determined by comparing experimental

load/displacement indentation curves to the results of finite element simulations.

The numerical results show good agreement with recent experimental indentation-

induced densification maps obtained by Perriot et al. [J. Am. Ceram. Soc., 89:596–

601, 2006].
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1 Introduction

Though primarily brittle [1], silicate glasses can undergo plastic deformation at

the micron scale. his can occur under contact loading [2] or in the close vicinity

of a crack tip. In that respect glasses do not differ from standard materials,

except that the characteristic length scale below which volume deformation

(plasticity) is energetically more favorable than surface creation (crack prop-

agation) is smaller [3]. Although known for half a century [4] and of primary

interest for many micron-scale applications, the plasticity of silicate glasses

has up to now remained little studied [5–8].

Standard dislocation-based mechanisms of crystalline solids is of no direct

use to explain the plasticity of silicate glasses because they are amorphous.

Instead, according to the dominant scenario, plastic deformation of glasses

seems to result from a succession of localized structural rearrangements[9,10].

On the plasticity of amorphous materials and more specifically of metallic

glasses, see for instance the recent review of Schuh[11].

Moreover, plasticity of silicate glasses is characterized by one more specific

feature. Indeed, it appears that a more or less significant phenomenon of

permanent densification [12] takes place in addition to the isochoric plastic

strain classically observed in metallic materials. This characteristic leads to
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a distinction between normal glasses and anomalous glasses: normal glasses

exhibit little densification while anomalous glasses exhibit large densification

as well as a different indentation fracture pattern [13]. Fused silica, the most

anomalous silicate glass of industrial interest, can achieve a significant 20%

densification [5].

The lack of studies on this subject is directly related to the brittle nature

of the material and the necessity to resort to mechanical measurements at a

micron scale. Progress has been obtained thanks to the recent developments

in instrumented nanoindentation techniques [14,15]. Nanoindentation tests are

micromechanical tests where the load applied to a tip is continuously measured

as a function of the penetration depth. Recently it has been successfully used

to extract material properties such as hardness or elastic modulus of very thin

devices [16–18]. Nevertheless, a single load-penetration curve does not provide

a unique set of material properties for even moderately complex materials such

as von Mises elastoplastic solids with power-law isotropic strain hardening [19].

The plasticity of amorphous silica is much more involved and an attempt to

describe its behavior requires additional data to identify a constitutive law

with some confidence.

Recently, Perriot et al. [7] provided a map of the local indentation-induced

densification in a fused silica sample. The latter was obtained from Raman

microspectroscopic mappings [20] on cross-sections of indents. For that pur-

pose, they used the work of Sugiura et al. [21] which correlates the position

of the D2 line [22] of the Raman Spectrum of silica with the ratio of the

sample density to its initial density. They also provided clear evidence for a

densification-induced hardening process with diamond-anvil cell (DAC) mea-

surement [23]. Ji et al. [8] have also evidenced such a densification-induced
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hardening in window glass.

These experimental results provide a rich and complex set of data from which

to identify a constitutive equation for silica. In this paper a new plastic yield

criterion is proposed and its implementation in a finite element software is

explained in details. Then, the identification of the material parameters is

carried out using instrumented indentation results. Finally the relevance of

the new criterion is assessed by comparison with the experimental density

maps [7,24].

2 Constitutive modelling of amorphous silica

In standard metallic materials, plasticity is pressure-independent [25]. Hence,

for such materials, the yield function is often written :

f(σij) = q − Y (1)

where σij denotes the Cauchy stress tensor, q is the von Mises equivalent stress

and Y is the yield stress. The macroscopic von Mises stress is proportional to

the shear stress [26] and is given by :

q =

√
3

2
SijSij (2)

In equation (2), Sij is the stress deviator defined by

Sij = σij + pδij

where p = −σkk/3 is the hydrostatic pressure and δij is the Kronecker tensor.

In associative plasticity the plastic rate of deformation is normal to the yield
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surface [27]. This leads to :

ε̇p
ij = λ̇

∂f

∂σij

(3)

where λ̇ is the plastic multiplier which can be determined from the consistency

condition [28], f(σij) = 0 during plastic yielding.

For obvious reasons, such a criterion cannot account for the silica glass densi-

fication under pure hydrostatic loading and a relation between f(σij) and the

hydrostatic pressure p has to be taken into account instead. Recently, Xin et

al. [29,30] proposed the following criterion for amorphous silica :

f(σij) = αq + (1− α)p− β (4)

This pressure-dependent yield criterion resembles the Mohr-Coulomb criterion

initially developed for frictional materials [31] and involves two physical char-

acteristics: i) the yield stress β; ii) the densification factor α which balances the

respective influence of applied hydrostatic pressure, p, and von Mises stress,

q. Under the assumption of an associated perfect-plastic behavior, Xin and

Lambropoulos [30] identified these two parameters by comparing experimen-

tal load/displacement indentation curves to finite element simulation results.

With the values α= 0.6 and β = 9.4 GPa, they adequately reproduced their

experimental data.

Recently, Perriot et al. [7] used Raman micro-spectroscopy to estimate indentation-

induced densification in silica. The micrometric spatial resolution of this tech-

nique allowed them to perform a mapping of the permanent densification below

an indentation imprint. It was found that the densification increases gradu-

ally from 0 to 20% when approaching the contact area while the Kim model,

5



however, predicts a sharp transition between a fully densified hemispherical

inclusion and a non densified bulk. Hence the simple criterion (4) needs to be

refined to account for these additional experimental results.

Two comments regarding the limitations of such a Mohr-Coulomb like criterion

should be made at this stage. First, the linearity of (4) together with the

hypothesis of associated flow rule, implies that the direction of the plastic

strain rate does not depend on pressure p and shear stress q. Moreover, no

hardening is taken into account in this constitutive equation. Even if the

relevance of hardening in metallic glasses is still a matter of discussion [11],

the existence of a hardening effect has been clearly established in the case

of silica[7]. To overcome these limitations, we propose in the following a new

constitutive equation. We focus first on the yield criterion and then discuss

how the hardening can be incorporated.

2.1 A new yield criterion for fused silica

A strong dependence on pressure is the main characteristic of the plastic be-

havior of fused silica. For that reason silica may appear as closer to powders or

geomaterials than to metals or crystalline materials. Yield functions designed

to account for the compaction of metal powders [32,33] thus exhibit similar

dependences with hydrostatic pressure. In the present case, however, there is

no evidence of frictional effect and no reason to depart from associative plas-

ticity. Moreover, in the absence of indications of a pressure effect in tension

we will ignore it for negative hydrostatic pressure.

To account for the plasticity of fused silica we propose, for positive pressures,
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an elliptic criterion (see Fig. 1) similar to the one used by Shima and Oyane

[34] to reproduce experiments on copper. For negative pressure we assume a

simple von Mises criterion. In compression (p > 0), the proposed yield criterion

is:

f(σij) =

(
q

qc

)2

+

(
p

pc

)2

− 1 (5)

while in tension (p < 0), one has:

f(σij) = q − qc (6)

where pc and qc represent the hydrostatic plastic limit in pure hydrostatic

state and the shear limit in pure deviatoric state respectively. From equations

(3) and (5), the plastic strain rate (for positive pressure) is then given by :

ε̇p
ij = λ̇

(
3Sij −

2q2
c

3p2
c

pδij

)

One observes from (5) that the direction of the plastic strain rate now strongly

depends on the hydrostatic pressure p. For a pure deviatoric stress state, no

plastic densification appears – the plastic strain rate is isochoric – whereas

for a pure hydrostatic stress only plastic densification can occur.

Finally, in the absence of experimental data on a potential shear hardening

effect, we shall only consider density hardening: as sketched in Fig. 1, pc in-

creases with plastic densification whereas qc remains constant. The density

hardening behavior of silica is addressed in the next section.
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2.2 Densification-induced hydrostatic hardening

The densification-induced hardening has been measured by Perriot et al. [24]

with the help of a Diamond-Anvil Cell apparatus [23,35]. Amorphous silica

samples have been submitted to successive loading/unloading cycles of growing

maximum pressure Pmax. At the end of each cycle, a Raman spectrum was

measured and the densification was quantified from the shift of the D2 peak

[21][7]. The hardening curve obtained by this procedure is presented in Figure

2.

Note that densification, i.e. the relative volume change can be related to the

first invariant of the small strain tensor εm which is called mean strain in the

present study:

∆V

V
= εkk = 3εm ,

where V denotes the initial volume. It should also be noted that the small

strain assumption has been implicitly applied to describe the densification in

fused silica. This hypothesis is expected to be valid for silica since saturation

of the densification is reached around 20 % [5].

Strain hardening phenomena occur when materials exhibit plastic deforma-

tion. Therefore, the densification-induced hardening should depend on the

plastic densification, which leads us to write :

pc = g(εp
m) (7)

where g is a function which describes the evolution of pc with plastic densi-

fication. In this paper, it has been assumed that the hardening is isotropic
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and that the hydrostatic hardening does not depend on the deviatoric plastic

strain. The mean plastic strain is computed as follows :

εp
m =

t∫
0

|ε̇p
m|dτ

In view of its implementation in a finite element software, the function g has

been fitted with a linear relation as displayed in Figure 2. Hence, Eq. (7)

reduces to :

pc = ζεp
m + pc0 (8)

where pc0 = 11.5 GPa is the hydrostatic pressure for which the first plastic

densification occurs and ζ = 100 GPa is the hardening slope. Let us note

that this value is only slightly smaller than the bulk elastic modulus, which

relates the mean strain to the mean stress in linear elasticity, and is about

K = 120 GPa for amorphous silica.

For classic metallic solids, where hardening mainly results from dislocation

pinning or entanglement, the shear hardening slope is commonly one hun-

dred times lower than the elastic modulus. In the case of amorphous mate-

rials, where plasticity is believed to originate from successive local reorgani-

zations[11], there is no equivalent mechanism. A statistical mechanism based

on the progressive exhaustion of the most unstable regions has been recently

proposed[36]. In the present case of hardening, the progressive approach to the

limit density for amorphous silica, equal to the density of the most dense crys-

talline analog must be taken into account. In a recent study of the plasticity

of window glass which is known to exhibit low densification, Ji et al. [8] used a

multi-anvil apparatus to measure the bulk plastic modulus for densification of
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window glass. They obtained a value close to 500 GPa, i.e. four times higher

than the bulk elastic modulus. To be consistent within the elastic-plastic for-

malism, this result requires a very large increase in the bulk elastic modulus

with plastic densification. This also points to some of the difficulties which

underlie the measurement and the analysis of the hydrostatic hardening of

glasses.

Note finally that Perriot et al. [7] have observed that the zone where the densi-

fication saturates is small compared to the contact area. Hence the saturation

process will not be really taken into account in this paper.

3 Finite element modelling of indentation-induced densification in

fused silica

3.1 Numerical implementation

The yield criterion developed in the previous section has been implemented

in the finite element software Systus R© [37], using a fully implicit backward

Euler scheme [38] to perform the stress update.

A stress update algorithm consists of determining at a time t + ∆t, the stress

tensor, from the knowledge of the various physical quantities at time t and the

strain increment ∆εij. In a fully implicit scheme, the yield condition is enforced

at the end of the step, contrary to fully explicit schemes. Hence, a fully implicit

scheme is more accurate than an explicit scheme but the implementation is

far more complex.

In the constitutive model, the additive decomposition of the strain rate tensor
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into elastic and plastic parts is assumed. The elastic response is thus hypo-

elastic [26]. In incremental form the constitutive equation is taken to be :

σ̂ij = Cijkl(ε̇kl − ε̇p
kl) (9)

where σ̂ij is a suitable objective stress rate and Cijkl is the fourth rank elastic

tensor. Over one step, Eq. (9) can be approximated by:

∆σij = Cijkl(∆εkl −∆εp
kl) (10)

Eq. (3) can also be approximated by :

∆εp
ij = ∆λ

∂f

∂σij

(11)

Substituting Eq. (11) into Eq. (10), and using the consistency condition and

Eq. (8) leads to a set of non-linear equations where the unknowns are ∆λ and

∆εp
m. This set of equations is solved using a Newton scheme [38].

3.2 Finite element model

Calculations have been performed using axisymmetric elements to model cone

indentation and using a large displacement / large strain option (updated

Lagrangian formulation, logarithmic strain). The objective rate of the stress

tensor used is the Green-Naghdi rate [38]. The mesh is specially refined near

the contact zone. Its spatial extent is large enough to make the results unsensi-

tive to the location of the outer boundaries [39]. The size of the global mesh is

one hundred times smaller than the contact radius. For a good representation

of the contact geometry, the width of the elements has been determined so
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that at least 40 nodes are in contact for the deepest penetration. The whole

mesh contains about 9000 elements and 9400 nodes (see Fig. 3). The con-

tact between the indenter and the workpiece is assumed to be frictionless and

loading is achieved by imposing a quasi-static displacement of the indenter

which is pushed vertically into the workpiece. The indenter is assumed to be

perfectly rigid.

4 Identification and numerical results

The constitutive model developed in this paper depends on two main phys-

ical quantities pc and qc which represent respectively the plastic limit in a

pure hydrostatic state and the shear limit in a pure deviatoric state. The first

quantity pc depends on the densification and has been identified from DAC

experiments whereas the second (qc) is constant and unknown. Before being

able to confront the results of the finite element simulations with the exper-

imental densification map obtained by Raman micro-spectroscopy, the value

of qc has to be identified. Following Xin et al. [30], we used an inverse analy-

sis based on the comparison of experimental load/displacement indentation

curves with finite element simulations. For that purpose, five nanoindentation

tests on fused silica samples were performed with the help of a Nano-indenter

XP (MTS). The maximum penetration depth (about 2 µm) has been chosen

large enough so that the influence of indentation length scales [40] on the

measured load-penetration curve could be neglected. It has also been verified

a posteriori by checking the hardness-penetration curve.

Notice that a Berkovich indenter has been used in this study whereas a Vickers

indenter was used by Perriot et al. [7]. As both Vickers and Berkovich indenters
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are usually, as here, replaced by an equivalent cone of semi-apical angle of 70

degrees for load-penetration calculations, this substitution is not prejudicial.

One important result of Perriot et al. [7] is the densification gradient in the

bulk of the material induced by indentation testing. The densification gradient

induced by the equivalent cone indentation will be approximately the same

as obtained with a 3D analysis, except just under the edge of the Vickers

indenter. It seems also not wise to try fitting perfectly the densification map

of Perriot et al according to the high measurement uncertainities. Therefore

an axi-symmetric approximation is sufficient to test this constitutive model.

4.1 Inverse analysis

When elastoplastic solids are indented by rigid self similar indenters, the prin-

ciple of geometric similarity can be applied [17,39,41]. This principle [42] states

that if two indentations are made by the same geometric shapes, then, what-

ever their size, the strain εij and stress σij distributions around the indentation

will be geometrically similar. Hence, neglecting indenter tip defect and size ef-

fects [40], the loading curve is given by

F = Ch2 (12)

where F is the load applied on the indenter, h is the penetration depth and C

is a function of the mechanical properties [14]. One consequence of this prin-

ciple is that there is one unique value of qc for which the numerical loading

curve matches the experimental loading curve, the other mechanical properties

being already known. Nevertheless, C is often difficult to quantify accurately

by nanoindentation due to tip deffects and size effects. In this paper we pro-
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pose to base the inverse method on the evaluation of the plastically dissipated

energy Wpl and the elastically restored energy Wel (see Figure 4) during one

indentation cycle [17]. The maximal load used for the Raman mapping [7]

being much higher than the load used for the nanoindentation testings, the

ratios Wpl/Wtot and Wel/Wtot where Wtot = Wel + Wpl have been chosen to

perform the inverse analysis. These ratios represent the percentage of plas-

tically dissipated energy and elastically restored energy over one indentation

cycle. They are theoretically independent on the maximal load applied on the

indenter and are thus well suited for this study.

Therefore, finite element simulations have been performed with different values

of qc. The evolution of Wel/Wtot and Wpl/Wtot with qc are displayed in Figure

5. Wel/Wtot increases (respectively Wpl/Wtot decreases) linearly with qc. This

result is not surprising since the higher qc, the lower the plastic strain. The

experimental values of Wpl/Wtot and Wel/Wtot are respectively 0.33 ±0.01 and

0.67 ±0.01. The best fit have been obtained for qc = 6.5 GPa. The values of

the different parameters for this model are summarized in table 1.

The experimental and numerical load-penetration curves are plotted in Fig. 6.

Both loading and unloading curves give a satisfactory agreement with the

experimental nanoindentation curve.

4.2 Densification map

The densification map obtained with this constitutive model is plotted in

Fig. 7. As observed with Raman microspectroscopy [7], the iso-densification

lines are concentric. Densification is maximum just under the tip and decreases
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when the distance to the tip increases. Let us note that the maximum densifi-

cation resulting from the finite element analysis is higher than the maximum

densification measured by Perriot et al. It could be explained by the saturation

of the densification process which is badly taken into account in the present

constitutive model. In spite of that, the densification gradient resulting from

the finite element analysis is in very good agreement with the experimental

data. It can be considered that the constitutive model developed in this paper

allows to reproduce succesfully the indentation-induced densification process

of silica.

5 Conclusion

We have developed a new constitutive law to model the plastic deformation

of amorphous silica. The model takes into account the densification-induced

hardening observed under purely hydrostatic loading with DAC experiments.

The set of material properties has been identified with an inverse analysis

based on the load-penetration curve on a fused silica sample. The resulting

indentation-induced densification map obtained with this model is in good

agreement with the experimental map obtained by Raman microscopy mea-

surements. Therefore, this constitutive law for the plastic behaviour of amor-

phous silica accurately accounts for the existing indentation data. Still, one no-

ticeable drawback of this model is that shear hardening is not considered. This

shortcoming points out that the densification map and the load-penetration

curve are not sufficient to identify the full plastic behavior of amorphous sil-

ica. For a more complete constitutive law valid for a wider class of loadings, it

is necessary to define new experimental tests capable of providing additional
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data on the shear yielding of such materials. Hence, the shear behavior of silica

should be more accurately identified and the role of shear on the densification

process could be clarified. For this purpose, we are currently working on the

finite element analyses of 3D Berkovich indentation, 3D Vickers indentation

and Cube Corner indentation. These results will then be compared to exper-

imental results in order to check the relevance of this constitutive model on

other indentation data. Beyond the case of indentation, we are also working on

the question of densification under scratch loading [43]. The deformation level

in this test is much higher than in indentation experiments. It should thus be

possible to observe new phenomena, and perhaps to get a better understanding

of the scratch resistance of amorphous silica.
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E (GPa) ν pc0 (GPa) ζ (GPa) qc (GPa)

72 0,18 11,5 100 6.5

Table 1

Mechanical properties of the constitutive model developed in this paper (equations

(5) and (8))

Fig. 1. The proposed yield criterion for amorphous silica
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Fig. 2. Densification-induced hardening obtained from DAC experiments (extracted

from Perriot [24]) and the linear law used in this paper
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Fig. 3. FE mesh used for the modelling of the cone indentation test

Fig. 4. Definition of the plastically dissipated energy Wpl and the elastically restored

energy Wel from a typical load-penetration curve
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Fig. 5. FE analysis of the dependence of Wel/Wtot and Wpl/Wtot on shear yield limit

qc. The experimental values of Wpl/Wtot and Wel/Wtot are respectively 0.33 ±0.01

and 0.67 ±0.01.
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Fig. 6. Nanoindentation experimental and numerical load-penetration curves
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Fig. 7. Densification map, -left : experimental results, -right : finite element results
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