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Résumé. — Nous proposons une théorie microscopique pour le mouvement des parois de domaine 
antiphase courbées dans les structures ordonnées et nous trouvons que la vitesse est proportionnelle 
à la courbure moyenne. Contrairement aux anciens modèles, la vitesse n'est pas proportionnelle 
à l'énergie libre de la paroi. Les résultats de nos expériences sur la croissance des domaines dans 
les alliages Fe-Al ordonnées pour une gamme de températures, temps et compositions sont compa­
tibles avec notre théorie. Tous près de la température critique où l'énergie libre de la paroi tend 
à zéro, la croissance de domaines n'est pas ralentie. 

Abstract. — A microscopic theory for curved antiphase domain wall motion in ordered structures 
leads to a prediction that velocity is proportional to mean curvature. Unlike previous models, the 
velocity is not proportional to domain wall free energy. Experimental results on domain growth in 
ordered FeAl alloys over a range of temperatures, times and compositions, are consistent with the 
theory. In the vicinity of the critical temperature where domain wall free energy tends to zero, domain 
growth is not slowed. 

Introduction. — Antiphase domain boundaries are 
a non-equilibrium feature of real ordered alloys. Since 
there is a positive excess surface free energy associated 
with these boundaries, they move by diffusion in such 
a way that the total area of the boundaries is reduced. 
A long-standing phenomenological theory of interface 
motion [1-3] states that interfacial velocity is pro­
portional to the thermodynamic driving force, the 
proportionality constant being a positive quantity 
called a mobility. The thermodynamic driving force 
in this theory is the product of the local mean curvature 
of the boundary and the excess surface free energy per 
unit area of boundary. 

A feature of higher-order transitions in order­
ing alloys is that the antiphase boundary energy 
approaches zero as the critical temperature is 
approached [4, 5]. Thus, the phenomenological theory 
of interface motion would seem to indicate that as the 
critical temperature for ordering is approached, anti­
phase domain growth should become very sluggish. 

In this paper, a new expression for interfacial velo­
city will be derived using a microscopic model. The 
excess surface free energy per unit area does not 
appear in this new formulation, and hence, the beha­
vior of systems near critical points is more clearly 
represented. Application of the new result to the 

problem of macroscopic antiphase domain growth 
leads to a simple experimental test of the theory. 

Microscopic theory. — The kinetic equations of 
continuous ordering reflect the fact that the order 
parameter r\ is not a conserved quantity. If the free 
energy is not at a minimum with respect to a local 
variation in r\ there is an immediate change in r\ given 
by 

dr\ SF 
- 5 ? = K ^ (1) 

where dFjStj is the variational derivative of the free 
energy of the system with respect to a local change in r\, 
and a is a positive kinetic coefficient. In a non-uniform 
system [5] 

bF\br\ = dFjdri - 2 K V2TJ (2) 

where dF/drj is the rate of change in free energy for 
uniformly ordered systems and 2 K V2r\ is the gradient 
energy contribution in a system in which r\ is varying 
spatially. We obtain for the time dependent problem 

£__ .£+** , (3) 
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where M = 2 CIK has dimensions of a diffusion coeffi- 
cient (m2/s). This nonlinear equation is similar to the 
time dependent Ginsburg-Landau equation in which 
there is no conservation and has been discussed by 
Kawasaki [6] and Metiu, Kitahari and Ross [7]. Its 
solution will give the evolution of the q field for any 
conceivable initial q distribution. Because of the,aF/aq 
term it is nonlinear. 

The equilibrium order parameter q, is given by the 
solution to 

For systems which have second-order transition F is an 
even function of and therefore if q, is a solution to (4) 
so is - q,. The antiphase domain wall is the surface 
between two regions, one with q = q, and the other 
with q = - q,. 

The q profile of the equilibrium planar domain wall 
is given by the solution to 

subject to the boundary conditions q = q, at x = oo 
and q = - q, at x = - co. Since the equation is 
invariant to translation we shall arbitrarily seek the 
solution r],(x) such that q,(O) = 0. Surfaces exist only 
if K is positive. 

For a cylindrical or spherically curved domain 
walls there exists no solution to the equilibrium 
problem 

This follows directly from a theorem by Wiener [8] that 
specifying q a t  a point or line, r = 0 (instead of on a 
surface, r = co), will lead to a situation in which no 
solution to (6) is possible. 

We consider the profile q(r, t) of a domain wall 
enclosing a spherical (or cylindrical) domain of 
radius R, where r is a spatial coordinate. Rewriting (3) 
for cylindrical or spherical symmetry 

where h = 1 or 2 for cylinders or spheres respectively. 
When R is large compared with the thickness of the 
interface we can replace r by R in the last term. The 
equation then has a solution of the form 

tl = vp(r - R) (8) 

where q, is the solution to eq. (5) and 

The boundary moves towards its center of curvature 
retaining the r ] ,  profile without distortion until R 
becomes comparable to the thickness. Since blR is the 
mean curvature K, + K2 we may write for the 
velocity V 

Macroscopic theory of domain growth. - Starting 
with a linear relation between local velocity and mean 
curvature, eq. (lo), and the geometrical relation 
between the change in area 6(dS) when an element d S  
of a curved surface moves a distance Vat in time 6t 

we obtain 

We define the averaged square mean curvature K2  

The surface area in a unit volume of specimen S, then 
obeys the relation 

If we ignore dislocations the domain structure is 
multiply connected. As it coarsens both K' and S, 
decrease. If we assume that the coarsening structure 
remains geometrically similar and that only the length 
scale changes then both S,Z and K2 are proportional to 
the reciprocal square of this length scale. Hence 

where geometrical similarity implies f is a constant. 
Substitution for K2 and integrating we obtain 

In our experiments [S,(0)]-2 is negligibly small 
compared to the other terms even at our shortest aging 
times. 

Experimental results. - Antiphase domain size 
measurements were made on Fe-23 and -24 atomic 
percent A1 alloys receiving different ordering treat- 
ments. All samples were homogenized and disordered 
at temperatures above 1 050 K and rapidly quenched 
to room temperature prior to the ordering treatment. 
Ordering was carried out in the single-phase FeAl 
region of the phase diagram [9, 101, Then foils of the 
ordered material were prepared and examined by 
transmission electron microscopy. Measurements of 
antiphase domain boundary surface area per unit 
volume, S,, were made using standard quanti- 
tative analysis techniques [ll] .  These data are pre- 
sented in table I and in graphical form in figure 1 where 
log [S,? t]-' is plotted vs[T]-' ; t and T being the 
ordering time and temperature, respectively. The data 
presented in table 1 for the 26.5 % alloy are based on 
the micrographs of Swann, Duff, and Fisher [12] for an 
alloy with (DO,) order very close to its critical tern- 

V = - M(K, + K2) . (10) perature (see discussion). 
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FIG. 1. -Plot of log [S, 2t] vs [T-I]  for antiphase domain boun- 
daries in Fe%l,;ordered .Fe-A1 alloys. S, is boundary surfa6e area 
per unit yofume, t is the ordering time, and T is the ordering tempe- 

rature. Ordering times are indicated near each datum point. 

Antiphase domain growth data 
for Fe-A1 a1Eoy.s with FeAl (B2) order 

At. % A1 
- 

23 % 
23 % 
23 % 
24 % 
24 % 
24 % 
24 % 
26.5 % 

Temp., K 
- 

909 
895 
883 (9 
983 
972 
898 
898 

823 (*) 

Time, s 
- 

3 600 
1 440 
6 000 

300 
2 160 
3 600 

360 

100,800 

(") May have a-phase coating domain wall. 
(b )  DO, order from Ref. [12]. 

Discussion. - The microscopic theory leads directly 
to a linear relation between mean curvature and 
boundary velocity. It also demonstrates that, until the 
radius of curvature becomes comparable to domain 
wall thickness, the profile of a moving curved wall is 
not too different from that of an equilibrium planar 
wall. 

Thermodynamics requires that surfaces move in 
such a way as to reduce total surface free energy. Since 
the specific surface free energy is positive and constant, 
this is synonymous with area reduction. Surfaces must 
move toward the center of curvature of the larger 
principal curvature. Since M is positive, the linear law 
is consistent with thermodynamics. 

Since the surface free energy tends to zero at the 
critical point, the driving force tends to zero also. It is 
therefore surprising that M as derived herein remains 
finite. The two factors that determine M are the rate 
constant a and the gradient energy coefficient K .  The 
function F which is an important factor in surface free 
energy and surface structure and contributes to the 
non-linear behavior of the kinetic eq. (3) cancels out. 
The quantities 7, (which relates to the number of atoms 
that must move) and the thickness of the wall also do 
not appear. 

In figure 1 and table I we report our data to test this 
theory and the macroscopic theory. The two alloys 
have widely different critical temperatures. S: t seems 
to be a function of temperature alone indicating both 
that the linear dependence of velocity on curvature 
and the geometrical similitude are consistent with the 
data. As indicated in figure 1 the temperature depen- 
dence of fM follows that of the diffusion coeffi- 
cient (1 3). There is no marked deviation as either alloy 
approaches its critical temperature. 

The experimental temperature range for the 23 % 
alloy is bounded by the critical temperature at 
902 + 3 K and the two-phase region which begins 
at 885 + 3 K. The one low point in figure 1 is pre- 
sumably for a two-phase alloy. Because a small amount 
of a would uniformly coat the domain wall, it is 
difficult to detect microscopically. The critical tem- 
perature for our 24 % alloy is above 986 K and well 
above the published temperature [9, 14, 151. 

Swann, Duff, Fisher [12] studied the vicinity of the 
critical temperature in a DO, alloy kept in a tempera- 
ture gradient for 28 hrs. Their published micrographs 
indicate no change to smaller domain size even at the 
point within 1 K of the critical temperature. They 
span an order of magnitude in undercooling and thus, 
according to theory, about a factor of twenty in surface 
free energy. Their domain size falls approximately on a 
continuation of our figure 1 even though it is a different 
kind of domain wall. 

Factors such as critical opalescence and adsorption 
because of the vicinity of the tricritical point seem to 
play no important role in altering the boundary 
velocity. 

We conclude that the kinetic theory leads to a 
simple result for domain wall motion which is consis- 
tent with domain growth observations near the critical 
temperature. Any theory which implies that the tem- 
perature dependence of this velocity tends to zero at 
the critical temperature along with the surface free 
energy is not consistent with either our theory or data. 
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