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Résumé. 2014 Nous présentons une théorie élastique des déformations d’une O.D.C. sous l’effet d’un champ
électrique, à l’aide d’un simple hamiltonien de phase. L’accent est mis sur la rigidité interne de la modulation
qui ressemble en réalité à un « solide électronique », et sur l’anisotropic de ses constantes élastiques. Les
déformations continues de l’O.D.C. sont décrites par un tenseur des déformations donné par les variations
relatives du vecteur d’onde de la modulation. Les contraintes sont dues aux effets combinés du champ
électrique externe et des points d’ancrage. Sous faible contrainte le condensat, globalement accroché, conserve
la continuité de phase : la structure n’a pas de défauts. Sous de plus fortes contraintes des dislocations sont
nucléées, mettant en jeu une variation locale d’amplitude de l’O.D.C. Nous décrivons le processus de

nucléation pour des boucles élémentaires sous champ externe et comparons en conséquence les seuils pour le
désancrage de l’O.D.C. des impuretés et des bords (surfaces et interfaces). Une longueur caractéristique est
obtenue en dessous de laquelle l’ancrage aux contacts domine et une déformation cohérente (polarisation)
apparaît.

Abstract. 2014 An elastic theory of CDW deformations under electric fields is presented, on the basis of a simple
phase Hamiltonian. The emphasis is put on the internal rigidity of the modulation which indeed resembles an
« electronic solid », and on the anisotropy of its elastic constants. CDW’s continous deformations are described
by a strain tensor given by the relative variations of the wavevector of the modulation. Stresses occur due to the
combined effect of external electric field and pinning points. Under low stresses the globally pinned
condensate retains phase continuity : the structure has no defects. Under larger stresses dislocation loops are
nucleated involving local amplitude variations of the CDW. We describe the nucleation process for elementary
loops under an external field and compare as a consequence thresholds for impurity depinning and boundary
depinning (surfaces or interfaces). A characteristic sample length is found under which contact pinning prevails
and a coherent deformation (polarization) is built.
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1. Introduction.

Since the first discovery of collective electronic
conduction by sliding charge density waves (CDW)
in 1976 [1], an important sum of work has been
devoted to the understanding of these very unusual
properties [2]. Different classes of compounds, all

quasi-unidimensional, share at this time the property
of sliding CDW’s : tri and tetrachalcogenides as

NbSe3, TaS3, (TaSe4)21 and (NbSe4)10/31, molyb-
denum bronzes Ao.3MOO3 (A = K, Rb, Tl) and
more recently TTF-TCNQ [2, 3]. Of all these

compounds only NbSe3 remains metallic at low

temperature, the others becoming semiconductors
with a Peierls gap opening on the nearly perfectly
nested Fermi surface.
The clearest evidence for sliding of the CDW -

the so-called Frohlich mode - comes from the
observation of periodic « noise » generated by the
motion over the underlying periodic pinning poten-
tial [1, 2]. Pinning of the condensate by random
impurities is most probably the cause of the finite
threshold field for CDW motion and of the strong
metastability effects [4, 5]. Deformations of the
CDW have been proven to exist, especially under
electric fields [6-9]. Furthermore NMR experiments
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carried on under electric fields on NbSe3 [10] and
Rbo,3Mo03 [11] seem to give clear evidence of a
coherent motion of the whole condensate. Unfortu-

nately, even if the basic physics are understood and
reasonable theoretical models exist (Ref. [2a]
Vol. I), up to now no synthetic picture is able.,to
account for the rich and complex experimental
situation.
The quantum origin of CDW formation is well

understood : the Peierls instability [12] of the quasi
one-dimensional Fermi surface at q = 2 kF induces
the condensation of electron-hole pairs at q and
- q, resulting in a modulation in real space of both
the atomic positions and the electronic density,
while a gap 2 4 opens at the Fermi level EF. The

question of deciding whether CDW motion results of
macroscopic tunnelling of the condensate through
impurities [13] or from a purely classical process [14,
15] is still controversial. In the first eventuality,
apparently confirmed by interference experiments
[16], these systems would be amongst the few known
examples of macroscopic quantum phenomena. On
the other hand, it is difficult to ascribe all the
observed phenomena to such an effect. On the

contrary, low time scale metastability properties are
clearly the sign of large length scale relaxation,
hardily described but by deformations of a classical
medium. We shall restrict ourselves to such a

classical approach and do not attempt to cover the
eventual crossover to quantum effects.
The lattice modulation and ensuing CDW can be

considered as a purely sinusoidal wave in a con-
tinuum. In this approximation the electric charge
density along the chains is

where

and

The CDW is locally described by its amplitude or
by the gap 4, and by its phase cp respective to the
fixed lattice. It can be alternatively characterized by
a complex two-component order parameter
I/J = (4/do ) e’o where do is the T = 0 gap for an

undistorted CDW. As a consequence, such a system
has to be compared to other systems described by
two-component order parameters such as superfluids
and superconductors, x-y magnets or some liquid
crystals.
The Bose condensation of electron-hole pairs at

± q , q = 2 kF [17, 18] gives rise to a coherence length

§, indeed very similar to the BCS coherence length
and measuring the order of magnitude of the size of
the electron-hole pair. In the chain direction it is

given by Çll ’" IlvF/ 7r A where V F is the Fermi velocity.
It can be much smaller in the transverse direction,
being due to the weak interchain couplings.
kF 1 being of the same order of magnitude as the
parallel unit length a, , one sees that §jj lail - £F/11
which is of the order of several tenth, giving
§jj -- 100 A as an order of magnitude. This shows
that CDW electrons keep their itinerant character
and are not truly localized by their effective interac-
tion. An alternative model due to Aubry [19]
considers the opposite case of a « polaronic crystal »
valid in strong enough coupling. An heuristic argu-
ment can be given to explain how real space
electronic ordering can originate from a conden-
sation of « large » electron-hole pairs in weak coupl-
ing. One must take into account the fact that the
effective mass for Frohlich electrons coupled to

heavy ions is the Frohlich mass M ’" 102 to 103 me,
thus the zero-point kinetic energy of the modulation
is of order k 2/2 M, smaller than the interaction 4
which stabilizes the modulation. Thus the first of the
two inequalities

expresses the conditions for a quantum « electron
solid » to form, while the second one expresses that
amplitude variations of the CDW can occur only on
distances longer than the coherence length §.
We want to point out that the rigidity of CDW’s,

as stressed by Anderson [4, 20] is an essential feature
which has not received enough attention up to now.
As a consequence one can hope to build an elastic
description of CDW deformation and motion, similar
to that of a three-dimensional solid. A few conditions
must be put forward to justify such a picture. First, it
is valid only at low temperature, far enough from the
Peierls transition. The CDW actually softens close to

Tp due to the decrease of A and the first inequality of
(1.4) might not be fulfilled anymore. Secondly, the
following description assumes that all long-range
Coulomb interactions internal to the CDW degrees
of freedom are screened by normal carriers, still

existing in the ground state (case of NbSe3) or

thermally excited above the gap in the semiconduct-
ing low temperature state of other compounds as
o-TaS3 or the « blue bronze » Ao.3MOO3 (A = K,
Rb). Such a picture breaks down at very low

temperatures in the insulating phase.
Within such a phenomenological frame a CDW

can be viewed as a classical solid, pinned by random
impurities and crystal boundaries. Applying an elec-
tric field smaller than the critical field ET, its reacts
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as an ordinary crystal reacts to an external mechan-
ical uniaxial stress, causing strain and stress fields
within the sample. Simple arguments can be given to
describe the elastic response of the system and the

approach to depinning. A full description of depin-
ning phenomena will not be attempted here. Never-
theless, the fact that a CDW encounters a finite

global pinning force, i.e. an infinite viscosity for
E : ET is by itself a proof of its solid friction on the
underlying lattice. No hydrodynamical approach
based on short-range forces rather than long-range
elastic forces is able to account for such an obser-

vation.

Moreover, the present picture allows to attempt a
description of topological defects occurring in the
condensate. Very similar to vortex loops or flux lines
in superfluids and type II superconductors respect-
ively, they are also very close to cristalline dislo-
cations. They break the phase continuity and form
under strong enough internal strains, while low

strain only break the long range coherence of the
phase. As will be shown, such CDW defects play an
important role in CDW depinning and motion.

Only incommensurate CDW’s will be considered
here. Some effects of commensurability have been
discussed in previous works [21, 22] and together
with a review of CDW defects in blue bronzes [23].
The long-range character of elastic forces within

the CDW has a direct consequence : finite-size
effects play a crucial role in CDW pinning and
depinning. Actually, speaking of local pinning forces
is meaningless, on the contrary the elastic strains to
be overcome by the external electric force are

themselves a result of the overall and macroscopic
distortion of the CDW’s « crystal ». A direct conse-
quence for contact pinning, as will be shown in
section 4 is that applied stresses vary linearily with
the sample length L, thus depinning fields vary
roughly as L -1. Thus short samples are dominated
by contact pinning and long samples by bulk pinning.
A more accurate evaluation of threshold fields can
be obtained by comparing the applied stress with the
critical stress required to break locally the conden-
sate. A simple explanation of some general features
of contact and surface pinning will be given in
section 4, together with orders of magnitude esti-
mates. We also emphasize the crucial role of the
anisotropy of the CDW elastic constants which

dramatically decreases the thresholds for dislocation
nucleation.
The plan of this article is as follows. In section 2

we recall the basic Hamiltonians for phase and
amplitude deformation of an incommensurate
CDW. CDW topological defects are reviewed in
section 3 together with a discussion of their nuclea-
tion mechanisms. Section 4 is devoted to an exami-
nation of finite size effects, i.e. pinning and depin-
ning from surfaces and interfaces (contacts).

2. Elastic deformations of charge density waves.

The starting point of our analysis is the McMillan-
Lee-Rice free energy which, for the isolated CDW in
three dimensions, is given by [24, 25]

where t = - (T - Tc)/Tc and §x Ey, §z are the
coherence lengths, x being along the chain axis (in
difference with notations of reference [25] §x =

hVF/irAo is the BCS-like coherence length). (2.1) is
actually a Ginzburg-Landau expansion the elastic

part of which can be derived in one dimension from

microscopical grounds [26]. Fo is thus given by

where ax, ay, az are the unit lengths and f2 = ax ay az
the unit volume, A the CDW wavelength. On the
other hand, §y and Ez, depending on the nature and
strength of interchain couplings are purely
phenomenological parameters and can be much
smaller than Ex. We shall not try to go beyond the
continuous picture, even if the limiting case Ey ~ ay,
6, - a, could be reached in the most anisotropic
compounds such as blue bronzes.
Moreover (2.1) assumes short-range interactions

of the condensate with itself and should be modified
in semiconducting compounds at low temperatures
[27, 28].
The scaled form of (2.1) obtained by setting

It looks formally very similar to the Ginzburg-
Landau free energy of superfluid He 4 [29]. Never-
theless the two systems are very different in the

sense that in CDW’s V cp is associated to a static
deformation in space (like that of an elastic crystal)
and not to a real particle current.
The relevant variable to be coupled to external

forces is the phase variable, whose variations induce
in turn amplitude variations. Neglecting the last ones
one recovers the usual phase elastic energy
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In other terms the CDW has three elastic cons-
tants : Kx hVF/2 ’lTay az, Ky = Kx(ey/ex)2, Kz =
K x Nevertheless (1.1) shows that the

CDW’s deformations are determined by a scalar
field cp (x, y, z ) describing uniaxial distortions (along
x). The local displacement vector is u = - ( cp /q ) x
and allows to define the non-zero strain tensor

components :

Long wavelength variations of the phase can be
understood as local modifications of the CDW wave

vector, i.e. ðcp lðx = 6q,,, V 1. cp = dq1. The first

type of distortions are compressions or dilatations
and create an uncompensated charge through the
variation of the Fermi vector kF = (1/2) q, whose
average is given by

The second type of distortions are shear-like, bear
no charge and correspond to rotating locally the
CDW’s wave vector (Fig. 1). The elastic energy
(2.4), assuming I qi I =1, can be cast into the usual

form Fel = f dr (1/2 )[0" ][ e) by defining the stress

Fig. 1. - The two types of deformations of CDW’s : a)
compression (or dilatation) involves a longitudinal strain
exx ; b) shear involves a strain ex 1 (= exy, exz).

tensor

Coupling the CDW to an external force F (r ) due to
impurities, boundaries or electric field, only the x-
component produces a work and one gets the

equilibrium condition

where Fx is a volume force, thus

In case of an applied electric field E, the coupling
energy is

thus (2.9) reads

Pinning at low fields requires introducing the pinning
energy [24]

where Q i = - qXi is the imposed phase at site

r;, p = pA (Eq. 1.1) and Fp;n is a similar term

expressing strong pinning at surfaces and interfaces
(see Sect. 4). V is a short-range impurity potential.

In strong pinning the phase is blocked at site i and
on the boundaries of the system so (2.11) appears to
be a Poisson equation with Dirichlet boundary
conditions which can be solved exactly only in a few
simple configurations, as we show later.

This picture neglects the variation of the amplitude
at strong pinning points, due to a local variation of
the order parameter l.p 1 [24]. Nevertheless the

expected effect is a slight modification of the elastic
constant (Eq. 2.4), localized in a coherence volume
around an impurity (see the Appendix). It is thus
reasonable to solve the simplified equation (2.11) to
obtain the phase configuration, at least in low fields.
Furthermore, it should be noted that boundary
conditions imposing phase near impurities have to
be applied on a small surface surrounding the

impurity, the radius of which depends on the

strength of the impurity. This fixes a small length
scale which will be very critical as far as the local
strains due to strong pinning are concerned.
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3. Defects in charge density waves.

3.1 CDW DISLOCATIONS. - Let us now discuss

topological defects of incommensurate CDW’s, i.e.
inducing singularities of the phase field. Such defects
are characterized by the dimension of space and of
the order parameter (here, two) thus are very similar
to vortices (in d = 2) and vortex lines in X Y

magnets and superfluids. Their physical properties
are closer to that of dislocation lines in crystals, with
the simplication quoted above of uniaxial displace-
ments of the CDW « lattice ». The existence of such
dislocations have been proposed by Lee and Rice
[25]. The Burgers vector of perfect dislocations is
defined by [21] :

where C is a circuit enclosing the dislocation line.
Because of the scalar nature of the displacement
field, edge dislocations (orthogonal to the chains)
and screw dislocations (parallel to the chains) have
the same topology cp = 0 where 0 is the angle in
scaled coordinates in the plane normal to the dislo-
cation line. Thus for an edge dislocation parallel to
z the stress field at point r = (x, y, 0) from the
dislocation is :

One gets similar expressions for a line parallel to
y, by permuting y and z. For a screw line, on the
other hand,

The core properties of these dislocations is similar to
that of vortex or flux lines in superfluid He 4 or
type II superconductors respectively. Here the core
will be anisotropic and extend over a coherence area
of size 6 in each direction. The gap goes to zero in
the middle of the core, which should be more nearly
metallic.
A strong anisotropy has dramatic consequences

on the dislocation line energy. Per unit length of

screw dislocation one gets [25]

where R is a scaled large-distance cut-off and

e a short-distance one close to the coherence length
and modified in order to account for the amplitude
deformation at the core. One must underline that,
like in superfluid systems, such corrections should
not be more than a fraction of the elastic part (the
phase field energy), just because the gap falls

gradually to zero inside the core region.
One has similarly for an edge dislocation parallel

to y

Thus screw dislocations cost less energy, by a factor
e I ex (if ey - ez,, - e _L ). The effect is more dramatic
if one calculates the energy of the smallest possible
loop, which is the relevant energy for nucleation
events. Edge loops of size e.l (in the yz plane) and
mixed loops of dimension ex times e _L in a plane
containing x (Fig. 2) have roughly the same energy,
of order

Fig. 2. - Smallest dislocation loops a) edge-like (e) ; b)
mixed loop (e and s).

(setting R ’" l in (3.4) and (3.5)). Therefore an

anisotropy of 10 in the coherence length leads to a
reduction factor of 100 in the loop energy compared
to an isotropic system. This could be enough to allow
thermal activation of such loops, an eventuality
considered by Maki [30]. Actually with ej_ - a 1. the
nucleation energy is of order do, thus a few hun-
dredths of electron volts.

Apart from strongly reducing the net energy of
dislocations, especially screw one which involve only
shear, the anisotropy of dislocation cores has also
consequences on their dynamics : edge dislocations
with narrow cores along transverse directions en-
counter a lattice friction for climb due to Peierls-
Nabarro barriers between chains. These effects have
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been qualitatively discussed elsewhere [22, 23] and
can strongly inhibit the climb motion of edge dislo-
cations involved at contacts by the motion of CDW’s
[31]. This effect is extremely sensitive to the actual
value of e1 /al , for the height of the Peierls-
Nabarro barrier should vary roughly as

exp (- § la_L ) [32].
More generally, such CDW dislocations can move

through the pinned condensate, as stressed by Lee,
Rice [25]. One should note that they do not interact
directly with the electrical field but rather move
under the effect of internal elastic forces, the Peach
and Koehler force per unit length being [32]

[0 ] being the scaled stress tensor and L the unit
vector along the line L, FpK is normal to L. For

instance such forces are responsible for the climb of
edge dislocations near contacts. Such an analysis
must be completed in the insulating regime where
for instance an edge dislocation, due to (2.6) and to
the phase topology carries a linear dipole density.
One consequence is to increase notably the energy
of edge dislocation lines, in difference with screw
lines. Such effects should be relevant for a discussion
of injection mechanisms at very low temperatures in
semiconducting CDW compounds.
Other low-dimensional singularities of the order

parameter, with rotational symmetry can be con-
sidered, as ’in smectics : disclinations and point
singularities. They are stable only under an applied
volume force and are solution of equation (2.11).
They have been shown to be less stable than

purely elastic deformations, unless they are strongly
localized [23].

3.2 NUCLEATION OF CDW DEFECTS. - Let us turn
now to the problem of the nucleation of such
defects. One has to distinguish, firstly between zero
field and finite field configurations, secondly be-
tween bulk and boundary effects, thirdly between
low and high temperature regimes.
Thermal nucleation of dislocation loops could

occur at equilibrium for very anisotropic compounds
and at high enough temperatures (see Eq. (3.6)).
Blue bronzes and TaS3 close to the transition tem-
perature could be candidates to such a thermal

proliferation of defects, a consequence of which
would be to destroy quickly the phase coherence
thus lowering the transition temperature, by a kind
of defect-induced melting process as in the Shockley
model [33] for crystals or Feynman’s model [34] for
superfluids.
A more likely possibility is defect nucleation

under internal stresses. These can be due to the
effects of incoherent pinning impurities or to an
external applied field. In the first case the situation is
very similar to that of X Y magnets in random fields

[35]. In the case of CDW’s a rough argument can be
given as follows : let us assume a distribution of

strong pinning centres with average distance 1 and

density 1 = ni Ild in dimension d (d = 2, 3 ). Resolv-
ing the strains by an elastic deformation matching
random phases cp at different sites gives an average
elastic energy of order Kl - 2 = Kni ld per unit vol-
ume, thus Kn ?ld - per impurity. On the other hand,
one can keep the phase locally much closer to

cp i near each impurity and match domains of constant
phase by dislocation loops. This needs at most one
loop of size 1 (d = 3) or one vortex (d = 2) per
impurity, thus if 1:&#x3E; g an energy of order

Kld-2ln (ljg) ’" Kn/d-l 1 per impurity, same as

above. The pinning energy being localized in the
immediate vicinity of the impurity is nearly the same
in these two extreme situations. Therefore the total

energy also scales in the same way and one needs a
more accurate analysis to decide whether the
« good » picture for strong pinning is that of a phase
field continuously distorting or domains matched by
dislocation loops (as the Q vortices assumed by Maki
[30]).
The most interesting source of CDW defects is

field-induced strains. The elastic energy stored by
the combined effect of external field and pinning
allows to overcome the barrier for nucleation. A

possible process is the Frank-Read mechanism [32],
starting from preexisting dislocation lines, as propos-
ed by Lee and Rice [25]. This is unlikely in CDW
compounds for two reasons. First, the Burgers
vector having one single orientation, parallel to the
chains, no Frank network of dislocation can build
up. Secondly, successive loops strongly pinned by
impurities in different glide planes would require a
somewhat unlikely geometry [23].

Let us now describe an athermal nucleation pro-
cess in presence of a local elastic stress u. Acting as
to increase by dR the radius of a loop of radius R, its
work is (from (3.7))

Q can be either a compression stress (a = a xx)
acting on an edge loop, or a shear stress a = a xy’
a xz) acting on a mixed loop lying in a glide plane
containing x (Fig. 3).
On the other hand the energy of the loop, given by

2 n 2 KR Ln (RIl) where I has the order of magni-
tude of the scaled coherence length, varies as

Equating (3.8) and (3.9) leads to



491

Fig. 3. - Nucleation under external stress of a) an edge
loop ; b) a mixed loop.

Minimizing expression (3.10) with respect to R gives
the minimal stress if c for R = e which is actually the
size of the critical loop considered previously
(Eq. (3.6)). The critical stress corresponds to a

critical strain Jc = O,lq 2 k, thus given by

or

respectively for compression and shear

(e.,, j_ = exy 9 ex, ).
The above argument is directly inspired from

mechanisms involved in crystalline elasticity under a
localized mechanical stress. It is very sensitive to

imperfections or inhomogeneities which could locally
increase the stress, thus facilitate defect nucleation
and lower the threshold field. A related argument
given by Maki [30] considers on the contrary thermal
nucleation for a given stress o-. The athermal process
described above may occur on very strong bulk

pinning centres such as grain boundaries or crystal-
line dislocations, but is much more relevant for

contact and surface depinning, as will be described
in the next section.

Equation (3.12) provides an order of magnitude of
critical relative variations of the wavevector for

breaking locally the condensate at low tempera-
tures : exx - 10-2 and ec 10-1 for ex - 100 A and
ç.L =À =10Á.

4. Finite-size effects.

Any accurate discussion of depinning mechanisms
requires solving properly the equilibrium
equation (2.9) where the force Fx contains both the
electrical force and the periodic pinning force de-

duced from (2.12). The problem involving both
disorder and nonlinearity is formidable and it is

simpler, at least for strong pinning, to assume that
pinning centres impose boundary conditions on the
linear equation (2.11), to solve the obtained Di-
richlet problem and to compare the local stresses
deduced from the solution in the vicinity of pinning
centres to critical pinning stresses representing the
strength of these centres. Two types of critical
stresses show out : the first ones assume no breaking
of the condensate at depinning. They are directly
related to the strength of the impurity potential. If
this is of order Via typical order of magnitude of this
local critical « elastic » stress is simply
u c -- p 11 t/J I Vias given by equation (2.12). The
other critical stresses are those calculated in section 3
for breaking locally the condensate. We shall con-
sider them as « plastic » stresses u rl. They are

indeed very similar to plastic critical stresses involved
in the elastic limit of crystals under mechanical
stresses, the so-called yield point of alloys [32].
The estimates obtained in this way obviously

neglect the effects of amplitude variations which
should not bring qualitative modifications, at least
for fields smaller or of the order of depinning fields
(see the Appendix). On the contrary, dynamical
studies of depinning at very high fields have shown
long-range diffusion of amplitude fluctuations [36]
an cannot be described by a time-dependent version
of an elastic phase analysis.

4.1 CONTACT PINNING. - Let us consider first the
situation of contact pinning in a one-dimension

configuration (Fig. 4). This would apply for samples
short enough so that bulk depinning is obtained
before contact depinning. Equation (2.11) then wri-
tes

which, with Q (0) = q&#x3E; (L) = 0 gives

Fig. 4. - Boundary (contact) pinning in a one-dimen-

sional configuration.
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This parabolic profile shows that the phase shift
from the E = 0 value can be very large inside the
sample. Actually (4.2) allows to define a field-

dependent coherence length on which cp varies of
2 7T (see also Eq. (4.13))

The second consequence of (4.2) is the value of the
maximum applied strain, obtained at x = 0 and
x=L

This is the relevant quantity to be compared with the
critical strains at pinning points ec§’ = a§’/q2 Kx and
epl = u fl/ q2 Kx. As a result, the experimental par-
ameter will be the applied voltage V = E. L. The
critical voltage is obtained by equating (4.4) to

(3.11)

Using (2.7) and (4.4) one can also write the following
relation between critical stress and voltage

As an order of magnitude for blue bronzes, one can
take VF - 108 cm. s- 1, n, = 5 x 1021 cm- 3 and e., -
100 A, À = 4/3 ax -- 10 A, ay = 16 A, az = 10 A so
one finds VT = 8 mV. Experimental values of
2.4 mV have been found for Ko.3Mo03 by Arbaoui
et al. [37]. Due to the uncertainty of some of the
experimental parameters one cannot expect more
than an order of magnitude agreement. For or-
thorhombic TaS3, with same values of vF and

ex (the gaps of TaS3 and Ko.3MOO3 are comparable)
but ns = 4.5 x 1021 cm- 3, A = 4 ax, ax = 3.3 A,
ay = 39 A, aZ = 15 A one gets VT - 2.5 mV. Values
of 6 mV have been reported by Mihaly et al. [38].
These values can be very sensitive to contact

geometry creating locally strain concentrations by
distorting the CDW. The effect can be very large in
the configuration used for NbSe3 samples where
values V T - 0.1 mV have been reported [39] while
expression (4.5) leads to V T - 10 MV, thus two
orders of magnitude higher. Such a discrepancy is

probably due to strong CDW deformations induced
by the contact geometry (Fig. 5), as shown in the
following.
One must distinguish between contact configur-

ations which distort very slightly or strongly the
CDW « crystal ». In the first case encountered for
« frontal » contacts, deposited uniformly on the

Fig. 5. - Distortion of a CDW near a contact deposited
along the sample. Above a bending angle (J c defects

appear and the CDW should be broken in the contact

vicinity.

sample cross-section or around the crystal ends, the
threshold voltage is determined essentially by the
nucleation energy of one dislocation loop in a

perfect CDW. This case seems to be easily realizable
only on blue bronze crystals which are large enough.
On the other hand, for needle-like crystals of

NbSe3, the contacts are deposited on the surface
parallel to the chain axis, thus the equipotentials are
locally perpendicular to the equiphases of undis-
torted CDW. Assuming as an extreme situation that
the interface tries to be at constant 0 = qx + (p, one
sees that the 4)-plans tend to bend until the critical
angle 0 c is obtained (Fig. 5). For 0 &#x3E; o c’ defects of
width ç x appear by shear, with a density per unit
length across the sample given by

For large angles the CDW breaks out and the order
parameter must go to zero, matching the CDW
modulation with the undistorted crystal near the
interface.

This is not the only possible situation. Actually it
strongly depends on the nature of the, here, metal-
semimetal interface. More coherence can be main-
tained in the volume if the CDW breaks in the
interface vicinity.

Secondly, under an electric field, blocking of the
phase at the contact border allows to reach a highly
strained configuration in the neighbourhood, even in
low fields. The « elastic limit » is easily reached and
CDW defects are nucleated by shear even in very
low fields.

Assuming that CDW defects are present in zero
field for this type of contact geometry, no barrier

opposes the nucleation of new defects on CDW

motion, for the critical strains are reached progres-
sively as the phase front goes forward. The only
barrier to depinning comes from lattice friction on
defect motion, operating only if § -- a, or from

pinning of dislocations by impurities. One can

roughly estimate the work produced by the Peach-
Koehler force (Eq. (3.7)) F = o-AL to depin a
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length L of dislocation to be W-cr(AZ). Using
(4.6) yields

If W -- 10- 1 eV is the impurity pinning potential and
C-10A, L-100A, n,(eLA)-2x 103 and the

order of magnitude of V T is 0.1 mV, which has been
found experimentally in the best cases [39].

4.2 CROSSOVER BETWEEN IMPURITY AND CONTACT
PINNING. - Let us discuss the competition between
impurity and contact depinning as the distance L
between contacts is varied. When the impurity
critical field E$-which is independent of sample size,
provided the latter is larger than the Fukuyama-Lee-
Rice (F.L.R.) pinning length- is reached, the CDW
takes a configuration given by equation (4.2) (see
Fig. 4). If ET L &#x3E; V T the critical voltage for contact
depinning (Eq. (4.5)), the CDW starts sliding and
the observed threshold can be safely attributed to
impurity pinning in the volume. If on the contrary
E$ L « V T the CDW becomes highly polarized but
the real threshold occurs only at a higher value
ET determined by the contacts. The crossover be-
tween the two regimes E T = ET (independent of L)
and ET = ET = V T/L occurs at a crossover length

thus with ET =100 mV. cm-1 and VT",1-10mV,
Lc ranges from 100 um to 1 mm, which is again in
agreement with experiments. In this picture Lc is

absolutely unrelated to the F.L.R. pinning length.
The expected variation of ET with L is represented
in figure 6.
A consequence of this picture is the existence of

an intermediate regime for short samples,
E  E  ET, for which high polarizations can be
detected as well as precursor effects to depinning
such as broad band noise.

Fig. 6. - Variation with the sample length L of the

threshold field. Impurity pinning dominates for L &#x3E; Lr
while contact pinning prevails for L  Lc with ET ~ L-1.

4.3 SURFACE PINNING. - As proposed by Gill [9,
40] and one of us [22] and discussed more lengthily
in reference [23], surfaces parallel to the chain axis
can pin the CDW if they are rough. This can be
understood imagining steps on the surface, each step
involving frontal pinning as discussed above (see
Fig. 7a). Describing such pinning effects by the
condition Q = 0 for y = 0 and y = L’ (Fig. 7b) an
equation similar to (4.1) leads to the solution

Fig. 7. - a) Possible mechanism for surface pinning on a
rough surface ; b) Shear configuration of the CDW.

which is very similar to (4.2). The maximal shear
strain is

and must be compared to the critical strain (3.12) for
loop nucleation by shear. This leads to a « plastic »
depinning from the sample surfaces at a critical field
inversely proportional to the transverse size L’ of
the sample. This has been recently verified by Gill
[40]. Just as for contact pinning, a crossover length
L’ c can be found, and one gets from (3.12), (4.9) and
(4.11)

which gives an order of magnitude of 10 p-m for
Lcl.
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4.4 REMANENT DEFORMATIONS OF MOVING

CDW’s. - All the preceding considerations applied
for fields smaller than threshold. Nevertheless cohe-
rent deformations described by a parabolic profile
like (4.2) should subsist above ET. Indeed when
depinning is dominated by the contacts, the maximal
phase deformation, obtained at x = L /2 is I1cp =
(ns e/8 qKx) ET L2 and is much larger than 2 n if

L -&#x3E; 6’ x given by (4.3). One gets easily the relation

showing that (Ap/2 w ) -- (L / ef x )2 - LI8 7TÇx  1.
When the CDW starts sliding, the phase at

x = 0 and x = L slips discontinuously of 2 7T - this
causes the narrow band noise in the model of Ong
and Maki [31] - but the deformation can hardily
relax to zero. A steady state is obtained, charac-
terized by a parabolic deformation, possibly weaker
that (4.2). This is true only if contact pinning is

stronger than bulk impurity pinning.
Such deformations have been actually found in

o-TaS3 [41] and detected by resistance variations,
themselves interpreted by a linear relationship be-
tween the gap 4 and the phase gradient acp lax. This
last quantity can be interpreted as a local variation
8 qp of the modulation wavevector, thus of the Fermi
vector, if 8 qp is much smaller than the Thomas-
Fermi wavevector ko, which is true in the semicon-
ducting range. In a one-dimensional tight-binding
band £k = 2 t cos ka, the gap

varies essentially with the density of states N (EF),
i. e.

For a nearly one-quarter filled band, tan (kF a ) = 1
and I dA/A I (1/Aep)(Bqlq) with Àep = 0.25 and
(8q/q) = ec. 10-2 as given by (3.12) one gets a
maximal value of 8 4 /d ~ 0.04 which is coherent
with that found in reference [41].

5. Conclusion.

Considering the CDW as a three-dimensional elec-
tronic « solid », we have developed a theory of
elastic and plastic deformations based on the rigidity
of the modulation. Such a theory is similar to that of
uniaxially strained crystals and still simpler because
the position of the CDW is defined by a scalar

parameter, the phase (p. In this view a CDW can be

thought of a solid in the generalized meaning given
by Anderson [20].
The combined action of an external electric field

coupling to the phase and pinning centres (impuri-

ties, surfaces or interfaces) produces strains and

stresses, described by an anisotropic elastic modulus.
Shear of the CDW is actually nearly one hundred
times easier than compression (see also Gill [9]).
Taking advantage of the comparison with mechan-

ical properties of solids, the necessity of a finite field
to depin the CDW is obviously the clearest manifes-
tation of solid friction. In that sense the depinning
process which involves the creation and multipli-
cation of CDW dislocations corresponds to an elastic
limit of the CDW solid. Here the most likely
mechanism for defect nucleation is strain accumu-
lation on pinning barriers, with or without the help
of thermal activation.

Contrarily to the case of a strongly commensurate
CDW where flow would occur essentially by defect
motion [21], in incommensurate CDW much evi-
dence exists now for a more or less coherent motion
of the CDW itself [10, 11]. In such a context plastic
flow, i.e. defect motion, occurs at strong pinning
barriers, allowing the CDW current to vary strongly
in space. This occurs necessarily at contacts but also
on rough surfaces and possibly on strong volume
pinning centres. More generally defect motion adds
a new channel to CDW transport, as stressed by
Lee, Rice [25] and allows an inhomogeneous distri-
bution of velocities like that observed in blue
bronzes. The contact geometry is very important in
this respect, the most perturbing configurations
allowing the weakest depinning fields.
Such a picture is extremely useful for obtaining

correct orders of magnitude of low temperature
depinning voltages at contacts. Neglecting amplitude
variations allows to write linear equations but pre-
vents one from obtaining an accurate variation of
ET with sample length, as found numerically [36].
Nevertheless our approach accounts for the main
features of the dependance of threshold fields with
sample dimension, i.e. ET - L -1 for small sizes. This
dependance is another characteristic of rigidity, i.e.
long-range elastic forces, and breaks down at a

crossover length which depends on the strength of
impurity pinning in the volume. Depinning at bound-
aries is an essentially athermal effect driven by the
nucleation under stress of small dislocation loops.
However, thermal fluctuations could help such a
mechanism if the CDW is soft enough or at higher
temperatures. More generally we were able to

estimate an « elastic limit » ec in both compression or
shear, which is essential for depinning from strong
pinning centres. This limit can be reached locally,
allowing defects to nucleate and then propagate,
rendering easier the global depinning of CDW’s.
Such mechanisms are indeed extremely similar to
what is encountered in « mechanical » elasticity of
crystals. However, the fact that defect formation
should be crucial for depinning does not preclude a
coherent sliding of CDW’s above threshold. But it
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allows for inhomogeneous CDW current as seen in
big samples.
As has been qualitatively discussed [23] CDW

defects can increase dramatically all metastability
effects related to the remanence of deformations.

Nevertheless, it is still difficult to separate the defect
contribution from that coming from the disordered
configuration of CDW’s in weak pinning. Work is in
progress to investigate the role of defects in strong
impurity pinning.
We have not attempted here to describe the role

of defects in stationnary CDW current. The plastic
flow on strong barriers poses a difficult problem of
rheology which could perhaps be solved using an
hydrodynamic approach for the defects themselves.
More information would be thus needed about
defect interactions. Such a picture could lead to a
simple qualitative explanation to the so-called
« switching » phenomena : dynamical friction of solid
origin is generally weaker than static friction, allow-
ing a fall of resistance at the onset of motion or even
a negative resistance regime. Instabilities observed
in blue bronzes just below and above threshold
could have the same origin and manifest a « stick-
slip friction » [43].
Analogous considerations could apply to more

« exotic » electronic crystals such as Wigner crystals
[44] in two dimensions. On the other hand, a CDW
is a highly quantum crystal (see the Introduction)
and its defects should be more likely compared for
instance to those of solid helium [45]. They also bear
an obvious resemblance to defects in type II super-
conductors and superfluids or liquid crystals.
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Appendix.

We have treated the CDW as an elastic medium and

neglected amplitude variations which should occur
for large strains. Let us estimate the corrections thus
induced in strong pinning. The total free energy
writes

where I ik I = A/Ao (see Eq. (2.3) and (2.4)).
Let us consider a simple case of strong pinning,

i. e. the phase interpolating between values Q1 and
cp 2 at x = 0 and 1 respectively. Rather than solving
the nonlinear equation resulting from aF/a qf = 0,

one can simply remark that

Therefore :

(i) a change of 141 1 slightly modifies the elastic
constant for phase deformations ;

(ii) the presence of a longitudinal strain eXX leads
to a reduction of I qi I to second order in e,,,,. In the

present situation exx = (l/q) dl,O/dx === (l,Oz - l,Ot)/l
and v (x - xi ) ::- 0 (i = 1, 2 ) between pinning points,
thus (A.1) yields

On the contrary, in the vicinity of pinning points
dcp /dx = 0 and F writes

Minimizing with respect to I qi I yields

As mentioned by Lee and Rice [25] the order
parameter is enhanced near a strong impurity. The
matching between the two solutions, given by (A.3)
and (A.5) and sketched in figure 8 needs a self-

consistent calculation. It most probably occurs on a
length of order §, which justifies our estimation if
I &#x3E; §.
As a conclusion, a variation of the CDW wavevec-

tor along the chain direction affects the order

parameter in two ways. First, the Ginzburg-Landau
expansion leads to a second order effect expressed
by (A.3). With t = 1 at T = 0, exx ’" ec = 10- 2, the
maximal correction is of the order of some percents.
Secondly, as pointed out in section 4.4, with an
order of commensurability equal to 4, a first order
effect arises from the density of states variation. Our
estimations show that the two effects are comparable
in magnitude and may add or compete together.

Fig. 8. - Variation of the CDW amplitude I t/J I for the

phase interpolating between two strong pinning points in
one dimension.
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