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Résumé. 2014 On calcule la distribution des tailles de vésicules sphériques, et en particulier la manière dont la rigidité
effective dépend de la taille des bicouches. Pour des vésicules sphériques on montre que cette rigidité décroît
comme le logarithme de la taille. Pour les petites tailles, on construit une coupure de la distribution à partir des
termes non hookéens de l’élasticité de courbure.

Abstract. 2014 The size distribution of spherical vesicles is studied theoretically, in particular the influence of the
dependence of the effective rigidity on the size of the bilayer. The logarithmic decrease of the effective rigidity with
size is rederived for the sphere. Also, an abrupt cutoff of the distribution at small sizes is constructed in terms of
non-Hookean bending elasticity.
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1. Introducdon.

The size distribution of small unilamellar vesicles
has been an elusive problem, both experimentally
and theoretically. The most frequently studied mate-
rials are phospholipids, such as lecithins in water.
Sonication [1, 2] and injection of organic solutions [3]
into water are standard methods of preparation.
The most reliable procedure of measuring the distri-
butions seems to be electron microscopy, despite the
drawbacks of the necessary staining.
A collection of vesicles will in general be only metas-

table because of a high bending elastic energy asso-
ciated with membrane curvature. However, if their
number remains practically constant over a period
long enough to permit the exchange of amphiphilic
(and other) molecules one may obtain a final distri-
bution. It can be regarded as a thermodynamic equi-
librium under the constraint of fixed vesicle number.
The experimental distribution functions are generally
plotted versus the vesicle diameter. They are charac-
terized by a lower cutoff near 200 A followed by a
steep rise to a maximum at variable positions and a
gradual decay at larger diameters. The shape of the
vesicles is spherical, which minimizes their bending
energies.
The natural variable in the theoretical treatment

of the distributions is the number of amphiphilic
molecules making up a vesicle. Accordingly, we will
deal with number distribution functions. Any theory

has to start from the notion that the bending elastic
energy of spherical vesicles is independent of their
size, since the usual bending energy per unit area
of a symmetric bilayer is a quadratic form in the curva-
tures. The scale invariance alone would lead to an

exponential dependence of the number distribution
function on the number of constituent molecules.

Shape and width of such a distribution are related
to existence and value of a chemical potential.
The exponential law must fail below a certain vesicle

size. In order to develop a more complete theory we
utilize two additional concepts. One is the recent

proposition [4, 5] that the effective rigidity of a piece
of membrane decreases logarithmically with its size,
thus deviating from the local or « bare » rigidity. The
decrease, so far studied only for planar geometry,
is a consequence of the thermal undulations of the
fluid layer. It should favour larger spheres over smal-
ler ones, which is what we are looking for. The other
concept is higher-order, i.e. non-Hookean, bending
elasticity [6]. We consider energy terms quartic in the
curvatures to derive a formula for rather abrupt cutoffs
which has only one free parameter.

In systems with a freely variable number of vesicles,
their mean number will be such as to minimize the
free energy. The size distribution function is then

practically the same as if this number were fixed.
The distributions to be calculated may, therefore,
be relevant to the recently discovered systems exhibit-
ing spontaneous vesiculation [7, 8]. We will consider

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01986004702032100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01986004702032100


322

here only fixed vesicle numbers. Moreover, we will
regard the vesicles as an ideal gas, assuming rather
dilute vesicle dispersions.
The plan of the paper is as follows : in section 2

we lay the foundation for treating the thermal shape
fluctuations of a sphere. They correspond to the undu-
lations of a planar membrane. The weakly deformed
sphere is parametrized by the radial displacement of
the surface from an ideal sphere. The bending elastic
energy and other quantities are calculated in an

approximation that includes all terms linear or quadra-
tic in the displacement and its derivatives. Expansion
of the displacement in spherical harmonics shows
the fluctuation modes thus defined to be decoupled,
except for the dependence of the effective radius of the
sphere on the mean square amplitudes. The formula
for their bending energies differs slightly from those
reported recently by Safran [9] and Schneider et ale
[10]. Also, it allows for a spontaneous membrane
curvature (which may be induced by suitable solutes
restricted, e.g., to the external aqueous medium).

Section 3 deals with the statistical mechanics of

shape fluctuations. We first calculate the effective

radius, which is the radius where the displacement of
an individual mode starts on average when the sphere
is fluctuating. The effective rigidity of the sphered
membrane is deduced from the minute parts of the
mean-square mode amplitudes that may be attri-
buted to the spherical shape. The enhancements of the
amplitudes give rise to a negative free energy which
in turn can be expressed by a small decrease of the
rigidity. The result agrees with our previous one [5],
while the decrease obtained by Peliti and Leibler [4]
was three times larger. The calculation of the effective
rigidity poses some fundamental questions in the
case of the planar membrane (about the measure of
integration). It appears in a sense less problematical
with the sphere where it can be done in a strictly
quadratic rather than partly quartic approximation.
The new proof, apart from being interesting in its
own right, consolidates the basis on which to build
the theory of size distributions. Although not needed
in the rest of the paper, the effective spontaneous cur-
vature is also calculated for the undulating sphere.
The earlier result [5] is recovered. This may be viewed
as another test of the validity of the formula for the
effective rigidity.

Vesicle size distributions at vanishing spontaneous
curvature are presented in section 4. We derive there
the functional dependence of the cutoff at small vesicle
sizes that is caused by higher-order elasticity, examin-
ing how it affects both the energy of the ideal sphere
and the amplitudes of the undulations. Finally, the
number distributions are transformed into functions
of vesicle diameter and a few curves are plotted to
facilitate comparison with experimental data. We also
remark on the dramatic effect which spontaneous
curvature may have on vesicle size distributions,
wiping out the subtle influence of undulations.

2. Bending energies in terms of spherical harmonics.

The usual quadratic form for the curvature-elastic
energy per unit area of a fluid layer may be written as

Here c, and C2 are the principal curvatures, Cs is the
spontaneous curvature, and the elastic moduli K
and T are the bending rigidity and the modulus of
Gaussian curvature, respectively. The second term
of (1) is in general omitted as the integral of Gaussian
curvature depends only on the genus of the surface
over which it is taken. (It is 4 7i-K for spheres, ideal or
deformed.) Throughout this article the membranes
will be assumed to be unstretchable and their finite
thickness will mostly be disregarded.

In order to calculate the elastic energies of weakly
deformed spherical surfaces we take the sphere radius
r to be a function of the polar angle 9 and the azimuthal
angle 0, writing

Here ro is an effective radius from which the displace-
ment u(O, T) is thought to start. It is generally smaller
than the radius ro of the ideal sphere (see below).
The curvatures are easily obtained by introducing
the layer normal or director n. The field n = (nr, no, nip)
is related to the displacements by

if the director points outside the sphere.
Let us imagine, for a moment, the director field

which depends only on 0 and cp to fill all space. On
the membrane, n automatically satisfies the surface
constraint n curl n = 0. It is well known that in a

liquid crystalline director field layer curvature cor-
responds to splay, which permits the sum of curvatures
to be written as an invariant

The curvature of the sphere is positive in our notation.
With spherical polar coordinates one has on the
membrane

where onr/or = 0 in our special case. We are interested
only in terms up to second order in u. Therefore,
the denominator of (3) can be replaced by unity in
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the last two terms of (5). Accordingly,

Adopting the operators

and the relative displacement

will enable us to write some quantities in compact
form. We begin with

(where two terms (V2 f)2 have cancelled out). The
membrane area dA per solid angle dU = sin 0 dqJ d8
is easily seen to be

as n,, is the cosine of the angle the director makes with
the radius vector. In quadratic approximation it
becomes

In the same approximation one obtains

In a next step, the relative displacement is expand-
ed in spherical harmonics,

where a" - m = atm since f is real. We recall three

important properties of spherical harmonics : sepa-
rability

where Pi(fJ) is an (associated) Legendre polynomial
(I and m are integers obeying I &#x3E;, 0, m (  1), ortho-
normality

and the eigenvalue equation

When calculating integrals over the closed surface
we will frequently use the transformation

which is readily proved by partial integration. The
total curvature-elastic energy of the deformed sphere is

Considering first the special case of vanishing spon-
taneous curvature (cs = 0) one finds from (13) and
with the expansion (15)

Note that the result is scale invariant. The square
bracket vanishes for I = 0 and I = 1. This may have
been anticipated as I = 0 corresponds to a change in
sphere size and I = 1 to the three orthogonal trans-
lations of the sphere (and to a change in sphere size,
see below). All four operations must leave E unchang-
ed. Very similar formulae were obtained earlier by
Safran [9] and by Schneider et al. [10], who took most
but not all of the quadratic terms into account in their
calculations.
There is no scale invariance in the presence of spon-

taneous curvature (c, # 0). It is then advantageous
to use ro, the radius of the ideal sphere, rather than
the effective radius r’o. The two radii are related through
the conservation of area which reads

in the quadratic approximation. The / = 0 mode is
now excluded from the summation, which is indicated
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by the prime (£’ ). Equation (22) shows that the I = 1
modes are not only translations, but also increase the
sphere size. Another representation of (22) is

I -I 

Integration of (14) yields

Inserting this and replacing r’o by ro in (20), one finally
obtains instead of (21)

in the same quadratic approximation. The sum repre-
sents the total elastic energy of deformation. The coef-
ficient in front of the squared amplitudes vanishes
for / = 1, in accordance with the fact that these modes
are pure translations if the membrane area is conserv-
ed. Therefore, the summation starts only at / = 2,
as indicated by the double prime. Note that the
12(1 + 1)2 term tends to be the leading one and always
dominates for large enough I. For zero or negative
spontaneous curvature all modes require energy to
be excited. However, the energy E may be decreased
by a deformation if there is a sufficient positive spon-
taneous curvature. The lowest modes (/ = 2) are the
first to become unstable. The limit of instability can
be calculated by equating the coefficient to zero for
/ = 2. The result, c. ro - 6 = 0, has long been
known [11] to characterize the limit of stability or
metastability of a vesicular sphere with respect to
ellipsoidal deformations.

3. Shape fluctuations and their effects.

The shape fluctuation modes (I &#x3E;, 2) are decoupled
in the quadratic approximation (25) so that the equi-
partition theorem applies to them. Accordingly, the
mean square amplitudes obey

where T is absolute temperature and k Boltzmann’s
constant. If not otherwise stated we assume vanishing
spontaneous curvature. In this particular case the
equipartition theorem takes the form

which is given here for easy reference. Starting from
these equations we can calculate a number of interest-
ing quantities.

Let us begin with the difference

between true and effective membrane area, A and A’,
respectively. Rewriting (22) gives

which because of (27) becomes

Replacing the sum by an integral,

and retaining only the highest powers of I in nominator
and denominator results in

The upper limit lrnax is readily seen to be related to
the total number M of modes by

M may be put equal to half of the number of amphi-
philic molecules in the bilayer. Insertion in (32)
yields, because of A = 4 nr§,

Exactly the same relative change in area was calculat-
ed earlier for the planar membrane with periodic
boundary conditions [12,13]. Here as there, the formula
is valid only for small relative changes ( 1). The
casual treatment of its lower cutoff does no harm
because of the logarithm.

It follows from equation (21) and the equipartition
theorem that the bending energy of the fluctuating
sphere is that of the ideal sphere plus (1/2) kT for
each deformation mode. However, it appears reaso-
nable to argue that the deformation reduces the

energy of sphering. Because of (6) the contribution
of the spherical shape to the local curvature div n is
2 nr/r. The two other contributions are like those of
undulations on a planar membrane, at least in a small
neighbourhood where substitutions r d0 = dx,
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r sin 0 dqY = dy are permissible and for I &#x3E; 1 (1).
Note that as previously [5] we are dealing with cur-
vatures. Representing the physical strain, curvature
seems to be the natural choice for the measure of
integration in calculating entropy and free energy.
Multiplying 2 nr/, squared with I/n, to allow for the
increase in area due to the angle made by director
and radius vector gives the energy differential
(1/2) K(4/r2) nr ,2 dUe Integration leads to

r

where Esphere = 8 nK and E;phere are the energies of
sphering for the ideal and deformed sphere, respecti-
vely. We have used the approximation nr = 1 - (1/2)
(V 2f)2 and, in the last expression, expanded f in
spherical harmonics.
The energy released by the sphere goes into the

deformation modes so that their mean elastic energies
are (slightly) larger than (1/2) kT. The mean square
curvatures associated with a mode must rise by the
same factor. Obviously, the factor equals the ratio R
of the coefficients of I a’m 12 in the equation obtained
from (21) by substituting (35) for 8 xK = Esphere and
in (21) itself: Inspection yields at once

Therefore, the entropy of a single mode increases by

where the logarithm has been expanded to first order.
Summation over all modes as in (31) and (33) leads
to the total entropy change

Defining now an effective rigidity K’ by the identity

where AF = T AS, with AS taken from (38), results in

(1) A more precise way of distinguishing deformational
and spherical curvature is to assign to the former the terms
of r div n that are linear in f. There is only one such term,
namely r’ ð.2f. The quadratic terms of n; 1/2 r div n inte-
ract with the curvature of the ideal sphere, thus lowering
its energy. One arrives again at (35). It would be appropriate
to expand curvature, the measure of integration, rather than
displacement in spherical harmonics. However, the more
tractable and experimentally useful displacement modes are
satisfactory as their bending elastic energies are uncoupled
in the quadratic approximation.

The final formula could also have been obtained in a
more direct but, perhaps, less transparent fashion
from (35), the equipartition theorem (27), and (39).
It agrees exactly with our prediction for the planar
membrane [5].
For completeness and as a check on consistency

we also examine the effect of nonvanishing sponta-
neous curvature. c, is assumed to be negative or, if

positive, small enough to avoid destabilization of the
spherical shape. We proceed as in the last paragraph.
Comparison of (26) and (27) indicates that the spon-
taneous curvature affects the mean square mode am-

plitudes. The concomitant change of entropy per
mode is readily found to be, for I &#x3E;&#x3E; 1,

The total change is

Consideration of (25) suggests the ansatz

which may be rewritten as

The first term is supplied by (40). The third one is
obtained by transforming (34) into

We do not distinguish here between ro and (( r’20 »)1/2.
Evidently, the effective spontaneous curvature c;
satisfies

This is again identical to the earlier result [5] and cor-
rect only for (Cg - c,)Ic, « 1.

Inspection of (26) reveals that the enhancement of
the curvature amplitudes due to the spherical geo-
metry may be counter-balanced by the spontaneous
curvature cs = - 2/ro which is equal but opposite
to the curvature of the sphere. In other words, this
particular spontaneous curvature permits simulating
the hypothetical case of no energy exchange between
undulations and spherical curvature (R, = 1).

4. Size distributions of vesicles.

In considering size distributions of vesicles we limit
ourselves to systems with a fixed number of vesicles.
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It is assumed that there is a single species of amphi-
philic molecules, that the exchange of all molecules,
including water and solutes, is fast enough between
and within the vesicles to ensure thermal equilibrium
and that the fraction of amphiphilic molecules dis-
solved in water is negligible. The spontaneous cur-
vature is zero by definition under the given symmetry.
If in addition we postulate x &#x3E; 0, which should in
general be true, the shape of lowest energy of such
vesicles, as obtained on the basis of (1), is spherical.
The bending energy of the ideal sphere is

regardless of sphere size. Shape fluctuations are sup-
posed to be weak so that the theory of the last section
is applicable.

If x and thus E were indeed independent of vesicle
size one would expect an exponential distribution

N being the number of amphiphilic molecules in the
vesicle and N its mean value. The preliminary for-
mula is normalized to unity for large N where

The exponential dependence is easily proved : if
a sufficient number of other vesicles acts as a reser-

voir, making the chemical potential of the amphi-
phile relative to its free energy in the bilayer indepen-
dent of N, one immediately obtains (48) through

where necessarily p  0.
In a next step we take into account that the effec-

tive rigidity and thus E are functions of vesicles size.
It follows from (40) and with M = N/2 that

The contributions of the lowest modes need not be

correctly rendered by In M, and M need not exactly
equal half the number of molecules making up the
bilayer (e.g. for amphiphiles with two hydrocarbon
chains). Such corrections will be small and can be
lumped in with K. Inserting (51) in (47) yields

and, via (50),

Equations (52) and (53) are of remarkable simplicity
due to the cancellations of 8 n and kT. The chemical

potential can be related to the mean number of mole-
cules per vesicle. Normalization to unity (by inte-

grating from 0 to oo) leads to

The function belongs to the class of Schulz distribu-
tions which have recently been used in the analysis
of quasi-elastic light scattering from various types
of dispersions [14, 15].
Although the Schulz distribution (54) is a conse-

quence of curvature elasticity, it does not depend on
the rigidity, sharing this feature with vesicle shapes.
The Schulz distribution assigns less weight than the
exponential function (48) to the smallest vesicle sizes.
Therefore, it is more likely to describe size distribu-
tions realistically. The improved distribution must
still fail at very small N as the geometry of vesicles
rules out vesicles below a certain size. Whether or not
the failure is significant depends, among other things,
on the mean number of molecules per vesicle.
A more stringent cutoff may be obtained by invok-

ing non-Hookean curvature elasticity. Equation (1)
contains first and second powers of curvatures. For

symmetric bilayers only the second-order terms sur-
vive as Cs = 0. The next non-vanishing order in this
case is the fourth. The associated elastic energy
density per unit area has been given by Mitov [6] :

with three new elastic moduli. (We omit here second
powers of derivatives of the curvatures as a strong
curvature of the sphere, which gives rise to higher-
order corrections, is itself uniform.) In order to find
a formula for the cutoff we examine how fourth-
order elasticity affects both the energy of the ideal
sphere and the amplitudes of shape fluctuations.
With the compound modulus

the fourth-order bending elastic energy of the sphere
becomes

Using

where Ao is the molecular cross section in the bilayer,
we find

Note that E(4) is inversely proportional to N.
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The effect of fourth-order elasticity on the undula-
tions may be treated in terms of an effective second-
order elastic modulus xeff which is the second deriva-
tive of the elastic energy density per unit area with
respect to the sum of curvatures. Using the abbrevia-
tion c = ci + c2, one can write

With the additional compound modulus

one obtains

and finally, by means of (58),

The mean square fluctuation amplitudes are inver-
sely proportional to the rigidity, so the replacement
of x by lCeff changes the entropy of a mode by

With M = N/2 modes, the ensuing change in the
free energy of the vesicle is

Expanding the logarithm in (Keff - x)/x leads to

The first term of (66), being independent of N, is not
very interesting. Combining the second term and (59),
which both vary as 1/N, results in the fourth-order free
energy

Neither the sign nor the magnitude of any fourth-
order elastic modulus are known to date. It is therefore
impossible to predict whether AF(4) is positive or
negative. Only a positive AF(4) can provide the desired
cutoff at small vesicle sizes. In fact, a negative AF(4)
would favour the smallest sizes. One could then try
to construct a cutoff from sixth-order elasticity and
from the third term of the expansion of the logarithm

of (65), i.e. from free-energy contributions propor-
tional to 1/N2.

Let us assume here that åF(4) is positive, i.e.

and neglect all terms of higher order in I/N. The size
distribution (54) has then to be complemented by
another Boltzmann factor so that

The constant A &#x3E; 0 can be determined by normaliz-
ing w(N) to unity. (We do not try here to perform the
necessary integration).

It seems worthwhile to draw the three size distri-
butions (48), (55), and (69) for comparison with expe-
riment. Measured distributions being generally plot-
ted versus vesicle diameter 45, we first transform the
theoretical functions accordingly. Using N = 2 1tflJ 2 / Ao
and w(,P) = w(N) dN/dO, one finds, in the same order,

where the first two distributions are normalized to

unity and A’ &#x3E; 0, B’ &#x3E; 0. Only the last distribution
contains a freely adjustable parameter, the « cutoff »
parameter B’. Obviously, the distribution is shifted
to larger diameters and turns sharper as B’ increases.
Examples of the three distributions are shown in
figure 1. It should be noted that our diameter 0 refers
to the middle of the bilayer rather than to the surface
of the vesicle which is observed. Experimental data
are still scarce and not very accurate. It appears an

open question whether or not they represent thermal

Fig. 1. - Theoretical size distribution functions in arbitrary
units. Independent variable is the vesicle diameter 0. Solid
line : w - 0’ exp( - AØ2); dashed line : w - 453 exp(-
B/Ø2 - AØ2); dotted line (unrealistic case) : w(Ø) ~
ø exp( - AØ2). The curves represent equations (71), (72),
and (70), respectively. The constants are A = 0.02, B = 100.
B depends on material, A is governed by mean number of
molecules per vesicle.
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equilibrium at fixed vesicle numbers. The data of
Larrabee [1] and Holzwarth and Groll [3] which were
measured on two different synthetic lecithins are

fairly well described by (72) and (71), respectively,
while those of Duckwitz-Peterlein et ale [2] which were
obtained with natural lipids lie between (71) and (70).
As pointed out at the end of section 2, a positive

spontaneous curvature c. &#x3E; 6/ro destabilizes the sphe-
re which at smaller c, is in stable or metastable equi-
librium. Even stronger positive spontaneous curva-
tures will convert the spheres into elongated shapes
and finally cylinders [16], provided the spontaneous
curvature, if chemically induced, is not associated
with an osmotic pressure difference between outside
and inside water. The consequences of a negative
spontaneous curvature are different. The second term
of the total elastic energy (25) of the sphere, that is
- 8 aKc. ro, will now increase with ro. With (58)
the term can be written in the form

Since it rises as the square root of N its second deri-
vative with respect to N is negative for Cs  0. This

implies a phase separation into smaller and larger
vesicles. Ideally, just one large vesicle should coexist
with small vesicles. We do not go into the details of
this interesting effect, but note that the square root
of N grows much larger than In N which governs
the effective rigidity. Therefore, even a very small
negative c. may induce phase separation while the
remaining distribution of vesicles of reduced size

may still obey (71) or (72). The. present paper was
devoted to the simplest and probably the most impor-
tant case of vanishing spontaneous curvature.

5. Conclusion.

In the present paper we have exploited the logarithmic
decrease of the effective rigidity with membrane area
to deal with the problem of vesicle size distributions.
As mentioned at the beginning, the concept of an
effective rigidity is very recent and was treated only
for planar membranes, with different results [4, 5].
The independent treatment given here has the advan-
tage of being strictly in the framework of a quadratic
approximation with respect to deformational ampli-
tudes. This results from the fact that the spherical
curvature is inherent in our system, the closed vesicle.
The use of displacement modes in the statistical
mechanics is conventional and convenient. However,
local curvature being the strain, any « absolute »

mode entropies should be expressed in terms of cur-
vatures. On the other hand, there was no need for
us to use mean square curvatures in deriving the
entropy increase per mode due to energy taken from
the sphere since in this case only the ratio of some mean
square amplitudes is of interest.
We hope that a theory of size distributions will

be useful in several respects. It should now be possible
to distinguish equilibrium distributions from others
which can be narrower (e.g. after chromatography)
or wider. The theoretical curves suggest that it could
be difficult to achieve or maintain very narrow distri-
butions under conditions of thermal equilibrium.
Future accurate measurements may furnish data on
non-Hookean bending elasticity, although of a
rather complex type. The theory could also be appli-
cable to monolayer vesicles in certain microemulsions
whenever spontaneous curvature is low. In fact,
comparison between experiment and theory could be
used as a test in this regard.

Being a quadratic approximation, the present
theory presupposes membranes stiff enough to prevent
dramatic deformations of the sphere. We do not know
the limit of its applicability, but it is safe to say that
the effective rigidity K’ should be distinctly larger
than kT/8 n so that the bending elastic energy of the
sphere is much larger than kT. As this very low rigidity
is approached one may no longer expect vesicles to
possess well-defined shapes.

Acknowledgments.
The study of vesicle size distributions was initiated
by discussions with R. Pecora during a stay at Stan-
ford University in 1982.

Note added in proof. - Safran’s [9] deformation
energies of the sphere do not differ from those given
here. His final formulae do because of the additional
constraint of fixed total enclosed volume. I am gra-
teful to him for pointing this out to me.

In the mean time a number of experimental size
distributions of unilamellar vesicles [17-21] came to
my attention. Various materials, techniques of pre-
paration, and methods of observation were used, the
average vesicle diameters ranging up to 10 Jim. The
majority of plots agree fairly well with the parameter-
free distribution (71). Marked deviations [18, 20]
may be due in one case [18] to very extended elec-
trostatic double layers, too wide to treat their effect
as a contribution to elasticity.
A different theory of vesicle size distributions was

proposed some time ago by Israelachvili et al. [22].

References

[1] LARRABEE, A. L., Biochemistry 18 (1979) 3321.
[2] DUCKWITZ-PETERLEIN, G., EILENBERGER, G. and OVE-

RATH, P., Biochim. Biophys. Acta 469 (1977) 311.

[3] GRUNEWALD, B., FRISCH, W. and HOLZWARTH, J. F.,
Biochim. Biophys. Acta 469 (1981) 311 (for the
method) ;



329

HOLZWARTH, J. F. and GROLL, R., unpublished (for
the distribution).

[4] PELITI, L. and LEIBLER, S., Phys. Rev. Lett. 54 (1985)
1960.

[5] HELFRICH, W., J. Physique 46 (1985) 1263.
[6] MITOV, M. D., C.R. Acad. Bulgare Sci. 31 (1978) 513.
[7] HAUSER, H. and GAINS, N., Proc. Natl. Acad. Sci. USA

79 (1982) 1683;
HAUSER, H., GAINS, N. and MÜLLER, M., Biochemistry

22 (1983) 4775.
[8] TALMON, Y., EVANS, D. F. and NINHAM, B. W., Science

221 (1983) 1047 ;
NINHAM, B. W., EVANS, D. F. and WEI, G. J., J. Phys.

Chem. 87 (1983) 5020.
[9] SAFRAN, S. A., J. Chem. Phys. 78 (1983) 2073.

[10] SCHNEIDER, M. B., JENKINS, J. T. and WEBB, W. W., J.
Physique 45 (1984) 1457.

[11] HELFRICH, W., Z. Naturforsch. 28c (1973) 693.
[12] HELFRICH, W., Z. Naturforsch. 30c (1975) 841.
[13] HELFRICH, W. and SERVUSS, R. M., Nuovo Cimento 3D

(1984) 137.
[14] PECORA, R., in Measurements of Suspended Particles by

Quasi-Elastic Light Scattering, ed. by Dahneke,
B. (John Wiley &#x26; Son Inc. New York), 1983.

[15] BERTERO, M., BRIANZI, P., PIKE, E. R., DE VILLIERS, G.,
LAN, K. H. and OSTROWSKY, N., J. Chem. Phys.
82 (1985) 1551.

[16] DEULING, H. J. and HELFRICH, W., J. Physique 37
(1976) 1335.

[17] KIM, S. and MARTIN, G. M., Biochim. Biophys. Acta
646 (1981) 1.

[18] HAMMOND, K., REBOIRAS, M. D., LYLE, I. G. and

JONES, M. N., Biochim. Biophys. Acta 774 (1984)
19.

[19] PARENTE, R. A. and LENTZ, B. R., Biochemistry 23
(1984) 2353.

[20] AURORA, T. S., LI, W., CUMMINS, H. Z. and HAINES,
T. H., Biochim. Biophys. Acta 820 (1985) 250.

[21] PEREWCNIK, G., SCHURTENBERGER, P., LASIC, D. D.
and HAUSER, H., Biochim. Biophys. Acta 821 (1985)
169.

[22] ISRAELACHVILI, J. N., MITCHELL, D. J. and NINHAM,
B. W., J. Chem. Soc., Faraday Trans. II 72 (1976)
1525. 


