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Résumé. 2014 Nous proposons un modèle stochastique pour simuler l’écoulement de deux fluides dans un milieu
poreux. Nous supposons que la loi de Darcy est valable pour décrire les écoulements de chacun des deux fluides,
l’un étant injecté dans le milieu et l’autre déplacé par ce dernier. A chaque pas de temps, nous résolvons numéri-
quement l’équation de Laplace, afin d’obtenir les valeurs du champ de pression. Ensuite, l’interface entre les fluides
est déplacée d’un pas constant en un seul point, choisi avec une probabilité proportionnelle au gradient de pression.
Nous examinons la gamme complète des contrastes de viscosité entre les deux fluides, couvrant ainsi les cas d’écou-
lements stables et instables. Nous mesurons dans chaque cas la vitesse de croissance de la longueur de l’interface.
Lorsque la viscosité du fluide injecté est faible devant celle du fluide déplacé, le modèle prédit le développement
d’une instabilité de l’interface sous forme de digitations, comparable aux résultats donnés par le modèle d’agréga-
tion par diffusion limitée proposé par Witten et Sander. Si l’on augmente la viscosité du fluide injecté, l’épaisseur
des digitations augmente et leur croissance en longueur est moins rapide.

Abstract 2014 We report numerical simulations related to two-fluid flow in porous media. We assume that Darcy’s
law holds for the flow of each of the two fluids, one of which we are injecting into the porous medium, the other
being that displaced. We therefore initially solve Laplace’s equation for the pressure. At each time step we then
advance the interface between the two fluids by a discrete step at a single point chosen with probability proportional
to the pressure gradient. We examine the full range of viscosity ratios, covering both stable and unstable cases,
and measure the rate of growth of the length of the interface between the two fluids. When the viscosity of the
injected fluid is low compared with that of the fluid which is being displaced, the predicted fingering instability is
similar to results obtained via the Witten and Sander model of diffusion limited aggregation. As the viscosity of
the injected fluid increases, the fingers become thicker and they grow more slowly in length.
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1. Introduction.

It is standard practice, in the petroleum industry, to
inject water into oil-bearing rocks in order to sweep
out the oil. It is usually found that only part of the
total oil is recovered : the water tends to finger through
the oil rather than sweep it towards a production well.
This fingering instability is well known [1], and occurs
because the viscosity of the water is lower than that
of the oil. It is clearly worth investigating for com-
mercial reasons, but is also of scientific interest because

multi-phase flow in porous media is still poorly
understood. In this paper, we present theoretical work
which takes into account not only the viscosity of the
oil, but also that of the water; the random properties
of the porous medium are also, in some sense, included

Darcy’s law, which predicts that fluid flow within
a porous medium is proportional to the pressure
gradient, works well when only a single fluid is present.

It implies, when the fluid is incompressible, that the
pressure is governed by Laplace’s equation. The
connections between potential theory and the theory
of random walks [e.g. 2, 3] have therefore led several
authors [4-6] to point out the relevance of diffusion-
limited aggregation (DLA) [7] to multi-phase flow in
either a Hele-Shaw cell or in a porous medium. In this

analogy the growing aggregate corresponds to an
injected fluid, which is displacing the fluid initially
in the porous medium. However, the natural boundary
conditions for DLA are those of an aggregate at
constant potential. The aggregate therefore corres-
ponds to an invading fluid of zero viscosity, with zero
interfacial tension between the invading fluid and that
originally in the porous medium. Kadanoff [6] has
discussed modifications to DLA which introduce
interfacial tension. Here our interest lies in the effect
of the viscosity ratio. Rather than take DLA as our
starting point for the solution of Laplace’s equation,
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it is easier for us to use classical numerical schemes to
resolve the pressure field. Motion of the interface is
then assumed to depend on the pressure gradients thus
obtained. Such a scheme has been used by Niemeyer
et al. [8], and has been called diffusion-limited growth
(DLG) by Meakin [9].

Darcy’s law predicts that the volume flux Q of
fluid with viscosity /,t flowing in a porous medium is
proportional to the pressure gradient Vp :

If the fluid is incompressible, the pressure satisfies

Laplace’s equation. Niemeyer et al. [8] solved the

Laplace equation outside their growing agglomerate,
which was at constant potential as it represented the
discharge pattern of dielectric breakdown. Here we
are interested in two fluids, with different viscosities,
and must therefore solve the Laplace equation on both
sides of the interface. The normal flux Q n must be
continuous across the interface, as must the pressure
p, since we assume that there is no interfacial tension
between the fluids. These assumptions are the standard
assumptions of continuum mechanics. The fluid

velocity is well defined everywhere, including the

boundary. Our calculations depart from the classical
scheme only when we introduce a degree of random-
ness into the motion of the interface. This is described
in section 2 below.

2. The advance of the interface.

In a continuum approach, we would solve for p, and
thus Vp, everywhere. The entire interface between
the two fluids would then be advanced at each time

step by a distance proportional to Vp. Calculations,
using either finite elements or finite differences, would
be designed to avoid as much as possible the effects
of a discrete numerical scheme. However, in a porous
medium the fluid flows through a series of discrete
pores with random sizes. We therefore include an
element of discreteness/randomness by assuming that
each point of the interface is either advanced by fixed
amount during one time step, or it is not We assume
that advance occurs at a single point, which is chosen
with a probability proportional to the local pressure
gradient. The expected displacement at each time

step is therefore proportional to the classical conti-
nuum velocity.

Picking just one point at each time step keeps the
growth process close to that of DLA, as it corresponds
to the arrival of one incoming particle at a time.
Simultaneous motion of the interface at several places
could either result in the advance of the entire inter-
face by a constant amount (assuming that each point
along the boundary is advanced by at most one step
at any time step), or could perhaps approach the
classical limit if we add a multitude of infinitesimal

particles at each time step. Rather than investigate
these possibilities, we pick just one point of advance.
This corresponds to injection of fluid into the porous

medium at a constant rate. If instead we were to
consider a constant pressure drop, then the number
of points at which the interface advances each time step
would change with time. As fingers with low viscosity
approach the low pressure outlet, the pressure gradient
at their tips will increase.
We work in 2 dimensions. We consider a porous

medium which initially contains fluid with viscosity u1,
and inject fluid with viscosity u2 from the left-hand
side. The porous medium is discretized by a rectangular
grid, and at any time step each cell contains either
fluid 1 or 2. The interface between the fluids is thus
halfway between the grid-points. n, the normal to the
interface, is therefore parallel to one of the co-ordinate
axes and the volume flux between points i and i + 1,
occupied by fluids 2 and 1, becomes

Incompressibility requires that the sum of the 4 volume
fluxes at any one grid point be zero. This gives the
standard 5-point discrete version of Laplace’s equation
at interior points of each fluid, and a modified version
at the interface between the two fluids.
Once the interface has moved to its new position,

we must re-solve Laplace’s equation for the pressure.
Gauss-Seidel over-relaxation was adopted, since we
already have a good estimate of the solution from the
previous time-step. The number of iterations required
depends on both the position at which a new point
has been added to the boundary, and on the viscosity
ratio K = Ill/1l2. If we advance the boundary at a
point where the pressure gradient is low, then the
pressure field will be little changed, while if the vis-
cosity ratio is unity, the replacement offluid 1 by fluid 2
will make no difference whatsoever to the pressure.
Up to six sweeps were made of the 9 x 9 gridblocks

surrounding the new point, followed by relaxation
over the entire mesh until the residuals Bij satisfied

8 was usually 2.56 x 10-4, and halving this value
made no qualitative difference to the results. The
number of iterations required varied typically between
1 and 15, and it took approximately one hour to add
2 000 points. The over-relaxation parameters were
taken to be 1.4 for the small grid and 1.6 for the entire
mesh; the speed could perhaps be increased if more
use was made of restricted meshes and of coarse grid
scales.
We work on a mesh with dimension 160 x 160.

The pressure p was chosen to be 1 on the left-hand

boundary x = 0, the side at which fluid is injected
p = 0 at the right hand boundary, and the pressure
gradient normal to the two remaining sides is zero.
Our aim is to avoid the effect of the side walls as much
as possible : however, we have not been able to use
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the large meshes (typically 103 wide) used by Meakin
[10] in his 2-dimensional study of DLA at a line. We
start with a straight interface parallel to the y axis,
normal to the direction of flow. This was positioned
5 units away from the left-hand edge in order to reduce
boundary effects.

3. Results and discussion.

Figure 1 shows typical outlines of the invading fluid
after injection of 3 000 points. The first 2 000 points
are coloured black. Each additional block of 320 points
is then coloured grey, white, black, grey... Figure la
corresponds to a viscosity ratio K = 104. It is similar
to results of DLA, though the fingers are perhaps
somewhat thicker and closed loops are more frequent.
Because of these differences, the calculations were

repeated with more accurate solutions of Laplace’s
equation (s taken to be one half its usual value). The
results had the same general form. Note that the
model implemented here has a tendancy to create
solid blocks of injected fluid. A point surrounded on
three sides by injected fluid can be invaded from any
one of three directions, and is thus counted three
times when choosing the point at which the interface
advances.
As we reduce the viscosity ratio, so the fingers

become thicker and fewer in number. Eventually, at
a viscosity ratio of unity (x = 1.01 in Fig. If) there
are no longer any fingers. The pressure gradient is
uniform, since the two fluids have the same viscosity,
and in particular, it is constant everywhere along the
interface. At each time step the front advances at a
point chosen at random; for our 160 x 160 grid,
the probability of any one point being chosen is

f3 = 1/160. Thus, for a given value of y, the x co-
ordinate of the front will have a binomial distribution,
with mean x = f3t, variance (x - X)2 = f3t(1 - f3).
(This approximation assumes independence of the
various y values, neglecting the fact that the total
number of particles is equal to the number of time
steps t.) Note that this differs from the modified DLA
model [10] in which particles are fired in straight lines,
rather than allowed to perform a random walk. Such
particles can stick when they slide past part of the
agglomerate. Here, since the pressure gradient in the
y direction is zero, no sideways growth is possible.

Finally, in figure lg, the injected fluid is ten times
more viscous than the fluid it displaces. The front is
stable.

It is impossible, in DLA, for diffusing particles to
reach the interior of regions completely surrounded
by invading fluid. In our work such growth should
not occur if the invading fluid is completely inviscid,
and if Laplace’s equation is solved sufficiently accu-
rately..Even at lower viscosity ratios, volume conser-
vation should prevent the attrition of an island of the
original fluid surrounded by injected fluid For

computational convenience, we ignore this problem
and allow attrition - a simplification which has

similarly been found useful in studies of invasion

percolation [11]. Thus our « residual oil saturation &#x3E;&#x3E;

(the fraction of fluid 1 remaining in the rock) is ulti-
mately zero, though at high viscosity ratios this would
take a long time to achieve. We have made no attempt
to include interfacial tension in this work. Experiments
in porous media [12] do indeed show that as the
capillary number increases (i.e. as the capillary forces
become small compared with viscous forces) the
residual oil saturation is reduced, though never to a
value as low as zero. Because of this unrealistic feature,
and because of the 2-dimensional nature of the cal-

culations, we have not attempted to interpret the
density profiles shown on figure 1 in terms of Buckley-
Leverett saturation profiles [13]. A more careful study
would also need to consider whether islands of fluid 1
should be swept along by the injected fluid. The motion
of such o oil ganglia » has been reviewed by
Payatakes [14].
At each time step we record the x co-ordinate

(the co-ordinate in the direction of flow) of the point
which is added to the area of invading fluid These
co-ordinates are plotted, as a function of time, in

figure 2, for a run with viscosity ratio K = 104. Growth
is concentrated at the tips of the fingers, and the scale
of figure 2 is such that the plotted points appear to
overlap when growth is rapid. The slope of the upper
boundary of the plot represents the rate of growth of
the fastest growing fingers. Other dense concentrations
of points, with lower slopes, represent slower growing
fingers and eventually disappear. The scattered, iso-
lated points in the bottom right-hand corner of

figure 2 indicate that the interface between the two
fluids continues to advance, albeit slowly, at points
far behind the finger tips. Although growth at any
one such boundary point is unlikely, because of the
low pressure gradients, these points are so numerous
that a few of them do indeed grow.
Meakin [10] computed the root mean square

thickness srms of his DLA aggregates. A log-log plot
indicates that Srms increases asymptotically as t".
Values for the exponent a, measured over the last
500 time steps and averaged over 5 runs, are given
in table I. The convergence of a is slow, and the result
for a viscosity ratio K = 100 suggests that our values
for a have not in fact converged, presumably because
of our relatively small grid size. Thus we cannot
comment on the difference between our value a = 1.2
for high viscosity ratios, and Meakin’s value a = 1.3.
In general, we improve our estimate of a by looking
at only the last 500 time steps. However, this represents
only 3 complete rows of 160 gridblocks, and the result
for the stable case (K = 0.1) is poor.
The form of the injected fluid at high viscosity ratios

is qualitatively similar to results obtained with DLA,
suggesting that the area invaded may be described
by a fractal dimension. At lower viscosity ratios,
however, there is only a small zone of fingering, and
it is this zone which we would like to characterize.
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Fig. 1. - Typical examples of the shape of the growing
zone of injected fluid after the addition of 3 000 points, for
various values of the viscosity ratio x = (a) 104 ; (b) 103 ;
(c) 102 ; (d) 10;(e)2;(f) 1. O 1; (g) 0.1. The grid size is 160 x 160.
Above each figure is a plot of the fraction of sites occupied
by the injected fluid, as a function of x.



20

Fig. 2. - The x coordinate of each point as a function of the
time at which it is added. K = 104.

Table I. - The rms thickness exponent a for various
viscosity ratios K. a is determined from the last 500 time
steps of each run, and the mean value over 5 simulations
is quoted.

We therefore examine the principal interface between
the fluids, ignoring the boundaries of any islands
surrounded by the invading fluid

If the boundary is a fractal with dimension D, then,
measuring it with a yardstick of length r, we would

expect to obtain a length which varies as ,1-D. For
the high viscosity ratios, this is indeed the case, and,
considering K =103 and 101 together, we obtain
D = 1.48 ± 0.02, where the error is the standard
deviation based on 5 runs at each viscosity ratio,
with D computed after the addition of 3 000 points.
At lower viscosity ratios this approach does not
appear to be useful, since the apparent value of D
decreases during the course of the simulation. Results
are shown on figure 3 for the case K = 1.01, together
with, for comparison, K = 104 and 103. The long
straight fingers of figure If become even longer as

Fig. 3. - The Hausdorff dimension of the principal interface
between the two fluids (ignoring closed loops), for three
values of the viscosity ratio K. The curves are obtained from
averages of 5 different runs.

t increases, and the length of the interface varies less
rapidly as we change the length of the yardstick. The
corresponding development of the fingers in figures led
and If is shown in figure 4. Measurements of the

density correlation would similarly be time dependent
The mass of invading fluid increases linearly with
time, but, when K is unity, the size of the mixing zone
increases only as /, as discussed above. The decline
in the value of D is less rapid at higher values of K,
but is still noticeable even when K = 100. In the stable
case, K = 0.1, the length of the boundary quickly settles
to approximately 160 once r &#x3E; 3 (in units such that
the distance between gridpoints is 1).
As an alternative, we may examine the curvilinear

length of the interface (measured on the smallest scale,
r = 1), again taking only the principal boundary and
ignoring closed loops. This restriction occasionally
causes fluctuations in the length, when fingers join
and enclose a large island of fluid. Results are shown
on figure 5. We see that, with the possible exception
of the highest viscosity ratios, the length of the boun-
dary increases more slowly than linearly with time
(and a log-log plot does not give convincing straight
lines). Growth is markedly slower at low viscosity
ratios, and in the stable case (K = 0.1) the length of
the interface is approximately constant. The numerical
computations of Tryggvason and Aref [15] predict
linear growth, though their lengths include double-
sided surfaces between fingers which have merged
The linear rate of penetration of our finger-tips, as
depicted by the slope of figure 2, agrees with both [ 15]
and with the long-time development of miscible

fingers studied experimentally by Wooding [16].
The relevance of Laplace’s equation to homogeneous

flow in porous media is well known. When studying
multi-fluid flow, however, an extension of the form
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Fig. 4. - Figures ld and If continued by the addition of a further 3 000 points, making 6 000 in all. (a) x = 10 (cf.
Fig.1 d) ; (b) K = 1.01 (cf Fig. If).

Fig. 5. - The length of the principal interface (neglecting
closed loops), for various values of the viscosity ratio K,
as a function of time.

examined here is speculative and can be confirmed
only by experiments. At present we can do no better
than to draw the reader’s attention to the qualitative
similarities between figures 1, 4 and the experimental
results reported in [17, 18, 13]. These results were
obtained in packed bead beds, using both miscible
and immiscible fluids. Other experiments in etched
glass networks [19] similarly show the effect of vis-
cosity ratio on the stability of the interface.
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