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GAUSSIAN LAWS FOR THE MAIN PARAMETERS

OF THE EUCLID ALGORITHMS

LOÏCK LHOTE AND BRIGITTE VALLÉE

Abstract. We provide sharp estimates for the probabilistic behaviour of the main parameters
of the Euclid Algorithms, both on polynomials and on integer numbers. We study in particular
the distribution of the bit-complexity which involves two main parameters : digit–costs and
length of remainders. We first show here that an asymptotic gaussian law holds for the length of
remainders at a fraction of the execution, which exhibits a deep regularity phenomenon. Then,
we study in each framework –polynomials (P ) and integer numbers (I)– two gcd algorithms, the
standard one (S) which only computes the gcd, and the extended one (E) which also computes
the Bezout pair, and is widely used for computing modular inverses.
The extended algorithm is more regular than the standard one, and this explains that our
results are more precise for the Extended algorithm: we exhibit an asymptotic gaussian law for
the bit–complexity of the extended algorithm, in both cases (P ) and (I). We also prove that an
asymptotic gaussian law for the bit-complexity of the standard gcd in case (P ), but we do not
succeed obtaining a similar result in case (I).
The integer study is more involved than the polynomial study, as it is usually the case. In the
polynomial case, we deal with the central tools of the distributional analysis of algorithms, namely
bivariate generating functions. In the integer case, we are led to dynamical methods, which
heavily use the dynamical system underlying the number Euclidean algorithm, and its transfer

operator. Baladi and Vallée [2] have recently designed a general framework for “distributional
dynamical analysis”, where they have exhibited asymptotic gaussian laws for a large family of
parameters. However, this family does not contain neither the bit–complexity cost nor the size
of remainders, and we have to extend their methods for obtaining our results. Even if these
dynamical methods are not necessary in case (P ), we explain how the polynomial dynamical
system can be also used for proving our results. This provides a common framework for both
analyses, which well explains the similarities and the differences between the two cases (P ) and
(I), for the algorithms themselves, and also for their analysis. An extended abstract of this paper
can be found in Proceedings of LATIN’06 [21].

1. Introduction

The Euclid algorithm is one of the most ancient algorithmic scheme. Designed by Euclid himself
for computing the greatest common divisor [in shorthand notation, gcd] of two integer numbers,
with a sequence of Euclidean divisions, this scheme can also be applied on polynomials with coef-
ficients in a field K. There are two main algorithmic instances of the Euclid Algorithm: the first
one works on the ring of polynomials Fq[X ] (whose coefficients belong to the finite field Fq with q
elements), whereas the second one deals with the set N of positive integers. The Euclid algorithm
plays a central rôle in these two algorithmic domains. In polynomial case, this is a main step for
factoring polynomials, and, in a sense, factorisation of polynomials can be seen as a sequence of
gcd computations. And, polynomial factoring is widely used in computer algebra. Of course, the
situation is a priori quite different for integers, since integer factoring is thought to be “difficult”:
gcd computations, even if they are used in some important steps of factoring algorithms, are not
sufficient here. However, the Euclid algorithm is also central in other domains of arithmetic: in
the exact rational arithmetic, gcd computations are crucial, in order to keep the size of rationals
small. However, the Euclid algorithm is not only useful for computing gcd. Together with the gcd,
a second output of the Euclid algorithm is the continued fraction expansion [in both cases]. And it
proves often more efficient to compute directly with this continued fraction than using the rational
itself. And finally, the (extended) Euclidean algorithm computes modular inverses, and this type
of computation is central in cryptography, for instance. See the book [30] for nice applications of
the Euclidean scheme.
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2 LOÏCK LHOTE AND BRIGITTE VALLÉE

1.1. The Euclid Algorithms. In the sequel, the set A will denote Fq[X ] or N. The degree of a
non–zero polynomial u is denoted by deg u. For u = 0, we let deg u := −∞. On positive integers,
we consider the usual absolute value ||v|| := v, while, on polynomials, we consider the ultrametric
absolute value, defined by ||v|| := qdeg v, and ||0|| = 0. In the integer case, the size of a non–zero
integer v, denoted by ℓ(v), is the binary length of the integer v; it equals ⌊lg v⌋ + 1, where lg
denotes the logarithm in base 2. For polynomials, the size ℓ(v) of a non-zero polynomial v equals
the number of coefficients of the polynomial, i.e., 1 + deg v. In summary, for v 6= 0,

(1) Case (P ): ℓ(v) := 1 + deg v, Case (I): ℓ(v) := 1 + ⌊lg v⌋.
A polynomial v is monic if its dominant coefficient is equal to 1; in the integer case (by definition),
the monic elements are just all the non–zero elements of N. We will consider, as the set of possible
inputs for the Euclid Algorithm, the set

(2) Ω := {(u, v) ∈ A2; 0 ≤ ||u|| < ||v||, v monic}.
For any (u, v) of Ω, and by definition, the size of pair (u, v) is just the size ℓ(v) of v and the norm
of this pair is just the norm ||v|| of v.

The Euclid algorithm computes the greatest common divisor (in short gcd) by using Euclidean
divisions v = m · u + r with ||r|| < ||u||. On an input (u, v) ∈ Ω, it lets v0 := v, v1 := u, performs
a sequence of Euclidean divisions on the form,

(3) v0 = m1 · v1 + v2, v1 = m2 · v2 + v3, . . . vi = mi+1 · vi+1 + vi+2 . . . ,

and stops when the remainder vp+1 is zero. The last division performed is just vp−1 = mp · vp.
Remark that, in the integer case, the digit mp satisfies mp 6= 1.
The sequences of the norms ||vi|| is strictly decreasing, and the last non-zero remainder vp is
a greatest common divisor of u and v. By definition, the gcd d of (u, v) is the unique monic
polynomial d proportional to vp. The set G of possible digits in a non final step, the set F of
possible digits in the final step, and the set U of possible gcd’s are

(4) G := {m ∈ A; ||m|| ≥ 1}, U := {d ∈ A; d monic}, FI := {m ∈ N;m ≥ 2}, FP := G,
and the Euclid algorithm builds the fundamental bijection

(5) Ω ∼ G⋆ × U [Case (P )] Ω ∼ [ǫ+ F × G⋆] × U [Case (I)].

In Case (I), it will be useful to deal with the set Ω̃ of coprime inputs,

(6) Ω̃ := {(u, v) ∈ A2; u 6= 0, gcd(u, v) = 1} ∼ F × G⋆.

1.2. Bit-complexities. We wish to study the bit–complexity of the Euclid algorithm; here the
bit–complexity means the total number of binary operations for integers, and the total number of
operations in the field Fq for polynomials1. The (naive) bit–complexity of the Euclidean division
v = m · u+ r is ℓ(u) · ℓ(m) so that, the total bit–complexity of the Euclid Algorithm on (u, v) is

(7) B(u, v) =

p∑

i=1

ℓ(mi) · ℓ(vi).

The Extended Euclid algorithm outputs, at the same time, the Bezout pair (r, s) for which d =
rv + su. It computes the sequence si defined by

s0 = 0, s1 = 1, si = si−2 − si−1 ·mi−1, 2 ≤ i ≤ p.

The sequence si itself is defined by si := si for polynomials and si := |si| for integers. The last
element sp is the Bezout coefficient s. The bit–complexity D of Extended Euclid algorithm is then

(8) D(u, v) = ℓ(mp) · ℓ(vp) +

p−1∑

i=1

ℓ(mi) · [ℓ(vi) + ℓ(si)].

1Since the cardinality q of Fq[X] is fixed, this is actually a bit–complexity, in the usual meaning
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1.3. Other costs of interest. We observe that the previous costs of interestB,D can be expressed
as a sum of terms, each of them being a product of two factors: the first one involves the size of
digits mi, and the second one involves the size of the so-called continuants, namely vi and si. It is
then useful to compare these costs to other costs defined on Ω, namely additive costs, associated
to an elementary cost c on digits, under the form

(9) C(u, v) :=

p∑

i=1

c(mi).

When c(m) is O(logm), the cost c, and the cost C are said to be of moderate growth. This class
of costs contains quite natural parameters, as the number of steps (for c = 1), the total encoding
length (when c equals the binary length ℓ) or the number of occurrences of a given digit m0 (for
c(m) := [[m = m0]]) [In the paper, we use Iverson’s notation : [[X ]] ∈ {0, 1} and equals 1 if and
only X is true.].
We also consider a three costs, a cost N (v) which involves the size of remainders, its approximate
version N̂ (v) and a cost N (m) which can be seen as the analog of a path-length in lists,

(10) N (v)(u, v) :=

p∑

i=1

ℓ(vi), N̂ (v)(u, v) :=

p∑

i=1

lg vi, N (m)(u, v) :=

p+1∑

i=1

i · ℓ(mi).

[We have let mp+1 := vp]. In polynomial case, the two costs N (v), N (m) are equal, but this is no
longer true in integer case.

We are interested here in precisely studying the probabilistic behaviour of both gcd algorithms, for
polynomials and for integers. We consider that inputs (u, v) have a fixed size n, i.e., they belong
to the subset

(11) Ωn := {(u, v) ∈ Ω; ℓ(v) = n},
where Ω is defined in (2). We assume that Ωn is endowed with the uniform probability Pn. For a
random variable R defined on Ω, its restriction to Ωn is denoted by Rn, and we wish to analyse
the asymptotic behaviour of R, i.e., the evolution of variables Rn when n becomes large.

1.4. Previous results for average-case analysis. The evolution of the mean values E[Rn] is of
great interest and, more generally, the study of all moments E[Rℓ

n] provides a first understanding
of the probabilistic behaviour of the algorithm: this is the aim of average–case analysis.
In the polynomial case, there are few analyses of this type. The works of Knopfmacher and
Knopfmacher [18], or works of Friesen and Hensley [14] directly deal with the distribution. Since the
analysis in the number case is more difficult, first analyses began with the study of the average-case,
and there are now many well-known results of this type, even if the last ones have been obtained
recently. The first results on probabilistic analysis of Euclid’s Algorithm are due to Heilbronn and
Dixon [8, 15], who have shown, around 1970, that the average number of iterations is linear with
respect to the size. During the last ten years, the research team in Caen has designed a complete
framework for analysing an entire class of Euclidean algorithms, with a large class of parameters
[26, 27, 28]. It is possible to obtain precise results on the average behaviour of the main parameters
of the algorithm : the digits mi, and the size of continuants vi and si. Akhavi and Vallée have
also analysed the average bit–complexity [1]. These methods consider the underlying dynamical
systems, and make a deep use of dynamical tools, like the transfer operator. They form what we
now call the dynamical analysis methodology.

1.5. Distributional analysis and asymptotic gaussian laws. However, the distributional
analysis, which describes the evolution of the distribution of variable Rn, provides a much more
precise analysis of the algorithm: this is the ultimate purpose in analysis of algorithms. Very
often, variables Rn have a distribution which tends to the Gaussian law: this phenomenon is easily
proved as soon as cost Rn is the sum of n elementary costs, which are independent, and possess
the same distribution. In the “real algorithmic life”, and the “Euclidean world”, the elementary
costs are not independent, and their distribution may evolve with the evolution of the algorithm.
This is why an asymptotic gaussian law, even if it is widely expected, is often difficult to prove,
particularly in integer case.
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We prove here that many variables R defined on Ω follow asymptotically a gaussian law. We first
provide a precise definition of this notion:

Definition 1. [Asymptotic gaussian law.] Consider a cost R defined on a set Ω and its restriction
Rn to Ωn. The cost R follows an asymptotic law if there exist three sequences an, bn, rn, with
rn → 0, for which

P

[
(u, v) ∈ Ωn

∣∣ Rn(u, v) − an√
bn

≤ y

]
=

1√
2π

∫ y

−∞

e−t2/2 dt+rn(y), rn := sup{rn(y); y ∈ R}.

The sequence rn defines the speed of convergence, also denoted by r[Xn]. The expectation E[Rn]
and the variance V[Rn] satisfy E[Rn] ∼ an, V[Rn] ∼ bn. We say that the pair (an, bn, rn) is a
characteristic triple for the gaussian asymptotic law of R.

1.6. Previous results for distributional analyses. All the analyses previously described in
1.3 are only “average–case analyses”. Now, we review the main previous results for distributional
analyses. In polynomial case, Knopfmacher and Knopfmacher studied in [18] the exact distribution
of number of steps, and Friesen and Hensley [14] obtained large deviations in this context. For
the number case, there were recently two breakthroughs; the first one, in 1994, when Hensley [16]
performed the first distributional analysis, and proved that the number of steps has an asymptotic
Gaussian behaviour. However, his proof is not easily extended to other parameters of the algorithm.
Then, three years ago, Baladi and Vallée [2] have extended the dynamical analysis method for
obtaining limit distributions, for a large class of costs, the so-called additive costs of moderate
growth, defined in (9). They deal with the dynamical system underlying the algorithm and make
a deep use of the weighted transfer operator, relative to an elementary cost c, which depends on
two parameters (s, w) and is defined as

(12) Gs,w,[c][f ](x) :=
∑

m≥1

1

(m+ x)2s
· exp[wc(m)] · f

(
1

m+ x

)
.

For w = 0, the operator is just the plain transfer operator Gs

(13) Gs[f ](x) :=
∑

m≥1

1

(m+ x)2s
· f
(

1

m+ x

)
.

When c is of moderate growth, for (s, w) near (1, 0), the operator Gs,w,[c] acts on C1([0, 1]) and
admits a unique dominant eigenvalue denoted by λ(s, w, [c]). In the same vein, the dominant
eigenvalue of Gs is just denoted by λ(s). These dominant eigenvalues play a central work in [2],
and also in the present paper. The particular case when c equals the binary length ℓ is crucial in
study of bit–complexities.

The result of [2] can be stated as follows.

Theorem A (I). [Asymptotic gaussian law for additive costs of moderate growth] (Baladi and
Vallée). Consider an additive cost C relative to an elementary cost c of moderate growth [i.e.
c(m) = O(logm)], defined in (9).
(i) On the set of integer inputs of size n, the cost C asymptotically follows a gaussian law, with
mean, variance and speed of convergence given by

E[Cn] = µ(c) · n+ µ1(c) +O(2−nγ), V[Cn] = ρ(c) · n+ ρ1(c) +O(2−nγ), r[Cn] = O(n−1/2).

Here γ is a strictly positive constant which does not depend on cost c.
(ii) The constants µ(c) and ρ(c) [ρ(c) > 0] are mathematical objects closely related to the dominant
eigenvalue λ(s, w) of the transfer operator Gs,w,[c], defined in (12) and acting on C1([0, 1]). More
precisely, they are expressed with the first five derivatives of order 1 and 2 of λ(s, w) at (s, w) =
(1, 0),

(14) µ(c) =
2 log 2

|λ′s(1, 0)| · λ
′
w(1, 0),

(15) ρ(c) =
2 log 2

|λ′s(1, 0)|3 ·
[
λ′2s (1, 0) · λ′′w2(1, 0) − 2λ′w(1, 0) · λ′s(1, 0) · λ′′sw(1, 0) + λ′2w(1, 0) · λ′′s2 (1, 0)

]
.
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The computational status of these two constants µ(c) and ρ(c) is different. Very often, the first
derivatives admit a closed form at (1, 0). For instance, in the case when the cost c is the binary
length ℓ,

(16) λ′s(1, 0) = − π2

6 log 2
λ′w(1, 0) =

2

log 2
log

∞∏

i=0

(1 +
1

2i
), µ(ℓ) =

12 log 2

π2
log

∞∏

i=0

(1 +
1

2i
).

It does not seem to be the same for the constant ρ(c). In [20], Lhote performs a general study for the
computational status for this type of “spectral constants” and proves that ρ(c) is polynomial–time
computable.

2. Results and outline of the method.

Neither the bit–complexities nor the length of the remainders belong to the class of additive costs.
These bit–complexity costs are more difficult to deal with, because they involve both continuants
and digits, in a multiplicative way. Here, we aim to study the distribution of the bit–complexity,
and we wish to extend both the results of Akhavi and Vallée, about the average bit–complexity,
and the general distributional methods of Baladi and Vallée. We wish also to study the evolution
of the size of remainders vi.

2.1. Extended bit–complexity. The “extended” cost D defined in (8) is easier to analyse be-
cause it is, in a sense, more regular than cost B. We prove here that, on the set of inputs (u, v)
of size n, and, in the two cases (polynomial case (P ), and integer case (I)), the cost D follows
asymptotically a gaussian law.

Theorem 1 (P ). [Extended polynomial bit–complexity.] On the set of polynomial inputs of size
n, the bit complexity D of the extended Euclid algorithm follows asymptotically a gaussian law,
with mean, variance and speed of convergence given by

(17) E[Dn] =
2q − 1

q
·n2 ·[1+O

(
1

n

)
], V[Dn] =

q − 1

q2
·n3[1+O

(
1

n

)
], r[Dn] = O(n−1/2).

In fact, it is easy to obtain, in case (P ), the exact asymptotic expansion of both E[Dn] and V[Dn].
In the integer case, the results are of the same spirit; however, the main constants that intervene in
the mean and the variance are more involved, and the proven speed of convergence is not optimal.

Theorem 1 (I). [Extended integer bit–complexity.] (i) On the set of integer inputs of size n, the
bit complexity D of the extended Euclid algorithm follows asymptotically a Gaussian law, with
mean, variance and speed of convergence given by

(18) E[Dn] = µ(ℓ) · n2 · [1 +O

(
1

n

)
], V[Dn] = ρ(ℓ) · n3[1 +O

(
1

n

)
], r[Dn] = O(n−1/3),

where µ(ℓ) and ρ(ℓ) are the constants which appear in Equations (14,15) of Theorem A, when the
cost c is the binary length ℓ.

2.2. Standard bit–complexity. For the standard bit–cost B, defined in (7), we prove the fol-
lowing:

Theorem 2 (P ). [Standard polynomial bit–complexity.] On the set of polynomial inputs of size
n, the bit complexity B of the standard Euclid algorithm follows asymptotically a gaussian law,
with mean, variance and speed of convergence given by

(19) E[Bn] =
2q − 1

2q
·n2 ·[1+O

(
1

n

)
], V[Bn] =

q − 1

3q2
·n3[1+O

(
1

n

)
], r[Bn] = O(n−1/2).

As in Theorem 1(P ), it is easy to obtain, in this case, the exact asymptotic expansions of both
E[Bn] and V[Bn]. For the integer case, we here obtain only partial results. Results of Akhavi and
Vallée [1] already provide some information about the moments of cost B: the constant of the main
asymptotic term in the mean value E[Bn] is already known, and the variance V[Bn] is of order
o(n4). Here, we study more precisely the asymptotic behaviour of the variance V[Bn]. Moreover,
we will state in Section 4 two conjectures : a conjecture (C) which relates the variance V[Bn] and



6 LOÏCK LHOTE AND BRIGITTE VALLÉE

the variance V[Dn], and a conjecture (G) which entails the plausibility of an asymptotic gaussian
law for the standard bit-complexity B, even if it does not itself imply this asymptotic behaviour.

Theorem 2 (I). [Standard integer bit–complexity.] On the set of integer inputs of size n, the
mean and the variance of Bn satisfy

(20) E[Bn] = µ0(ℓ) · n2 · [1 +O

(
1

n

)
], V[Bn] = ρ0(ℓ) · n3[1 +O

(
1

n

)
],

The constants µ0(ℓ) and µ(ℓ) are related via the equality µ0(ℓ) = (1/2)µ(ℓ) and the variance
constant ρ0(ℓ) is not zero.
Moreover, under the conjecture (C) the constant ρ0(ℓ) is related to constant ρ(ℓ) of Theorem 1 (I)
via the equality ρ0(ℓ) = (1/3)ρ(ℓ).

Remark. Conjecture (C) is motivated by the polynomial case and “copies” it.

2.3. Size of remainders. We are also interested in describing the evolution of the size of remain-
ders vi during the execution of the algorithm, and we consider the size of the remainder vi at “a
fraction of the depth”. For an input (u, v), we denote by P (u, v) the number of iterations of the
Euclid Algorithm on the input (u, v), that is also called the depth of (u, v). Furthermore, for a real
δ ∈]0, 1[, the random variable L[δ] is the size of remainder vi when i equals ⌊δP ⌋. It is defined as

(21) L[δ](u, v) := ℓ(v⌊δP (u,v)⌋).

The following result shows that the size of the remainders at a fraction δ of the depth asymptotically
follows a gaussian law, at least when δ is rational. This proves that the evolution of the sizes of
remainders is very regular during an execution of the algorithm. This result constitutes a “discrete
version” of the well-known result of [22] (sharpened by Vallée in [29]) which shows that the n-th
continuant of a real x ∈ I asymptotically follows a gaussian law, when I is endowed with any
density of class C1.
This result also plays a central rôle in the analysis of the so–called Interrupted Euclidean Algorithm
which stops as soon as the size ℓ(vi) of the remainder vi is less than δ · ℓ(v0). An average–case
analysis of the Interrupted Algorithm is provided in [5], and the present results are a first [but
crucial] step towards the distributional analysis of the algorithm. This type of results also plays a
central rôle in the analysis of two important variants of the Euclid Algorithms: the Lehmer Euclid
Algorithm [19, 5], and fast versions of Euclidean Algorithms [24, 6].

Theorem 3. [Gaussian limit law for sizes of remainders at a fraction of the depth.] Consider a ra-
tional δ of ]0, 1[. On the set of inputs of size n, the length L[δ] defined in (21) follows asymptotically
a Gaussian law. The speed of convergence is

rn = O(n−1/2) in case (P ), rn = O(n−1/3) in case (I),

and the following estimates hold for the mean and the variance,

Case (I): E[L[δ]
n ] = µ[δ] · n+O(1), V[L[δ]

n ] = ρ[δ] · n+O(1),

Case (P ): E[L[δ]
n ] = µ[δ] · n+ µ1(δ) +O(2−nγ), V[L[δ]

n ] = ρ[δ] · n+ ρ1(δ) +O(2−nγ).

Here γ is a strictly positive constant which depends on δ, and the constants µ[δ] and ρ[δ] satisfy

µ[δ] = (1 − δ), ρ[δ] =
δ(1 − δ)

q − 1
in case (P ), ρ[δ] = δ(1 − δ)

|Λ′′(1)|
|Λ′(1)| > 0 in case (I),

where Λ(s) is the logarithm of the dominant eigenvalue λ(s) of the operator Gs defined in (13).

Remark. Our methods only deal with the case when δ is rational.

We describe now the main principles of our method.
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2.4. Generating Functions. We mainly use methods from analytic combinatorics, which deal
with generating functions. See the book [12] for a complete treatment of this methodology. Our
main tool is, as usual in analysis of algorithms, (bivariate) generating functions which depend on
two parameters: the first one “marks” the input size, and the second one “marks” the cost of
interest. For reasons which will appear clearer later, and unlike in classical use, we choose gener-
ating functions of Dirichlet type with respect to the size parameter s. The (bivariate) generating
function of some cost R defined on the input set Ω will be2

(22) SR(s, w) :=
∑

(u,v)∈Ω

1

||v||2s
exp[wR(u, v)] =

∑

k≥1

1

k2s
rk(w)

where rk(w) is the cumulative value of exp[wR] on inputs for which ||v|| = k. We recall that
||v|| = v in the integer case and ||v|| = qdeg v in the polynomial case. Then, in integer case, this
series remains a (general) Dirichlet series, while, in polynomial case, this is in fact a power series
in z = q−2s which will be alternatively denoted by TR(z, w),

(23) TR(z, w) := SR(−1

2
logq z, w) =

∑

(u,v)∈Ω

zdeg v exp[wR(u, v)].

We recognise in TR(z, w) the usual bivariate generating function, where variable z marks the
degree, quite close to the polynomial input size. These bivariate series are used for analysing the
distribution of cost R.

If we restrict our study to the moment of order k, we deal with a Dirichlet Series S
[k]
R (s) with

respect to the unique variable s, which is the k-th derivative of w 7→ SR(s, w) at w = 0,

(24) S
[k]
R (s) :=

∂k

∂wk
SR(s, w)|w=0 =

∑

(u,v)∈Ω

1

||v||2s
Rk(u, v).

This is also a power series T
[k]
R (z) in the polynomial case, namely

T
[k]
R (z) =

∑

(u,v)∈Ω

Rk(u, v) · zdeg v.

We first look for an alternative expression for these series SR(s, w) from which the position and the
nature of the dominant singularity of SR(s, w) become apparent. Then, with taking derivatives,

we also obtain alternative expressions for S
[k]
R (s). Then, we transfer these informations on the

coefficients of SR(s, w) or S
[k]
R (s), which are our prime subject of interest.

How can we obtain an alternative expression for series SR(s, w)? In the case of the polynomial gcd,
it is possible to directly deal with the bijection (5), because it keeps track of the size; for instance,
for an additive cost C related to some step-cost c, we easily obtain an alternative form for TC(z, w)
which involves the quasi inverse 1/(1 −G[c](z, w)) of the generating function Gc(z, w) relative to
cost c,

(25) Gc(z, w) =
∑

m∈G

exp[wc(m)] · zdeg m.

And, now, for integers? The bijection is no longer of use, since it does not deal properly with
the integer size, and the series SR(s, w) cannot be directly expressed with the quasi-inverse of
1/(1 −Ac(s, w)) of the generating function Ac(s, w) relative to cost c,

(26) Ac(s, w) =
∑

m∈G

1

||m||2s
exp[wc(m)].

We will use the transfer operator Gs,w,[c] relative to the underlying dynamical system, defined in
(12), as a “generating” operator, and we will deal with the more elaborated bijection (44) : now,
the bivariate series SC(s, w) can be expressed with the quasi-inverse (I−Gs,w,[c])

−1 of Gs,w,[c] [see
for instance Equation (65)].

2We also consider in integer case the “tilde” generating functions relative to the subset eΩ of coprime inputs
defined in (6).
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It will be possible to transfer these informations on the coefficients of series, as soon as we dispose
of a convenient “extractor” which expresses coefficients of series as a function of the series itself.
Of course, the common extractor is the Cauchy formula. For power series, the usual integration
contour is a (compact) circle, whereas it is an (unbounded) vertical line for Dirichlet series; this
explains why it is more difficult to deal with Dirichlet series than usual (power) series. The main
“extractors” for Dirichlet series are Tauberian Theorems [which do not provide remainder terms]3,
or the Perron Formula [which may provide remainder terms]. Tauberian theorems are well-adapted
for average–case analysis, but Perron’s formulae are essential in distributional analysis. However,
they need a more precise information on the quasi–inverse of (I−Gs,w,[c])

−1, namely the existence
of a vertical strip free of poles (as in the Prime Number Theorem...)

2.5. Decomposition of bit-complexity costs. Our first step is quite natural. Since the ex-
pression of the bit–complexities is quite involved, we “split” each cost of interest [namely the cost
B, and the extended cost D] into two parts: a “main” cost X , which will be (asymptotically)
gaussian, and a “remainder” cost Y , which will be (asymptotically) more concentrated that the
main cost. The following result proves that, in this general framework, the total cost Z = X+Y is
(asymptotically) gaussian, and its characteristics –mean value, variance, and speed of convergence–
are expressed with characteristics of X and Y .

Definition 2. [Variance-equivalence] Consider two costs X and Z, defined on Ω and their restric-
tions Xn, Zn to Ωn. We say that X and Z are variance–equivalent if V[Xn − Zn] = o(V[Xn]) for
n→ ∞. They are called equivalent4 with order αn [with αn → 0] if V[Xn −Zn] = αn · V[Xn]. We
denote by X ≍α Z such a situation.

Proposition 1. Consider two costs X and Z, defined on Ω and their restrictions Xn, Zn to Ωn.
Suppose that X and Z are variance–equivalent (with order αn) and that X admits an asymptotic
gaussian limit law with a speed of convergence r[Xn]. Then Z admits an asymptotic gaussian limit
law, with a variance and a speed of convergence which satisfy

V[Zn] = V[Xn] · [1 +O(α1/2
n )], r[Zn] = r[Xn] +O(α1/3

n ).

Proof. Consider Y := Z − X and the two variables X̄n = (Xn − E[Xn]) · (V[Xn])−1/2 and
Ȳn = (Yn − E[Yn]) · (V[Xn])−1/2. Then, the random variable X̄n + Ȳn satisfies

P[X̄n + Ȳn ≤ a] = P
[[
X̄n + Ȳn ≤ a

]
∩
[
|Ȳn| ≤ ǫn

]]
+ P

[[
X̄n + Ȳn ≤ a

]
∩
[
|Ȳn| > ǫn

]]
.

The second term is less than P
[
|Ȳn| > ǫn

]
, and, with the Markov inequality, it is O(αn ·ǫ−2

n ). Now,
for the first term, one has

P
[
X̄n ≤ a− ǫn

]
≤ P

[[
X̄n + Ȳn ≤ a

]
∩
[
|Ȳn| ≤ ǫn

]]
≤ P

[
X̄n ≤ a+ ǫn

]
,

and both lower and upper bounds are of the form

1√
2π

∫ a±ǫn

−∞

e−t2/2dt+ O(rn) =
1√
2π

∫ a

−∞

e−t2/2dt+O(rn + ǫn),

with rn = r[Xn]. Finally, the speed of convergence is O(rn + ǫn +αn · ǫ−2
n ) and the optimal choice

ǫ3n = αn provides the result.

Remark. In case (P ), we deal with an order αn = O(n−2) [which will entail an optimal speed of
convergence of order n−1/2], whereas in case (I) we only obtain an order αn = O(n−1) [which will
entail a speed of convergence of order n−1/3]. In both cases, the variances studied are of order n3

and are proven to admit an asymptotic expansion, which is polynomial with respect to n. Then
the estimates about the variances can be improved and become V[Zn] = V[Xn] +O(n2).

3There are Tauberian Theorems which provide errors terms, but we do not use them in our context.
4This is actually an equivalence, since in this case the two variance satisfy V[Xn] ∼ V[Zn].
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2.6. Quasi-Powers Theorem. This theorem provides sufficient conditions on the moment gen-
erating function under which the parameter R is proven to follow an asymptotic gaussian law.

Theorem B. [Hwang] [17] Consider a cost R defined on a set Ω and its restriction Rn to Ωn,
and suppose that the moment generating function E[exp(wRn)] of Rn is an analytic function on a
neighbourhood W of w = 0 and satisfies on W

E[exp(wRn)] = exp[βnA(w) +B(w)] ·
(
1 +O(κ−1

n )
)

(βn, κn → ∞),

with A(w), B(w) analytic on W and a O-term uniform on W . Then, the expectation and the
variance of Rn satisfy

E[Rn] = A′(0) · βn +B′(0) +O(κ−1
n ), V[Rn] = A′′(0) · βn +B′′(0) +O(κ−1

n ).

Moreover, if A′′(0) is not zero, then Rn asymptotically a Gaussian law with speed of convergence

rn = O(κ−1
n + β

−1/2
n ).

2.7. Various types of costs. The analyses of the bit complexities B,D and of the size of the
continuant L[δ] are based on decompositions that satisfy Proposition 1. In addition to the costs N
[see (10)], these decompositions involve various other costs, and in particular, the so–called additive
costs and end–costs, whose generating functions will be easy to deal with.

Definition 3. [Types of cost] (i) An elementary cost c and its associated additive cost C are of
intermediate growth if c(m) = O(ℓ(m)β) with β > 0. An elementary cost c and its associated
additive cost C are of moderate growth if c(m) = O(ℓ(m)).
(ii) An end–cost R is a cost which only depends on gcd vp and quotients m2 andmp in a polynomial
way, namely R = O

(
(ℓ(vp) + ℓ(mp) + ℓ(m2))

k
)

for some integer k ≥ 1.

The general philosophy of our work is now summarised by the following theorem, which is one of
the basic results of our paper.

Theorem 4. The following holds:
(a) In case (I), any additive cost C of moderate growth is asymptotically gaussian with a char-

acteristic triple of the form [O(n),Θ(n), O(n−1/2)]. In case (P ), any additive cost C of moderate
growth, whose elementary cost is not proportional to c = deg, is asymptotically gaussian with a
characteristic triple of the form [O(n),Θ(n), O(n−1/2)].

(b) In case (P ), the costs N defined in (10) are asymptotically gaussian with a characteristic
triple of the form [O(n2),Θ(n3), O(n−1/2)].

(c) Any additive cost C of intermediate growth satisfies the concentration property, i.e., the
expectation E[Cn] and the variance V[Cn] are O(n).

(d) Any end–cost has all its moments of order O(1).

Remark. We did not succeed proving Assertion (b) in case (I) whereas it is an essential result for
studying the bit–complexity B in case (P ). This is why we conjecture the following.

Conjecture (G). In case (I), the costs N defined in (10) are asymptotically gaussian with a
characteristic triple of the form [O(n2), O(n3), O(n−1/2)].

2.8. Plan of the paper. The general architecture of the paper is summarized in Figure 1. Section
3 is devoted to the polynomial case, and deals with (bivariate) generating functions. Sections 4
and 5 deal with the number case: Section 4 describes the dynamical system underlying the Euclid
algorithm, introduces the transfer operator and provides alternative expressions of the generating
functions which involve the transfer operator. Then, in Section 5, we perform the analytic study,
and obtain the main results in the number case. In Section 6, we describe an unified framework
for the two cases (P ) and (I).

3. The Euclid algorithm on polynomials.

We perform the analysis of the Euclid algorithm on Fq[X ], and we wish to prove Theorems
1-4 with their (P ) version. We first decompose the bit-complexities cost, and show that these
decompositions involve the costs which are studied in Theorem 4. Then, the remainder of this
section is devoted to the proof of the version (P ) of Theorem 4 and Theorem 3. The main tool
here for studying the behaviour of these costs is the generating function, univariate (in the case
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Results Polynomial case (P ) Integer case (I)
Theorem 3 Section 3.3 (Alg) Section 4.7

(Ana) Section 5.8
Decomposition of costs Proposition 2 (P ) Section 3.1 Proposition 2 (I) Section 4.3
Variance-equivalence Proposition 2 (P ) Section 3.1 Proposition 3 (I) Section 4.4

Theorem 1 Proposition 1 + Theorem B [Hwang] Proposition 1 + Theorem B [Hwang]
+ Proposition 2 (P )+ Theorem 4(P ) + Proposition 3(I)+ Theorem 4(I)

Theorem 2 Proposition 1 + Theorem B [Hwang] Assertion (c) of Proposition 3(I)
+ Proposition 2(P )+ Theorem 4(P ) Conjecture (C)

Theorem 4(a) Section 3.3 Theorem A [Baladi-Vallée]
Theorem 4(b) Section 3.5 Conjecture (G)
Theorem 4(c) Section 3.7 (Alg) Section 4.10

(Ana) Section 5.6
Theorem 4(d) Section 3.8 (Alg) Section 4.13

(Ana) Section 5.3
Conjecture (C) Proposition 3 (I) Section 4.4

(Alg) Proposition 5 Section 4.12
(Ana) Proposition 8 Section 5.7

Conjecture (G) Conjecture (G+) Proposition 3(I)
(Alg) Section 4.8
(Ana) Section 5.9

Figure 1. The general architecture of the paper. (Alg) means Algebraic study
while (Ana) means Analytic study.

where only moments are analysed) or bivariate, when we expect a gaussian limit law. When all
the assertions of Theorem 4 are proven, we obtain Theorem 1 (P ) and Theorem 2 (P ) with an
application of Proposition 1.

3.1. Decomposition of costs. For simplicity, we denote by mp+1 the monic gcd vp. The poly-
nomial case (P ) will be easier because both bit-complexities B and D are only expressed with the
sequence ℓ(mi) (with 1 ≤ i ≤ p+ 1). Since the degrees of polynomials vi and si are both related
to degrees degmi of quotients mi, one has, for any i, with 0 ≤ i ≤ p,

(27) deg vi =

p+1∑

j=i+1

degmj , deg si =

i−1∑

j=1

degmj , ℓ(vi) + ℓ(si) = 2 + ℓ(v0) − ℓ(mi).

This provides the following decompositions for the bit-complexities:

Proposition 2(P ). On Ωn, the extended bit-complexity D = Dn decomposes as

Dn =

[
n ·

p−1∑

i=1

ℓ(mi)

]
+

[
2 ·

p−1∑

i=1

ℓ(mi) −
p−1∑

i=1

ℓ2(mi)

]
+ [ℓ(mp) · ℓ(mp+1)]

On Ωn, the plain bit-complexity B = Bn decomposes as

Bn =

[
1

2
(n− 1)2 − 1 +

p+1∑

i=1

i · degmi

]
+

[
p+1∑

i=1

(1 − 1

2
deg2mi)

]
.

With Theorem 4 (P ), both decompositions satisfy Proposition 1 and with Definition 2, the following
holds on Ωn,

D ≍
(n−2)

n · L, with L =

p−1∑

i=1

ℓ(mi) B ≍
(n−2)

N +
n2

2
, with N =

p+1∑

i=1

i degmi,

where the costs n · L and N are both asymptotically gaussian with a characteristic triple of the
type [O(n2), O(n3), O(n−1/2)].

Proof. Each decomposition exhibits three possible blocks delimited by square brackets (the third
block is possibly empty). The first block will provide the “main” part, which will be proven to be
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(asymptotically) gaussian. The cost L is an additive cost of moderate growth and will be proven to
be asymptotically gaussian with characteristic triple [O(n),Θ(n), O(n−1/2)] in Section 3.3. Hence,
the cost n · L is asymptotically gaussian with characteristic triple [O(n2), O(n3), O(n−1/2)]. The
gaussian behaviour of cost N will be proven in Section 3.5. The possible third block is formed
with end costs (studied in Section 3.8) whose variance is O(1). The second block is formed with
additive costs of intermediate growth, whose variance will be proven of order O(n) in Section 3.7.

Admitting Theorem 4(P ), Proposition 1 and Proposition 2 entail that the bit-complexities B and
D follow asymptotic gaussian laws [Theorem 1(P ), Theorem 2(P )]. The remainder of this section
is then devoted to the proof of Theorem 4(P ) as well as the proof of Theorem 3(P ) (concerning
the size of the remainders).

3.2. Generating functions. Here, our main tools are generating functions, since it will be easy
to transfer operations on polynomials into operations on generating functions. We will always deal
with generating functions which will be fractional fractions with respect to z and t = ew. The
reference size for generating functions is the degree. We recall that the Euclidean algorithm builds
a bijection between Ω and the Cartesian product G⋆ × U with

Ω := {(u, v); v monic and [u = 0 or deg u < deg v]},

G := {m ∈ Fq[X ]; degm ≥ 1}, U := {v ∈ Fq[X ]; v monic}.
The generating functions T (z) of Ω, G(z) of G, U(z) of U are then equal to

T (z) =
1

1 − q2z
G(z) =

(q − 1)qz

1 − qz
= (q − 1)

[
1

1 − qz
− 1

]
, U(z) =

1

1 − qz
.

The fundamental bijection, which is compatible with the notion of size, can be translated into an
equality between generating functions. Since the generating function of G⋆ is just the quasi-inverse
1/(1 −G(z)), we finally obtain

T (z) =
1

1 −G(z)
· U(z).

Of course, this equality is trivial in this case. However, we will see how useful it will be when we
refine it when considering some additive cost. Flajolet adopts this point of view in [11], and obtains
a concise and elegant proof of results previously obtained in [18] [with counting arguments] on the
distributional analysis of the number of iterations.

In the remainder of this section, we make a constant use of bivariate generating functions relative
to some parameter R, namely the series TR(z, w) or T̂R(z, t)

TR(z, w) :=
∑

(u,v)∈Ω

ewR(u,v) · zdeg v, T̂R(z, t) :=
∑

(u,v)∈Ω

tR(u,v) · zdeg v.

We first analyse costs for which we expect an asymptotic gaussian law, namely
– additive costs of moderate growth, in 3.3 and 3.4,
– cost N in 3.5,
– degree of the remainder vi at a fraction of the execution in 3.6.

3.3. Gaussian law for additive costs of moderate growth. [Proof of Theorem 4(P )(a)] Con-
sider a cost c defined on Fq[X ]. The total cost C relative to c is defined on the set Ω as

C(u, v) :=

p∑

i=1

c(mi).

Consider also the bivariate generating functions G[c](z, w), TC(z, w)

(28) G[c](z, w) :=
∑

m∈G

ewc(m) · zdeg m, TC(z, w) :=
∑

(u,v)∈Ω

ewC(u,v) · zdeg v.
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Now, the bijection (5), together with the additivity of cost (9) provide a relation between the
bivariate generating functions G[c](z, w), U(z), TC(z, w), namely

(29) TC(z, w) =
U(z)

1 −G[c](z, w)
.

Now, we omit the reference to the cost c. The moment generating function E[exp(wCn)] is expressed
with coefficients of TC(z, w) and T (z) = TC(z, 0) as

E[exp(wCn)] =
[zn−1]TC(z, w)

[zn−1]TC(z, 0)
.

With the particular form of TC , it is clear that the dominant singularity is brought by the denom-
inator; it is located at z = σ(w), where σ(w) is defined by the equation G(σ(w), w) = 1. At w = 0,
one has σ(w) = q−2 and the two derivatives

(30) G′
z(q

−2, 0) = G′
z(q

−2) =
q3

q − 1
, G′

w(q−2, 0) =
∑

m∈G

c(m) · q−2 deg m =
∑

m∈G

c(m)

||m||2 ,

are not zero. From the Implicit Function Theorem, and the moderate growth condition, such a
function σ is well–defined and analytic on a neighbourhood of w = 0 and satisfies σ(0) = 1/q2.
Since G is analytic, the denominator 1−G(z, w) possesses a simple pôle at s = σ(w). And finally,
on a neighbourhood of w = 0,

[zn]TC(z, w) = exp[−nΣ(w) + V (w)] · [1 +O(θn)], with Σ(w) = log σ(w), θ < 1.

Moreover V is analytic on W , and the O–term is uniform on W . Then, the Quasi-Powers Theorem
applies, with

A(w) = −Σ(w) + Σ(0), B(w) = V (w) − V (0), κn = θ−n,

and provides the estimates for the mean and the variance,

E[Cn] = −Σ′(0) · n+ V ′(0) +O(θn), Vn = −Σ′′(0) · n+ V ′′(0) +O(θn).

Provided that the condition Σ′′(0) 6= 0 holds, this entails an asymptotic gaussian law with a speed
of convergence rn = O(n−1/2).
We now study in the next lemma the condition Σ′′(0) 6= 0.

Lemma 1. For a cost c defined on Fq[X ], consider the function σ defined on a neighbourhood of
w = 0 by the equality G(σ(w), w) = 1, and denote by Σ the function defined by Σ = log σ. Then,
the two conditions are equivalent

(i) Σ′′(0) = 0,
(ii) The cost c is proportional to cost deg.

Proof. At z = σ(w), the series G(z, w) satisfies

(31) 1 = G(σ(w), w) =
∑

m∈G

efm(w) with fm(w) := wc(m) + Σ(w) degm.

We already know from (30) that the two derivatives G′
z(q

−2, 0) and G′
z(q

−2, 0) are not zero. Taking
the derivative of (31) shows that σ′(0) 6= 0, and entails that Σ′(0) = σ′(0)/σ(0) 6= 0. With two
derivations of (31) with respect to w, at w = 0, we obtain

(32) 0 =
∑

m∈G

[f ′′
m(w) + f ′2

m(w)] · efm(w).

If Σ′′(0) = 0, then the equality f ′′
m(0) = Σ′′(0) ·degm = 0 holds for all m ∈ G. Then, Relation (32)

proves the equality f ′
m(0) = 0 = c(m) + Σ′(0) · degm, valid for all m ∈ G. Since Σ′(0) 6= 0, this

entails that c(m) is a linear function of degm.
Conversely, if c is of the form c(m) = d · degm, then G[c](z, w) can be written as

(33) G[c](z, w) =
(q − 1)qzedw

1 − qzedw
= G(zedw),

and the function σ(w) is defined by the relation σ(w) = q−2 · e−dw. Then Σ is a linear function of
w and Σ′′(0) = 0. This ends the proof of the lemma.

With Lemma 1, Theorem 4(P )(a) is now proven.
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Remark. If we are interested in an additive cost defined by C(u, v) :=
∑p

i=1 c(mi) + d(vp), the
bivariate series is now

(34) TC(z, w) =
Ud(z, w)

1 −G[c](z, w)
,

and the analysis is almost the same [compare (29) and (34)].

3.4. Some particular costs of moderate growth. We consider the cases when c is constant,
and then the case when c = ℓ. The total costs C associated are of main algorithmic interest since
the cost relative to c = 1 is the number P of iterations and the cost relative to c = ℓ is the total
space necessary for storing the sequence of the digits. This is also equal to the total encoding
length of the continued fraction relative to the input u/v (see Introduction and Section 6).

Case c = 1. Here, the series G[c](z, w) satisfies G[c](z, w) = ewG(z), so that the function σ is
defined by the relation

1

σ(w)
= q[1 + (q − 1)ew].

Then, the two first derivatives of Σ = log σ satisfy : −Σ′(0) =
q − 1

q
, Σ′′(0) =

q − 1

q2
.

Case c = ℓ. Here, the series G[c](z, w) satisfies

G[c](z, w) = ew ·
∑

m∈G

(zew)deg m =
(q − 1)qze2w

1 − qzew
= ewG(zew)

so that the function σ is defined by the relation:
1

σ(w)
= qew · [1 + (q − 1)ew].

Then, the two first derivatives of Σ = log σ satisfy: −Σ′(0) =
2q − 1

q
, −Σ′′(0) =

q − 1

q2
.

This entails that the mean value E[Ln] of the total encoding length of the continued fraction is
asymptotic to n · [2 − (1/q)].

3.5. Gaussian law for Cost N . [Proof of Theorem 4(P )(b).] The main cost in the decomposition
of the cost B involves the cost N defined as

N(u, v) :=

p+1∑

i=1

i · degmi,

and we now show that N asymptotically follows a gaussian law. The bivariate generating function
TN(z, w) admits the alternative expression

TN(z, w) = U(z, w) +
∑

p≥1

G(z, w) ·G(z, 2w) · . . . ·G(z, pw) · U(z, (p+ 1)w)

which involves the bivariate generating functions U(z, w) and G(z, w) relative to cost c = deg. In
this case, letting t = ew, the equalities G(z, w) = G(zt), U(z, w) = U(zt) hold and we deal in this

subsection with the bivariate generating function T̂N (z, t). This series satisfies

(35) T̂N(z, t) = U(zt) +
∑

p≥1

G(zt) ·G(zt2) · . . . ·G(ztp) · U(ztp+1),

and then satisfies the following functional equation

(36) T̂N(z, t) = U(zt) +G(zt) · T̂N(zt, t),

which appears in other studies related to analyses of path-lengths. Using the explicit formulae for
G,U , we obtain

T̂N (z, t) =
∑

p≥0

[(q − 1)qz]p · tp(p+1)/2 ·
p+1∏

j=1

1

1 − qztj

The last sum is of the form Φ(−(q − 1),−qz, t) with

Φ(u, ξ, t) :=
∑

p≥0

ξpup · tp(p+1)/2

p+1∏

j=1

1

1 + ξtj
.
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Since Φ satisfies the identity Φ(u, ξ, t) = 1 − tξ(1 − u)Φ(tu, ξ, t), the following q-identity, which
resorts to q-calculus5 (see [12] page 292),

Φ(u, ξ, t) = 1 +
∑

n≥1

(−1)n(tξ)n
n−1∏

j=0

(1 − utj)

entails an alternative expression for T̂N (z, t), namely

T̂N(z, t) = 1 +
∑

n≥1

(qzt)n
n−1∏

j=0

(1 + (q − 1)tj).

The moment generating function of the cost N on Ωn+1 is then equal to

E[exp(wNn+1)] =
[zn]TN(z, w)

|Ωn+1|
= enw

n−1∏

j=0

[
1 + (q − 1)ejw

q

]
.

We now study the parameter Ñ which is defined by

Ñ(u, v) =
N(u, v)

ℓ(v) − 1
, i.e., Ñn+1 :=

Nn+1

n
,

and we prove that it follows an asymptotic gaussian law. The moment generating function of Ñ
on Ωn+1 is of the form exp δn(w) with

δn(w) = w +

n−1∑

j=0

Fw(
j

n
), with Fw(y) := log

1 + (q − 1)ewy

q
.

We remark that the function Fw can be expressed with the function Σ relative to cost c = 1,
via the relation Fw(y) = Σ(0) − Σ(wy). We transform the previous sum into an integral with the
Euler-Mac Laurin formula, and now

δn(w) = n · A(w) +B(w) +O(
1

n
), with A(w) =

∫ 1

0

[Σ(0) − Σ(wy)] dy,

with an analytic function B on a complex neighbourhood of 0. Then

En[exp(wÑn)] = exp[(n− 1) ·A(w) +B(w)] ·
(

1 +O(
1

n
)

)
.

Then, the Quasi-Powers Theorem entails the following estimates for the expectation and the vari-

ance of parameter Ñ ,

E[Ñn] = A′(0) · n+O(1) =
q − 1

2q
· n+O(1), V[Ñn] = A′′(0) · n+O(1) =

q − 1

3q2
· n+O(1).

Moreover, A′′(0) 6= −Σ′′(0)/3 = (q − 1)/(3q2), then the cost Ñ follows an asymptotic normal law,
with a speed of convergence rn = O(n−1/2). The parameter N (our prime subject of interest) then
follows an asymptotic normal law with parameters

En[N ] =
q − 1

2q
· n2 +O(n), Vn[N ] =

q − 1

3q2
· n3 +O(n2), rn = O(n−1/2).

This concludes the proof of Theorem 4(P )(b).

Remark. This proof seems to be completely specific to the case where the cost deg intervenes.
The cost N [c] associated to another cost c of moderate growth does not seem to be analysed with
the same tool of q-calculus.

5The term q in the q-calculus is unrelated to the cardinality q of the field Fq.
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3.6. Gaussian law for L[δ]. [Proof of Theorem 3(P ).] The bivariate generating function for L[δ]

is just denoted by T[δ](z, w). With the bijection (5), relation (27), and the special form of the
bivariate generating function G(z, w) relative to c = deg [see (33)], it admits a nice alternative
form

(37) T[δ](z, w) = U(zew) ·
∑

p≥0

G(z)⌊δp⌋G(zew)p−⌊δp⌋.

Now, if δ is a rational of the form δ = c/(c+ d), then

T[δ](z, w) = U(zew) ·




c+d−1∑

j=0

G(zew)j−⌊δj⌋G(z)⌊δj⌋


 ·



∑

k≥0

G(zew)dk ·G(z)ck


 ,

(38) T[δ](z, w) = U(zew) ·




c+d−1∑

j=0

G(zew)j−⌊δj⌋G(z)⌊δj⌋


 · 1

1 −G(z)cG(zew)d

The last expression is a rational fraction with respect to two variables G(z) and G(zew), and the
dominant pôles are only brought by the denominator. The denominator z → 1−[G(z)δG(zew)1−δ]D,
with D = c+ d, admits as zeroes all the values of z for which

ψ(z, w) := G(z)δG(zew)1−δ = exp[2iLπ/D] with 0 ≤ L < D.

The Implicit Functions Theorem can be applied: there is a sufficiently small neighbourhood of w
on which a curve of the form z = σL(w) is well defined and satisfies ψ(σL(w), w) = exp[2iLπ/D].
For w = 0, the equality ψ(z, 0) = G(z) entails that the relation G(σL(0)) = exp[2iLπ/D] holds.
Then,

σL(0) =

(
1

q

)
1

1 + (q − 1) exp[2iLπ/D]
, so that, for 0 < L < D, |σL(0)| > q−2 = |σ0(0)|.

There exist a (complex) neighbourhood W of w = 0 and a positive number θ < 1 for which
|σ0(w)| ≤ θ|σL(w)|, for any L, with 0 < L < D. Furthermore, when w = 0, the residue of T[δ](z, w)

at z = σ0(w) is the residue of T (z) at z = q−2. It is non zero, since q−2 is actually a simple pôle
for T . Then, there exists a small neighbourhood of w = 0 for which the residue of T[δ](z, w) at
z = σ0(w) is non zero. Finally, T[δ](z, w) admits as dominant singularity an unique (simple) pôle
at z = σ0(w), and

[zn]T[δ](z, w) =

(
1

σ0(w)

)n

· V (w) · [1 +O(θn)],

with a non-zero analytic function V (w) and a O–term uniform on W . The quasi-powers theorem
can be applied with A(w) = − logσ0(w) + log σ0(0). Now, if we let Λ(z) := logG(q−2e−z), the
relation ψ(σ0(w), w) = 1 which defines σ0(w) can be written as

δΛ(A(w)) + (1 − δ)Λ(A(w) − w) = 0.

Now, with two derivations, we obtain:

A′(0) = 1 − δ, A′′(0) = δ(1 − δ)
Λ′′(0)

|Λ′(0)| =
1

q − 1
· δ(1 − δ) > 0.

This completes the proof of Theorem 3 (P ).

Remark. It is important to remark that, in the case when δ is not rational, the singularity q−2 is
no longer a pôle. Consider the case where z = q−2. Then

T (q−2, w) := U(q−2ew)
∑

p≥0

G(q−2ew)p−⌊δp⌋

is a power series with respect to G(q−2ew) which possesses integer coefficients and is not a rational
fraction. Then, we can apply a Theorem due to Polya:

Theorem C. [Polya] If a power series with integer coefficients converges inside the unit disc, then
the function it represents is either a rational function or a function that admits the unit circle as
a natural boundary.
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This proves that w 7→ T (q−2, w) admits as singularities all the points of the curve

C = {w ∈ W ; G(q−2ew) = 1}

.

We have now analysed costs for which we expect an asymptotic gaussian law, namely
– additive costs of moderate growth, in 3.3 and 3.4,
– cost N in 3.5,
– degree of the remainder vi at a fraction of the execution in 3.6.

Now, at the end of this section, we study costs, for which we only expect results on moments,
namely, additive costs of intermediate growth, end–costs.

3.7. Additive costs of intermediate growth. [Proof of Theorem 4(P )(c).] We recall that the
series TC(z, w) relative to any additive cost C can be expressed as

TC(z, w) =
U(z)

1 −G[c](z, w)
,

where G[c](z, w) is the bivariate series relative to cost c [see equation (28)]. Now, if c is of interme-
diate growth, the generating function G[c](z, w) is no longer analytic at w = 0. However, it admits
derivatives of any order, and it is the same for TC(z, w). The derivative of order k of TC(z, w)

(with respect to w, at w = 0), denoted by T
[k]
C (z), will provide informations on the moment of

order k of C, via the relation

(39) E[Ck
n ] =

[zn−1]T
[k]
C (z)

[zn−1]T (z)
.

The first two series T
[k]
C (z) (for k = 1, 2) are equal to

T
[1]
C =

U ·G[c]

(1 −G)2
, T

[2]
C =

U ·G[c2]

(1 −G)2
+ 2

U ·G2
[c]

(1 −G)3

where the “weighted” series G[d] relative to some cost d is defined as

G[d](z) =
∑

m∈G

d(m) · zdeg m.

Since c is of intermediate growth, the two series G[c], G[c2] are analytic on a disk of center 0 and

radius strictly larger than q−2. The explicit expressions of G and U entail precise expressions for

T
[k]
C (z) (for k = 1, 2), namely

T
[1]
C (z) = G[c](z) ·

(q − 1)qz

(1 − q2z)2
, T

[2]
C (z) = G[c2](z) ·

(q − 1)qz

(1 − q2z)2
+ 2G2

[c](z) ·
(q − 1)qz(1 − qz)

(1 − q2z)3
,

which show that T
[1]
C has a dominant pôle of order 2 at z = q−2, T

[2]
C has a dominant pôle of order

3 at z = q−2. Then, with the Cauchy Formula,

[zn]S
[1]
C (z) = q2n ·

[
q − 1

q
·G[c](q

−2)

]
· n+O(1),

[zn]S
[2]
C (z) = q2n ·

[
q − 1

q
G[c](q

−2)

]2
· n2 +O(n).

Now, the equality [zn]T (z) = q2n proves that the first two moments of Cn admit the following
estimates

(40) E[Ci
n] =

[
q − 1

q
G[c](q

−2)

]i

· ni

(
1 +O(

1

n
)

)
.

This exhibits a cancellation in the dominant term of the variance, so that V[Cn] = E[C2
n]−E[Cn]2 =

O(n). This proves the assertion (c) of Theorem 4 (P ).
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3.8. End costs. [Proof of Theorem 4 (P )(d).] The end costs are all the costs of the form O(ℓ(m2)+
ℓ(mp) + ℓ(vp))

k for some integer fixed k. If E denotes the end-cost defined by E(u, v) = ℓ(m2) +
ℓ(mp) + ℓ(vp), it is sufficient to show that all the moments of En (of any order k) are O(1). The
bivariate generating function TE of E, can be written, with additivity of cost E as

TE(z, w) = Uℓ(z, w) ·
(

1 +
G2

[ℓ](z, w)

1 −G(z)

)
.

Now, we omit the index ℓ, and the k-th derivative of TE(z, w) [with respect to w, at w = 0] is

T
[k]
E (z) =

∂k

∂wk
U(z, w)|w=0 +

1

1 −G(z)

(
∂k

∂wk
(UG2

[ℓ])(z, w)

)
|w=0.

Since the function (UG2
[ℓ])(z, w), and all its derivatives (with respect to w, at w = 0), are analytic

in a disk of center 0 and radius strictly larger than q−2, the series T
[k]
E (z) possess a unique dominant

pôle at z = q−2, of order 1. Then, with the Cauchy Formula,

[zn]T
[k]
E (z) = q2n · ∂k

∂wk
(UG2

[ℓ])(
1

q2
, 0) · (1 +O(n−1)).

With (39) and relation [zn]T (z) = q2n, this proves assertion (d) of Theorem 4(P ).

3.9. Conclusion of the polynomial study. The analysis of the polynomial case is now complete,
since we have proven all the versions (P ) of Theorem 3 and Theorem 4. With Proposition 1 and
the decompositions in Proposition 2, this proves the gaussian limit laws of the bit–complexities B
and D [Theorem 1(P ) and Theorem 2(P )]. We now consider the integer case.

4. The Euclid Algorithm on Integers. Algebraic study

We now perform the analysis of the Euclid algorithm on integers, and we wish to prove the four
Theorems with their (I) version. We first decompose the bit-complexities costs, and show that
these decompositions involve the costs which are studied in Theorem 4. Since the integer study
is more involved, there are two sections devoted to the analysis in case (I). The present section
introduces the main tool of the analysis: the transfer operator. Then, it performs an “algebraic”
study: it provides, for each cost of interest, an alternative expression of the generating function
which involves the transfer operator. These alternative expressions will be used in Section 5 for
the analytical study.

4.1. Continued fraction expansion. Each division–step of the Euclid algorithm v = m · u + r
uses a digit m and changes the old pair (u, v) into a new pair (r, u). Instead of integers, we consider
rationals [the old rational x = u/v, and the new rational y = r/u] which both belong to the unit
interval, and we look for a relation between y and x. One has

y =
r

u
=
v −mu

u
=
v

u
− ⌊ v

u
⌋ =

1

x
− ⌊ 1

x
⌋.

The map T : I → I, defined as

(41) T (x) =
1

x
− ⌊ 1

x
⌋ for x 6= 0, T (0) = 0,

is called the Gauss map and plays a fundamental rôle in the study of the Euclid Algorithm. When
the quotient is m, there exists also a linear fractional transformation (LFT) h[m] for which

x = h[m](y) with h[m](y) =
1

m+ y
.
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Of course, the LFT’s h[m] are the inverse branches of T . On an input (u, v) with u 6= 0, the
execution (3) creates a (unique) continued fraction expansion (CFE) of the form

(42)
u

v
=

1

m1 +
1

m2 +
1

.. .

mp−1 +
1

mp

= h[m1] ◦ h[m2] ◦ . . . h[mp] = h(0),

and the Euclid algorithm “writes” the result u/v = h(0). We remark that the last step of the
Euclid algorithm is particular, since the last digit mp satisfies mp > 1. Then, with the sets H,F ,U
defined as

(43) H = {h[m],m ≥ 1}, F = {h[m],m ≥ 2}, U := {d ∈ N; d ≥ 1},
and already defined in (5), the Euclid Algorithm builds the bijection

(44) Ω̃ := {(u, v); 0 < u < v, gcd(u, v) = 1} ∼ H⋆ ×F ,
together with the decomposition

Ω ∼ U + Ω̃ × U .
4.2. Expression for continuants. When the algorithm performs p iterations, it gives rise to a
continued fraction of depth p. Here, we show that the main parameters of the Euclid Algorithm
on the input (u, v) (quotients mi, remainders vi and continuants si) can be read on the continued
fraction of the rational u/v. When the CFE of u/v is splitted at depth i, the LFT h defines three
LFT’s, the beginning LFT bi, the middle LFT hi and the ending LFT ei, respectively defined as

bi := h[m1] ◦ h[m2] ◦ . . . ◦ h[mi−1], hi := h[mi] ei := h[mi+1] ◦ . . . ◦ h[mp],

so that h decomposes as h = bi ◦ ei−1 = bi ◦ hi ◦ ei. The continuant si (which intervenes in the
extended gcd algorithm) is the denominator of the beginning rational bi(0), while the remainder
vi is related to the denominator wi of the ending rational ei(0) via the equality vi = vp · wi. For
any LFT h of the form

(45) h(x) = (αx+ β)/(γx+ δ) with α, β, γ, δ coprime integers,

there exists a simple (but important) relation between the denominator D[h] of the LFT h, defined
by D[h](x) := |γx+ δ|, and the derivative h′(x), namely

|h′(x)| =
| deth|
D[h](x)2

.

Here, all the LFT’s h used by the Euclid algorithm have their determinant that satisfy | deth| = 1.
Then, v−2

0 = v−2
p · |h′(0)|, and, more generally, the i-th continuants admit expressions which involve

the beginning LFT ei and the ending LFT bi under the form

(46) s−2
i = |b′i(0)|, v−2

i = v−2
p · |e′i(0)|.

We also deal with “approximate” versions ti, wi of parameters si, vi,

(47) wi = vi/vp, ti := |b′i(ei−1(0))−1/2| with wp = 1, s1 = 1, and t1 := 1.

4.3. Decomposition of the bit-complexities. We consider three costs which involve the con-
tinuants si and their approximate versions ti, wi,

A(u, v) :=

p∑

i=1

ℓ(mi) · lgwi, Ā(u, v) :=

p∑

i=1

ℓ(mi) · lg ti, A(u, v) :=

p∑

i=1

ℓ(mi) · lg si,

via their logarithms instead of their integer size. The costs A, Ā are useful because their generating
functions will be easily generated by our transfer operators [See Propositions 4 and 5, Section 4.11
and 4.12].

The following proposition first relates the approximate bit–costs A + Ā, A to the bit-complexities
costs D,B. Then, it provides decompositions for costs A,A+ Ā, in the same vein as in polynomial
case. The present decompositions will be more involved than in the polynomial case. This is due
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to the fact that it is no longer possible to express the bit-complexities, with only the parameters
ℓ(mi). We then introduce new parameters, the cost r and the sequence θi. In particular, the
sequence θi plays in the number case a similar rôle as the constant sequence equal to −1 in the
polynomial case. Finally, the proposition relates the three costs A, Ā, A.

Proposition 2 (I). (a) On Ωn, the bit–complexity D decomposes as

(48) D =
[
A+ Ā

]
+

[
p∑

i=1

di ℓ(mi)

]
− [ℓ(mp)ℓ(sp)]

where di is defined as di := 2 − {lg ti} − {lg vi} + lg si − lg ti + lg vp and is a O(ℓ(vp)).

On Ωn, the plain bit–complexity B decomposes as

(49) B = [A] +

[
p∑

i=1

fi ℓ(mi)

]

where fi is defined as fi := 1 − {lg vi} + lg vp and is O(ℓ(vp)).

(b) On Ωn, the approximate bit–complexity cost A + Ā of the Extended Euclidean Algorithm
decomposes as

(50) Ā+A =

[
n ·

p∑

i=1

ℓ(mi)

]
−
[

p∑

i=1

ℓ2(mi)

]
−
[

p∑

i=1

ℓ(mi)(r + θi)

]
.

The approximate complexity A of the standard algorithm decomposes as

(51) A =

[
1

2
(n− r)2 −

p∑

i=1

θi lgwi

]
− 1

2
(n− r).

Here, parameters r and θi are defined as r = lg vp − lg v0 + ℓ(v0), θi := lgwi−1 − lgwi − ℓ(mi)
and satisfy r = O(ℓ(vp)), −1 ≤ θi ≤ 1.

(c) On Ωn, the three costs A, Ā, A are related with the help of an auxilliary cost Â defined in (57)
which has exactly the same distribution as A. They satisfy

(52) Ā = A+

p∑

i=1

ai ℓ(mi), |A− Â| ≤ lgw2 · |ℓ(m2 + 1) − ℓ(m2) − 1|,

where ai is defined as ai := lg ti − log si and satisfies 0 ≤ ai ≤ 1.

Proof.

Assertion (a). We first use the definitions of wi, ti in (47) together with the relation ℓ(x) =
lg x− {lg x}+ 1 that holds for any x ∈ N. Second, since any LFT h used by the Euclid Algorithm
is of the form (45) with 0 < γ ≤ δ, the relation |h′(x)| ≤ 4|h′(y)| holds, for all x, y ∈ I, for any
h ∈ H⋆ and entails the relation −1 ≤ lg si − lg ti ≤ 0.

Assertion (b). We first define the sequence θi as follows: Denote by xi the rational vi+1/vi [which
is equal to the rational wi+1/wi]. The relation wi−1 = mi · wi + wi+1 entails that, for any i, with
1 ≤ i ≤ p,

(53) lgwi−1 − lgwi = lg(mi + xi) = ℓ(mi) + θi, with θi = lg
mi + xi

m̃i
, xi := T i(

u

v
),

and m̃i the smallest power of two strictly greater than mi. Remark that θi satisfies −1 ≤ θi ≤ 1.
Relation (53) replaces the polynomial relation ℓ(vi−1)− ℓ(vi) = ℓ(mi)−1, and, in the number case,
the sequence θi plays a similar rôle as the constant sequence equal to −1 in the polynomial case.
Then, for any i, 0 ≤ i ≤ p− 1, one has

(54) lgwi =

p∑

j=i+1

[ℓ(mj) + θj ],

and, with the parameter r defined as

(55) r = lg vp − lg v0 + ℓ(v0)
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the previous relation for i = 0 entails on Ωn the decomposition:

(56)

p∑

i=1

[ℓ(mi) + θi] = lgw0 = n− r.

Then, on Ωn, the cost A can be written as

An =

p∑

i=1

(
[ℓ(mi) + θi] − θi

)(∑

j>i

[ℓ(mj) + θj ]
)

=
1

2
(n− r)2 − 1

2
(n− r) −

p∑

i=1

θi lgwi.

In the study of cost An + Ān, the relation lg ti + lg(mi + xi) + lgwi = lgw0 = n − r holds and
entails the equality lg si + lgwi + ℓ(mi) = n− r − θi. Then, the cost An + Ān can be written as

A(u, v) + Ā(u, v) =

p∑

i=1

ℓ(mi)[n− r − θi − ℓ(mi)] = n ·
p∑

i=1

ℓ(mi) −
p∑

i=1

ℓ2(mi) −
p∑

i=1

ℓ(mi)(r + θi).

Assertion (c). The first equality is clear.
For the remainder of Assertion (c), we mainly use the mirror mapping on continued fraction
expansions, which associates to a CFE its mirror, formed of the same sequence of digits, in the
reverse order. However, the existence of two different CFE’s for the same rational makes the central
idea a little bit technical. We first recall that any non zero rational admits two continued fraction
expansions: – the proper CFE, built by the Euclid Algorithm, whose sequence of digits is of the
form (m1,m2, . . . ,mp) with mp 6= 1 – the improper CFE, of the form (m1,m2, . . . ,mp − 1, 1).

We introduce the mirror mapping τ (on integer pairs) which associates to a pair (u, v) ∈ Ω̃ a pair
τ(u, v) = (u′, v) which is characterized as follows: the rational u′/v is defined via (one of) its CFE,
which is the mirror of the proper CFE of u/v. Then the restriction of τ to [0, 1/2] is a bijection
of the interval [0, 1/2] (whose inverse is denoted by ρ0) whereas the restriction of τ to [1/2, 1] is
a bijection from [1/2, 1] onto [0, 1/2] (whose inverse is denoted by ρ1). We define the map α as
the bijection from [1/2, 1] onto [0, 1/2] which transforms a rational whose proper CFE is of the
form (1,m2,m3, . . . ,mp) to the rational whose (proper) expansion is (m2 + 1,m3, . . . ,mp) (The
two rationals α(u/v) and (u/v) are not “close”, but their CFE’s are “close”). Then the map ρ1 ◦α
is a bijection of the interval [1/2, 1]. Finally, since ρ0 and ρ1 ◦ α are bijections which fix the size,

the map Â defined by

(57) Â(u, v) := A(ρ0(u, v)), if u/v ≤ 1/2, Â(u, v) = A(ρ1 ◦ α(u, v)) if u/v ≥ 1/2

has exactly the same distribution as A on each Ωn.

We compare now Â and A. On [0, 1/2], it is clear that Â = A. On [1/2, 1], the two costs are
slightly different, and their difference is exactly the difference between the bit-complexity when the
quotients are (1,m2,m3, . . . ,mp) and when the quotients are (m2 +1,m3, . . . ,mp). This difference
equals lgw2 · [ℓ(m2 + 1) − ℓ(m2) − 1]. This ends the proof.

4.4. Variance-equivalence. The previous decompositions of Proposition 2 (I), together with
Theorem 4 (I) entail various variance equivalence (see Definition 2) between costs of interest.
Then, applying Proposition 2 provides asymptotic gaussian laws.

Proposition 3 (I). (a) On Ωn, various variance equivalences involve the bit–complexity costs D
and the cost Θ equal to the sum of the terms of the sequence θi:

D ≍
(n−1)

A+ Ā ≍
(n−1)

n · L, with L =

p−1∑

i=1

ℓ(mi), Θ :=

p∑

i=1

θi ≍
(n−2)

n− L,

(b) The bit–complexity D, the approximate bit-complexity Ā+A and the cost Θ are asymptotically
gaussian, with the respective characteristic triples [O(n2),Θ(n3), O(n−1/2)] (for the first two ones)
and [O(n),Θ(n), O(n−1/2)] (for the last one).
(c) The variance V[Bn] is of exact order Θ(n3).

B ≍
(n−1)

A ≍
(n−1)

n2

2
−N, with N :=

p∑

i=1

θi lgwi.
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(d) Conjecture (C) holds if and only the two terms 3E[(An − Ān)2] and V[Dn] have the same
dominant terms of order n3.

(e) The conjecture (G+) which states the Gaussian behaviour of N can be viewed as a strong form
of conjecture (G).

Proof.

Assertion (a). Except the case of cost N , there are three kinds of “remainder” costs in the various
decompositions of Proposition 2(I).
– First, there is an occurrence of a cost of intermediate growth [second block in (50)] whose variance
is O(n) [Theorem 4(I)(c)].
– A second kind is formed by costs of the form O(n)ℓ(mp) or O(n) · ℓ(m2) (case of the third block
in (48), or the second decomposition in (52)]. With Theorem 4(P )(d) their variance is of order
O(n2).
– Finally, the other remainders costs are of the form O(L) · ℓ(vp)and involve the additive cost L
defined in Proposition 3: this is the case of the second block of (48), the second block of (49), the
third block of (50), the block of the first decomposition of (52). Since Pn is O(n), relation (56)
entails that Ln is O(n). Then, with Theorem 4(P )(d) the variance of all the costs of the third kind
is of order O(n2).

Assertion (b). Since L is of moderate growth, Theorem 4(I)(a) proves that it is asymptotically
gaussian with characteristic triple [O(n),Θ(n), O(n−1/2)]. Now, n · L is clearly gaussian with
characteristic triple [O(n2),Θ(n3), O(n−1/2)]. This proves assertion (b) for costs A+ Ā,D,Θ.

Assertion (c). Previous assertion (a) proves

(58) E[Ān − An] = O(n), |σ[An] − σ[Ān]| ≤ σ[An − Ān] = O(n).

With (b), the standard deviation σ[An + Ān] is of order Θ(n3/2), and the triangular inequality
entails that σ[An] + σ[Ān] is Ω(n3/2). Now, Relation (58) proves that V[An],V[Ān],V[An + Ān]
are of order Θ(n3).

Assertion (d). Now, with (c), the equality

2V[An] + 2V[Ān] = V[An + Ān] + V[An − Ān]

together with relations

V[Bn] = V[An] +O(n5/2), V[An] = V[Ān] +O(n5/2), V[Dn] = V[An + Ān] +O(n2),

entail the equality

12(V[Bn] − 1

3
V[Dn]) = 3V[An − Ān] − V[Dn] +O(n5/2).

On the other side, since E[An − An] is O(n), we deduce V[An − Ān] = E[(An − Ān)2] + O(n2).
Then the conjecture (C), which says V[Bn] = (1/3)V[Dn] +O(n2) is equivalent to

3E[(An − Ān)2] − V[Dn] = O(n5/2).

Assertion (e). Another expression of cost N ,

N =

p∑

i=1

(
∑

j<i

θi) · lg(mi + xi),

exhibits the similarity of cost N with the cost N defined in (10) which has been studied in case
(P ): since the cost Θ is gaussian with the characteristic triple [O(n), O(n), O(n−1/2)], the factor
(
∑

j<i θi) in the previous sum is close to its mean, of order i. Then, a first step in order to prove
that N is gaussian, is to prove that its smoothed versions, obtained when the sequence θi is replaced
by a constant, namely

(59) N̂ (v) =

p∑

i=1

lg vi N̄ (v) =

p∑

i=1

lgwi, or N (m) =

p∑

i=1

i · ℓ(mi)

are asymptotically gaussian. Since Theorem 4(I)(d) implies that

N̂ (v) ≍
(n−1)

N̄ (v),
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it is sufficient to study N̂ (v) and N (m). We do not know how to prove their (asymptotic) gaussian
behaviours, but we have access to an alternative expression for the bivariate generating functions
of these costs. Then, conjecture (G+) which states the asymptotic behaviour of N can be viewed
as a strong form of our conjecture (G), stated as follows:

Conjecture (G). The costs N̄ (v) and N (m) are asymptotically gaussian.

Remark. Then, proving Theorem 4 (I) will lead to the analysis of integer bit–complexities B and
D [Theorem 1 (I) and Theorem 2 (I)]. The only point that remains to be checked will be the order
of remainder terms, which are of order O(n5/2) whereas they are announced to be of order O(n2).
We will prove in the following that the asymptotic expansions of V[An] and V[Ān] are polynomial
with respect to n, which will complete the proof of Theorem 1 (I) and Theorem 2 (I).

In order to prove Theorem 4(I), we now study the main costs of interest. Remind that the bijection
(5) is no longer use, since it does not properly deal with the integer size. We mainly use the bijection

Ω̃ ∼ H⋆ ×F and explain how it is possible to generate this set with the help of transfer operators.

4.5. Dynamical systems and transfer operator. A continuous extension of one step of the
Euclid algorithm to real numbers x of I := [0, 1] is provided by the Gauss map T : I → I, defined
in (41). The pair (I, T ) defines a dynamical system. The set H defined in (43) is just the set of
branches of the inverse function T−1 that are also naturally numbered by the digit set G. The set
Hk is the set of the inverse branches of the iterate T k, and the set H⋆ := ∪kHk is the semi-group
generated by H.

The main purpose in Dynamical Systems is the study of trajectories of a point x under the action of
T . Here, we are interested in studying particular trajectories, relative to rational numbers x, which
meet 0. A priori, they are not at all typical, but we aim to compare them to generic trajectories.
The behaviour of generic trajectories of dynamical systems, is more easily explained by examining
the flow of densities. The set I is endowed with some initial density f = f0, and the time evolution
governed by the map T modifies the density. The successive densities f1, f2, . . . , fn, . . . describe
the global evolution of the system at time t = 0, 1, 2, . . .. There exists an operator G for which
f1 = G[f0], f2 = G[f1], and more generally fn = G[fn−1] = Gn[f0] for all n. This operator, called
the density transformer, or the Perron-Frobenius operator, can be defined as

(60) G[f ](x) =
∑

h∈H

|h′(x)| · f ◦ h(x) =
∑

m≥1

1

(m+ x)2
· f(

1

m+ x
),

and involves the set H defined in (43). It proves quite useful to add an extra parameter s in order
to define the transfer operator Gs (or Ruelle operator [23]), already defined in (13)

(61) Gs[f ](x) =
∑

h∈H

|h′(x)|s · f ◦ h(x) =
∑

m≥1

1

(m+ x)2s
· f(

1

m+ x
).

The “final” operator relative to the last step of the Euclid Algorithm which only uses quotients
m > 1 is

(62) Fs[f ](x) =
∑

h∈F

|h′(x)|s · f ◦ h(x) =
∑

m≥2

1

(m+ x)2s
· f(

1

m+ x
).

Such operators are well-defined for ℜs > 1/2 and act on C1(I). Note that the n-th iterate Gn
s of

Gs has exactly the same form as Gs, with a sum now taken over the set Hn. The analog also holds
for the quasi-inverse (I−Gs)

−1, for which the sum is taken over H⋆. Then, with transfer operator,
we have at hand a dictionary which replaces the dictionary on (usual) generating functions. The
operator Gs will play exactly the same rôle as G(z) in Section 3 on polynomials.

We will deal with two kinds of generating functions, the plain relative generating functions,

relative to the whole set Ω, and the tilde generating functions relative to the subset Ω̃ formed with
coprime pairs. Let us begin with an easy case, when the cost is the zero cost. Then,

(63) S̃0(s, w) :=
∑

(u,v)∈eΩ

1

v2s
=

∑

h∈H⋆F

|h′(0)|s = Fs ◦ (I − Gs)
−1[1](0).
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Furthermore, the classical Riemann Zeta function, defined as

ζ(2s) :=
∑

d≥1

1

d2s
,

allows to “returning” in Ω, via the relation

S0(s, w) :=
∑

(u,v)∈Ω

1

v2s
= ζ(2s)[1 + S̃0(s, w)].

As in Section 3, we deal with modifications of Gs, where we introduce another parameter w in order
to mark our parameters of interest. These transfer operators will provide alternative expressions
for the generating functions of interest. As in Section 3, we begin with studying costs, for which
we wish to establish an asymptotic gaussian law, namely

– additive costs of moderate growth (already proven in [2]) for Theorem 4(I)(a), also used for
proving Theorem 1(I),

– size of the remainder at a fraction of the execution, for Theorem 3(I),
– parameters N (v) and N (m), in relation with Conjecture (G), useful for Theorem 2(I).

We consider all the bivariate generating functions SR(s, w), defined in (22) and we aim to express
them with a convenient transfer operator, which depends also on these two parameters s and w.

4.6. Additive costs. Consider an additive cost C relative to a step-cost c. We first define the
cost c on H by letting c(h[m]) := c(m), then we extend cost c on H⋆ by additivity, namely

c(h) :=

p∑

i=1

c(hi), for h = h1 ◦ h2 ◦ . . . ◦ hp.

Then, for any input (u, v) with a CFE of the form u/v = h(0), the cost C(u, v) equals c(h).
Consider the weighted transfer operator Gs,w,[c] relative to the digit cost c, already defined in (12),

(64) Gs,w,[c][f ](x) =
∑

h∈H

exp[wc(h)] · |h′(x)|s · f ◦h(x) =
∑

m≥1

exp[wc(m)] · 1

(m+ x)2s
· f(

1

m+ x
),

and the “final” weighted transfer operator Fs,w,[c]. Now, the n–th iterate of Gs,w,[c] has exactly
the same expression as Gs,w,[c], with H replaced by its n–th power Hn. And, the quasi–inverse of
the operator, of the form

Fs,w,[c] ◦ (I − Gs,w,[c])
−1[f ](x) =

∑

h∈H⋆F

exp[wc(h)] · |h′(x)|s · f ◦ h(x) ,

“generates” the bivariate generating function S̃C(s, w) of cost C (relative to coprime inputs). With

the bijection (44), the bivariate generating function S̃C satisfies
(65)

S̃C(s, w) =
∑

(u,v)∈eΩ

1

v2s
exp[C(u, v)] =

∑

h∈H⋆F

exp[wc(h)] · |h′(0)|s = Fs,w,[c] ◦ (I − Gs,w,[c])
−1[1](0),

whereas the plain generating function SC(s, w) is related to S̃C(s, w) via the equality

SC(s, w) = ζ(2s)[1 + S̃C(s, w)].

4.7. Remainder at a fraction of the depth. As for the bit–complexities, the exact size of
a continuant is difficult to generate with the transfer operators. This is why we first study the

parameter L̂[δ] which equals the logarithm of remainder vi for i = ⌊δP ⌋, and we will return to the
parameter L[δ] with Proposition 1 and relation

(66) L[δ](u, v) = ℓ(v⌊δp⌋) =
1

log 2

(
log v⌊δp⌋ − {v⌊δp⌋} + 1

)
=

1

log 2
L̂[δ] +O(1).

We denote by S̃[δ](s, w) the (tilde) bivariate generating function relative to the parameter 2L̂[δ],

S̃[δ](s, w) :=
∑

(u,v)∈eΩ

1

v2s
exp[2w log v⌊δp⌋] =

∑

(u,v)∈eΩ

1

v2s
v2w
⌊δp⌋
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Consider an input (u, v) of Ω on which the algorithm performs p iterations. There exists a unique
LFT h of depth p such that u/v = h(0). We decompose h into two LFT’s g and r of depth ⌊δp⌋
and p− ⌊δp⌋ such that h = g ◦ r. With the relations

|(g ◦ r)′(0)| = v−2
0 · v2

p, |r′(0)| = w−2
⌊δp⌋ = v−2

⌊δp⌋ · v2
p,

the general term of the series S[δ](s, w) decomposes as

1

v2s
v2w
⌊δp⌋ = v2w−2s

p · |r′(0)|−w · |(g ◦ r)′(0)|s = v2w−2s
p · |r′(0)|s−w · |g′(r(0))|s.

Now, when (u, v) varies in Ω̃ with a given height p+ 1 (with p ≥ 0), we obtain

(67)
∑

(u,v)∈eΩ

P (u,v)=p+1

1

v2s
v2w
⌊δp⌋ = Fs−w ◦ G

p−⌊δp⌋
s−w ◦ G⌊δp⌋

s [1](0),

and finally, the tilde generating function satisfies

(68) S̃[δ](s, w) =
∑

p≥0

∑

(u,v)∈eΩ

P (u,v)=p+1

v2w
⌊δp⌋

v2s
0

= Fs−w ◦



∑

p≥0

G
p−⌊δp⌋
s−w ◦ G⌊δp⌋

s


 [1](0),

with the relation S[δ](s, w) = ζ(2s−2w)[1+S̃[δ](s, w)]. The central part of (68) defines the so–called
pseudo–quasi-inverse Gs,w, namely

(69) Gs,w :=
∑

p≥0

G
p−⌊δp⌋
s−w ◦ G⌊δp⌋

s .

Of course, since Gs and Gs−w do not commute, this is not a “true” quasi-inverse. However, we
study this operator when w is near to 0, and we can hope that the properties of Gs,w will be close
to properties of a true quasi-inverse.

4.8. Costs N . In case (I), the two parameters defined in (10) are no longer equal, and we consider

two bivariate generating functions, S̃(v)(s, w) [for cost N̄ (v)] and S̃(m)(s, w) [for cost N (m)]. We
express these series with two operators S(v)(s, w) and S(m)(s, w) as

S̃(v)(s, w) = S(v)(s, w)[1](0) S̃(m)(s, w) = S(m)(s, w)[1](0).

With the same principles as previously, the two operators are defined as follows:

(70) S(v)(s, w) =
∑

p≥1

Fs−pw ◦ Gs−(p−1)w ◦ . . . ◦ Gs−w,

S(m)(s, w) =
∑

p≥1

Fs,pw ◦ Gs,(p−1)w ◦ . . . ◦ Gs,w.

Here, the weighted operator Gs,w := Gs,w,[ℓ] is relative to the binary cost ℓ. Note that the first
generating operator satisfies the functional equation

(71) S(v)(s, w) = S(v)(s− w,w) ◦ Gs−w,

whereas a similar equation does not seem to hold for the second generating operator.
In both cases, the operators look like quasi-inverses; however, there is is an important difference
with our previous pseudo-quasi-inverse (69). Previously, the operator Gs,w can be viewed as a
small perturbation of the quasi-inverse (I − Gs)

−1, since for a small w, each term of Gs,w is close
to the corresponding term of (I −Gs)

−1. Here, this is no longer true, since the terms which define
S(s, w) contain operators of the form Gs−jw where j tends to ∞.

We now study other costs R, for which we only expect results for the expectation and the variance.

We then deal with univariate generating functions, denoted by S
[1]
R (s) for the mean, and S

[2]
R (s)

for the moment of order 2. We wish to study
– end-costs for Theorem 4(d)
– additive costs of intermediate growth for Theorem 4(c),
– costs A, Ā for Theorem 2(I), whose study is also crucial for Conjecture (C).
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4.9. Square brackets and angle brackets. We now introduce an object which will be quite
useful in the sequel.
We first consider the set T ⊂ L(C1(I)) of operators Hs of the form

Hs[f ](x) =
∑

m≥1

Rm(x)

(m+ x)2s
· f
(

1

m+ x

)
, for ℜs > 1/2,

for which there exists a positive number k and a constant K, such that, for any m, one has
|Rm(x)| ≤ K · (logm)k. Now, there are two operators which operate on the set T : the derivation
with respect to s, denoted by ∆ [which multiplies each term Rm(x) by the factor −2 log(m+ x)],
and, for a cost c of intermediate growth, the weighting operatorW[c] which weights each component
Rm by the factor c(m) [i.e. Rm is replaced by c(m)Rm]. Of course, our transfer operator Gs is
an element of T . Moreover, the weighted operator Gs,w,[c] (relative to any cost c of intermediate
growth), together with its derivatives of any order with respect to s and w (at w = 0) belongs to
the set T .

Definition 4. [Square brackets and Angle brackets.] Consider the algebra A generated by
the operator ∆, and all the weighting operators W[c] relative to costs c of intermediate growth.
Consider k elements of A, denoted by A1, A2, . . . , Ak. The square bracket [A1, A2, . . . , Ak](s) is
the Dirichlet series equal to

Fs ◦ (I − Gs)
−1 ◦A1Gs ◦ (I − Gs)

−1 ◦A2Gs ◦ . . . ◦AkGs ◦ (I − Gs)
−1[1](0),

and the angle bracket 〈A1, A2, . . . , Ak〉(s) is the Dirichlet series equal to

∆Fs ◦ (I − Gs)
−1 ◦A1Gs ◦ (I − Gs)

−1 ◦A2Gs ◦ . . . ◦AkGs ◦ (I − Gs)
−1[1](0),

We now see many examples of occurrences of these objects.

4.10. Additive costs C of intermediate growth. It will not be possible to deal directly with the
transfer operator Gs,w,[c] as with additive costs of moderate growth, since it is no longer analytic
at (1, 0) [with respect to w]; however, when c is of intermediate growth, Gs,w,[c] admits derivatives

at any order with respect to w, at w = 0, and we work with univariate series S̃
[j]
C (s) [defined as in

(24)] but relative to the tilde generating functions. Since the derivative of the quasi-inverse satisfies

∂

∂w
(I − Gs,w,[c])

−1 = (I − Gs,w,[c])
−1 ◦

(
∂

∂w
Gs,w,[c]

)
◦ (I − Gs,w,[c])

−1,

these series for j = 1, 2 can be expressed with brackets. We only consider the part of these Dirichlet
series which gathers the brackets of maximal order, which we denote with an underline. Then:

(72) S̃
[1]

C = [W[c]], S̃
[2]

C = 2[W[c],W[c]].

4.11. Bit–complexities A and Ā. In this subsection and the next one, the reference to the cost
c is omitted in W since c is always the binary length ℓ. The objective is to study the Dirichlet
series relative to the first two moments of A and Ā.

Proposition 4. The parts S̃
[1]

A and S̃
[1]

Ā of the series S̃
[1]
A and S̃

[1]

Ā
which only gather the brackets

of order at least 2 satisfy

(73) (2 log 2) · S̃[1]

A = [∆,W ], (2 log 2) · S̃[1]

Ā = [W,∆].

The parts S̃
[2]

A and S̃
[2]

Ā of the series S̃
[2]
A and S̃

[2]

Ā
which only gather the brackets of order at least

3 satisfy

(74) (2 log2 2) · S̃[2]

A =

2[∆,∆,W,W ] + [∆,W,∆,W ] + [∆2,W,W ] + [∆,∆W,W ] + [∆,∆,W 2] + 2〈∆,W,W 〉+ 〈W,∆,W 〉

(75) (2 log2 2) · S̃[2]

Ā = 2[W,W,∆,∆] + [W,∆,W,∆] + [W,W,∆2] + [W,∆W,∆] + [W 2,∆,∆].

Proof. We begin with the moments of order 1, then we deal with the moments of order 2.
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Moments of order 1. We first deal with the elementary costs [ℓ(mi) · w2w
i ], [ℓ(mi) · t2w

i ] for some
(small) w. The corresponding Dirichlet generating functions are

Fs−w ◦
∑

p≥i

G
p−i
s−w ◦ Gs,[ℓ] ◦ Gi−1

s [1](0), Fs ◦
∑

p≥i

Gp−i
s ◦ Gs,[ℓ] ◦ Gi−1

s−w[1](0).

Now, the Dirichlet series (2 log 2)S
[1]
A (s), (2 log 2)S

[1]

Ā
(s), are just obtained with taking the sum over

all the indices i between 1 and p, and taking the derivative with respect to w (at w = 0). We
obtain, after the first step [i.e., taking the sum over indices i]

Fs−w ◦ (I − Gs−w)−1 ◦ G[ℓ]
s ◦ (I − Gs)

−1[1](0), Fs ◦ (I − Gs)
−1 ◦ G[ℓ]

s ◦ (I − Gs−w)−1[1](0),

and, after the second step, the Dirichlet series which only takes into account square brackets of
order at least 2, denoted with a underline, are

(2 log 2) · S̃[1]

A = [∆,W ], (2 log 2) · S̃[1]

Ā = [W,∆].

Moments of order 2. For the two moments of order 2, namely E[A2
n],E[Ā2

n], we first deal with the
elementary costs [ℓ(mi) · ℓ(mj) · w2w

i · wj
2t] and [ℓ(mi) · ℓ(mj) · t2w

i · tj2t], for fixed index i, j with
1 ≤ i, j ≤ p. There are two cases, i = j and i 6= j. Then, we take the sum over all the pairs
i, j with i, j between 1 and p and any possible p. We first obtain an alternative expression for
the corresponding Dirichlet series (first step) and then, we take the derivative with respect to t, w,
at w = 0, t = 0 (second step). We obtain the Dirichlet series with a multiplicative factor equal
to (2 log 2)2. Since we deal with the two main terms in the asymptotics, we do not need terms
which involve only three quasi–inverses. The Dirichlet series which only takes into account square
brackets of order at least 3 will be denoted with a underline.

Cost A2. We deal with the elementary cost [ℓ(mi) · ℓ(mj) · w2w
i · wj

2t], and we obtain for j > i

Fs−w−t ◦
∑

p≥j

G
p−j
s−w−t ◦ G

[ℓ]
s−w ◦ G

j−i−1
s−w ◦ G[ℓ]

s ◦ Gi−1
s [1](0),

and after the first step for any i 6= j,

2Fs−w−t ◦ (I − Gs−w−t)
−1 ◦ G

[ℓ]
s−w ◦ (I − Gs−w)−1 ◦ G[ℓ]

s ◦ (I − Gs)
−1,

and finally after the second step

4[∆,∆,W,W ] + 2[∆,W,∆,W ] + 2[∆2,W,W ] + 2[∆,∆W,W ] + 〈W,∆,W 〉 + 〈∆,W,W 〉.
Second, for i = j, the same ideas apply with the operator

Fs−w ◦ (I − Gs−w)−1 ◦ G[ℓ2]
s ◦ (I − Gs)

−1

and two successive derivations with respect to w (at w = 0). This provides the term 2[∆,∆,W 2]+
〈∆,W,W 〉. Finally,

(2 log2 2) · S̃[2]

A = 2[∆,∆,W,W ] + [∆,W,∆,W ]+

+[∆2,W,W ] + [∆,∆W,W ] + [∆,∆,W 2] + 2〈∆,W,W 〉 + 〈W,∆,W 〉
Cost Ā2. We deal with the elementary cost [ℓ(mi) · ℓ(mj) · t2w

i · tj2t], and, for j > i, we obtain

Fs ◦
∑

p≥j

Gp−j
s ◦ G[ℓ]

s ◦ G
j−i−1
s−w ◦ G[ℓ]

s ◦ Gi−1
s−w−t[1](0).

Then, we take the sum over all the pairs i, j with i 6= j and i, j between 1 and p, and take the
derivative with respect to t, w (at w = 0, t = 0). We obtain after the first step [for cost A2]

2Fs ◦ (I − Gs)
−1 ◦ G[ℓ]

s ◦ (I − Gs−w)−1 ◦ G
[ℓ]
s−w ◦ (I − Gs−w−t)

−1,

and, after the second step,

4[W,W,∆,∆] + 2[W,∆,W,∆] + 2[W,W,∆2] + 2[W,∆W,∆].

Second, for i = j, the same ideas apply with the operator

Fs ◦ (I − Gs)
−1 ◦ G[ℓ2]

s ◦ (I − Gs−w)−1,
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and two successive derivations with respect to w (at w = 0). This provides the term 2[W 2,∆,∆].
Finally, for cost Ā2,

(2 log2 2) · S̃[2]

Ā = 2[W,W,∆,∆] + [W,∆,W,∆] + [W,W,∆2] + [W,∆W,∆] + [W 2,∆,∆].

This completes the proof of Proposition 4.

We will see in the sequel that, when a generating Dirichlet series involves square brackets, the
associated moments on Ωn admit an asymptotic expansion which is a polynomial with respect to
n.

4.12. Conjecture (C). We recall that our Conjecture (C) says that V[Bn] = (1/3)V[Dn]+O(n2).
An equivalent form obtained in Proposition 3 (I) (d) is

The two moments 3E[(An − Ān)2] and V[Dn] have the same terms of order n3.

We are then led to study the Dirichlet series S
[2]

A−Ā
.

Proposition 5. The part S̃
[2]

A−Ā of the series S̃
[2]

A−Ā
which only gathers all the brackets of order

at least 3 can be written as the sum of two series, Γ1(s) (which gathers all the brackets of order
4), and Γ2(s) (which gathers all the brackets of order 3), namely

(log2 2) · Γ1(s) := [∆,∆,W,W ] + [W,W,∆,∆] − [W,∆,∆,W ] − [∆,W,W,∆],

and

(2 log2 2)·Γ2(s) = [∆,∆,W 2]+[W 2,∆,∆]−[∆,W 2,∆]+[∆2,W,W ]+[W,W,∆2]−[W,∆2,W ]+

+[∆,∆W,W ] + [W,∆W,∆] − [∆,W,∆W ] − [W,∆,∆W ] − [∆W,∆,W ] − [∆W,W,∆]

+2〈∆,W,W 〉 − 2〈W,W,∆〉.

Proof. Since the Dirichlet generating function of costs A2 and Ā2 have already been obtained in
Proposition 4, it remains to study the mean E[An · Ān]. The cost A · Ā deals with the elementary
cost [ℓ(mi) · ℓ(mj) ·w2w

i · tj2t], and there are three different cases j > i, j < i and j = i. For j > i,
we obtain,

Fs−w ◦
∑

p≥j

G
p−i
s−w ◦ G

[ℓ]
s−w ◦ G

j−i−1
s−w−t ◦ G

[ℓ]
s−t ◦ G

j−1
s−t [1](η),

and after the first step

Fs−w ◦ (I − Gs−w)−1 ◦ G
[ℓ]
s−w ◦ (I − Gs−w−t)

−1 ◦ G
[ℓ]
s−t ◦ (I − Gs−t)

−1[1](0).

For j < i, we obtain,

Fs−w ◦
∑

p≥i

G
p−i
s−w ◦ G[ℓ]

s ◦ Gi−j−1
s ◦ G[ℓ]

s ◦ Gi−1
s−t[1](η),

and after the first step,

Fs−w ◦ (I − Gs−w)−1 ◦ G[ℓ]
s ◦ (I − Gs)

−1 ◦ G[ℓ]
s ◦ (I − Gs−t)

−1[1](0).

Finally, for i = j, the same ideas apply with the operator

Fs−w ◦ (I − Gs−w)−1 ◦ G[ℓ2]
s ◦ (I − Gs−t)

−1,

and two successive derivations with respect to w and t (at w = 0, t = 0). This provides the term
[∆,W 2,∆]. Finally, for cost AĀ,

(4 log2 2) · S̃[1]

AĀ = 2[W,∆,∆,W ] + 2[∆,W,W,∆] + [W,∆,W,∆] + [∆,W,∆,W ]+

+[W,∆2,W ] + [∆,W,∆W ] + [W,∆,∆W ] + [∆W,∆,W ] + [∆W,W,∆] + [∆,W 2,∆]

+2〈W,W,∆〉 + 〈W,∆,W 〉.
Combining the previous expression with the expressions (74), (75) relative to cost A2 and Ā2 leads
to the result.



28 LOÏCK LHOTE AND BRIGITTE VALLÉE

4.13. End–costs. We end the algebraic part with the expression of the Dirichlet series relative to
an end–cost. The end costs are all the costs of the form O((ℓ(m2)+ℓ(mp)+lg vp)

k) for some integer
fixed k. As in polynomial case, if E denotes the end-cost defined by E(u, v) = ℓ(m2)+ℓ(mp)+2 lg vp,
it is sufficient to show that all the moments of En (of any order k) are O(1).

The bivariate generating function SE(s, w) of E can be written as

SE(s, w) = ζ(2s− 2w) ·
(
1 + Fs,w ◦ (I − Gs)

−1 ◦ Gs,w ◦Gs[1](0)
)

Now, the Dirichlet series relative to the k-th moment of E is

(76) S
[k]
E (s) =

∂k

∂wk
SE(s, w)

and contains only one quasi-inverse.

4.14. Conclusion of this section. We have obtained an alternative expression for each generating
function related to each cost of interest. Each expression involves a “generating operator” whose
analytic properties are now studied.

5. The Euclid Algorithm on Integers. Analytic study.

With alternative expressions of Dirichlet series provided in the previous section at hand, it
is now possible to perform the second step: we wish to find the dominant singularities of these
Dirichlet series and their nature, and then transfer these informations towards coefficients and
obtain asymptotic expressions for their coefficients.

5.1. First spectral properties of the transfer operator. As we previously saw, all the generat-
ing functions (bivariate or univariate) admit alternative expressions which involve the quasi–inverse
[or the pseudo quasi–inverse] of a transfer operator (weighted or not). The dominant singularities
of this type of operator (QI or PQI) and their nature are closely related to spectral properties of
the plain operator, on a convenient functional space, which will be here C1(I) (see [2] for more
information). When w is near 0, and for an elementary cost c, the transfer operator Gs,w,[c] is just
a perturbation of the plain operator Gs.

For ℜ(s) > 1/2, the operator Gs acts on C1(I) and the map s 7→ Gs is analytic. For s = 1, the
operator is quasi–compact: there exists a spectral gap between the unique dominant eigenvalue
(that equals 1, since the operator is a density transformer) and the remainder of the spectrum. By
perturbation theory, these facts —existence of a unique dominant eigenvalue λ(s) and of a spectral
gap— remain true in a complex neighbourhood V of s = 1. There, the operator splits into two
parts: the projection onto the dominant eigensubspace, denoted Ps, and the part relative to the
remainder of the spectrum, denoted Ns, whose spectral radius is strictly less than η|λ(s)|(with
η < 1). This leads to the following spectral decomposition

Gs = λ(s)Ps + Ns,

which extends to the powers of the operator

(77) Gn
s = λn(s)Ps + Nn

s ,

and finally to the quasi-inverse (I − Gs)
−1

(78) (I − Gs)
−1 =

λ(s)

1 − λ(s)
Ps + (I − Ns)

−1.

The first term on the right admits a pole (of order 1) at s = 1, while the second term is analytic
on the half–plane {ℜ(s) ≥ 1}. We further need a precise expression of the expansion of the
quasi-inverse near s = 1.

Dominant spectral objects at s = 1. All the dominant spectral objects of G are explicit

(79) λ(1) = 1, P[f ](x) = ϕ(x) ·
∫

I

f(t)dt, with ϕ(x) =
1

log 2

1

1 + x
.

Moreover at s = 1, the first two derivatives of Λ(s) := logλ(s) satisfy

(80) B := −Λ′(1) > 0, A := Λ′′(1) > 0.
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Finally, the expansion of (I − Gs)
−1 at s = 1, of the form

(81)

(I−Gs)
−1 =

1

s− 1

P

|λ′(1)| + Q +O(s−1), with Q =
∆P

|λ′(1)|+
(

λ′′(1)

2|λ′(1)|2 − 1

)
P+(I−N)−1,

involves the so–called Porter Operator Q, closely related to the Porter constant [see the book [13]
for precisions on the Porter constant]. In particular, with (79, 81), for any operator H ∈ L(C1(I)),
one has

(82) (I − Gs)
−1 ◦ H[ϕ] ∼ 1

s− 1
· 1

|λ′(1)| · ϕ · I[H], with I[H] :=

∫

I

H[ϕ](t)dt.

This proves:

Proposition 6. Any bracket of order k (a square bracket [A1, A2, . . . Ak] or an angle bracket
〈A1, A2, . . . Ak〉) [see Definition 3] has a pôle of order k + 1 at s = 1, and it admits an expansion
of the form

[A1, A2, . . . , Ak](s) =

k∑

p=0

ak−p

|λ′(1)|p+1
· 1

(s− 1)p+1
+O(1) with a0 = F[ϕ](0) ·

k∏

i=1

I[AiG],

〈A1, A2, . . . , Ak〉(s) =

k∑

p=0

âk−p

|λ′(1)|p+1
· 1

(s− 1)p+1
+O(1) with â0 = ∆F[ϕ](0) ·

k∏

i=1

I[AiG],

where I[·] is defined in (82) and ϕ is defined in (79).

Remark. Then, the dominant constants a0, â0 depend on the subset {A1, A2, . . . Ak} and do not
depend on the order of the sequence (A1, A2, . . . , Ak). There are two important instances of this
fact in the expressions of Proposition 5. There is a cancellation in the dominant term of Γ1(s),
and Γ1(s) has a pôle of order at most 4. There is also a cancellation of the angle brackets in the
dominant term of Γ2(s), whose dominant term finally involves only square brackets.

5.2. Various extractors. We then now wish to transfer these informations towards coefficients
and obtain asymptotic expressions for these coefficients. We use, as a main tool, convenient
“extractors” which express coefficients of series as a function of the series itself. There exist various
“extractors”, which will be chosen according to the informations that are expected for coefficients.
There are three main cases, which are summarised as follows:

Case 1. [Average case analysis] We wish to obtain estimates for all the moments of order k,

[obtained from coefficients of univariate series S
[i]
R (s)], with only the dominant term. This is useful

here for proving Theorem 4 (d) : mean for end–costs.

Case 2. [Analysis of the variance] We wish to obtain dominant and subdominant terms for the

moments of order 1 and 2 [obtained from coefficients of univariate series S
[i]
R (s)]. This is useful for

the variance of costs of intermediate growth, and study of Conjecture C.

Case 3. [Distributional analysis] We wish to obtain gaussian normal law. Since we use the Quasi-
Powers Theorem [see Theorem B, Section 2.6], we need expansions for coefficients of bivariate
generating functions SR(s, w) which must be uniform with respect to w. This is useful for proving
Theorem 4 (a), (b), and studying Conjecture (G).

For Case 1, Tauberian Theorems are used as our main extractor. When we wish to obtain remainder
terms (or uniform terms), we then adopt the Perron Formula, and use it with some success, provided
that we have a precise knowledge of the series –univariate series in case 2, or bivariate series in
case 3.

5.3. Study of case 1. Tauberian Theorems. As we said, Tauberian Theorems [7, 25] are used
when we only wish the dominant term of the estimates for the plain moments, as this is the case
for end costs.

Theorem D. [Tauberian Theorem]. [Delange] Let F (s) be a Dirichlet series with non negative
coefficients such that F (s) converges for ℜ(s) > σ > 0. Assume that
(i) F (s) is analytic on ℜ(s) = σ, s 6= σ, and
(ii) for some γ ≥ 0, one has F (s) = A(s)(s− σ)−γ−1 +C(s), where A,C are analytic at σ, with
A(σ) 6= 0.
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Then, as K → ∞,

∑

n≤K

an =
A(σ)

σΓ(γ + 1)
Kσ logγ K [1 + ǫ(K) ], ǫ(K) → 0.

This Theorem is easy to deal with. The generating function S
[k]
E (s) of Section 4.13 gives access to

the moments of the end–cost E. The only property which has to be checked is the aperiodicity:

Aperiodicity. The quasi-inverse (I − Gs)
−1 is analytic on {ℜs = 1, s 6= 1},

whose proof is for instance in [2]. Then Tauberian Theorem can be applied and proves that E[Ek]
is of order O(1).

5.4. Study of cases 2 and 3. The Perron Formula and the US Properties. We follow the
same lines as described in the work [2]. We consider Dirichlet series, univariate or bivariate, and
we wish to obtain estimates for the partial sums of their coefficients. More precisely, we let

F (s) :=
∑

n≥1

an

n2s
or F (s, w) :=

∑

n≥1

an(w)

n2s

and we study

(83) Φ(p) =
∑

n≤p

ap or Φw(p) =
∑

n≤p

ap(w).

For a Dirichlet series F (s) =
∑

n≥1 ann
−2s, the Perron Formula of order two (see [10]) relates

partial sums of the coefficients of F to the integral of F on a vertical line ℜs = D > 0 inside the
convergence domain of F ,

(84) Ψ(T ) :=
∑

N≤T

∑

n≤N

an =
1

2iπ

∫ D+i∞

D−i∞

F (s)
T 2s+1

s(2s+ 1)
ds .

Of course, when the Dirichlet series is of the form F (s, w) =
∑

n≥1 an(w)n−2s, the Perron formula

relates F (s, w) and the analog Ψw(T ) of Ψ(T ) [when an is replaced by an(w)].

There are now two main steps: first apply (with some success) the Perron Formula, then return
to the main object of interest, which is not the functions Ψ of (84), but the functions Φ of (83).
The second step is easier than the first step: The functions Ψ can be viewed as smoothed versions
of functions Φ, and it is sufficient to use the same arguments as in Baladi–Vallée [2], corrected by
Cesaratto [4]. We now concentrate on the first step, where we use the Perron Formula.

Univariate case. It is next natural to modify the integration contour ℜs = D into a contour
which contains a unique pole of F (s), and it is thus useful to know that the following Property US

[Uniform Estimates on Strips] holds for F near s = 1.

Property US(s). For any small ξ, there is α > 0 for which the following is true:

(i) F (s) admits a unique pole in the strip |ℜs− 1| ≤ α.
(ii) On the left vertical line ℜs = 1 − α, the Dirichlet series F (s) is O(max(1, |ℑs|ξ)), with a

small ξ.

Bivariate case. We need uniform estimates when w is near 0, and it is natural to consider the
following Property, which is a uniform perturbation of the previous one.

Property US(s, w). For any small ξ, there is α > 0 and a neighbourhood W of w = 0 for
which the following is true:

(i) s 7→ F (s, w) admits a unique pole σ(w) in the strip |ℜs− 1| ≤ α.
(ii) On the left vertical line ℜs = 1 − α, the Dirichlet series F (s) is O(max(1, |ℑs|ξ)), with a

small ξ, and a O–term uniform with respect to w.

Baladi and Vallée [2] have generalised ideas due to Dolgopyat [9] and prove that the US Properties
hold for Dirichlet series relative to the quasi-inverses: Property US(s) holds for the plain quasi-
inverse (I − Gs)

−1, and Property US(s, w) holds for the quasi-inverse of the weighted operator
Gs,w,[c] used for studying costs C of moderate growth [see Section 4.6]. For proving that Property
US holds, the strip is split into two regions: a region near the real axis, where s is close to the pole
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s = 1 [or its perturbation σ(w) defined by relation λ(σ(w), w) = 1], and the region far from the
real axis, where the powers of Gs,w are proven to satisfy

(85) ∃M, ∃γ < 1, ∀n, ∀w ∈ W , ||Gn
s,w||1,t ≤M · γn|t|ξ

[here, t := ℑs and the norm || · ||1,t is defined by ||f ||1,t = ||f ||0 + (1/t)||f ||1].
In the sequel, we will extend this methodology in order to study

– the moments of a cost of intermediate growth, for proving Theorem 4(c),
– the moments of the cost A, Ā, A− Ā, for dealing with Conjecture (C),

– the moment generating function of cost L̂[δ], for proving Theorem 3,
– the moment generating function of cost N̄ (v), for dealing with conjecture (G).

We begin with the variance studies, which are related to costs expressed with square brackets.

5.5. Asymptotic estimates for coefficients of brackets. We are now ready to prove that,
on Ωn, the expectation of a cost whose generating function is a bracket admits an asymptotic
expansion polynomial with respect to n.

Proposition 7. Consider any cost R for which the relative Dirichlet series SR(s) involves a square
bracket under the form SR(s) = ζ(2s)[A1, A2, . . . , Ak](s). Then, the expectation E[Rn] admits an
asymptotic expansion which is polynomial with respect to n, of the form

E[Rn] =

[
1

k!

(
2 log 2

|λ′(1)|

)k k∏

i=1

I[AiG]

]
nk ·

[
1 +O

(
1

n

)]

Proof. We use Property US(s) for the quasi-inverse, namely (85) and we obtain for the square
bracket [A1, A2, . . . , Ak] in the region far from the real axis,

|[A1, A2, . . . , Ak]| ≤ ·
(

1

1 − γ

)k+1

·Mk · |ℑs|(k+1)ξ ·
k∏

i=1

||AiGs||1,t.

so that [A1, A2, . . . , Ak] satisfies the Property US in this region. This is clearly the same for ζ(2s),
and then for the product ζ(2s)[A1, A2, . . . , Ak](s).

For the region near the real axis, we use that the square bracket is meromorphic at s = 1, and
ζ(2s) holomorphic at s = 1. We fix α sufficiently small and we consider the strip S delimited
by the vertical lines |ℜ(s) − 1| < α. With US(s), this strip contains 1 as a unique pole of
ζ(2s)[A1, A2, . . . , Ak] (of order k + 1). Consider now the rectangle R delimited by S and the two
horizontal lines |ℑ(s)| = U . With the Cauchy Theorem,

1

2iπ

∫

R

ζ(2s)[A1, A2, . . . , Ak](s)
T 2s+1

s(2s+ 1)
ds =

T 3

3

(
k∑

p=0

ak−p

|λ′(1)|p+1

2p

p!
logp T

)
.

We now let U tend to ∞. With Property US(s), the left integral is O(T 3−2α) and the right integral
is exactly the integral of the Perron Formula.

Suppose that near s = 1, some generating function S̃(s) relative to some cost R is expressed with
square brackets. This entails the following estimates for the partial sums ΨR(T ) with T = 2n

ΨR(2n) =
23n

3

(
k∑

p=0

ak−p

|λ′(1)|p+1

(2 log 2)p

p!
np

)
+O(2n(3−2α)).

A first step for studying the expectation En[R] (on the set Ω̃n of coprime inputs) considers the
ratio between ΨR(2n) and Ψ0(2

n), where Ψ0 is relative to the zero cost, which can be associated
to the empty square bracket [see 63 for instance]. Then the dominant term of ΨR(2n)/Ψ0(2

n) is
[

1

k!

(
2 log 2

|λ′(1)|

)k k∏

i=1

I[AiG]

]
nk

This dominant term is exactly the same if one considers the plain generating function S(s) (no
longer their tilde version). In this case, the dominant terms in Ψ0(2

n) and Ψ0(2
n) are just multiplied

by ζ(2) so that the dominant term of the ratio does not change.
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Then, with the same principles as in Baladi-Vallée [2] and Cesaratto [4], we obtain, after some
steps of smoothing and de-smoothing, for some β > 0, the convenient expression for E[Rn].

5.6. Variance of costs of moderate growth. With relations (72), Proposition 7 entails the
following estimates for E[Cn],E[C2

n],

E[Cn] = I[WG] ·
(

2 log 2

|λ′(1)|

)
n+O(1) E[C2

n] = 2
1

2
· I[WG]2 ·

(
2 log 2

|λ′(1)|

)2

n2 +O(n).

The dominant term (of order n2) is the same in E[Cn]2 and in E[C2
n], which proves an estimate for

V[Cn] of the form V[Cn] = O(n). This proves the “difficult” assertion of Theorem 4 (c).

5.7. Moment of order 2 of A − Ā and Conjecture (C). Propositions 4 and 7 entail the
following estimates for E[An],E[A2

n],

E[An] =
1

2 log 2
I[∆G] · I[WG] ·

(
22

2!
· (log 2)2

|λ′(1)|2
)
n2 +O(n)

E[A2
n] =

3

2 log2 2
I[∆G]2 · I[WG]2 ·

(
24

4!
· (log 2)4

|λ′(1)|4
)
n4 +O(n3).

We remark that the dominant term (of order n4) is the same in E[An]2 and in E[A2
n], which proves

an estimate for V[An] of the form V[An] = ρ0(ℓ) · n3 +O(n2). We recall the conjecture (C), about
bit costs A and Ā,

E[(An − Ān)2] − 1

3
V[An + Ān] = O(n2).

For proving conjecture (C), we need proving that ρ0(ℓ) = (1/3)ρ(ℓ), where ρ(ℓ) is the constants
which occurs in the dominant term of the variance in Theorem 1(I). We show the following:

Proposition 8. Denote by Q the Porter operator defined in (81). Then, Conjecture (C) holds
if, for any X,Y ∈ {∆,W}, one has:

I[XG ◦ Q ◦ YG] =

∫

I

(XG)[Y ϕ](t)dt − I[XG]

∫

I

[Y ϕ](t)dt

Proof. With Proposition 6, and the remark after it, both series Γ1 and Γ2 of Proposition 5 have
a pole of order at most four at s = 1 and can be written as

Γi(s) =
1

2 log 2
· 1

|λ′(1)|4
γi

log2 2

1

(s− 1)4
+O(

1

(s − 1)3
).

Explicit form of constants γi. Using Iverson’s notation6, the dominant coefficient γ2 equals

2γ2 =
∑

X,Y ∈{∆,W}

X′ 6=X,Y ′ 6=Y

(−1)[[X=Y ]] · I[X ′G] · I[Y ′G] · I[XYG].

The dominant coefficient γ1 is expressed with the subdominant terms in the expression of Γ1(s). At
s = 1, the expansions of the three operators (I−Gs)

−1,∆Gs,WGs respectively involve the Porter
operator Q, already defined in (81), together with the operators ∆2G,∆WG, which intervene in
the expansion of ∆Gs and WGs at s = 1,

∆Gs = ∆G + (s− 1)∆2G + O((s − 1)2) WGs = WG + (s− 1)∆WG + O((s − 1)2).

The subdominant constant of the series Γ1 is obtained when replacing, in each of the four terms
of Γ, one of the nine places7 (and only one) by its subdominant constant. However, all the terms
obtained by replacing ∆Gs or WGs by their subdominant terms disappear. This is the same
for terms which contain the operator Q at the beginning or at the end. Then, the subdominant
constant γ1 of Γ1 is expressed via integrals of the form I[H] defined in (82) as a sum of four main
terms, namely,

γ1 =
∑

X,Y ∈{∆,W}

X′ 6=X,Y ′ 6=Y

(−1)[[X=Y ]] · I[X ′G] · I[Y ′G] · I[XG ◦ Q ◦ YG].

6Iverson’s notation is defined as follows: [[X = Y ]] = 1 if X = Y and 0 elsewhere.
7There are nine places in a square bracket of order 4: the four “written” places and the five “implicit” places,

where the QI is omitted.
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Finally, the coefficient γ := γ1 + γ2 satisfies

(86) 2γ =
∑

X,Y ∈{∆,W}

X′ 6=X,Y ′ 6=Y

(−1)[[X=Y ]] · I[X ′G] · I[Y ′G] · (I[XYG] + 2I[XG ◦ Q ◦ YG]) .

Then, Proposition 7 entails

En[(A − Ā)2] =
2 log 2

3|λ′(1)|3 · (2γ) · n3 +O(n2).

Explicit form of constant ρ(ℓ). For Conjecture (C), we aim comparing the constant 2γ to the
constant ρ̃(ℓ) which appears in the variance of the extended binary cost, via the relation

V[An + Ān] =
2 log 2

|λ′(1)|3 · ρ̃(ℓ) · n3 +O(n2).

An alternative expression for ρ̃(ℓ) is obtained in Relation (15) of Theorem A

(87) ρ̃(ℓ) = λ′2s (1, 0) · λ′′w2(1, 0) − 2λ′w(1, 0) · λ′s(1, 0) · λ′′sw(1, 0) + λ′2w(1, 0) · λ′′s2(1, 0).

We consider the weighted operator relative to the binary length cost ℓ , and we omit the reference
to cost ℓ. We denote it by Gs,w, its dominant eigenvalue by λ(s, w), and its dominant eigenfunction
by ϕ(s, w). With taking derivatives of the relation Gs,w[ϕs,w] = λs,wϕs,w, with respect to s at
s = 1 [Operation ∆] and with respect to w at w = 0 [operation W ], we obtain the following
relations: with first derivatives,

(88) Xλ = I[XG],

and with second derivatives,
(89)

XY λ = I[XYG]+

∫

I

(XG)[Y ϕ](t)dt+

∫

I

(YG)[Xϕ](t)dt−I[XG]

∫

I

[Y ϕ](t)dt−I[YG]

∫

I

[Xϕ](t)dt.

Finally, replacing in (87) the first and second derivatives by the expressions provided in (88) or
(89) proves that the constant ρ̃(ℓ) has exactly the same structure as γ, and comparing with (86)
proves Proposition 8.

We have now proven all the results about the moments of the bit-complexities A, Ā, the additive
costs, the end-costs. In particular, the proof of Theorem 1 (I), Theorem 2 (I) and Theorem 4 (I)

is now complete. We now deal with the gaussian law of L[δ] [or equivalently L̂[δ], Theorem 3] and
Conjecture (G).

5.8. Gaussian law for L[δ]. We follow the general lines described in Section 5.4. The generating

function S[δ](s, w) relative to the cost 2 · L̂[δ] involves the pseudo quasi-inverse Gs,w defined in

(69). Hence, we first exhibit the poles of Gs,w and proves that S[δ](s, w) satisfies the US(s, w)
property. Then, extracting with the Perron formula and applying the smoothing/de-smoothing

step of Baladi-Vallée, we obtain the moment generating function of 2 · L̂[δ]. We will see that it

satisfies the Quasi-power Theorem hypotheses and entails that 2 · L̂[δ] admits a gaussian limit law
[which is sufficient].

For the region far from the real axis, it is easy to obtain the estimate US(s, w): using the relation
(85), we obtain for the pseudo-quasi-inverse Gs,w defined in (69),

||Gs,w||1,t ≤M · (
∑

p

γp) |ℑs|2ξ,

so that F (s, w) = Gs,w[1](0) satisfies US(s, w) on a region “far from” the real axis.
Near the real axis, the study is more intricate for the pseudo-quasi-inverse operator Gs,w than for
the plain quasi-inverse. It is clear that Gs,w has a singularity at (s, w) = (1, 0). In order to obtain
US(s, w), it is then necessary to describe the behaviour of Gs,w when (s, w) is near (1, 0).

If (s, w) belongs to a (fixed) neighbourhood V1 of (1, 0), the two values s and s− w belong to the
previous neighbourhood V of s = 1 . Then, the two operators Gs,Gs−w are quasi–compact, the
dominant eigenvalue λ(s), λ(s − w) of the operators Gs,Gs−w are well–defined, and the spectral
decomposition (77) of Gt applies to t = s, t = s − w and extends to the operator Gs,w which
decomposes into a sum of four terms, a “dominant” term and three “remainder” terms.
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Remainder terms. Each of the three remainder terms is obtained by replacing in the operator Gs,w,
and for at least one value of t = s or t = s−w, the iterates Gk

t by the corresponding powers of the
operator Gt, the other terms being (possibly) replaced by the corresponding term of the dominant
operator λ(t) ·Pt or Nt. One obtains three operators: one operator which contains only operators
of type N, and two operators with exactly one occurrence of type P.
Denote by ν(t) the spectral radius of the operator Nt, and by R := log ν. There exists a neigh-
bourhood such that ν(s) and ν(s−w) are strictly less than some a < 1. Then, the series with only
operators of type N is absolutely convergent. Consider now the other two series, whose norms can
be easily compared to a geometric sum, whose logarithm of the general term is

(90) δR(s) + (1 − δ)ℜΛ(s− w), δℜΛ(s) + (1 − δ)R(s− w).

We now prove that these terms are strictly negative on a neighbourhood of (s, w) = (1, 0) of the
form |s− 1| + |w| < ρ. First, there exists a complex neighbourhood V of τ = 1 for which

R(τ) < (1/2)R(1) < 0, |Λ′(τ)| ≤ 2B,

with B defined in (80). Then one has

max(|Λ(s)|, |Λ(s− w)|) ≤ (|s− 1| + |w|) 2Bρ,

and, finally, if β := inf(δ, 1 − δ), and if ρ ≤ β · |R(1)|/(8B), both terms in (90) are less than
βR(1)/8 < 0. Finally, for (s, w) near (1, 0), the norm of the remainder operator is bounded by
(1 − exp[βR(1)/8])−1

The dominant term. The dominant term is obtained when replacing each occurrence of Gt by the
term λ(t)Pt, and is of the form F (s, w) · [Ps−w ◦ Ps[1](0)], with

F (s, w) =

+∞∑

p=0

λ(s)⌊δp⌋ · λ(s− w)p−⌊δp⌋.

The properties of F (s, w) will heavily depend on the nature of δ [rational versus irrational]. If δ
is rational, the function F (s, w) is a rational fraction with respect to two variables λ(s − w) and
λ(s). More precisely, if δ is of the form c/D, with d = D − c, one has

F (s, w) =




D−1∑

j=0

λ(s− w)j−⌊δj⌋ · λ(s)⌊δj⌋





∑

k≥0

(λd(s− w)λc(s))k


 .

Then, if we let ψ(s, w) := λ(s− w)1−δλ(s)δ, F (s, w) can be written as

F (s, w) =
P (s, w)

1 − ψ(s, w)D
with P (s, w) :=

D−1∑

j=0

λ(s− w)j−⌊δj⌋λ(s)⌊δj⌋.

It is then essential to study the function ψ(s, w). The denominator s → 1 − ψ(s, w)D admits as
zeroes all the values of s for which

ψ(s, w) = exp[2iLπ/D] with 0 ≤ L < D.

This means that the function Ψ defined as Ψ := logψ satisfies

Ψ(s, w) := (1 − δ)Λ(s− w) + δΛ(s) =
2iLπ

D
, with L ∈ Z.

For w = 0, one has Ψ(s, w) = Λ(s) = 2iLπ/D. Then, for w close to 0, the pôles of F (s, w) are
near to the curve R := {s;ℜΛ(s) = 0}. We now describe this curve R: the expansion of Λ(s) near
s = 1, involves the first derivatives A and B defined in (80) under the form

(91) Λ(s) = −B(s− 1) +A · (s− 1)2 +O(|s− 1|3).
This entails that for s close enough to 1, with s = ρ+ it,

ℜΛ(s) ∼ −B(ρ− 1) −At2, ℑΛ(s) ∼ −Bt.
Then, the curve R is close to the curve of equation B(ρ − 1) + At2 = 0 and is contained in the
right plane ℜs ≤ 1.



GAUSSIAN LAWS FOR THE MAIN PARAMETERS OF THE EUCLID ALGORITHMS 35

Consider two parts of this curve R. The first part,

A := {s; ℜΛ(s) = 0, |ℑΛ(s)| > 3π

2D
}

is strictly contained inside the right plane {ℜs < 1−4∆} for some ∆ > 0. By a small perturbation,
there exists a neighbourhood WA of w = 0 for which the domain

(92) Aw := {s; |ℜΨ(s, w)| ≤ C

D2
, |ℑΨ(s, w)| > 3π

2D
}

is strictly contained inside the right plane {ℜs < 1 − 3∆}, for any w ∈ WA.
The second part of the curve is the portion of the curve

B := {s; ℜΛ(s) = 0, |ℑΛ(s)| < π

2D
},

which is contained in the strip |ℜs − 1| < d for some d. By a small perturbation, there exists a
neighbourhood WB of w = 0 for which the domain

(93) Bw := {s; |ℜΨ(s, w)| ≤ C

D2
, |ℑΨ(s, w)| < π

2D
}

is strictly contained in the strip |ℜs− 1| < 2d}, for any w ∈ WB .

Property US(s, w) for F (s, w). The expansion in (91) entails that 3∆ > 2d. We choose α ∈]2d, 3∆[
and we prove that the property US(s, w) holds in the strip |ℜs− 1| < α for w ∈ WA ∩WB.
First, from (92), the only possible pôle of F (s, w) in the strip |ℜs− 1| < 3∆ is the pôle s = σ0(w).
Since the strip |ℜs − 1| < α is contained in |ℜs − 1| < 3∆, the only possible pôle of F (s, w) in
the strip |ℜs − 1| < α is the pôle s = σ0(w). We prove now that s = σ0(w) is actually a pôle for
F (s, w). We now omit the index 0 in σ0. The numerator P (σ(w), w) satisfies at w = 0 the relation
P (σ(w), w) = P (1, 0) = D. Then, there exists a neighbourhood of w = 0 for which P (σ(w), w) is
not zero. Moreover, at w = 0, the derivative Ψ′(ρ(w), w) equals Ψ′(1, 0) = Λ′(1) 6= 0. Then , for w
close enough to 0, the derivative Ψ′(ρ(w), w) is non zero.

Second, with (92) and (93), there are only two possibilities on the line ℜs = 1 − α, namely,

|ℜΨ(s, w)| > C

D2
or

π

2D
≤ |ℑΨ(s, w)| ≤ 3π

2D
.

This entails that the denominator 1 − ψ(s, w)D of F (s, w) admits a lower bound, either

|ψ(s, w)D − 1| ≥ exp[C/D] − 1 ≥ C/D or |ψ(s, w)D − 1| ≥ 1.

On the other hand, since the numerator P (s, w) satisfies

|P (s, w)| ≤
D−1∑

j=0

|λ(s− w)|j−⌊δj⌋ · |λ(s)|⌊δj⌋,

it is (uniformly) bounded. Finally, on the line ℜs = 1 − α, the dominant term admits a uniform
bound with respect to w.

End of the proof of Theorem 3. We end the proof with the same principles as described in 5.4. We
then obtain a uniform estimate for the moment generating function of L̂[δ]

E[exp(2wL̂[δ]
n )] = exp[nA(w) +B(w)] · [1 +O(2−nγ)].

Here A(w) = −σ0(w) + σ0(0) is defined by the implicit equation ψ(σ0(w), w) = 1. The expression
of σ0(w) is then given by

δΛ(σ0(w)) + (1 − δ)Λ(σ0(w) − w) = 0.

With two derivations, the dominant coefficients of the mean and the variance are obtained. With
the Quasi-Powers Theorem, the speed of convergence is O(n−1/2).

We obtain an asymptotic gaussian law for the parameter L̂[δ] which is the logarithm of the
remainder at the fraction δ of the execution. The algorithmic parameter of interest is the size of
the remainder. As we already said it in Section 4.7 with (66), the relation between L[δ] and L̂[δ],
together with Proposition 1 entails Theorem 3.

Remark. In the case when δ is not rational, the property US(s, w) does not hold for F (s, w). See
remarks for the polynomial case at the end of 3.6.
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5.9. About the conjecture (G). The cost of interest is the cost N̄ (v) defined in (59), whose

bivariate generating function is S̃(v)(s, w) = S(v)(s, w)[1](0], where the operator S(v)(s, w) satisfies

S(v)(s, w) =
∑

p≥1

Fs−pw ◦ Gs−(p−1)w ◦ . . . ◦ Gs−w

)
.

There exists a functional equation satisfied by S(v)(s, w),

S(v)(s, w) = S(v)(s− w,w) ◦ Gs−w.

Comparing to the polynomial case shows that we loose many properties in the integer case. Since
operators do not commute, it is no longer possible to obtain an exact expression as in (35). We
perhaps may obtain informations on S(s, w) when s is near 1, directly with the functional equation.
However, even if we succeed in this first task, we do not see how to prove that the Property US(s, w)
holds for S(s, w).

6. A common framework for polynomials and integers.

Our analyses are now complete. Even these analyses were led in a sequential form –polynomials,
then integers–, there is clearly a close connection between them, and we have tried to insist on
these similarities by using “parallel” notations. This section aims to now describe our analyses
in parallel, then provides a common framework, which will also explains the differences and the
difficulties of the integer study.

6.1. Similarities. The similarities are obvious, since this is the same algorithm! The bijection
(5) is the same8, and the decompositions of Proposition 2 (P ) and Proposition 2 (I) quite similar.
There is a clear analogy between the generating function G(z), and its bivariate extensions, on the
one hand, and the operator Gs, and its bivariate extension on the other hand.
The reader must compare

– For additive costs of moderate growth: Relations (29) of Section 3.3 and (65) of Section 4.6.
– For the size of remainders at a fraction of the execution: Relations (37) of Section 3.6 and

(68) of Section 4.7
– For the cost N , the same functional equation in (36) of Section 3.5 and in (71) of Section 4.8.

However, even if these objects are similar, they are not the same. In the integer case, we need a
dynamical system and a transfer operator, which are of no use in the polynomial case. . . Of no use,
is it true?

6.2. The polynomial dynamical system. We recall that the gcd algorithm on Fq[X ] is based
on the Euclidean division: on a pair (u, v) of polynomials with deg v > deg u,

v = m · u+ r, with r = 0 or deg r < deg u.

As we did it in Sections 4.1 and 4.5 in case (I), it is possible to define a continuous extension of
this division. This construction is due to Artin. The analogue of the ring Z is the ring Fq[Z] of
polynomials, and the field Fq(Z) (the field of rational fractions) plays the same rôle as the field Q of
rational numbers. We work on the completion of Fq[Z] with respect to the (ultrametric) absolute
value ||.|| defined as ||u|| := qdeg u: this is the field of Laurent formal power series Fq((1/Z)) where
each element f has a Hensel expansion

(94) f =
∑

n≥n0

fn (1/Z)n, with fn ∈ Fq and n0 ∈ Z.

This expansion is parallel to the binary expansion of a real [replace Z by 2]. From the Hensel
expansion (94), it is possible to define the function integer part, denoted by ⌊.⌋, and the function
fractional part, denoted with {.}, with

⌊f⌋ :=
0∑

n=n0

fn (1/Z)n {f} :=
∑

n≥1

fn (1/Z)n.

8Forget the particularities of the last step in case (I)!
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The analog of the unit interval [0, 1] is the unit open ball Xq of Fq((1/Z)), which is also the set of
elements with zero integer part. The shift T : Xq → Xq is defined by

T (x) =
1

x
−
⌊

1

x

⌋
=

{
1

x

}
, for x 6= 0, T (0) = 0.

The set G of possible quotients is

G := {m ∈ Fq[Z]; ||m|| ≥ 1} = {m ∈ Fq[Z]; degm > 0},
and the set of the inverse branches of T is just the set

H := {h[m] : x 7→ 1

m+ x
; m ∈ G}.

This dynamical systems is precisely described for instance in [3].

This dynamical system possesses very particular properties. The density transformer, and its
extension the transfer operator, are defined as usual as

Gs[f ](x) =
∑

m∈G

1

||m+ x||2s
· f
(

1

m+ x

)
,

and acts on C1(Xq). Thanks to the ultrametric topology on Xq, the absolute value ||m + x|| is
constant on Xq and equals to ||m||. Then, the operator Gs is equal to

Gs[f ](x) =
∑

m∈G

1

||m||2s
· f
(

1

m+ x

)
.

When applied to the uniform density f0 = 1, the transfer operator Gs transforms it into a constant
function

Gs[1] =
∑

m∈G

1

||m||2s
=
∑

m∈D

1

q2s deg m
.

This means that the complex number Gs[1] is the eigenvalue relative to the eigenfunction equal to
1. On a convenient functional space, this is the dominant eigenvalue. This number Gs[1] is also
a Dirichlet series, but this is also a power series with respect to z = q−2s. With this change of
variables, it coincides with the (usual) generating function G(z) of the set G, which gathers all the
non constant polynomials of Fq(Z),

Gs[1] = G(z) =
∑

m∈G

zdeg m = (q − 1)
∑

n≥1

qnzn =
q(q − 1)z

1 − qz
=

(q − 1)

q2s−1 − 1
.

This allows a better understanding of the relation between the operator Gs and the generating
function G(z). But, it is not yet clear why it is possible to replace the polynomial transfer operator
by its dominant eigenvalue. This is due to the fact that the branches of the polynomial dynamical
system are affine, namely, the (ultrametric) norm of their derivatives is constant.
For a dynamical system with affine branches, the transfer operator admits 1 as an eigenfunction,
for any value of parameter s. This will be also the case for any weighted transfer operator. Then,
Section 3 is completely useless. We could have chosen to perform only one analysis, common to
case (P ) and (I). Section 4 provides all the results of Section 3: we forget the ◦ of composition,
the last function 1, and the last point 0. This allows to transform a non commutative framework
into a commutative one. Then, we perform the change of variables z := q−2s. We obtain in this
way all the expressions of the generating functions of Section 3 with this syntactic transformation.

6.3. Analytical differences. Then, there is a common framework, given by the underlying dy-
namical system, and it would be possible to eliminate the algebraic part of Section 3, with a
rewriting of Section 4. However, the analytic part of Section 3 is not a rewriting of Section 5:
The analytical studies are very different, in the sense that the analytical study in case (P ) is much
more easier. The change of variables z := q−2s transforms (unbounded) vertical strips into compact
crowns. For instance, the property equivalent to the US Property is very often much more easier
to check in the power series. This explains why the Riemann Hypothesis is proven in Fq[X ] (and
not yet for numbers. . . )
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Finally, the explanation of the difference is simple: there are no carries for polynomials, then the
degree (quite close to the size) is an additive morphism with respect to the multiplication. This
gives rise to an ultrametric topology, where it is possible to work with power series.
The existence of carries for integer leads to the usual topology, and it is no longer possible to use
power series. Dirichlet series are then used, but, at the same time, the branches of the dynamical
systems are no longer affine for the usual topology. This leads to a dynamical system with memory,
for which the transfer operator cannot be reduced to its dominant eigenvalue.
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