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STATIC AND DYNAMIC BEHAVIOR
OF A NEMATIC LIQUID CRYSTAL IN A MAGNETIC FIELD

PART II : DYNAMICS

P. PIERANSKI, F. BROCHARD and E. GUYON

Laboratoire de Physique des Solides, Université Paris-Sud, Centre d’Orsay, 91, Orsay

(Reçu le 13 juillet 1972)

Résumé. 2014 Nous étudions la dynamique de la transition de Freedericksz d’un cristal liquide
nématique orienté, en champ magnétique perpendiculaire. Les techniques thermiques et optiques
utilisées ici nous ont déjà permis une description des propriétés d’équilibre de cette transition. Les
mesures de taux de relaxation conduisent à une vérification de la théorie hydrodynamique de Leslie-
Ericksen, en particulier des effets de couplages hydrodynamiques. La divergence du temps caracté-
ristique au voisinage du champ critique suit de façon remarquable la description de Landau des
transitions de phase du deuxième ordre. Les expériences conduisent à une mesure du coefficient
de viscosité 03B31.

Abstract. 2014 The dynamics of the distortion of a well-oriented nematic liquid crystal film in a
perpendicular field around the Freedericks critical field value is studied both theoretically and expe-
rimentally. The experimental thermal and optical techniques have already been used for the des-
cription of the equilibrium properties of the transition. Their use for the measurement of transition
rates leads to an accurate verification of the Leslie-Ericksen hydrodynamic theory and to a demons-
tration of the role of back flow effects. The divergence of the characteristic time close to the critical
value follows accurately the general Landau model of second order phase transitions. The value of
the twist viscosity coefficient 03B31 is obtained.
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1. Introduction. - In a first article [1] ] (which we
will refer to as I), we have discussed the static behavior,
in a magnetic field perpendicular to its director axis n,
of a nematic film of thickness d contained between two

parallel glass plates. The three geometries used were
given in figure 1 of 1 and are reminded in the insert
of figure 7. A theoretical discussion based on the

FIG. 1. - Recording of the change of temperature in an homeo.
tropic sample under the influence of a field. At point A, the
undistorted film was submitted to a field Hl &#x3E; Hc. After the

equilibrium was reached, the field was decreased at point B
to a value H2  Hc and an exponential decay is obser-
ved. ôT &#x3E; 0 corresponds to a decrease of the effective heat

conductivity.

Frank Oseen [2] theory leads to the prediction of the
existence of a critical field H, above which the liquid
crystal (LC) gets distorted :

where Kii is an elastic constant and xa is the anisotropic
part of the magnetic susceptibility.

We have used methoxybenzilidene butylanilin
(MBBA) which is in a nematic state between 16 and
46 °C. Our experiments based on heat conductivity
and birefringence measurements are carried out in

geometries 1 and III (some results have also been given
in the case of geometry II [3]).

In this second article, we consider the dynamic
relaxation of the distortion when a field is varied

suddenly. A first discussion was given in reference [4]
(II). The theoretical description of this behavior will be
given in terms of the Leslie Ericksen [5] hydrodynamics
theory (we use the notations of ref. [6]).

2. Experiments. - 2.1 THERMAL MEASUREMENTS. -
The techniques used were described in I. It is to be
noted that, in general, the thermal time constant T th is
short enough compared to the distortion time constant
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so that dynamic measurements using this technique
are meaningful. Typically [7] :

(k is the thermal conductivity, p is the specific mass,
c is the heat capacity per unit volume). This leads to
ith of the order of 1 s for a 300 Il thick LC film.

Figure 1 shows the variation bT with field of the

temperature difference across a 300 Il thick homeo-
tropic (geom. I) LC film. At point A, the undistorted
film is subjected to a magnetic field

The temperature gradient increases since the heat

conductivity along the molecules is larger than that at
right angle to them (ref. [1 ]). At point B, when the
equilibrium distorted state has been reached, the field

is decreased to a value H2 h - H2/H  1). The2 (h 2 
e

characteristic times are indeed very large compared
to ith.

2.2 OPTICAL MEASUREMENTS - Figure 2 gives a
schematic description of the optical birefringence
technique used. A narrow laser beam polarized at

450 to the x axis of an homeotropic LC film enters at
right angle with the film : when a field H &#x3E; Hc is

applied along ox, a difference 1 is introduced in the

optical paths of the ordinary beam polarized along
oy and the extraordinary one. Assuming a linear

propagation along oz, we have :

where no is the ordinary index, ne the extraordinary
one and neff is determined from the equation :

The difference ne - no is generally small

FIG. 2. - Optical set-up used to measure the birefringence of a
LC film (1). By adding a condensing lens below the LC, a
conoscopic image is observed in the plane of the photocell (4).

In geometries 1 and III, H and no are in the xz plane.

and we can expand neff - no = (n, - no) sin2 8. If we
further assume the limit of small distortions (the
maximum distortion Bm  1) and a variation

0(z) = 0,,, cos (7rz/J), we get approximately a phase
difference :

(*) Let us note that if we had considered the more complex
distortions which occur in dynamic experiments (see chapter III),
we would still have obtained a form :

where G is an undetermined function of the distortions but
where all dynamical dependence of 0. is included in that of ô.

FIG. 3. - Recording of an optical experiment corresponding to the thermal one of figure 1. Note that the order of the extinction
fringe, N, is proportional to 0à, as ôT in figure 1. The variations obtained in the two cases are equivalent.
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The undistorted state corresponds to ô = 0. For a
330 Jl thick film, the first order fringe (N = 1) (using
a monochromatic light Â = .63 Jl, with no = 1.5,
ne = 1.7) corresponds to 9m = 2 x 10-2.
An analyzer (2) is positionned at right angles to the

polarizer (1). A photodiode (4) records the variation
of intensity between maxima ô = (2 n + 1) n and
extinctions. In the optical measurements, as well as
in the thermal ones, a quantity proportional to the
square of the distortion angle is measured.
We show on figure 3 a typical recording of a dyna-

mic optical experiment corresponding to the thermal
on of figure 1. We find again an exponential increase
of the distortion just above point A and a saturation for
larger times whereas the behavior above point B
indicates an exponential decay law.
The exponential behavior observed for small dis-

tortions can be described for both cases by the rela-
tions :

Measuring the time difference tN between two

successive extinctions N + 1 and N, a value of the time
constant TA,l is obtained :

We usually measure the time interval tA(h 1) and
tB(h2) between the first two fringes (N = 1) as indica-
ted on figure 3. In a typical run, because of the long
time constants, the field was changed from a value hl
to h2 long before the distorted equilibrium state was
reached (see Fig. 2 of II). An analysis of these results
will be given in chapter IV.

2.3 DISCUSSION. - The optical technique is supe-
rior to the thermal one for several reasons.

2. 3. 1 By using a condenser lens below the LC, one
can observe in the plane of the photodiode the conos-
copic image given by the sample. We thus could control
the quality of the sample (see ref. [1]).
2.3.2 The direct observation of the sample is very

useful if one wants to makes sure to work with single
domain samples. We remind that, in the presence of
a perpendicular field, :t Om distortions are equivalent ;
thus, in order to « nucleate » large domains, we
initially apply a slightly inclined field and study the
dynamical behavior without coming back exactly to
the undistorted state.

2.3.3 The limit of small distortions, corresponding
to our theoretical discussion, is easily obtained expe-
rimentally : the accuracy on the determination of the
number of the interfringe N of .1 ; for a 330 u thick film,
it corresponds to an uncertaincy on 9m : A0ji - 10-3.

2.3.4 The time constant is obtained from a single
measurement of a time difference between two conse-
cutive extinctions.

2.3.5 The thermal experiments are difficult to use
for long times where the thermal drift becomes

important as well as for short times constants (role
of Tlh)-

So, we will use the thermal descriptions only to
characterize qualitatively the experimental behavior,
the optical ones for the quantitative analysis.

Let us also note that the quality of the optical
measurements in the homeotropic geometry is higher
than in the planar case : First, the initial alignment
seems to be more perfect. Secondly, the distortion is
measured starting from a value N = 0. In the planar
case, the undistorted state corresponds to a maximum
value of ô = (ne -- no) d. Small temperature fluc-
tuations will induce changes of N in the absence of
distortion. We have used planar experiments to

control the temperature stability of the cell and to

study the temperature dependence of the birefringence
in agreement with the results of (8) [9].

3. Theory. - 3.1 INTRODUCTION. - The energy E
of a nematic film is a function of the field and of the
distortion. In the limit of a small static distortion,
9 = 9m cos qz, the results of 1 (Chap. III) can be
summarized as :

where i (= 1, 2, 3) refers to the geometry (insert of

FIG. 4. - Variation of the free energy E versus 0 when H § He.
When a field hi &#x3E; 1 is applied to the undistorted film, fluctua-
tions of the orientation are needed to induce the transition form
the metastable equilibrium state (a) to the final state (c). The
relaxation from point (b), when the field is decreased to avalue
H2  Hc, is much faster (see Fig. 1) than the increase from
point (a). The limit of small distortions corresponds to the left of
the broken line where only the lowest order contribution is

considered.
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Fig. 7) and 11 measures the anisotropy of the elastic
constants K :

The variation of E with Bm is shown schematically
on figure 4. Starting from an undistorted state (a),
a field Hl (h 1 &#x3E; 1) is applied and the system evolves to
an equilibrium distorted state (c). Point (a) corresponds
to a metastable state of the system. The initial distor-
tions or fluctuations of the orientation induce the
transition to the stable state (c). This explains the
slow increase of the distortion above point A in
figure 1 and 3. When the field is suddenly decreased
(c -&#x3E; b) to a value H2 (h2  1), point h is not a stable
state of the system and the distortion relaxes rapidly to
the undistorted state a. The rate of change of Omet)
depends on that of E as 0 varies and on hydrodynamic
backflow effects. The limit of small distortions corres-

ponds, in figure 4, to the left of the broken line where
only the quadratic (harmonic) variations of E(O) are
taken into account.

3.2 GEOMETRY 2. - We consider this case first
because only one elastic constant is involved and
because no hydrodynamic motion results from the
torsion of the director (one can apply a torsion to the
configuration without changing the positions of the
centers of the molecules).

3. 2.1 Application of a field Hi &#x3E; Hc. - Using the
notations of, reference [6], the equilibrium between the
elastic and the viscous torques (expressed in terms of
the viscosity facteur yi) can be written as :

When

0 is small and (III. 1) becomes :

Here

The most general solution of (2), which satisfies the
boundary conditions 8( ± d/2) = 0, is

Wlth 1 cn(t) 1  1.

Multiplying eq. (111.2) by cos (2 n + 1 ) xz/d and
performing the integration over z, one obtains a set of
differential equations for cn(t). For n = 1, one sees
easily that the anharmonic term ci is of the order of cl.

So, with a good approximation, we can take the
solution of (III. 2) as

where the maximum distortion angle, Omet), obeys the
fundamental relation to be used in the following :

This equation can be integrated as :

Physically 8m(t) is just proportional to the time

dependent contribution of the heat conductivity.
Actually, the experimental variation of bT(t), when
a field is applied, given on figure 1, has the same cha-
racteristic shape as the solution of (111.4) given on
figure 5 for a typical set of parameters (82 = 10-5,
hl = 1.25) :

FIG. 5. - Calculation of the increase of 0à(t) in the evolution
from (a) to (c) in the case of geometry II (compare to Fig. IA).
The saturation of the distortion comes from the higher order
terms in the free energy expansion which also determine the

equilibrium distortion.

For large values of t, (Jm(t) reaches the saturated
value 0(oxo) exponentially with a time constant so ’(h) :

For small values of t, the initial increase of the

distortion is given by :

The fluctuations of the orientation in the undistorted
state (t = 0) are represented by the average :
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In order to obtain the thermal contribution to e2, we
apply the equipartition theorem. The fluctuations of
the director axis around the average value of n will be
described by ôn(r). Their Fourier components are

given by :

The wave vector q has a quantized component along oz
and a continuous component in the plane of the

film, q Il.

Let us consider the limiting case where the elastic
constants are equal. Ki = K. The free energy becomes :

TT

V is the volume of the sample and H, (&#x3E; Hc) is the
initial, lower value of the field, before the upper field
Hi ( &#x3E; He) is applied [the magnetic field is parallel to
oy].

In thermal equilibrium, we have :

The equation of evolution of a fluctuation

is :

where

The characteristic length for the fluctuations in a plane
perpendicular to oz, rc-1, diverges at the phase transi-
tion at Hc. The effect of this divergence might be
observed in light scattering experiments.

Eq. (II . 5) shows that only the fluctuations q_, = nId
and qll  K become unstable when Hl is applied.
Thus B2 is calculated by summing ân 2from the upper
bound qlf I"V K to qll = 7T/L (the characteristic dimen-
sion of the sample perpendicular to z, L, gives a lower
cut off).

with

As Hl gets close to Hc, 82 shows a weakly singular
behavior

(we have neglected the effect of the lower cut off Jt/L
which would prevent the divergence of e2 if h, became
extremely close to 1).

3.2.2 Suppression of a field. - The equilibrium
between the elastic and viscous torques can be expres-
sed as :

The angle 0 varies exponentially with time, with the
decay characteristic time constants T., Tl, ..., ’rn :

If H is large compared to Hc, 0(z) is a mixture of

eigenfunctions. But the time ’C 0 (= 9 il = 25 i2)
gives the slowest decay corresponding to the least
distorted solution. 0(t) will obey a simple exponential
law, exp - t typically as soon as t &#x3E; il.

ro

3.2.3 Differential relaxation time. - We study the
relaxation of the system for small variations 3 around
the equilibrium value of the angle, 0, in the presence
of a field H.

10 Hz Hr. - The equilibrium value (Jm( (0) is

given by the eq. (IV. 3) of 1 :

The evolution of 0.(t) = 0.(oo) + ô is obtained by
eq. (111.3) around Orn( (0) :

b decreases exponentially with a time constant :

already obtained in paragraph 3 .2. l.

20 H  77,. - When H is below Hc, Om(OO) = 0
and eq. (III.3) becomes :

b decays exponentially again with a time constant :

The relaxation times below and above He are in a two
to one relationship. However, the physical parameter
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measured in our experiments is proportional to 0’
and varies as 2 bO in the first case and as b2 in the
second case. Thus, the two measured characteristic
times should be given with the same factor 2.

3° H » Hc. - The LC is almost completely aligned
along H. The stable configuration corresponds
to 0 = n/2. The equation of motion for

becomes :

à varies exponentially in time. The slowest process
is given by :

3.3 GEOMETRY 1 AND III. - The problem is more
delicate for these two cases : two elastic constants

(K11 and K33) appear in the description ; an hydro-
dynamic motion results from the torsion of the
molecules. This is shown schematically on figure 6.

FIG. 6. - In the presence of the rotation of the molecules with
an angular velocity Q, the torque acting on an elementary

volume of the fluid [10] is f,, =Yl-Y2 0, fb Yl + Y2
usually fa  » fb 1. For a weakly distorted LC, the back flow
effects are much larger in the homeotropic case (a) than in the

planar (b).

The resulting backflow torque has been calculated
in (10). It is important in the homeotropic case (case a).
In pratice, it is small in the planar geometry (case b)
and the dynamical behavior for small distortions will
be similar to that described in B for geometry II.

(Yet we make a complete discussion of geometry 1 as
this is not necessarily always the case.) However, for
large fields, the orientation of the molecules in the
central part of the film is at right angle with the
initial orientation and the backflow effects should be
more important for a planar film than for an homeo-
tropic one.
We will restrict our theoretical analysis as well as a

quantitative discussion of our experiments to the

limit of small distortions. The problem is expressed
in terms of the following equations :

3.3.1 The gradient of the angular velocity of n
induces a backflow motion causing a frictional

torque on n :

with 2 w = curl v and

Due to the quasi infinite planar geometry, and if we
neglect compressibility effects, the only non zero

component of v is vx(z, t). The equilibrium between
elastic, magnetic and viscous torques can be written as :

with

For MBBA, the ratio A is small [11 ]. Once more we
meet the fact that the hydrodynamic coupling is weak
in the planar geometry and this equation becomes
equivalent to the linearized formula III.

3. 3. 2 the gradient ô vx/ôz is related to the angular
velocity of n by the Leslie equation of the hydrody-
namic motion [5], [6]. Neglecting the inertial effects,
correct here, this equation can be written as :

The coefficients n1 and il2 represent the kinematic
viscosity for a shear flow Vx(z) parallel and perpen-
dicular to n as measured initially by Miesowicz [12].
The Leslie coefficients have been obtained for

MBBA by Gâhwiller [11]. The coupling between the
rotation of the molecules and the velocity depends on
the geometry. In the planar case where blla, is small
(N 0 for MBBA) this coupling is negligible.

3.3.3 The boundary conditions for n and for V
are :

If we had considered the static solution
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eq. (III.13) would have implied a form for v :

which does not satisfy (III. 14b). This means that the
evolution of the system does not follow a sequence of
quasistatic states. The form of the general solution in
a dynamic experiment is more complex :

so that the velocity vanishes as the limiting planes.
The time of establishment of the velocity

(corresponding to the « fast modes » of (6)) is much
smaller than s-1 and can be neglected.

Eq. (III.12) and (III.13) lead to the following
conditions for the wave vector of the distortion k
and for the time constant s -1

where

The number X gives the variation of the wave vector
(for the static case, X = n/2).

In the geometry I, A (- 10-3) is small for MBBA
and the solutions of the coupled eq. (III.16), (III.17)
are X = n/2 and a time constant

as in the case of geometry II.

The results for geometry III, using the value
A = .75 for MBBA [11], are plotted on figure 7

already given in reference [2].
We have kept the smallest X solution : for posi-

tive s, it corresponds to the fastest increase of the
distortion (as seen on (III.16)) and, for negative s,
to the slowest decrease of the distortion. Curve (a)
shows that the wave vector of the distortion increases
with the field. For h N 1, the distortion is very slow
and we get X = n/2 : As 0 varies slowly, a quasistatic
variation is naturally expected. The limiting values of
the curves are Xo (tg Xo = Xo/A) and Xl (tg Xl = Xl).
The distortions for different values of h are represented

FIG. 7. - The insert gives the 3 geometries used for the study of the Freeder ksz transition (geom. I and III were used jin this

report). Curve (a) in the homeotropic case shows the increase of the wave vector of the distortion k = 2 dX as the field h
increases. Curve (b) gives the corresponding decrease of the effective viscosity yi (h).
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schematically on figure 8 and are quite different from
the static solution.

It should be possible to check the backflow effects
directly using, for example, the motion of dust par-
ticles in the LC. The relation between V and 0 is

FIG. 8. - Schematic description of the time dependent part of
the distortion angle O(z, t) for different values of h (correspond-

ing to curve (a) of Fig. 7).

The fluid should move on a distance typically

of the order of magnitude of the thickness.

The variation of the time constant s-1 with the
field can be expressed by writing

by analogy with geometry II. The effective viscosity
y*1(h) is

where so(h) is given by (III.18).

The ratio yi(h)/Yt has been calculated in geome-
try III for MBBA and is given on figure curve b. It

decreases as h and the distortion increase. The limiting
value for large distortions - (1 - A) - turns out to
be the value predicted for the decrease of viscosity in
shear wave ultrasonic attenuation measurements [13]
in an unbounded medium. For smaller distortions,
the effect of the backflow, which reduces the viscosity,
is not as strong, as the presence of the boundaries
limits the variation of V. Even for h = 0, y* remains
smaller than the kinematic value y,. However, for
small fields (h2  5), the relative variation of yi with h
is negligible and the dynamic behavior in geometry III
should be quite similar to that in the planar case II.

4. Experiments. - 4.1 THERMAL RESULTS. - The
experimental effects in the homeotropic and planar case
are qualitatively similar and we will discuss at the
same time the dynamic behavior for these both

geometries.
We use the thermal data to characterize the dynamic

behavior in the three situations discussed theoretically :
finite increase of field from an undistorted state,
finite decrease of field from a distorted initial state,
differential changes of field. A quantitative description
of the dynamics, in the limit of small distortions, will
be given using the optical data.

4. 1. 1 Experiments in a decreasing field ; from an
upper value Hu (&#x3E; Hc) to a lower value H2 (  Hc). -
Let us consider some typical results put together in
figure 9. Starting from an undistorted homeotropic
state, we first applied a field, h. = 1.8, then we

suppressed it after the equilibrium had been reached
(curve 1). In a second experiment (curve 2), the same
field was applied but is was turned off before the

equilibrium was reached. Finally (curve 3), a lower
field, h = 1. 4, was applied and the decay was observed
after the saturation was reached. The decay curves
obtained in these three cases are very similar. The

comparison between 1, 2 and 3 strongly suggests that,
although the field value is turned on or off suddenly,
the transition of the LC to the final state follows a

sequence of quasi equilibrium states.

FIG. 9. - The exponential decay of the distortion, measured thermally, when H is decreasedj to H2  Hc does not depend on
the initial preparation of the distorted state.
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In figure 10, we see that the decay behavior obeys an
exponential law over the complete time scale and
allows an accurate estimate of the time constants TB.
This time constant is relatively insensitive to the value
of the initial field h.. (This was already apparent in the
comparison of curves 1 and 3 of Fig. 9.) This is a
little surprising, considering the results of the theoreti-
cal analysis : for small values of Hu, the time constant
should depend on K33 and the back flow should be
large. For large values of Hu, the initial behavior
should dépend on Kll 1 but with a small back flow
contribution.

FIG. 10. - The time constant of the exponential relaxation in
down field experiments, measured thermally, becomes very

long as (H, - H2) decreases to zero (H2 = 0 ; 79 ; 118 ; 158 G).

When the final value of the field H2 increases, the
time constant of the decay increases (see part B).
However, when H2 is close to Hc, the process cannot
be described by a single time constant : there is a fast
initial decay ; the variation becomes extremely slow for
large times. We characterize LB(h2) from the exponen-
tial behavior at large times.

4.1.2 Experiments in an increasing field. - We
consider the case of a finite jump of field from a lower
field hl (  1) to hl ( &#x3E; 1).

a) Shape of the time variation.
We have already discussed, in the theoretical

chapter, the characteristic behavior of the variation
of ôT(t), using the analysis of geometry II.
The shape characterized by formule (III.4) can be

conveniently represented by using the coordinates

versus t. If we remind that bT(t) is proportional to
e;(t), we expect a linear variation of y(t). The intercept
with the t = 0 axis gives the normalized contribution
of e2, 0.2(cc)/e2. The inverse of the slope measures the
time constant rA. We will discuss these two terms

separately in the following.
The quantity measured is

which diverges at t = 0, rather than bT(oo)hT(o). A
correction was made for ôT(0) (that is for a’) itera-

tively by plotting first the measured quantity and
getting g2 from an extrapolation at t = 0 of the
variation for large times. On figure 11 are given some
corrected curves for a value of h1 = 1.5 and different
value of hl which show a linear variation in agreement
with expression (111.4). Let us note however that this
linear variation y(t) is not well obeyed for large values
of hl (&#x3E; 2), outside the domain of validity of the
theoretical model given in (III. B).

FIG. 11. - Thermal experiment. Curve 1 ; at a time t = 0,
an upper field Hl = 1.5 Hc is applied. Ln (ôT(oo) - 1 varies
linearly with time in agreement with (111.4). Curves 2, 3, 4 ;
the initial distortion has been increased by increasing h1 (&#x3E; 1).
The time constant measured by the slope is unchangêd ; e2,
given by the inverse of the intercept with the t = 0 axis, increases.
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b) Fluctuations.
We first discuss qualitatively some possible sources

of initial misalignment :
- Thermodynamic fluctuations : the contribution

was estimated in the theoretical part of this chapter.
- Poor alignment in the initial state. In the expe-

riments reported in a previous note [14], the behavior
in an increasing field was very similar to that in a
decreasing field. We have given in figure 12 (curve 3)
such a typical « upward » field variation. The initial
misalignment was rather large due to an insufficient
surface treatment (although we could observe extinc-
tion along the principal axis between crossed pola-
roids).

FIG. 12. - Initial distortion for a well aligned planar film in a
perpendicular field (2), in a slightly inclined field (1) and for a

poorly aligned film (3).

- Tilt of the magnetic field. In an homeotropic
sample, we have applied a magnetic field at an angle
with oz. The curve for a field tilted by an angle of
60 (Fig. 12, curve 1) shows a faster initial start than
that with a field perpendicular to oz (curve 2). It also
indicates that a very large misalignment is probably
required to get curve 3. The exponential behaviors
of 1 and 2 for large times are very close. De Gennes has
suggested to us that the large time behavior could
be controlled by the exlusion of walls separating
domains with opposite value of the angle, ± {}m. In
the planar case, for example, such a wall would have a
heat conductivity smaller than that of an homogeneous
region. However, the growth of the + and - domains
should depend drastically on the tilting of the field which
would favor one sign : the absence of such effects in
our experiments may be due to a small residual

misalignment and to the fact that the area of the
walls is only a small fraction of the total area of
our thermal experiments (although we have actually
observed these walls in the two configurations studied
here).

Let us consider quantitatively the results of figure 11
for different values of the initial lower field hl (= 0 ;
0.45 ; 0.68 ; 0.91) and the same value of hl = 1.5. All
curves are parallel. This shows that the time cons-

tant’rA’S only a function ofhl as expected from (III .4).
The lower curves correspond to the largest values of
hl (on the experimental curves, the initial start of

ôT(t) becomes faster as hl increases). This effect could
either be due to the increased importance of the
quadratic angular fluctuations when hl --&#x3E; 1, discussed
in the theoretical chapter, or to that of the distortion
in a slightly tilted field. Rapini [15] has considered
this effect : If the distortion (Jm (H = 0) is non zero,
there is no longer a critical field and (Jm(H) increases
continuously with Hl. However, if 8m(0) is sufficiently
small, the distortion will be negligible up to a quasi
critical field. The distortion e’(0) measured in our
dynamic experiments is typically 10 times larger than
that which would be estimated in the angular fluctua-
tion model and we believe that the Rapini description
explains best our results. On figure 13, we present the
result of an optical determination of the fringe order
N (t = 0, Hl) taken at time t = 0 just before the

application of an upper field Hl, for a 150 Il homeo-
tropic film. For Hl sufficiently large, N(0, Hl) is given
from the integer count of interference fringes : The
full line curve represents the static equilibrium data
above the Freedericksz field as discussed in I. For low
values of Hl, (typically when N  1), N(0, Hl) is
obtained from the measurement of the dynamics of
the initial increase of distortion :

FIG. 13. - Variation of the order number of fringes, N(oa 0à)
for a well aligned 150 Il homeotropic film in a nearly perpen-
dicular field. The distortion for N &#x3E; 1 is measured directly
and corresponds to the static results described in I. The experi-
mental values for N(H)  1 are determined from the growth
rate in a field H sufficiently lower than Ne. Strictly speaking,
there is no more a critical field because of the small initial

misalignment (estimated to less than 20). (Note the Log N scale.)
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as obtained from (II.2). The extrapolation of the
linear variation of Log N versus t gives N(0). The data
points obtained by this technique define a curve

(half dotted line) which merges nicely in the full line
curve obtained for larger fields. This variation is very
similar to that calculated in (15) with 0(0) of the order
of one degree. There is no critical field ; however (note
the Log vertical scale) a fast increase of N takes place
above a value H = 450 G. This first (to our knowledge)
accurate measurement of this low field « rounding »
has been made possible using the « exponential
magnification effect » of the dynamical behavior.
This method is remarkable in that is it best suited for
the study of very small distortions where the times to be
measured are larger.

4.1. 3 Differential behavior. - In figure 7 of
reference 1, we have shown the effect of small tempe-
rature changes due to small variations of field around
a value h &#x3E; 1. The time variation of b T is exponential
with a time constant 1:d(h). This time is the same
whether the field is increased or decreased. When h

gets close to 1, this time is found to diverge as (h - 1)-1
as obtained in (III.9). In the limit of small distortions,
the variation of Td(h), is quite comparable to that
of 1: A,B and we will not discuss it in the quantitative
analysis of next paragraph.

4.2 OPTICAL DATA. - Let us first point out that the
optical results agree completely with the thermal

description. In the limit where 9m is small, considered
in this paragraph, we characterize the time constant iA,B
of Form (II. 2) in the presence of a field increase (A) or
decrease (B) from the value of the time interval tA,s
given figure 3.

4. 2.1 Field dependence of i(h). - It is characterized
from the value of the normalized ratio tB(0)/tB(h)
for h  1 and tB(0)/tA(h) for h &#x3E; 1. If we apply (II . 3)
and the results of (III.19) and (III.20), we obtain :

The results for several planar samples are plotted on
figure 14. They follow closely a (h2 - 1) law. In

particular, the divergence of i(h) as (h - 1)-1 for
h = 1, predicted by the Landau model of second order
phase transitions [16], is accurately obtained on both
sides of the transition as in the superconducting
corresponding problem discussed in the appendix. A
similar variation was reported in reference [2] for

homeotropic films in a field range 0  h2  5. This
behavior is consistent with the result of Form (IV . I).
However, we expect the value of the ratio yÎ(0)/yÎ(h)

FIG. 14. - The inverse of the time constant, measured optically (see Fig. 3), for upward field (h1 &#x3E; 1) and downward field
(h2  1) experiments follow accurately a (h - 1) variation in geometry I. The experimental points are normalized to the

value for h = 0.
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to vary with h typically only when h2 &#x3E; 5. The diffe-
rence in behavior between the planar case (where
y*1(h) = y1 remains constant) and the homeotropic
case is clearly seen on figure 15 : The (h2 - 1) law
is always obeyed for geometry 1 whereas the homeo-
tropic results show a strong deviation from the

quadratic behavior towards shorter time constants

(smaller viscosity yi(h)) for larger fields. We have
also plotted the corrected calculated form (IV. 1) using
the variation of yi(h)/Y1 which was given on figure 7b.
This form agrees with the experimental data very well.
It gives a very spectacular and quantitative proof of the
effect of back flow in a system with solid boundaries.
Additional data with different boundary conditions
would be desirable. For example, in a LC film with a
free surface, relaxing a boundary condition on Vx
should lead to an even stronger reduction of the

viscosity in the homeotropic geometry.

FIG. 15. - The planar results of figure 14 plotted in a h2 scale
indicate no deviation from a parabolic behavior. In geometry III,
the deviation from a parabolic variation for large fields, h2 &#x3E; 5,
is related to the decrease of the effective viscosity y*(h) and
provides a spectacular demonstration of the back flow effects.

4.2.2 Viscosity coefficients. - The viscosity y Î
(h = 0) is obtained from the formula :

which requires measurements of He and iB(0) (we have
used the values of VA given by Gasparoux et al. [17]
Xa (27 °C) ’" 1. 1 x 10-’ cgs). An accurate determi-
nation of ’tB(O), when a field is suppressed, is given
from a plot of Log N versus time (Fig. 16). We observe
a linear variation (0  N  10) quite accurately and

obtain ’l’B(O) with a better than 5 % accuracy. The
critical field He can be measured from the linear

extrapolation of the equilibrium value N(h) towards
N = 0 (see ref. [1]). This involves very long expe-
riments. An easier determination of He is obtained
from the field dependence of i(h).

FIG. 16. - A plot of Log N versus t taken from a curve such as
given on figure 3 above point B is used to measure the absolute

value of ri.

On figure 17, we show the temperature dependence
of yi(T). This viscosity coefficient was measured for
different samples in the planar case (yi = y1*) and in
the homeotropic one

FiG. 17. - Temperature dependence of yl(T) obtained from
experiments in geometry I and III using the method of figure 16.
The fesults are compared with those of reference [11] and [17].
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Our data are compared with a value based on flow
viscosity by Gâhwiller [11] ] and the temperature
dependent data of Prost and Gasparoux [18] who used
measurements in a rotating magnetic field. They also
agree with those of L. Léger [19] deduced from the
motion of walls in a magnetic field. The temperature
dependence of y1(T) is large although we find a smaller
dependence than that reported in [17] ; The agreement
with the values already published is a further confir-
mation of the validity of our description. The agree-
ment between planar and homeotropic corrected
results is a further proof of the role of back flow
effects included in the (1 - A/6) correction in the

homeotropic case. However, we feel that this agreement
is not as significant a proof as the behavior observed
in figure 15 : the accuracy on yl is not better than 10 %.
In addition, different LC films were used for the

homeotropic and planar studies.
In conclusion, her study of the Freedericksz tran-

sition reported in this paper and in reference [1 ] has led

to the study of several static properties (anisotropic
heat conductivity, elastic constants) of nematic LC as
well as dynamic ones leading to the value of a viscous
constant. Back flow effects are described remarkably
well by the hydrodynamic Leslie-Ericksen theory.
Direct observation of these effects and experiments
with different boundary conditions are desirable :

along this line, we are now studying the properties
of LC films with a normal-nematic interface in the

presence of a large enough thermal gradient [20].
Another line of work is the in physico-chemical
understanding of the anchoring effects which under-
lies all this work. Finally, we emphasize that a comple-
mentary approach of the dynamics of the Freedericksz
transition has been made possible by the work of
L. Léger [19] involving the direct observation of

nucleation, growth and structure of the domains
associated with the application of a field. In our study,
we have purposedly studied the properties of only
large «crystalli tes» .

APPENDIX

It might be of interest to outline the analogy between
the time constant 7:(h) characterizing the rate of change
of the angle 0(t), which was discussed in the framework
of the Landau description of second order phase
transition, and a similar time constant 7:( T/ Tc) in the
Ginsburg-Landau description of superconductors [21],
[22]. The latter time gives the rate of change of the
superconducting order parameter L1 close to the

transition to the normal state (d --+ 0). In a linear

approximation, one has :

When T is smaller than the critical temperature Tc,
this equation describes the exponential growth of the
superconducting order (corresponding to case A of
our nematic problem) and L(T/Tc) &#x3E; 0. The variation

of T(T) in this domain has been determined indirectly
from the magnetic behavior of second kind supercon-
ductors and a divergence of r(T) as (1 - T/Tc)-l
was obtained [21]. The - 1 « mean field » exponent

obtained in this case as well as in the magnetic field
divergence in the LC case comes from the fact that,
in the two problems, there exists a large coherence
distance ç. The variation of T(7y7c) for T &#x3E; Tc
corresponding to the exponential decay rate of L1 in the
normal state (case B in the LC problems) has also been
obtained from proximity effect experiments [22]. It is
amusing to note that the variation of r(O)/,r(T/Tc) is

strongly analogous to the parabolic variation of

T(0)/T(h) although it is given by a more complex form :

where (x) = F’(x)/T(x) is the digamma function.

The nematic experiments however provide the first
direct check of the Landau dynamic description, as the
time constant in the superconducting problem is

unmeasurably small :
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