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In this paper, we propose a finite volume discretization foitidimensional nonlinear drift-diffusion
system. Such a system arises in semi-conductors modelihgs @omposed of two parabolic equations
and an elliptic one. We prove that the numerical solutiorveages to a steady state when time goes to

infinity. Several numerical tests show the efficiency of thetimd.
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1. Introduction

In the modeling of semi-conductor devices, there existsesahthy of models ranging from the kinetic
transport equations to the drift-diffusion equations, €2#%). In semi-conductor simulations, the drift-
diffusion system is the most widely used because it displeth computational efficiency and physical
consistency. This system consists of two continuity eguatfor the electron densify := N(t,x) and the
hole densityP := P(t,x) and a Poisson equation for the electrostatic potewtiat V(t,x) fort € R* and

More precisely, letQ c RY (d > 1) be an open and bounded domain such tBa polygonal or
polyhedral and we sdt = dQ. ForT > 0, we denote byt = (0,T) x Q and/t = (0,T) x I". Then,
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setting all physical parameters equal to 1, the drift-diifun system for a bipolar semiconductor reads

aﬁ_’:' . dIV(Dr(N) _ NDV) = O7 ('[,X) S QT7
% —div(Or(P) + POV) =0, (t,x) € Qr, 0
AV =N-P-C, (t,x)eQr,

whereC € L*(Q) is the prescribed doping profile characterizing the deviweun consideration
IC(x)| <C, Xe Q. (1.2)

The usual considerations on which the isentropic hydrodyoaodel are based suggest a pressure of the

form
rs) =<, o>1

The linear case, where = 1, corresponds to the isothermal model. In the general easayill assume
thatr € €Y(R), r(0) =r'(0) =0, with r'(s) > cos® 1.
Equations (1.1) are supplemented with initial data at tirse0

N(0,x) = N°(x), P(0,x) = P°(x), xe Q, (1.3)
such that there exist two constants.0n < M satisfying
m < N°x), PP(x) < M, xeQ. (1.4)

Moreover, we will consider Dirichlet-Neumann boundary ditions. Indeed, the physically motivated
boundary conditions are either Dirichlet boundary conditionN, P,V or homogeneous Neumann bound-
ary conditions orN, P andV. This means that the boundalyis split into two partd” = lp Uy and, if
we denote by the outward normal té', that the boundary conditions read on the boundary

N(t,x) = NP(x), (t,x) € (0,T) x Ip,
P(t,x) = P°(x), (t,x) € (0,T)x I, (1.5)
V(t,x) = VP(x), (t,x)€(0,T)xIp

and homogeneous Neumann boundary conditiongon
Or(N)-v=0r(P)-v=0OV-v=0only. (1.6)
We assume that the Dirichlet boundary conditions satisfy
m < N°(x), P°(x) < M, xelp. (1.7)

On the one hand, the existence of solutions to the systenr(1L8) has been proven under natural
assumptions. In some situations, the uniqueness of softioalso obtained, see (3; 13; 15; 17; 20). On
the other hand, a lot of numerical algorithms for solvingdni&-diffusion system, in the stationary case as
well as in the transient case, have already been proposstarted with 1-D finite difference methods and
the so-called Scharfetter-Gummel scheme (26). In thedipessure case(S) = 9), finite element methods
(1; 8; 7; 9; 10; 16; 25), mixed exponential fitting finite elamenethods (4) have also been successfully
developed. The extension of the mixed exponential fittinjefialement methods to the case of nonlinear
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pressuresr(s) = s7) has been considered in (2; 18) and (21) where numericdtsese given in 1-D and
2-D respectively. The convergence of finite volume scheméisé nonlinear case has been established in
(6).

The large time behavior of the solutions to the nonlineatt-diffusion model (1.1)-(1.6) has been
studied in(19). It is proven that the solution to the trans®ystem converges to a solution to the thermal
equilibrium state as — o if the boundary conditions (1.5) are in thermal equilibriufihe stationary
drift-diffusion system reads

—div(Or(N) = NOV) =0, xeQ,
—div(Or(P) + POV) =0, xe€Q, (1.8)
AV =N-P-C, xe€Q,

with the boundary conditions (1.5)-(1.6). The thermal égtium is a steady-state for which electron and
hole currents[{r(N) — NOV andOr(P) + POV) vanish. The existence of a thermal equilibrium has been
proven in (24). Let us introduce the enthalpy functiodefined by

h(s):/lsr/(—r)dr (1.9)

T

and the generalized invergeof h, defined by

[ hl(s) if h(0) < s< o,
9(s) = { 0 if s < h(0%),

where we have implicitly assumed that-o) = «. If the boundary conditions satisfy®, P® > 0 and
h(NP) —VP = ay and h(PP) 4+ VP = ap onIp,
the thermal equilibrium is defined by
N(x) = glaon+V(x)), PX) = glap—V(x)), Xxe€Q, (1.10)
wheread/ satisfies the following semi-linear elliptic problem

AV =g(an+V)—g(ap—V)—-C, in Q,
(1.11)
V(x) =VP(x)onlp, 0OV-v=0onMy.

In this paper we are concerned by the theoretical study ofattge time behavior of the numerical
solution given by a finite volume scheme for the transierft-diffusion model (1.1)-(1.6) . This work is
motivated by a very practical question. Indeed, in numégaoalysis the numerical solution is classically
proven to converge to the exact solution of the continuoudehon a fixed time interval when the mesh
size goes to zero. However, in engineering the numericaitisal is often computed on a fixed mesh
where the final time is increasing and goes to infinity. Thassuch a situation, it becomes crucial to
study the stability and consistency of the numerical sotuth the long time asymptotic limit. Moreover
in engineering numerical solutions are often performednd §tationary solution, then the question of
consistency of the computed solution with respect to thetexae is usually not known.
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This article is the first step of a research program in nurakdoalysis on the long time asymptotic
behavior of discrete solutions (spectral methods for Bo#mn’s equation, finite volume for 2-D Navier-
Stokes equations, etc). Here, we focus on a drift-diffusimudel for semi-conductors when the thermal
equilibrium holds at the boundary.

We first study the stationary case and propose a finite volumense for the steady state problem. On
the one hand, we prove existence and uniqueness of a nuhsaficgon. On the other hand, we establish
a priori estimates which will lead to the convergence of the numkschition to the exact solution of
the steady state problem. The second part is devoted to thatien problem (1.1)-(1.6). We construct a
new finite volume scheme and rigorously prove that the nuraksolution converges to the solution of the
discrete steady state problem given in the first part. Thefpsdased on the control of the discrete energy
dissipation.

2. Numerical scheme and main results

In this section, we present the finite volume schemes forhtbamal equilibrium (1.11), with (1.10), and
for the time evolution drift-diffusion system (1.1)-(1.6)hen we give the main results of the paper.

We first define the space discretization®f An admissible mesh d® is given by a family7 of control
volumes (open and convex polygons in 2-D, polyhedra in 3a0@mily & of edges in 2-D (faces in 3-D)
and a family of pointgxk )kc 7 Which satisfy Definition 5.1 in (12). It implies that the sght line between
two neighboring centers of cellsk,x_) is orthogonal to the edge = K|L. In the set of edge#’, we
distinguish the interior edges € &yt and the boundary edgese Sex. Because of the Dirichlet-Neumann
boundary conditions, we sphfuy into &ext = £2,U &N, where&L, is the set of Dirichlet boundary edges
and&)), is the set of Neumann boundary edges. For a control vokirae7, we denote bysk the set of
its edgeséin k the set of its interior edges, « the set of edges df included in/p andéae’\)iLK the set of
edges oK included inly.

In the sequel, we denote by d the distanc&®fh m the measure iRY or R9-1. We assume that the
family of mesh considered satisfies the following regwecitnstraint there exis% > 0 such that

dxk,0) > &d(x,x), forKe 7, foro € é&nk, o=K]|L. (2.1)

The size of the mesh is defined by
0 = max(diam(K)). (2.2)
Keg

For all o € &, we define the transmissibility coefficient:

m(o)
_ f : =K]|L
A x) orog e &n, O L,
TO': ( )
m(o
f )
.0’ Or 0 € Sextk

Then, we set
G(xV) = glan+V) — g(ap—V) — C(x).

The scheme corresponding to the equation (1.11) on the flterreads

Z TgDVk,o = m(K)GK(VK), KeZ, (2.3)

oESK
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where thegDVk ¢)gc¢ are defined by

V-V, If oe€én, O':K|L,

DVko =14 Vo—Vk if 0€ &5, (2.4)
0 if 0 € &k
with 1
Vo — M/(IVD(X) dx o€ &L, (2.5)
and 1
Gk (V) = W/Ke(x,vmbg Ke 7. (2.6)

Then, we define an approximate solutMhassociated to the discretization (we recall tha® is the size
of the discretization), which is a piecewise constant fiamct

Vs(x) = Wk xeK. (2.7)

The scheme leads to a system of nonlinear algebraic eqeatiorthe next section, we will establish
existence and unigueness of a solution to the scheme @2.B)dnd a priori estimates giving some com-
pactness and allowing to pass to the limit on the sequencpmbaimate solutiongVy)s-o towards the
solutionV € H1(Q)NL*(Q) of (1.11) coupled with boundary conditions (1.5)-(1.6). €Tiesult is the
following:

THEOREM 2.1 Assume that the boundary conditions satisfy (1.7) witk O and the thermal equilibrium
onlp
h(NP) —VvP = ay, and h(PP)+VP = ap,

where the enthalplyis given by (1.9).
The scheme (2.3)-(2.6) admits an unique solution, whidkfged the followind_* estimate and discrete
H? estimate : there exists a constant> 0, only depending o'® andg, such that for alK € .7

V| < € VK e T

ZKey zgeéaK T |DVK,6T|2 < 7.

We may now define the finite volume approximation of the dtiffusion system (1.1)-(1.6) in the case
of mixed Dirichlet-Neumann boundary conditions. The schésmalmost the same as the one proposed in
(5) except that the diffusion is approximated in a diffenamy.

Let (7,&, (X« ke ) be an admissible space discretizatiofband let us define the time steyt and
Mt = E(T/At) in order to get a space-time discretization®f. First of all, the initial and boundary
conditions and the doping profile are approximated by th&jsrojections on control volumes or on edges:

1 1 1
0_ 0 p0_ 0 _
NG — m(K)/KN - m(K)/KP, Cx m(K>/Kc, Ke 7, 2.8)

1 1 1
Ny = —— [ NP P:—/PD V:—/VD &0 2.9
o m(a)/;_ ’ g m(U) o ’ g m(U) o ’ oc ext ( )



6 of 28 C. Chainais-Hillairet and F. Filbet

Forn € N, we construct the approximate potentél from the densityN",P") and then we update the
density(N"*1, P*+1) atiteratiomn+1. On the one hand, for the potentél we use a classical finite volume
scheme

ToDW &
ocesk

m(K) (NI =P —Cx), Ke .7, (2.10)

whereDVY , are defined analogously to (2.4). On the other hand, for therse onN™" and P"*1,
we choose a fully implicit discretization, with a standaglxinding for the convective fluxes and a new
nonlinear approximation for the diffusive fluxes. Then tobeme foN"t1 andP™! is given forK € .7

by

Nn+l — NP
m(K) KTK (2.11)
- T [min(NgTH N Dh(N™ g o — (DVE 5) "NRTE— (DVE 5) "N
p
- To [Min(NgT,Ng) Dh(N™ ™)k o — (DWR ) "N — (DV 5) "No] =0,
06k
P Re
m(K) BT (2.12)
Z To [min(PEHE, MY Dh(PM )k o + (DWR o) PRI+ (DR ) PR
p
To [Min(RYTE, Py ) Dh(P™ )k o + (DVR 5) TPs + (D o) PR =0,
aeé’exLK
whereDh(P)k ¢ is defined by
h(RL) —h(P), if o€ &n, o=K|L,
Dh(P)ks = { h(Ps)—h(R) ifoe 5&,(, (2.13)

0 if 0 € &k

andu™ = max{u,0} andu™ = min{u,0}.
Then, the approximate solutidqis, Ps,V;s) to the problem (1.1)-(1.6) associated to the discretipatio
2 is defined as piecewise constant function by

Ns(t,x) = N1 Ps(t,x) = PP*L Vs(t,) = VL (1) € [T ™) x K,
S K o K o] K

where{(N¢,PZ,Vi0), K € .7, 0< n< Mr + 1} is the solution to the scheme (2.10)-(2.12). We may now
state our main result.

THEOREM 2.2 We assume that there is no doping profile<0), that the initial and boundary conditions
satisfy (1.4) and (1.7) with & m < M and that the following condition on the time step is fulfilled

MZ
AtD < 1, whereD:= o (2.14)
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Then, the solutioriNg, Ps,Vs) given by the finite volume scheme (2.8)-(2.12) satisfies foh& € .7

(NZ,PY) —  (Nk,Pc) when n— oo,
V¢ — Vk when n— oo,

where(Nk, Pk, Vk) is an approximation to the solution of the steady state égu#ét.10)-(1.11) given by
(2.3)-(2.4).

3. Drift diffusion system at thermal equilibrium

In this section, we study the numerical solution corresjiogdio the steady state (1.8) with boundary
conditions (1.5), (1.6) in the thermal equilibrium case vehine steady state rewrites (1.10)-(1.11).

3.1 A semi-linear elliptic problem

The aim of this section is to prove the convergence of a finileme scheme for a semi-linear elliptic
problem like (1.11). More precisely, we are interested whpems of the form:

AV = G(x,V), xe€Q,
(3.2)
V =VPonrp, OV-v=0on.
The assumptions are the following:
G(x,V) is monotonically increasing with respect\dfor all x € Q. (3.2)
There exist function&; (V) andG;(V) monotically increasing such that
G1(V) < G(x,V) < Gy(V) forall x e Q. (3.3)
Moreover,
there exisW; andV; satisfyingG; (V1) = 0 andG,(V,) = 0. (3.4)
Finally, the functionVP can be extended in the whole dom&nand satisfies
vP e HY(Q). (3.5)

Under such assumptions, the problem (3.1) admits a uniquésoV € HX(Q)NL*(Q). The proof of
this result can be found in (22). For the thermal equilibriiimi 1), the assumptions (3.2), (3.3) are clearly
satisfied. Indeed,

G(x,V) = glan+V) —g(ap —V) = C(X)

is monotonically increasing with respect\o The functiongs; andG; are the following
Gi(V)=g(an+V) —g(ap—V) =C, Ga(V)=g(an+V) —g(ap—-V) —C,
whereC = infyc g C(x), C = sup.o C(x) and since ling_._ g(V) = 0 and limy_ ;. g(V) = +o0, we have

VIerlel(V) = +oo, vanlooGZ(V) = +oo

therefore from the continuity d& we show that there exis andV, such thaiG; (Vi) = G,(V») = 0 and
(3.4) is satisfied.
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3.2 Existence and unigueness
First we prove that ifVk, Vy) is solution to the scheme (2.3)-(2.6) exists, it satisfiek"aestimate.

LEMMA 3.1 We assume that (3.2), (3.3), (3.4) and (3.5) are satidfietdus set
V = max{Vy,supvP}, Vv = min{Vg,iprD}. (3.6)
) D

If the scheme (2.3)-(2.6) admits a solution, then it sagste followingL” estimate :

V<W<V, VKed. (3.7)

Proof. The definition (3.6), combined with the monotonicity®f andG, and with (3.3) lead to
Gi(V) > Gi(V1) =0 and Gy(V) < Gy(V2) = 0.

Then, we defin&/ =V for K € .7 andV, = V for o € &5, andW by
w_ \F/\V/K:VKf\F?K7 fOI‘KEy,

W =Vy—V,, foroeé&h,
From the definitions 064, (3.3) andV, it follows that forK € 7

% 70 dVk o — M(K) Gk (Vk) < 0—m(K)G1(Vk) < —m(K)G1(V1) =0
gE8K
and using thaV is a solution to (2.3)-(2.6), it yields for dll € .7
Y TodWio > m(K) (Gk(Vk) — Gk(Vi)).- (3.8)

geék

On the one hand, using the definition\?)(3.6), we know thaWW, < O for all o € &ED..
On the other hand, we denote W, = Ir(nzg(WK and assume that
S

WKO = VK07\7K0 > 0.

Then, writing (3.8) foK = Ky and using thaGk (V) is nondecreasing with respect\{gthe right hand side
is positive whereas the left hand side is negative. Theeefue have shown that for &l € .77, Wy <0,
hence the upper bound _

V<V, VKeJ.

The lower bound is obtained by the same way. O
The result of existence and uniqueness of a solution to theenoal scheme (2.3)-(2.6) is a consequence
of theL”-estimate (3.7) and comes from an application of Leray-8dbafixed point theorem.

PrRoPOSITION3.1 We assume that (3.2), (3.3), (3.4) and (3.5) are satistiedn, the numerical scheme
(2.3)-(2.6) admits a unique solutidh= (Vk )k # Which satisfies th&*-estimate (3.7).

Proof. We start by uniqueness and consider two solutidRsandU? to (2.3)-(2.6). Multiplying by
Ug —UZ and summing oveK € .7, it follows

PP DU -Uke] 3 m(K) [Ge(U) — G(UR)] [UR - U] =0
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SinceG(x,V) is increasing with respect ¥
[Gk (Ug) — Gk (UR)] [Uk—Uk] 20, YK € 7;

we conclude that
S S oot -Uio) <0
KeJ oeék

and sincgU! —U?), =0, foro € &5, thenu! =U?2.
For the existence proof, we introduce the applicaffon (V,A) — W whereW is the solution to the
linear system

S ToDikg = AmK)Ge(Vo): VK E 7,
gECéK
with
— 1 D
vvg_m/a/\v (x)dy.

The operatofl is a linear mapping froniR® x [0,1] — R? , where is the number of control volumes,
continuous and compact. Furthermore, it satisfies :

o T(V,0)=0,

e forall (V,A) € R x [0,1] such thafl (V,A) =V, we have V< Vi < V.

Thanks to the Leray-Schauder fixed point theorem, it folltwa T; : V — T(V, 1) admits a unique fixed

point, which concludes the proof of Proposition 3.1. O
From theL® bound, we can now establish a discreté estimate giving strong compactness on the

approximation. Assume thé\n‘Jg)GEge[;t is given on the boundary®. Foru= (uk)ke7, we define the.2-

norm and thed1-seminorm as follows:

2 2
[uloe = m(K) |uk|
Ke 7
iy, = Z Tolu—wf+ 5 Z) To |UK — Ug 2.
TESint Ke7 O-EéanLK
o=K|L

We recall the discrete Poincaré inequality:

LEMMA 3.2 LetQ be an open convex bounded polygonal or polyhedral subget ¢ = 2 or 3). Then,
there exist€o € R, only depending o2 such that, for all admissible mesh @fsatisfying the regularity

assumption (2.1), for alluk Jke 7 and(Uo) o 4p, satisfyingus =0 forall o € D, we have

Covd
ulloo < (\2/3 lul1o

Proof. We perform a similar proof as in (14). LeT be an admissible mesh and denoteX{y”) the
set of functions fron2 to R which are constant over each control voluke .7 and which are zero on
the set of edges C 'p. We considewr € X(.7) and since the functiomis piecewise constant and has a
finite number of jumps (which corresponds to the number oksjigve get that € BV(Q). Moreover in

(3.9)
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dimensiond, the space oBV functions which are zero on the bounddgyis continuously embedded in
Lat (Q) (11, Theorem 3.5). Then, there exists a congtant> 0, depending only o2, such that
[ vls*idx < Co [BVav)e,
Q
where
BVo (V) = sup{/gv(x) divg(dx ¢ €C(Q), |p(X)| <1, Vxe Q}.
Applying this latter result to our functione X(.7), we get

d-1
d
( Z m(K)|vk |d-1 1) < CqBVa(v)
KeT
and sincer is piecewise constant, for afl € C3(Q)
/ v(x) divg (x)dx = vK / dive (x
/0 Ke7

Thus, applying the Green formula to the smooth and compauapyported functiog
/ v(x) divg(x)dx = B Wk /¢ VKo dy,
Q Ker aeﬁ.mK

wherevk ¢ is the unit normal to the edge, oriented outwardk. Next, we perform a discrete integration
by part

/v(x)div¢(x)dx = (Vik —wL /¢ “VK,g dy,
Q
o= +'<”\‘L
< Z m(a) [vk = VL| [[@]]e,
)
< m(o)|vk —Vi|.
0Céints
o=K|L

Hence, we get

d-1
d
d
( z m(K)|vK|dl> < Cq Z m(o)|vk — Vi |.
Ke7 0Ceint,

o=K|L

2(d-1)
Now, we takev = |u|_d_ and use that

2@ 2(d-1
o | < 2O (el ol -
Integrating by parts and applying the Cauchy-Schwarz iakyit yields, thanks to (2.1),
d-1
d
d—
( > m<K>|uK|2) < Coy 5 mo)u| T uc-ul
Ke7 KeJ o€éintk
o=K|L

1/2
Co 20-2)
< —Zulie m(0)d(xk, 0)|ux| ™ ) :
\/? (K;?UGZ&’K
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Sincey ge g M(0)d(xk,0) = dm(K), this gives

d-1

CoVd 2(d-2)

T 1/2
(Kém(K)IUKF) < Wlulm (Kgym(K)luKl_d_) :

Finally using the Holder inequality, we get

Qém«wm)d <Cyfwm<éﬂwww>m

and then (3.9). O
The next lemma provides drf estimate and ahki® estimate on the numerical solution to the scheme

(2.3)-(2.6).

LEMMA 3.3 We assume that (3.2), (3.3), (3.4) and (3.5) are satisfikdn, there existg” > 0 such that
the solution(Vk ke, (V(,r)aeggI to the scheme (2.3)-(2.6) satisfies

S m(K) Vf? + Z ok =W+ 5 Z: o Vk —Vo|? < €. (3.10)
IESint & tK

Ke7 KeZ g
o=K|L ECex

Proof. AsVP € H!(Q), we can defingVi¢)ke.7 and(Vg) ge a0, bY
V2 = L/VD(X) dx, forke 7
K m(K) Jk )
1
VP o= o) /GVD(X) dx, foro e &

Multiplying the scheme byVk — V2] and summing oveK € .7, we get:

=5 Y oDk VK] = = 5 m(K)Gk (Vi) [Vik —W. (3.11)
KeT ogesk Keo

On the one hand, we have the following lower bound for theHaftd side:

-5 Y wD%koW-W] = Z To Vi = VL] ([Vik = W] — Vi@ = VP]) +
Ke.7 geék UEKITIE
To [Vk — Vo] ([VK —Vo| - [VI? _VE])
Ke’yaeéaexLK
1 1
> SVEo - 5VPEe (3.12)

On the other hand, applying successivelyltifeestimate (3.7) and Young inequality with> 0 on the right
hand side of (3.11), there exists a constént 0 such that

]m(K)GK(VK) [VK —VKDH <% (@ + Sm(K) [VK —Vll()]z) .
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Therefore, summing ové¢ € .7 and applying the discrete Poincaré inequality (3.9), wte ge

m(Q
5 miK) G MW < (T ey - vl )
Ke7 €
Q
< @ (%) + elV—VDIiQ) :
m(Q
< ¢ ((T) +2e(VIfq + |vD|iQ)) (3.13)
It remains to choose small enough to deduce (3.10) from (3.12) and (3.13). O

4. Asymptotic behavior of the time dependent approximate dation
4.1 Classical a priori estimates

We do not detail here the proof of the convergence of the sel{@rB)-(2.12) when space and time steps go
to 0. Indeed, this scheme is very close to the scheme studi@]:ithe only difference is the discretization
of the diffusive fluxes. Therefore the proof of the conveigeof the scheme towards a weak solution of
the problem (1.1)-(1.6) is similar to the proof done in(5¢t us recall the required hypotheses:

(H1) NO PO ¢ L°(Q),NP, PP ¢ L?2(Q7)nHY(Q7) andVP € L°(R*;HY(Q));
(H2) there exist two constanis andM such that

0<m<N°,P°<M, inQ, andm<NP P°<M, inQr;

(H3) r € C3(R) is strictly increasing orf0, +);
(H4) C e L®(Qr) with C = ||Cl|w.

The result is the following. We insist on thepriori estimates which will be used in the proof of
Theorem 2.2.

THEOREM 4.1 Let(H1) — (H4) hold and.7 be an admissible mesh @2. Assume that the following
stability condition is fulfilled

AtDt < 1, whereDt ;=M expCT)+C. (4.1)

Then, there exists a unique approximate solutigg Ps,Vs) to the scheme (2.8)-(2.12), which satisfies for
alK e Z andalln=0,1,...,Mr,

mexp—CT) < Ng, P < MexpCT).
In particular, ifC = 0, the maximum principle holds fots andPs, i.e;;
m< Ng, P <M, V(nK)eNx.J. 4.2)

and
Vg = IVM§q + V"io < 4m(Q)*M?, Vn e N. (4.3)

Moreover, the approximate solutidiNs, Ps,Vs) converges tdN,P,V) as space and time steps go to 0,
where(N,PV) is a weak solution to (1.1)-(1.6).
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4.2 Preliminary results

As in the continuous case, see (19), the study of the largetiemavior of the scheme (2.8)-(2.12) is based
on an energy estimate with the control of the energy dissipat

First, let us recall some notations. We denotgNy, Pk, Vk) the solution to the discrete thermal equi-
librium. This means thafvk ) is the solution to (2.3)-(2.7) and

Nk =g(an+Vk), andP =g(ap—Vk),

which is equivalent to
h(NK)—VK = aN, h(Pk)—I—VK = 0dp.

The solution to the time-dependent scheme (2.8)-(2.13motkd(Ng , P?, V).
For the sequel, we need to define

H(s):/lsh(r)dr, 0<s

(with the conventiom(0) = h(0™)). Then we can introduce the discrete version of the deviatfdhe total
energy (sum of the internal energies for the electron anel thsities and the energy due to the electrostatic
potential) from the thermal equilibrium, see (19): for 0,

67 =3 i) HOND) ~H(NO) — NG (N N
Keg
£ 3 m(K) [H(R) — H(R) ~ (R (R~ )
Ke.
£V

AsH is a convex function, we hav&" > 0 forn > 0. We also introduce the energy dissipatigiiN"1, 1 vn):

2
FNTLPTLVY) =yt min(NELNTY [D (h(N"2) = vm), |
gEeint

o=K|L

2
+ z ; Tg Min N”*l,N D (h(N™1) —yn
& o o ( K 0) [ ( ( ) )K,a}

2
+ Z To min(P,r(Hl, PITH) [D (h(PnJrl) +Vn)K O'i|
O€éint ’
o=K|L

2
+ Y Y tomin(RrR) [D (P V), ]
KE.T 0€8extk ’

The proof of Theorem 2.2 relies on the control of energy aretgndissipation given by the following
Proposition.

PrRoPOSITION4.2 Let(H1)— (H4) hold and7 be an admissible mesh &f. Then, forn > 1,

MZ
&ML 4 (1— HAt) At 7 (N pHL vy < gn, (4.4)
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The proof of Proposition 4.2 will be given later. First, wega result to estimate the energy due to the
elecrostatic potential.

LEMMA 4.1 Let(H1) — (H4) hold and.7 be an admissible mesh &f. Then, forn > 0,

1 1
> |Vn+17v|iQ -5 |Vn*V|iQ < - Z m(K) (N|2+17N|2*P|2+1+ PIQ) [VQ*VK]

Keo
MZ
+—At?2 7(N™L Pl vy, (4.5)
m
and
1 n+1 n MZ 2 n+1 pn+1 y/n
§|V -V |1’Q<FAt (N PRV, (4.6)

Proof. Substituting the discrete Poisson equation (2.10) at titheandt”, we easily obtain foK € .7
> T DV =DV | = mi(K) (Ng*™ = Ng — P2 RY) 4.7)
geoK

Next, we multiply the latter equality by [Vi¢ —Vk] and sum oveK € .77. Performing a discrete integration
by part, we classically have

Z To (MM =V = M= W) [D(V" = V)k o]

o=K|L
+ ) To (Vo = VK™ = Vo = W) D(V" V) o]
Keyaeg’exLK
< T mO<) (NF NG R R) Vi
Ke7

Thus, using the following equality

a2 b? 1
[a-bb=Z =3I bl?,
we takea=D(V™1—V)k 4,b=D(V"-V)k ¢ and seW = V"1 V" which give the following inequality
1 (V™1 VE o — VT Vo) - }|W|2
> 1.0 10) = 5Wiie
< -2 m (R = Ng =B+ RR) WK — VK], (4.8)

Now, the main step consists in the control of the residuai1t|Mr/|iQ. To this aim, we start again from
(4.7), multiply it by —Wk and sum oveK € 7. We get

WEg =~ 5 m(K) (N& = NR =R 4+ PR) W < At [la+ 12+ 13+ 14),
KeZ

wherely, a € {1,..,4} are obtained using the finite volume scheme (2.11), (2.12y%6* andP"*. More
precisely,

=Y To [min(Ng™L NI Dh(N™ ) o — (DVE o) FNE™L = (DVE 5) NIY| DWWk |
0€éint
o=K|L
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=3 S To [Min(Ng™Ng) DRN™ ) o — (DV o) "N — (DW2 5) N | [DWk o]

Keo UegexLK

3= 3 o [min(B LA AP o + (Do) P+ (W) PR [DWe o
O€éint

o=K|L

=% ED To |min(Pg™, Py) DR(P™ Yk o + (DVR o) "Ps + (DVE 5) PR [DWk o -

Kes Geg’exLK

On the one hand, using thiais a nondecreasing function the following estimate holdd\fe= N[‘*l and

No
Imin(NgHH,N)Dh(N™ )k o — (DWR ) PN — (DV 5) "N

< max(Ng™1,N) ‘d (h(N™H) V1), a"

Then, we easily check that

b Y T max(NZL N ‘D (h(N™ 1) —v") U‘ IDWk o]
0€0int ’

o=K|L

and
L< Y To max(NZL, Ny) ‘D (h(N™E) — v U‘ IDWk o] .

Kes GegexLK

On the other hand, performing the same kind of computatienalao get

< Y To maxP Y ‘D(h(P”*l)JrV”)K U‘ IDWk o]
O€éint ’ '
o=K|L
and
<y 1o maxPI, Py) ‘D (h(P™1)+V"), G‘ IDWk o]

Kes O-EéaexLK

Then, applying the Cauchy-Schwarz inequality to the lattequalities, it yields

2M?2

WEo < = — A2 (NTLPYLVY),

and gathering the latter result with (4.8), it finally yields
1 1
SIVITE-VEG — VTV, < = 3 m(K) (N - NG R RY) IR — W]
KeT

MZ
+F Atz J(N'Hl, Pn+1,vn)'

which concludes the proof of Lemma 4.1. O
Next, we prove another entropy type inequality for the twogdgesN andP, which will be useful later.
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LEMMA 4.2 Let(H1) — (H4) hold and.7 be an admissible mesh &f. Then, forn > 0,

> m(K) (NG =NR) [h(Ng™) =W — an]

KeT
< —AtS T min(NFL NP [D(h(N™2) = V) 4]
02Nt
o=K|L
WD min(NZ™2,Ng) [D(h(N™2) =V 412 (4.9)
Keo o'eg’extK
and
m(K) (P2 — PR) [N(PT) + V¢ — ap]
Ke7
< -4t Y 1o min(RYL P [D(h(P™Y) + V) 4]
pher
Aty ST min(PY*L, Py) [D(h(P™L) +V") ¢]2.
KeT ge&

extK

Proof. First, we multiply the scheme (2.11) kit [h(NQH) — V¢ — an] and sum oveK € 7. Then, we
obtain

T1+To+T3=0,
with
o= 5 mK) (NG =NR) [h(Ng) = VR — an],
Ke7
T = -4ty Z To [Min(NFTH N DR(N™ ) o] [R(NETH) — VR — an]
Ke.J oeék
o=K|L
-aty Z: To [MIin(Ng™™, Ny ) DR(N™ )i o] [A(NEHH) =V — an]
KeyaegexLK
T3 = +4t Y Y 16 [(DWo) TN+ (DR o) NI [h(NGTH) =W — an]
Ker aigﬁ_ ' '
+Aat Yy Z) To [(DVR o) TN+ (DVR )" No | [N(NET) — Vi — an] -

KET oebgnk

Now, we perform a discrete integration by part (using thersyatny of 7,) and estimate the teri

T, = +At o min(NgH, NP Dh(N™ ) o [D(h(N™) = VM) 6]
0Eéint
o=K|L

+4t Y ED 7o min(Ng™*, Ng) Dh(N™ )k o [D(h(N™1) = VM) o]

KET oedguk
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and next the terriz

s = -4t T [(DVE o) PNETE = (DVR 6) NI [D(h(N™) V™) o]
pli 1}
-aty Z: T [(DVI 5) "NET — (DVE 5) " No] [D(h(N™1) — V") o] .
KET ge& '

extK

Then, we introduce the terity

T = —At To min(Ng™, NI DVE ;. [D(h(N™) —VM)k 6]
i
Y Z) o min(NE™,No) DV 5 [D(h(N™™) —=V")k 6]
KeT ges

extK

and want to prove thal; > T3".
Let us estimate the differendg — T3. On the one hand, using that the functiois nondecreasing, we

show that foN = N1, Ng
(DVR6) ™ [A(IN™H) = h(N)] [Ng™* —min(Ng™%,N)] > 0
and forN = N1, Ng
(DVE5)™ [N(NE™) ~h(N)] [N —min(Ng*N)] > .
On the other hand, using the propertywfs u*, we have folN = NE”, Ng
(DVE 5) "DV 5 [Nk —min(Ng™,N)] > 0

and forN = N1, Ng
(DVK o)~ DV 5 [N —min(Ng™,N)] > o.

Thus, from these classical inequalities we easily conclodel; — T3 > 0.
Finally, it follows that

T <-T - Tg.
More precisely, we have

m(K) (NG —Ng) [h(NgTh) =V — an]
Keo
< MY T min(NIL NP [D(R(N™L) — V) o]
e
—4at y Zu 7o min(NF, Ng) [D(h(N”*l)—V”)K,a]Z-

KET ge “extK
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Using the scheme (2.12), we also prove in the same way that
> m(K) (R —RR) [h(PE™) + W — a]
KeT7

< —At'S Temin(RETLPMY) [D(NP™Y) + V) o]
g<oint

o=K|L

At Z) T min(RYTL, Py) [D(R(P™ 1) + V™ o],
KeT geg

extK

O
Now, we give the proof of Proposition 4.Proof. We introduce the nonnegative and convex functions
(o]} and »,

(Dl(X) = H(X) — H(NK) 7h(NK) [X — NK]
and

Po(x) 1= H(x) — H(R) —h(R) [x — R]
such that

®1(x) = h(x) — h(Nk), @3(x) =h(x) —h(Fk), and @7 (x) = @5 (x) =h'(x) >0
Therefore, using the convexity #f, it yields

Kzgm(K) [@1(NET) — @1(NR)]

?m(K) [HING™) — HINR) —h(Nk) (N&™ — NQ) ]
Ke.

s 2 MK (R =NR) [h(Ng*) — h(Nk )] (4.10)
and
2 M [@2(RET) — a(RR)]
< Kém(K) (PE—RR) (R —h(Rq)] . (4.11)
Now, we apply the result of Lemma 4ile:

1 1
> VM- V[E o — > V" —V[fq

N

T m(K) [[Ng™ = Ng] — [Pt = g]] Vi =)
Keo
M2 2 n+1 pn+1\/n
+- At (N ptL vy,
Adding the two latter inequalities and using thélNx ) — Vk = an andh(Px) + Vk = ap, it yields
EME " <Y mK) (NG = NR) [N = VR — o] -
Keo
Keo

+ Y m(K) (B —RR) [h(RTH) + WK — ap]

MZ
+ sz (N ptL vy,
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Finally a straighforward application of Lemma 4.2 gives aper bound of the right hand side
MZ
EM_gn < At (1 - Fm) F(NML P vy,

Thus, under a smallness condition on the time #teg: m/M? the total energy is decreasing with respect
ton. O

4.3 Proof of Theorem 2.2

Now we are ready to achieve the proof of Theorem 2.2. On thehamel, from the convexity of the
functionalH, we show that™*1 is nonnegative and then applying Proposition 4.2, it yields

M2 n
o< &Mt 4 (1 — FAt) > At .7 (NKHL PRHL k) 20,
k=0

Thus, the serie¥ oy -7 (N1, P V) is bounded andZ (N1 P"1 V1) is nonnegative, which means
that
F (N Pl vy 0, asn— oo, (4.12)

and since on the boundafis, we haven(NJ1) — V! = h(Ng) — Vg = an andn(P3+1) + V) = h(Py) + Vo =
op, it yields
h(NTTH) -V —an,  h(PPYH+VR —ap, n—o.

Moreover, applying Lemma 4.1 and using the bound (4.6t — V", we also get
VMV o —0, asn-— o, (4.13)
On the other hand, we have
(x=y)(h() —h(y)) < c(x=y)%,  V(xy) € [mM].

Hence, applying the Young inequality, we get for any 0

o 1

5 (K) [N = Nie | + m(K) [h(NgH) — Vit — anf?

22" 26,2,

> Y m(K) [NE=Ng] [h(Ng") = Vig™* — o]
Ke7

>c 3 mK) [NFE-N]® 5 m(K) [NEFE - Ng] V- Vet

KeZ KeT
and

4 n+1 2 i N1 Lyl g2

5 m(K) [P — | + 5 m(K) |h(B™) + V¢ ap|
Ke7 KeT

> c Z m n+l m I’l+l ] [V n+1]'



20 of 28 C. Chainais-Hillairet and F. Filbet

Thus, adding the two latter inequalities and using the sen@r1.0) at tima"*1, it yields ford < 2¢

6= 2) 3 m() (NN (R R ) £V Vg

2 KeT
1
< o [T MO VE a4 Y m(K) R W e
Ke7 Ke7
C
< % (Ih(N™H = V" —anyo + [h(P™™) + V" —ap|1.o + 2V" = V"1 o).

Therefore, passing to the limit m— o and using (4.12) and (4.13), we finally get the result
N — Nk, P{—P, W—W, asn— o,
where(Nk, P, Vk) is given by (1.10) and (2.3).

5. Numerical results

In this section, we give numerical results in one and two disiens, obtained by the finite volume scheme
(2.10)-(2.12).

5.1 Thermal equilibrium at the boundary in 1-D

We consider the following initial data fore (0,1)
NO(x) = No-+ (Ny = No) 2, PO(x) = Ry+ (P — Ry)x*/2
with the boundary condition

h(N(t,0)) — h(P(t,0))
2 )

N(t,0)=0.1, P(t,0)=09, V(t,0)=

h(N(ta 1)) — h(P(t7 1))

2 )
whereh(x) = log(x). The doping profile is taken equal to zero. In this case, we lpmeven that the
numerical solution converges to a steady state and thee#&rig decreasing with respectio In Figures
1, we clearly observe that the energy is decreasing and mewéo zero when times goes to infinity.
Moreover, the dissipatiory (N",P",V"~1) also converges to zero whergoes to infinity. In Figures 2, the
density(N(t"),P(t")) converges to the steady state obtained from the scheme(263¥or the steady state
problem.

N(t,1)=0.9, P(t,1)=01, V(1) =

5.2 Thermal equilibrium at the boundary in 1-D with doping

In this second example, we consider the system (1.1) wherédping profileC is given by

+1 ifx e [0,1/2),
C(x) :{ -1 else
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FiG. 1. Thermal equilibrium at the boundary 1-&olution of the numerical energ§ and its numerical dissipatior# (N", P", V1),
n>1
and the pressure law i$s) = s°/3. Moreover, Dirichlet boundary conditions are prescribed
N(t,0) =P(t,1) =0.1, P(t,0) =N(t,1)=0.9
and the potentidV (t,0) andV (t, 1) such that thermal equilibrium occurs

h(N(t,0)) —h(P(t, o))
2

V(t,o)= , foro ={0,1}.

In this case, we can apply the entropy method to prove thatdhgion converges to an equilibrium even if
theL” estimates 0N, P) are not valid. We perform numerical simulations using ogoathm and observe
that the densityN, P) converges to a stationary solution given by solving theesponding discrete steady
state problem. In Figure 3, we observe that the energy cgesdo zero, whereas the dendily, P) goes
to the equilibrium.

5.3 Thermal equilibrium at the boundary in 2-D

We present here a test case for a geometry correspondingNejantion in 2D. The geometry is shown
in Figure 4. The doping profile is piecewise constant, equatltin the N-region and -1 in the P-region.
The Dirichlet boundary conditions are

h(N®) — h(P®)
2

h(N®) — h(P®)
2

Elsewhere, we put Neumann boundary conditions.

We compute the numerical approximation of the thermal émiiim and of the transient drift-diffusion
system on a mesh made of 599 triangles. Figures 5 and 6 areedéwdhe case where the pressure is linear

NP =0.1, PP =0.9, VP = ony=10<x<0.25

NP =09, PP =0.1, VP = ony=0



22 of 28

FiG. 2. Thermal equilibrium at the boundary 1-8volution of the numerical densifi, P), the potential V and the electric field DV,

n>1

0.9

08
07!
06 |
05 |
04
03}
02l
01

C. Chainais-Hillairet and F. Filbet
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FiG. 3. Thermal equilibrium at the boundary 1-D with dopirgyolution of the numerical energy and its dissipation, dmeldensity
(N,P),n>1.
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FIG. 4. Geometry of the PN-junction diode

(r(s) =9). Figure 5 presents the evolution of the density of hdtesomputed with the time-dependent
scheme at three different timés= 0.04,t = 0.2 andt = 0.6 and the approximation d? at the thermal
equilibrium. Figure 6 shows the evolution of the energy ahitisadissipation.

Figures 7 and 8 are devoted to the case where the pressurdiiseao f (s) = s” with a = 5/3). Figure
7 presents the evolution of the density of electrbhsomputed with the time-dependent scheme at three
different timeg = 0.02,t = 0.1 andt = 0.6 and the approximation & at the thermal equilibrium. Figure
8 shows the evolution of the energy and of its dissipation.
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(d) thermal equilibrium
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FiG. 7. Thermal equilibrium at the boundary in 2-Bvolution of the density of electrons and thermal equilibriin the non linear
case
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