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In this paper, we propose a finite volume discretization for multidimensional nonlinear drift-diffusion
system. Such a system arises in semi-conductors modeling and is composed of two parabolic equations
and an elliptic one. We prove that the numerical solution converges to a steady state when time goes to
infinity. Several numerical tests show the efficiency of the method.

Keywords: Drift-diffusion system, thermal equilibrium, boundary problem, finite volume scheme.
AMS subject classifications.65M12, 76X05, 82D37

1. Introduction

In the modeling of semi-conductor devices, there exists a hierarchy of models ranging from the kinetic
transport equations to the drift-diffusion equations, see(23). In semi-conductor simulations, the drift-
diffusion system is the most widely used because it displaysboth computational efficiency and physical
consistency. This system consists of two continuity equations for the electron densityN := N(t,x) and the
hole densityP := P(t,x) and a Poisson equation for the electrostatic potentialV := V(t,x) for t ∈ R

+ and
x∈ R

d.
More precisely, letΩ ⊂ R

d (d > 1) be an open and bounded domain such thatΩ is polygonal or
polyhedral and we setΓ = ∂Ω . For T > 0, we denote byΩT = (0,T)×Ω andΓT = (0,T)×Γ . Then,
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setting all physical parameters equal to 1, the drift-diffusion system for a bipolar semiconductor reads





∂N
∂ t

− div(∇r(N) − N∇V) = 0, (t,x) ∈ ΩT ,

∂P
∂ t

− div(∇r(P) + P∇V) = 0, (t,x) ∈ ΩT ,

∆V = N − P− C, (t,x) ∈ ΩT ,

(1.1)

whereC ∈ L∞(Ω) is the prescribed doping profile characterizing the device under consideration

|C(x)| 6 C, x ∈ Ω . (1.2)

The usual considerations on which the isentropic hydrodynamic model are based suggest a pressure of the
form

r(s) = sα , α > 1.

The linear case, whereα = 1, corresponds to the isothermal model. In the general case,we will assume
thatr ∈ C 1(R), r(0) = r ′(0) = 0, with r ′(s) > c0sα−1.

Equations (1.1) are supplemented with initial data at timet = 0

N(0,x) = N0(x), P(0,x) = P0(x), x ∈ Ω , (1.3)

such that there exist two constants 06 m6 M satisfying

m 6 N0(x), P0(x) 6 M, x∈ Ω . (1.4)

Moreover, we will consider Dirichlet-Neumann boundary conditions. Indeed, the physically motivated
boundary conditions are either Dirichlet boundary conditions onN, P, V or homogeneous Neumann bound-
ary conditions onN, P andV. This means that the boundaryΓ is split into two partsΓ = ΓD ∪ΓN and, if
we denote byν the outward normal toΓ , that the boundary conditions read on the boundaryΓD






N(t,x) = ND(x), (t,x) ∈ (0,T)×ΓD,
P(t,x) = PD(x), (t,x) ∈ (0,T)×ΓD,
V(t,x) = VD(x), (t,x) ∈ (0,T)×ΓD

(1.5)

and homogeneous Neumann boundary conditions onΓN:

∇r(N) ·ν = ∇r(P) ·ν = ∇V ·ν = 0 onΓN. (1.6)

We assume that the Dirichlet boundary conditions satisfy

m 6 ND(x), PD(x) 6 M, x∈ ΓD. (1.7)

On the one hand, the existence of solutions to the system (1.1)-(1.6) has been proven under natural
assumptions. In some situations, the uniqueness of solutions is also obtained, see (3; 13; 15; 17; 20). On
the other hand, a lot of numerical algorithms for solving thedrift-diffusion system, in the stationary case as
well as in the transient case, have already been proposed. Itstarted with 1-D finite difference methods and
the so-called Scharfetter-Gummel scheme (26). In the linear pressure case (r(s) = s), finite element methods
(1; 8; 7; 9; 10; 16; 25), mixed exponential fitting finite element methods (4) have also been successfully
developed. The extension of the mixed exponential fitting finite element methods to the case of nonlinear
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pressures (r(s) = sα ) has been considered in (2; 18) and (21) where numerical results are given in 1-D and
2-D respectively. The convergence of finite volume schemes in the nonlinear case has been established in
(6).

The large time behavior of the solutions to the nonlinear drift-diffusion model (1.1)-(1.6) has been
studied in(19). It is proven that the solution to the transient system converges to a solution to the thermal
equilibrium state ast → ∞ if the boundary conditions (1.5) are in thermal equilibrium. The stationary
drift-diffusion system reads





−div(∇r(N) − N∇V) = 0, x∈ Ω ,

−div(∇r(P) + P∇V) = 0, x∈ Ω ,

∆V = N−P−C, x∈ Ω ,

(1.8)

with the boundary conditions (1.5)-(1.6). The thermal equilibrium is a steady-state for which electron and
hole currents (∇r(N) − N∇V and∇r(P) + P∇V) vanish. The existence of a thermal equilibrium has been
proven in (24). Let us introduce the enthalpy functionh defined by

h(s) =

∫ s

1

r ′(τ)

τ
dτ (1.9)

and the generalized inverseg of h, defined by

g(s) =

{
h−1(s) if h(0+) < s < ∞,
0 if s 6 h(0+),

where we have implicitly assumed thath(+∞) = ∞. If the boundary conditions satisfyND, PD > 0 and

h(ND)−VD = αN and h(PD)+VD = αP onΓD,

the thermal equilibrium is defined by

N(x) = g(αN +V(x)), P(x) = g(αP−V(x)), x∈ Ω , (1.10)

whereasV satisfies the following semi-linear elliptic problem

∆V = g(αN +V)−g(αP−V)−C, in Ω ,

V(x) = VD(x) onΓD, ∇V ·ν = 0 onΓN.
(1.11)

In this paper we are concerned by the theoretical study of thelarge time behavior of the numerical
solution given by a finite volume scheme for the transient drift-diffusion model (1.1)-(1.6) . This work is
motivated by a very practical question. Indeed, in numerical analysis the numerical solution is classically
proven to converge to the exact solution of the continuous model on a fixed time interval when the mesh
size goes to zero. However, in engineering the numerical solution is often computed on a fixed mesh
where the final time is increasing and goes to infinity. Thus, in such a situation, it becomes crucial to
study the stability and consistency of the numerical solution in the long time asymptotic limit. Moreover
in engineering numerical solutions are often performed to find stationary solution, then the question of
consistency of the computed solution with respect to the exact one is usually not known.
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This article is the first step of a research program in numerical analysis on the long time asymptotic
behavior of discrete solutions (spectral methods for Boltzmann’s equation, finite volume for 2-D Navier-
Stokes equations, etc). Here, we focus on a drift-diffusionmodel for semi-conductors when the thermal
equilibrium holds at the boundary.

We first study the stationary case and propose a finite volume scheme for the steady state problem. On
the one hand, we prove existence and uniqueness of a numerical solution. On the other hand, we establish
a priori estimates which will lead to the convergence of the numerical solution to the exact solution of
the steady state problem. The second part is devoted to the evolution problem (1.1)-(1.6). We construct a
new finite volume scheme and rigorously prove that the numerical solution converges to the solution of the
discrete steady state problem given in the first part. The proof is based on the control of the discrete energy
dissipation.

2. Numerical scheme and main results

In this section, we present the finite volume schemes for the thermal equilibrium (1.11), with (1.10), and
for the time evolution drift-diffusion system (1.1)-(1.6). Then we give the main results of the paper.

We first define the space discretization ofΩ . An admissible mesh ofΩ is given by a familyT of control
volumes (open and convex polygons in 2-D, polyhedra in 3-D),a family E of edges in 2-D (faces in 3-D)
and a family of points(xK)K∈T which satisfy Definition 5.1 in (12). It implies that the straight line between
two neighboring centers of cells(xK ,xL) is orthogonal to the edgeσ = K|L. In the set of edgesE , we
distinguish the interior edgesσ ∈ Eint and the boundary edgesσ ∈ Eext. Because of the Dirichlet-Neumann
boundary conditions, we splitEext into Eext = E D

ext∪E N
ext whereE D

ext is the set of Dirichlet boundary edges
andE N

ext is the set of Neumann boundary edges. For a control volumeK ∈ T , we denote byEK the set of
its edges,Eint,K the set of its interior edges,E D

ext,K the set of edges ofK included inΓD andE N
ext,K the set of

edges ofK included inΓN.
In the sequel, we denote by d the distance inR

d, m the measure inRd or R
d−1. We assume that the

family of mesh considered satisfies the following regularity constraint there existsξ > 0 such that

d(xK ,σ) > ξ d(xK ,xL), for K ∈ T , for σ ∈ Eint,K , σ = K|L. (2.1)

The size of the mesh is defined by

δ = max
K∈T

(diam(K)) . (2.2)

For all σ ∈ E , we define the transmissibility coefficient:

τσ =





m(σ)

d(xK ,xL)
, for σ ∈ Eint , σ = K|L,

m(σ)

d(xK ,σ)
, for σ ∈ Eext,K .

Then, we set

G(x,V) = g(αN +V) − g(αP−V) − C(x).

The scheme corresponding to the equation (1.11) on the potential V reads

∑
σ∈EK

τσ DVK,σ = m(K)GK(VK), K ∈ T , (2.3)
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where the(DVK,σ )σ∈E are defined by

DVK,σ =






VL −VK, if σ ∈ Eint , σ = K|L,

Vσ −VK if σ ∈ E D
ext,K ,

0 if σ ∈ E N
ext,K .

(2.4)

with

Vσ =
1

m(σ)

∫

σ
VD(x) dx, σ ∈ E

D
ext (2.5)

and

GK(V) =
1

m(K)

∫

K
G(x,V)dx, K ∈ T . (2.6)

Then, we define an approximate solutionVδ associated to the discretizationT (we recall thatδ is the size
of the discretization), which is a piecewise constant function :

Vδ (x) = VK x∈ K. (2.7)

The scheme leads to a system of nonlinear algebraic equations. In the next section, we will establish
existence and uniqueness of a solution to the scheme (2.3)-(2.7) and a priori estimates giving some com-
pactness and allowing to pass to the limit on the sequence of approximate solutions(Vδ )δ>0 towards the
solutionV ∈ H1(Ω)∩ L∞(Ω) of (1.11) coupled with boundary conditions (1.5)-(1.6). The result is the
following:

THEOREM 2.1 Assume that the boundary conditions satisfy (1.7) withm> 0 and the thermal equilibrium
onΓD

h(ND)−VD = αN, and h(PD)+VD = αP,

where the enthalpyh is given by (1.9).
The scheme (2.3)-(2.6) admits an unique solution, which satisfies the followingL∞ estimate and discrete

H1 estimate : there exists a constantC > 0, only depending onVD andg, such that for allK ∈ T

|VK | 6 C ∀K ∈ T

∑K∈T ∑σ∈EK
τσ |DVK,σ |2 6 C .

We may now define the finite volume approximation of the drift-diffusion system (1.1)-(1.6) in the case
of mixed Dirichlet-Neumann boundary conditions. The scheme is almost the same as the one proposed in
(5) except that the diffusion is approximated in a differentway.

Let (T ,E ,(xK)K∈T ) be an admissible space discretization ofΩ and let us define the time step∆ t and
MT = E(T/∆ t) in order to get a space-time discretization ofΩT . First of all, the initial and boundary
conditions and the doping profile are approximated by theirL2 projections on control volumes or on edges:

N0
K =

1
m(K)

∫

K
N0, P0

K =
1

m(K)

∫

K
P0, CK =

1
m(K)

∫

K
C, K ∈ T , (2.8)

Nσ =
1

m(σ)

∫

σ
ND, Pσ =

1
m(σ)

∫

σ
PD, Vσ =

1
m(σ)

∫

σ
VD, σ ∈ E

D
ext (2.9)
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For n ∈ N, we construct the approximate potentialVn from the density(Nn,Pn) and then we update the
density(Nn+1,Pn+1) at iterationn+1. On the one hand, for the potentialVn we use a classical finite volume
scheme

∑
σ∈EK

τσ DVn
K,σ = m(K) (Nn

K −Pn
K −CK) , K ∈ T , (2.10)

whereDVn
K,σ are defined analogously to (2.4). On the other hand, for the scheme onNn+1 and Pn+1,

we choose a fully implicit discretization, with a standard upwinding for the convective fluxes and a new
nonlinear approximation for the diffusive fluxes. Then the scheme forNn+1 andPn+1 is given forK ∈ T

by

m(K)
Nn+1

K −Nn
K

∆ t
(2.11)

− ∑
σ∈EK ,
σ=K|L

τσ
[
min(Nn+1

K ,Nn+1
L )Dh(Nn+1)K,σ − (DVn

K,σ )+Nn+1
K − (DVn

K,σ )−Nn+1
L

]

− ∑
σ∈E D

ext,K

τσ
[
min(Nn+1

K ,Nσ )Dh(Nn+1)K,σ − (DVn
K,σ )+Nn+1

K − (DVn
K,σ )−Nσ

]
= 0,

m(K)
Pn+1

K −Pn
K

∆ t
(2.12)

− ∑
σ∈EK ,
σ=K|L

τσ
[
min(Pn+1

K ,Pn+1
L )Dh(Pn+1)K,σ + (DVn

K,σ )+Pn+1
L +(DVn

K,σ )−Pn+1
K

]

− ∑
σ∈E D

ext,K

τσ
[
min(Pn+1

K ,Pσ )Dh(Pn+1)K,σ + (DVn
K,σ )+Pσ +(DVn

K,σ )−Pn+1
K

]
= 0,

whereDh(P)K,σ is defined by

Dh(P)K,σ =





h(PL)−h(PK), if σ ∈ Eint , σ = K|L,

h(Pσ )−h(PK) if σ ∈ E D
ext,K ,

0 if σ ∈ E N
ext,K .

(2.13)

andu+ = max{u,0} andu− = min{u,0}.
Then, the approximate solution(Nδ ,Pδ ,Vδ ) to the problem (1.1)-(1.6) associated to the discretization

D is defined as piecewise constant function by

Nδ (t,x) = Nn+1
K , Pδ (t,x) = Pn+1

K , Vδ (t,x) = Vn+1
K (t,x) ∈ [Tn,tn+1)×K,

where{(Nn
K ,Pn

K ,Vn
K), K ∈ T , 0 6 n 6 MT + 1} is the solution to the scheme (2.10)-(2.12). We may now

state our main result.

THEOREM 2.2 We assume that there is no doping profile (C = 0), that the initial and boundary conditions
satisfy (1.4) and (1.7) with 0< m6 M and that the following condition on the time step is fulfilled

∆ t D < 1, whereD :=
M2

m
. (2.14)
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Then, the solution(Nδ ,Pδ ,Vδ ) given by the finite volume scheme (2.8)-(2.12) satisfies for eachK ∈ T

(Nn
K ,Pn

K) → (NK ,PK) when n→ ∞,

Vn
K → VK when n→ ∞,

where(NK ,PK ,VK) is an approximation to the solution of the steady state equation (1.10)-(1.11) given by
(2.3)-(2.4).

3. Drift diffusion system at thermal equilibrium

In this section, we study the numerical solution corresponding to the steady state (1.8) with boundary
conditions (1.5), (1.6) in the thermal equilibrium case where the steady state rewrites (1.10)-(1.11).

3.1 A semi-linear elliptic problem

The aim of this section is to prove the convergence of a finite volume scheme for a semi-linear elliptic
problem like (1.11). More precisely, we are interested in problems of the form:

{
∆V = G(x,V), x∈ Ω ,

V = VD onΓD, ∇V ·ν = 0 onΓN.
(3.1)

The assumptions are the following:

G(x,V) is monotonically increasing with respect toV for all x∈ Ω . (3.2)

There exist functionsG1(V) andG2(V) monotically increasing such that

G1(V) 6 G(x,V) 6 G2(V) for all x∈ Ω . (3.3)

Moreover,
there existV1 andV2 satisfyingG1(V1) = 0 andG2(V2) = 0. (3.4)

Finally, the functionVD can be extended in the whole domainΩ and satisfies

VD ∈ H1(Ω). (3.5)

Under such assumptions, the problem (3.1) admits a unique solutionV ∈H1(Ω)∩L∞(Ω). The proof of
this result can be found in (22). For the thermal equilibrium(1.11), the assumptions (3.2), (3.3) are clearly
satisfied. Indeed,

G(x,V) = g(αN +V) − g(αP−V) − C(x)

is monotonically increasing with respect toV. The functionsG1 andG2 are the following

G1(V) = g(αN +V) − g(αP−V) − C, G2(V) = g(αN +V) − g(αP−V) − C,

whereC = infx∈Ω C(x), C = supx∈Ω C(x) and since limV→−∞ g(V) = 0 and limV→+∞ g(V) = +∞, we have

lim
V→±∞

G1(V) = ±∞, lim
V→±∞

G2(V) = ±∞

therefore from the continuity ofG we show that there existV1 andV2 such thatG1(V1) = G2(V2) = 0 and
(3.4) is satisfied.
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3.2 Existence and uniqueness

First we prove that if(VK ,Vσ ) is solution to the scheme (2.3)-(2.6) exists, it satisfies anL∞-estimate.

LEMMA 3.1 We assume that (3.2), (3.3) , (3.4) and (3.5) are satisfied. Let us set

Ṽ = max{V1,sup
ΓD

VD}, V
˜

= min{V2, inf
ΓD

VD}. (3.6)

If the scheme (2.3)-(2.6) admits a solution, then it satisfies the followingL∞ estimate :

V
˜

6 VK 6 Ṽ, ∀K ∈ T . (3.7)

Proof. The definition (3.6), combined with the monotonicity ofG1 andG2 and with (3.3) lead to

G1(Ṽ) > G1(V1) = 0 and G2(V
˜
) 6 G2(V2) = 0.

Then, we definẽVK = Ṽ for K ∈ T andṼσ = Ṽ for σ ∈ E D
ext, andW̃ by

W̃ =

{
W̃K = VK − ṼK, for K ∈ T ,

W̃σ = Vσ − Ṽσ , for σ ∈ E D
ext.

From the definitions ofG1, (3.3) andṼ, it follows that forK ∈ T

∑
σ∈EK

τσ dṼK,σ − m(K)GK(ṼK) 6 0 − m(K)G1(ṼK) 6 −m(K)G1(V1) = 0

and using thatV is a solution to (2.3)-(2.6), it yields for allK ∈ T

∑
σ∈EK

τσ dW̃K,σ > m(K)
(

GK(VK) − GK(ṼK)
)

. (3.8)

On the one hand, using the definition ofṼ (3.6), we know that̃Wσ 6 0 for all σ ∈ E D
ext.

On the other hand, we denote bỹWK0 = max
K∈T

W̃K and assume that

W̃K0 = VK0 − ṼK0 > 0.

Then, writing (3.8) forK = K0 and using thatGK(V) is nondecreasing with respect toV, the right hand side
is positive whereas the left hand side is negative. Therefore, we have shown that for allK ∈ T , W̃K 6 0,
hence the upper bound

VK 6 Ṽ, ∀K ∈ T .

The lower bound is obtained by the same way. �

The result of existence and uniqueness of a solution to the numerical scheme (2.3)-(2.6) is a consequence
of theL∞-estimate (3.7) and comes from an application of Leray-Schauder fixed point theorem.

PROPOSITION3.1 We assume that (3.2), (3.3), (3.4) and (3.5) are satisfied. Then, the numerical scheme
(2.3)-(2.6) admits a unique solutionV = (VK)K∈T which satisfies theL∞-estimate (3.7).

Proof. We start by uniqueness and consider two solutionsU1 andU2 to (2.3)-(2.6). Multiplying by
U1

K −U2
K and summing overK ∈ T , it follows

∑
K∈T

∑
σ∈EK

τσ
[
D(U1−U2)K,σ

]2
+ ∑

K∈T

m(K)
[
GK(U1

K)−GK(U2
K)
] [

U1
K −U2

K

]
= 0.
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SinceG(x,V) is increasing with respect toV

[
GK(U1

K)−GK(U2
K)
] [

U1
K −U2

K

]
> 0, ∀K ∈ T ;

we conclude that

∑
K∈T

∑
σ∈EK

τσ
[
D(U1−U2)K,σ

]2
6 0

and since(U1−U2)σ = 0, for σ ∈ E D
ext, thenU1 = U2.

For the existence proof, we introduce the applicationT : (V,λ ) → W whereW is the solution to the
linear system

∑
σ∈EK

τσ DWK,σ = λ m(K)GK(VK), ∀ K ∈ T ,

with

Wσ =
1

m(σ)

∫

σ
λ VD(x)dγ.

The operatorT is a linear mapping fromRθ × [0,1] → R
θ , whereθ is the number of control volumes,

continuous and compact. Furthermore, it satisfies :

• T(V,0) = 0,

• for all (V,λ ) ∈ R
θ × [0,1] such thatT(V,λ ) = V, we have V

˜
6 VK 6 Ṽ.

Thanks to the Leray-Schauder fixed point theorem, it followsthatT1 : V 7→ T(V,1) admits a unique fixed
point, which concludes the proof of Proposition 3.1. �

From theL∞ bound, we can now establish a discreteH1 estimate giving strong compactness on the
approximation. Assume that(uσ )σ∈E D

ext
is given on the boundaryΓ D. Foru = (uK)K∈T , we define theL2-

norm and theH1-seminorm as follows:

‖u‖2
0,Ω = ∑

K∈T

m(K) |uK |2

|u|21,Ω = ∑
σ∈Eint
σ=K|L

τσ |uK −uL|2 + ∑
K∈T

∑
σ∈E D

ext,K

τσ |uK −uσ |2.

We recall the discrete Poincaré inequality:

LEMMA 3.2 LetΩ be an open convex bounded polygonal or polyhedral subset ofR
d (d = 2 or 3). Then,

there existsCΩ ∈ R+ only depending onΩ such that, for all admissible mesh ofΩ satisfying the regularity
assumption (2.1), for all(uK)K∈T and(uσ )σ∈E D

ext
satisfyinguσ = 0 for all σ ∈ E D

ext, we have

‖u‖0,Ω 6
CΩ

√
d√

ξ
|u|1,Ω (3.9)

Proof. We perform a similar proof as in (14). LetT be an admissible mesh and denote byX(T ) the
set of functions fromΩ to R which are constant over each control volumeK ∈ T and which are zero on
the set of edgesσ ⊂ ΓD. We considerv ∈ X(T ) and since the functionv is piecewise constant and has a
finite number of jumps (which corresponds to the number of edges), we get thatv∈ BV(Ω). Moreover in
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dimensiond, the space ofBV functions which are zero on the boundaryΓD is continuously embedded in

L
d

d−1 (Ω) (11, Theorem 3.5). Then, there exists a constantCΩ > 0, depending only onΩ , such that
∫

Ω
|v(x)| d

d−1 dx 6 CΩ [BVΩ (v)]
d

d−1 ,

where

BVΩ (v) = sup

{∫

Ω
v(x) divϕ(x)dx, ϕ ∈C∞

o (Ω), |ϕ(x)| 6 1, ∀x∈ Ω
}

.

Applying this latter result to our functionv∈ X(T ), we get
(

∑
K∈T

m(K)|vK |
d

d−1

) d−1
d

6 CΩ BVΩ (v)

and sincev is piecewise constant, for allϕ ∈C∞
o (Ω)

∫

Ω
v(x) divϕ(x)dx = ∑

K∈T

vK

∫

K
divϕ(x)dx.

Thus, applying the Green formula to the smooth and compactlysupported functionϕ
∫

Ω
v(x) divϕ(x)dx = ∑

K∈T

vK ∑
σ∈Eint,K

∫

σ
ϕ(γ) ·νK,σ dγ,

whereνK,σ is the unit normal to the edgeσ , oriented outwardsK. Next, we perform a discrete integration
by part

∫

Ω
v(x)divϕ(x)dx = ∑

σ∈Eint ,
σ=K|L

(vK −vL)

∫

σ
ϕ(γ) ·νK,σ dγ,

6 ∑
σ∈Eint ,
σ=K|L

m(σ) |vK −vL| ||ϕ ||∞,

6 ∑
σ∈Eint ,
σ=K|L

m(σ) |vK −vL|.

Hence, we get
(

∑
K∈T

m(K)|vK |
d

d−1

) d−1
d

6 CΩ ∑
σ∈Eint ,
σ=K|L

m(σ)|vK −vL|.

Now, we takev = |u|
2(d−1)

d and use that
∣∣∣ |uK |

2(d−1)
d −|uL|

2(d−1)
d

∣∣∣ 6
2(d−1)

d

(
|uK |

d−2
d + |uL|

d−2
d

)
|uK −uL|.

Integrating by parts and applying the Cauchy-Schwarz inequality, it yields, thanks to (2.1),
(

∑
K∈T

m(K)|uK |2
) d−1

d

6 CΩ ∑
K∈T

∑
σ∈Eint,K

σ=K|L

m(σ)|uK |
d−2

d |uK −uL|

6
CΩ√

ξ
|u|1,Ω

(

∑
K∈T

∑
σ∈EK

m(σ)d(xK ,σ)|uK |
2(d−2)

d

)1/2

.



Asymptotic behavior of discrete solutions to the drift-diffusion model 11 of 28

Since∑σ∈EK
m(σ)d(xK ,σ) = dm(K), this gives

(

∑
K∈T

m(K)|uK |2
) d−1

d

6
CΩ

√
d√

ξ
|u|1,Ω

(

∑
K∈T

m(K)|uK |
2(d−2)

d

)1/2

.

Finally using the Hölder inequality, we get

(

∑
K∈T

m(K)|uK |2
) d−1

d

6
CΩ

√
d√

ξ
|u|1,Ω

(

∑
K∈T

m(K)|uK |2
) d−2

2d

and then (3.9). �

The next lemma provides anL2 estimate and anH1 estimate on the numerical solution to the scheme
(2.3)-(2.6).

LEMMA 3.3 We assume that (3.2), (3.3) , (3.4) and (3.5) are satisfied. Then, there existsC > 0 such that
the solution(VK)K∈T , (Vσ )σ∈E D

ext
to the scheme (2.3)-(2.6) satisfies

∑
K∈T

m(K) |VK |2 + ∑
σ∈Eint
σ=K|L

τσ |VK −VL|2 + ∑
K∈T

∑
σ∈E D

ext,K

τσ |VK −Vσ |2 6 C . (3.10)

Proof. As VD ∈ H1(Ω), we can define(VD
K )K∈T and(VD

σ )σ∈E D
ext

by

VD
K =

1
m(K)

∫

K
VD(x) dx, for K ∈ T ,

VD
σ =

1
m(σ)

∫

σ
VD(x) dx, for σ ∈ E

D
ext.

Multiplying the scheme by[VK −VD
K ] and summing overK ∈ T , we get:

− ∑
K∈T

∑
σ∈EK

τσ DVK,σ [VK −VD
K ] = − ∑

K∈T

m(K)GK(VK) [VK −VD
K ]. (3.11)

On the one hand, we have the following lower bound for the lefthand side:

− ∑
K∈T

∑
σ∈EK

τσ DVK,σ [VK −VD
K ] = ∑

σ∈Eint
σ=K|L

τσ [VK −VL]
(
[VK −VL] − [VD

K −VD
L ]
)
+

∑
K∈T

∑
σ∈E D

ext,K

τσ [VK −Vσ ]
(
[VK −Vσ ] − [VD

K −VD
σ ]
)

>
1
2
|V|21,Ω − 1

2
|VD|21,Ω (3.12)

On the other hand, applying successively theL∞-estimate (3.7) and Young inequality withε > 0 on the right
hand side of (3.11), there exists a constantC > 0 such that

∣∣m(K)GK(VK) [VK −VD
K ]
∣∣ 6 C

(
m(K)

ε
+ ε m(K) [VK −VD

K ]2
)

.
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Therefore, summing overK ∈ T and applying the discrete Poincaré inequality (3.9), we get:

∑
K∈T

m(K) |GK(VK)| |VK −VD
K | 6 C

(
m(Ω)

ε
+ ε‖V − VD‖2

0,Ω

)

6 C

(
m(Ω)

ε
+ ε |V −VD|21,Ω

)
,

6 C

(
m(Ω)

ε
+ 2ε (|V|21,Ω + |VD|21,Ω )

)
(3.13)

It remains to chooseε small enough to deduce (3.10) from (3.12) and (3.13). �

4. Asymptotic behavior of the time dependent approximate solution

4.1 Classical a priori estimates

We do not detail here the proof of the convergence of the scheme (2.8)-(2.12) when space and time steps go
to 0. Indeed, this scheme is very close to the scheme studied in (5): the only difference is the discretization
of the diffusive fluxes. Therefore the proof of the convergence of the scheme towards a weak solution of
the problem (1.1)-(1.6) is similar to the proof done in(5). Let us recall the required hypotheses:

(H1) N0, P0 ∈ L∞(Ω), ND, PD ∈ L2(ΩT)∩H1(ΩT) andVD ∈ L∞(R+;H1(Ω));

(H2) there exist two constantsm andM such that

0 < m< N0, P0 < M, in Ω , andm< ND, PD < M, in ΩT ;

(H3) r ∈C2(R) is strictly increasing on(0,+∞);

(H4) C∈ L∞(ΩT) with C = ‖C‖∞.

The result is the following. We insist on thea priori estimates which will be used in the proof of
Theorem 2.2.

THEOREM 4.1 Let (H1)− (H4) hold andT be an admissible mesh ofΩ . Assume that the following
stability condition is fulfilled

∆ t DT < 1, whereDT := M exp(CT)+C. (4.1)

Then, there exists a unique approximate solution(Nδ ,Pδ ,Vδ ) to the scheme (2.8)-(2.12), which satisfies for
all K ∈ T and alln = 0,1, ...,MT ,

mexp(−CT) 6 Nn
K , Pn

K 6 M exp(CT).

In particular, ifC = 0, the maximum principle holds forNδ andPδ , i.e.;

m 6 Nn
K , Pn

K 6 M, ∀(n,K) ∈ N × T . (4.2)

and
‖Vn‖2

1,Ω = ‖Vn‖2
0,Ω + |Vn|21,Ω 6 4m(Ω)2M2, ∀n ∈ N. (4.3)

Moreover, the approximate solution(Nδ ,Pδ ,Vδ ) converges to(N,P,V) as space and time steps go to 0,
where(N,P,V) is a weak solution to (1.1)-(1.6).
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4.2 Preliminary results

As in the continuous case, see (19), the study of the large time behavior of the scheme (2.8)-(2.12) is based
on an energy estimate with the control of the energy dissipation.

First, let us recall some notations. We denote by(NK ,PK ,VK) the solution to the discrete thermal equi-
librium. This means that(VK) is the solution to (2.3)-(2.7) and

NK = g(αN +VK), andPK = g(αP−VK),

which is equivalent to
h(NK)−VK = αN, h(PK)+VK = αP.

The solution to the time-dependent scheme (2.8)-(2.12) is denoted(Nn
K ,Pn

K ,Vn
K).

For the sequel, we need to define

H(s) =

∫ s

1
h(τ)dτ, 0 6 s

(with the conventionh(0) = h(0+)). Then we can introduce the discrete version of the deviation of the total
energy (sum of the internal energies for the electron and hole densities and the energy due to the electrostatic
potential) from the thermal equilibrium, see (19): forn > 0,

E
n := ∑

K∈T

m(K) [H(Nn
K)−H(NK)−h(NK)(Nn

K −NK)]

+ ∑
K∈T

m(K) [H(Pn
K)−H(PK)−h(PK)(Pn

K −PK)]

+
1
2
|Vn−V|21,Ω .

AsH is a convex function, we haveE n > 0 forn> 0. We also introduce the energy dissipationI (Nn+1,Pn+1,Vn):

I (Nn+1,Pn+1,Vn) := ∑
σ∈Eint
σ=K|L

τσ min(Nn+1
K ,Nn+1

L )
[
D
(
h(Nn+1)−Vn)

K,σ

]2

+ ∑
K∈T

∑
σ∈Eext,K

τσ min(Nn+1
K ,Nσ )

[
D
(
h(Nn+1)−Vn)

K,σ

]2

+ ∑
σ∈Eint
σ=K|L

τσ min(Pn+1
K ,Pn+1

L )
[
D
(
h(Pn+1)+Vn)

K,σ

]2

+ ∑
K∈T

∑
σ∈Eext,K

τσ min(Pn+1
K ,Pσ )

[
D
(
h(Pn+1)+Vn)

K,σ

]2

The proof of Theorem 2.2 relies on the control of energy and energy dissipation given by the following
Proposition.

PROPOSITION4.2 Let(H1)− (H4) hold andT be an admissible mesh ofΩ . Then, forn > 1,

E
n+1 +

(
1− M2

m
∆ t

)
∆ t I (Nn+1,Pn+1,Vn) 6 E

n. (4.4)
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The proof of Proposition 4.2 will be given later. First, we give a result to estimate the energy due to the
elecrostatic potential.

LEMMA 4.1 Let(H1)− (H4) hold andT be an admissible mesh ofΩ . Then, forn > 0,

1
2
|Vn+1−V|21,Ω − 1

2
|Vn−V|21,Ω 6 − ∑

K∈T

m(K)
(
Nn+1

K −Nn
K −Pn+1

K +Pn
K

)
[Vn

K −VK]

+
M2

m
∆ t2

I (Nn+1,Pn+1,Vn). (4.5)

and

1
2
|Vn+1−Vn|1,Ω 6

M2

m
∆ t2

I (Nn+1,Pn+1,Vn). (4.6)

Proof. Substituting the discrete Poisson equation (2.10) at timetn+1 andtn, we easily obtain forK ∈ T

∑
σ∈EK

τσ

[
DVn+1

K,σ −DVn
K,σ

]
= m(K)

(
Nn+1

K −Nn
K −Pn+1

K +Pn
K

)
. (4.7)

Next, we multiply the latter equality by−[Vn
K −VK ] and sum overK ∈T . Performing a discrete integration

by part, we classically have

∑
σ∈Eint
σ=K|L

τσ
(
[Vn+1

L −Vn+1
K ]− [Vn

L −Vn
K ]
)

[D(Vn−V)K,σ ]

+ ∑
K∈T

∑
σ∈E D

ext,K

τσ
(
[Vσ −Vn+1

K ]− [Vσ −Vn
K ]
)

[D(Vn−V)K,σ ]

6 − ∑
K∈T

m(K)
(
Nn+1

K −Nn
K −Pn+1

K +Pn
K

)
[Vn

K −VK].

Thus, using the following equality

[a−b]b=
a2

2
− b2

2
− 1

2
[a−b]2,

we takea= D(Vn+1−V)K,σ , b= D(Vn−V)K,σ and setW =Vn+1−Vn, which give the following inequality

1
2

(
|Vn+1−V|21,Ω −|Vn−V|21,Ω

)
− 1

2
|W|21,Ω

6 − ∑
K∈T

m(K)
(
Nn+1

K −Nn
K −Pn+1

K +Pn
K

)
[Vn

K −VK]. (4.8)

Now, the main step consists in the control of the residual term |W|21,Ω . To this aim, we start again from
(4.7), multiply it by−WK and sum overK ∈ T . We get

|W|21,Ω = − ∑
K∈T

m(K)
(
Nn+1

K −Nn
K −Pn+1

K +Pn
K

)
WK 6 ∆ t [I1 + I2+ I3+ I4] ,

whereIα , α ∈ {1, ..,4} are obtained using the finite volume scheme (2.11), (2.12) for Nn+1 andPn+1. More
precisely,

I1 = ∑
σ∈Eint
σ=K|L

τσ
∣∣min(Nn+1

K ,Nn+1
L )Dh(Nn+1)K,σ − (DVn

K,σ )+Nn+1
K − (DVn

K,σ )−Nn+1
L

∣∣ |DWK,σ |
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I2 = ∑
K∈T

∑
σ∈E D

ext,K

τσ
∣∣min(Nn+1

K ,Nσ )Dh(Nn+1)K,σ − (DVn
K,σ )+Nn+1

K − (DVn
K,σ)−Nσ

∣∣ |DWK,σ |

I3 = ∑
σ∈Eint
σ=K|L

τσ
∣∣min(Pn+1

K ,Pn+1
L )Dh(Pn+1)K,σ + (DVn

K,σ )+Pn+1
L +(DVn

K,σ)−Pn+1
K

∣∣ |DWK,σ |

I4 = ∑
K∈T

∑
σ∈E D

ext,K

τσ
∣∣min(Pn+1

K ,Pσ )Dh(Pn+1)K,σ + (DVn
K,σ )+Pσ +(DVn

K,σ )−Pn+1
K

∣∣ |DWK,σ | .

On the one hand, using thath is a nondecreasing function the following estimate holds for N = Nn+1
L and

Nσ
∣∣min(Nn+1

K ,N)Dh(Nn+1)K,σ − (DVn
K,σ )+Nn+1

K − (DVn
K,σ )−N

∣∣

6 max(Nn+1
K ,N)

∣∣∣d
(
h(Nn+1)−Vn)

K,σ

∣∣∣ .

Then, we easily check that

I1 6 ∑
σ∈Eint
σ=K|L

τσ max(Nn+1
K ,Nn+1

L )
∣∣∣D
(
h(Nn+1)−Vn)

K,σ

∣∣∣ |DWK,σ |

and
I2 6 ∑

K∈T

∑
σ∈E D

ext,K

τσ max(Nn+1
K ,Nσ )

∣∣∣D
(
h(Nn+1)−Vn)

K,σ

∣∣∣ |DWK,σ | ,

On the other hand, performing the same kind of computation, we also get

I3 6 ∑
σ∈Eint
σ=K|L

τσ max(Pn+1
K ,Pn+1

L )
∣∣∣D
(
h(Pn+1)+Vn)

K,σ

∣∣∣ |DWK,σ |

and
I4 6 ∑

K∈T

∑
σ∈E D

ext,K

τσ max(Pn+1
K ,Pσ )

∣∣∣D
(
h(Pn+1)+Vn)

K,σ

∣∣∣ |DWK,σ | .

Then, applying the Cauchy-Schwarz inequality to the latterinequalities, it yields

|W|21,Ω 6
2M2

m
∆ t2

I (Nn+1,Pn+1,Vn),

and gathering the latter result with (4.8), it finally yields

1
2
|Vn+1−V|21,Ω − 1

2
|Vn−V|21,Ω 6 − ∑

K∈T

m(K)
(
Nn+1

K −Nn
K −Pn+1

K +Pn
K

)
[Vn

K −VK]

+
M2

m
∆ t2

I (Nn+1,Pn+1,Vn).

which concludes the proof of Lemma 4.1. �

Next, we prove another entropy type inequality for the two densitiesN andP, which will be useful later.
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LEMMA 4.2 Let(H1)− (H4) hold andT be an admissible mesh ofΩ . Then, forn > 0,

∑
K∈T

m(K)
(
Nn+1

K −Nn
K

) [
h(Nn+1

K )−Vn
K − αN

]

6 −∆ t ∑
σ∈Eint
σ=K|L

τσ min(Nn+1
K ,Nn+1

L )
[
D(h(Nn+1)−Vn)K,σ

]2

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ min(Nn+1
K ,Nσ )

[
D(h(Nn+1)−Vn)K,σ

]2
. (4.9)

and

∑
K∈T

m(K)
(
Pn+1

K −Pn
K

) [
h(Pn+1

K )+Vn
K − αP

]

6 −∆ t ∑
σ∈Eint
σ=K|L

τσ min(Pn+1
K ,Pn+1

L )
[
D(h(Pn+1)+Vn)K,σ

]2

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ min(Pn+1
K ,Pσ )

[
D(h(Pn+1)+Vn)K,σ

]2
.

Proof. First, we multiply the scheme (2.11) by∆ t
[
h(Nn+1

K ) − Vn
K −αN

]
and sum overK ∈ T . Then, we

obtain
T1 +T2 +T3 = 0,

with

T1 = ∑
K∈T

m(K)
(
Nn+1

K −Nn
K

) [
h(Nn+1

K )−Vn
K − αN

]
,

T2 = −∆ t ∑
K∈T

∑
σ∈EK
σ=K|L

τσ
[
min(Nn+1

K ,Nn+1
L )Dh(Nn+1)K,σ

] [
h(Nn+1

K )−Vn
K − αN

]

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ
[
min(Nn+1

K ,Nσ )Dh(Nn+1)K,σ
] [

h(Nn+1
K )−Vn

K − αN
]
,

T3 = +∆ t ∑
K∈T

∑
σ∈EK
σ=K|L

τσ
[
(DVn

K,σ )+Nn+1
K +(DVn

K,σ )−Nn+1
L

] [
h(Nn+1

K )−Vn
K − αN

]

+∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ
[
(DVn

K,σ )+Nn+1
K +(DVn

K,σ )−Nσ
] [

h(Nn+1
K )−Vn

K − αN
]
.

Now, we perform a discrete integration by part (using the symmetry ofτσ ) and estimate the termT2

T2 = +∆ t ∑
σ∈Eint
σ=K|L

τσ min(Nn+1
K ,Nn+1

L )Dh(Nn+1)K,σ
[
D(h(Nn+1)−Vn)K,σ

]

+∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ min(Nn+1
K ,Nσ )Dh(Nn+1)K,σ

[
D(h(Nn+1)−Vn)K,σ

]
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and next the termT3

T3 = −∆ t ∑
σ∈Eint
σ=K|L

τσ
[
(DVn

K,σ )+Nn+1
K − (DVn

K,σ)−Nn+1
L

] [
D(h(Nn+1)−Vn)K,σ

]

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ
[
(DVn

K,σ )+Nn+1
K − (DVn

K,σ)−Nσ
] [

D(h(Nn+1)−Vn)K,σ
]
.

Then, we introduce the termT⋆
3

T⋆
3 = −∆ t ∑

σ∈Eint
σ=K|L

τσ min(Nn+1
K ,Nn+1

L )DVn
K,σ
[
D(h(Nn+1)−Vn)K,σ

]

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ min(Nn+1
K ,Nσ )DVn

K,σ
[
D(h(Nn+1)−Vn)K,σ

]

and want to prove thatT3 > T⋆
3 .

Let us estimate the differenceT3−T⋆
3 . On the one hand, using that the functionh is nondecreasing, we

show that forN = Nn+1
L , Nσ

(DVn
K,σ )+

[
h(Nn+1

K )−h(N)
] [

Nn+1
K −min(Nn+1

K ,N)
]

> 0

and forN = Nn+1
L , Nσ

(DVn
K,σ )−

[
h(Nn+1

K )−h(N)
] [

N−min(Nn+1
K ,N)

]
> 0.

On the other hand, using the property ofu→ u±, we have forN = Nn+1
L , Nσ

(DVn
K,σ )+ DVn

K,σ
[
NK −min(Nn+1

K ,N)
]

> 0

and forN = Nn+1
L , Nσ

(DVn
K,σ )− DVn

K,σ
[
N−min(Nn+1

K ,N)
]

> 0.

Thus, from these classical inequalities we easily concludethatT3−T⋆
3 > 0.

Finally, it follows that

T1 6 −T2 − T⋆
3 .

More precisely, we have

∑
K∈T

m(K)
(
Nn+1

K −Nn
K

) [
h(Nn+1

K )−Vn
K − αN

]

6 −∆ t ∑
σ∈Eint
σ=K|L

τσ min(Nn+1
K ,Nn+1

L )
[
D(h(Nn+1)−Vn)K,σ

]2

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ min(Nn+1
K ,Nσ )

[
D(h(Nn+1)−Vn)K,σ

]2
.
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Using the scheme (2.12), we also prove in the same way that

∑
K∈T

m(K)
(
Pn+1

K −Pn
K

) [
h(Pn+1

K )+Vn
K − αP

]

6 −∆ t ∑
σ∈Eint
σ=K|L

τσ min(Pn+1
K ,Pn+1

L )
[
D(h(Pn+1)+Vn)K,σ

]2

−∆ t ∑
K∈T

∑
σ∈E D

ext,K

τσ min(Pn+1
K ,Pσ )

[
D(h(Pn+1)+Vn)K,σ

]2
.

�

Now, we give the proof of Proposition 4.2.Proof. We introduce the nonnegative and convex functions
Φ1 andΦ2

Φ1(x) := H(x) − H(NK)−h(NK) [x − NK ]

and
Φ2(x) := H(x) − H(PK)−h(PK) [x − PK ]

such that

Φ ′
1(x) = h(x)−h(NK), Φ ′

2(x) = h(x)−h(PK), and Φ ′′
1 (x) = Φ ′′

2 (x) = h′(x) > 0.

Therefore, using the convexity ofH, it yields

∑
K∈T

m(K)
[
Φ1(N

n+1
K )−Φ1(N

n
K)
]

= ∑
K∈T

m(K)
[
H(Nn+1

K ) − H(Nn
K)−h(NK)

(
Nn+1

K − Nn
K

)]

6 ∑
K∈T

m(K)
(
Nn+1

K −Nn
K

) [
h(Nn+1

K )−h(NK)
]

(4.10)

and

∑
K∈T

m(K)
[
Φ2(P

n+1
K )−Φ2(P

n
K)
]

6 ∑
K∈T

m(K)
(
Pn+1

K −Pn
K

) [
h(Pn+1

K )−h(PK)
]
. (4.11)

Now, we apply the result of Lemma 4.1,i.e.;

1
2
|Vn+1−V|21,Ω − 1

2
|Vn−V|21,Ω

6 ∑
K∈T

m(K)
[[

Nn+1
K −Nn

K

]
−
[
Pn+1

K −Pn
K

]]
[VK −Vn

K ]

+
M2

m
∆ t2

I (Nn+1,Pn+1,Vn).

Adding the two latter inequalities and using thath(NK)−VK = αN andh(PK)+VK = αP, it yields

E
n+1−E

n
6 ∑

K∈T

m(K)
(
Nn+1

K −Nn
K

) [
h(Nn+1

K )−Vn
K −αN

]
.

+ ∑
K∈T

m(K)
(
Pn+1

K −Pn
K

) [
h(Pn+1

K )+Vn
K −αP

]

+
M2

m
∆ t2

I (Nn+1,Pn+1,Vn).
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Finally a straighforward application of Lemma 4.2 gives an upper bound of the right hand side

E
n+1−E

n 6 −∆ t

(
1− M2

m
∆ t

)
I (Nn+1,Pn+1,Vn).

Thus, under a smallness condition on the time step∆ t < m/M2 the total energy is decreasing with respect
to n. �

4.3 Proof of Theorem 2.2

Now we are ready to achieve the proof of Theorem 2.2. On the onehand, from the convexity of the
functionalH, we show thatE n+1 is nonnegative and then applying Proposition 4.2, it yields

0 6 E
n+1 +

(
1− M2

m
∆ t

) n

∑
k=0

∆ t I (Nk+1,Pk+1,Vk) 6 E
0.

Thus, the series∑n∈N I (Nn+1,Pn+1,Vn) is bounded andI (Nn+1,Pn+1,Vn) is nonnegative, which means
that

I (Nn+1,Pn+1,Vn) → 0, as n→ ∞, (4.12)

and since on the boundaryΓD, we haveh(Nn+1
σ )−Vn

σ = h(Nσ )−Vσ = αN andh(Pn+1
σ )+Vn

σ = h(Pσ )+Vσ =
αP, it yields

h(Nn+1
K )−Vn

K → αN, h(Pn+1
K )+Vn

K → αP, n→ ∞.

Moreover, applying Lemma 4.1 and using the bound (4.6) onVn+1−Vn, we also get

|Vn+1−Vn|1,Ω → 0, as n→ ∞. (4.13)

On the other hand, we have

(x−y)(h(x)−h(y)) 6 c(x−y)2, ∀(x,y) ∈ [m,M].

Hence, applying the Young inequality, we get for anyδ > 0

δ
2 ∑

K∈T

m(K) |Nn+1
K −NK |2 +

1
2δ ∑

K∈T

m(K) |h(Nn+1
K )−Vn+1

K −αN|2

> ∑
K∈T

m(K)
[
Nn+1

K −NK
] [

h(Nn+1
K )−Vn+1

K −αN
]

> c ∑
K∈T

m(K)
[
Nn+1

K −NK
]2

+ ∑
K∈T

m(K)
[
Nn+1

K −NK
]
[VK −Vn+1

K ].

and

δ
2 ∑

K∈T

m(K) |Pn+1
K −PK|2 +

1
2δ ∑

K∈T

m(K) |h(Pn+1
K )+Vn+1

K −αP|2

> c ∑
K∈T

m(K)
[
Pn+1

K −PK
]2 − ∑

K∈T

m(K)
[
Pn+1

K −PK
]
[VK −Vn+1

K ].
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Thus, adding the two latter inequalities and using the scheme (2.10) at timetn+1, it yields forδ < 2c

(c− δ
2

) ∑
K∈T

m(K)
([

Nn+1
K −NK

]2
+
[
Pn+1

K −PK
]2)

+ |Vn+1−V|1,Ω

6
1

2δ

(

∑
K∈T

m(K) |h(Nn+1
K )−Vn+1

K −αN|2 + ∑
K∈T

m(K) |h(Pn+1
K )+Vn+1

K −αP|2
)

6
CΩ
2δ
(
|h(Nn+1)−Vn−αN|1,Ω + |h(Pn+1)+Vn−αP|1,Ω + 2|Vn−Vn+1|1,Ω

)
.

Therefore, passing to the limit inn→ ∞ and using (4.12) and (4.13), we finally get the result

Nn
K → NK , Pn

K → PK , Vn
K →VK , as n→ ∞,

where(NK ,PK ,VK) is given by (1.10) and (2.3).

5. Numerical results

In this section, we give numerical results in one and two dimensions, obtained by the finite volume scheme
(2.10)-(2.12).

5.1 Thermal equilibrium at the boundary in 1-D

We consider the following initial data forx∈ (0,1)

N0(x) = N0 +(N1−N0)x1/2, P0(x) = P0+(P1−P0)x1/2

with the boundary condition

N(t,0) = 0.1, P(t,0) = 0.9, V(t,0) =
h(N(t,0))−h(P(t,0))

2
,

N(t,1) = 0.9, P(t,1) = 0.1, V(t,1) =
h(N(t,1))−h(P(t,1))

2
,

whereh(x) = log(x). The doping profile is taken equal to zero. In this case, we have proven that the
numerical solution converges to a steady state and the energy E n is decreasing with respect ton. In Figures
1, we clearly observe that the energy is decreasing and converges to zero when times goes to infinity.
Moreover, the dissipationI (Nn,Pn,Vn−1) also converges to zero whenn goes to infinity. In Figures 2, the
density(N(tn),P(tn)) converges to the steady state obtained from the scheme (2.3)-(2.6) for the steady state
problem.

5.2 Thermal equilibrium at the boundary in 1-D with doping

In this second example, we consider the system (1.1) where the doping profileC is given by

C(x) =

{
+1 ifx ∈ [0,1/2),
−1 else
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FIG. 1. Thermal equilibrium at the boundary 1-D:evolution of the numerical energyE n and its numerical dissipationI (Nn,Pn,Vn−1),
n > 1.

and the pressure law isr(s) = s5/3. Moreover, Dirichlet boundary conditions are prescribed

N(t,0) = P(t,1) = 0.1, P(t,0) = N(t,1) = 0.9

and the potentialV(t,0) andV(t,1) such that thermal equilibrium occurs

V(t,σ) =
h(N(t,σ))−h(P(t,σ))

2
, for σ = {0,1}.

In this case, we can apply the entropy method to prove that thesolution converges to an equilibrium even if
theL∞ estimates on(N,P) are not valid. We perform numerical simulations using our algorithm and observe
that the density(N,P) converges to a stationary solution given by solving the corresponding discrete steady
state problem. In Figure 3, we observe that the energy converges to zero, whereas the density(N,P) goes
to the equilibrium.

5.3 Thermal equilibrium at the boundary in 2-D

We present here a test case for a geometry corresponding to a PN-junction in 2D. The geometry is shown
in Figure 4. The doping profile is piecewise constant, equal to +1 in the N-region and -1 in the P-region.

The Dirichlet boundary conditions are

ND = 0.1, PD = 0.9, VD =
h(ND)−h(PD)

2
ony = 1, 0 6 x 6 0.25

ND = 0.9, PD = 0.1, VD =
h(ND)−h(PD)

2
ony = 0

Elsewhere, we put Neumann boundary conditions.
We compute the numerical approximation of the thermal equilibrium and of the transient drift-diffusion

system on a mesh made of 599 triangles. Figures 5 and 6 are devoted to the case where the pressure is linear
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FIG. 2. Thermal equilibrium at the boundary 1-D:evolution of the numerical density(N,P), the potential V and the electric field DV,
n > 1.
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FIG. 3. Thermal equilibrium at the boundary 1-D with doping:evolution of the numerical energy and its dissipation, and the density
(N,P), n> 1.
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x

y

ΓD

ΓD

FIG. 4. Geometry of the PN-junction diode

(r(s) = s). Figure 5 presents the evolution of the density of holesP computed with the time-dependent
scheme at three different timest = 0.04, t = 0.2 andt = 0.6 and the approximation ofP at the thermal
equilibrium. Figure 6 shows the evolution of the energy and of its dissipation.

Figures 7 and 8 are devoted to the case where the pressure is nonlinear (r(s) = sα with α = 5/3). Figure
7 presents the evolution of the density of electronsN computed with the time-dependent scheme at three
different timest = 0.02,t = 0.1 andt = 0.6 and the approximation ofN at the thermal equilibrium. Figure
8 shows the evolution of the energy and of its dissipation.
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