

Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots?

Stéphanie Guigues, Matthieu Bravin, Cédric Garnier, Emmanuel Doelsch

▶ To cite this version:

Stéphanie Guigues, Matthieu Bravin, Cédric Garnier, Emmanuel Doelsch. Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots?. Chemosphere, 2016, 170, pp.225 - 232. 10.1016/j.chemosphere.2016.12.017. cirad-03598056

HAL Id: cirad-03598056 https://hal.science/cirad-03598056

Submitted on 10 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots?

Stéphanie Guigues, Matthieu N. Bravin, Cédric Garnier, Emmanuel Doelsch

PII: S0045-6535(16)31722-2

DOI: 10.1016/j.chemosphere.2016.12.017

Reference: CHEM 18472

To appear in: ECSN

Received Date: 9 August 2016

Revised Date: 24 November 2016 Accepted Date: 4 December 2016

Please cite this article as: Guigues, S., Bravin, M.N., Garnier, C., Doelsch, E., Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots?, *Chemosphere* (2017), doi: 10.1016/j.chemosphere.2016.12.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Does specific parameterization of WHAM improve the prediction of copper

1

competitive binding and toxicity on plant roots? 2 3 4 Authors: Stéphanie Guigues^{a,b}, Matthieu N. Bravin^{c,*}, Cédric Garnier^d and Emmanuel Doelsch^a 5 6 7 Affiliations: 8 ^a CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France 9 ^b ADEME, 20 avenue du Grésillé, BP-90406, Angers cedex 01, France ^c CIRAD, UPR Recyclage et risque, F-97408 Saint-Denis, Réunion, France 10 ^d Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France 11 12 * Corresponding author: Cirad, 40 chemin Grand Canal, CS 12014, 97743 Saint-Denis cedex 9, La Réunion, 13 14 France, + 262 (0)2 62 52 80 30, matthieu.bravin@cirad.fr 15 Total word counts (from section 1 to Acknowledgments) = 5127 16 Tables = 217 18 Figures = 419

-	_		
2) Abstra	വ
_	v	Ausua	u

We aimed at assessing whether the binding and rhizotoxicity of metal cations such as copper that exhibit high
affinity for plant roots could be adequately predicted using the Windermere Humic Aqueous Model (WHAM)
default parameterization. Accordingly, we first compared the ability of the default parameterization of WHAM
and a specific parameterization for terrestrial higher plants (WHAM-THP) to model the competitive binding of
copper on wheat (Triticum aestivum L.) and tomato (Solanum lycopersicum L.) roots. Secondly, in an external
dataset, we evaluated the ability of WHAM-THP to predict the copper concentration and toxicity to pea (Pisum
sativum L.) roots relative to WHAM. WHAM-THP estimates generated a slightly better fit for the competitive
binding of copper on wheat and tomato roots (log_{10} of the root-mean-square error, $RMSE = 0.15$) than WHAM
estimates ($RMSE = 0.24$). WHAM-THP estimates slightly better fitted the copper concentration in pea roots
$(RMSE \le 0.49)$ than WHAM estimates $(RMSE \le 0.67)$ at low copper exposure and pH ≤ 5 . However, WHAM-
THP did not at all improve the prediction of copper toxicity to pea roots (<i>RMSE</i> = 13% as also for WHAM). We
thus conclude that, although the default parameterization of WHAM does not neatly predict the binding of metal
cations on roots, it could however be used with confidence in predictive ecotoxicology for terrestrial higher
plants without any specific parameterization.

Keywords

37 Biotic ligand model; Complexation; Humic substances; Phytotoxicity; Trace element

Highlights

- WHAM-THP is a specific parameterization of WHAM for terrestrial higher plants
- WHAM-THP much improves the prediction of root acidic properties
- WHAM-THP only slightly improves the prediction of root copper competitive binding
- WHAM-THP does not improve the prediction of copper rhizotoxicity

1. Introduction

4	_
4	h

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

45

Models designed to predict the ecotoxicity of metal cations at the organism level are based on the description of the competitive binding of metal cations to biotic ligands borne to the outer surface of the organism (Di Toro et al. 2001). These models seem particularly promising for modelling the toxicity of metal cations to plant roots, i.e. rhizotoxicity. It was recently suggested that the primary mechanism driving the rhizotoxicity of metal cations is their binding strength to biotic ligands borne by root surfaces (Kopittke et al. 2014). The model's ability to accurately describe metal cation binding on plant roots is therefore a crucial issue. Accordingly, advanced geochemical models initially designed to model metal cation binding on humic substances have started to be applied in predictive ecotoxicology studies over the past decade (Plette et al. 1996; Tipping et al. 2008). The Windermere Humic Aqueous Model (WHAM) has particularly been used to adequately model the binding and toxicity of metal cations to aquatic and terrestrial biota (Tipping et al. 2008; Antunes et al. 2012; Tipping and Lofts 2013; Qiu et al. 2015 and 2016). The humic acid (HA) in WHAM was used as a surrogate of biotic ligands (Tipping et al. 2008; Antunes et al. 2012). The amount of metal cations bound to biotic ligands was predicted with WHAM by numerically optimizing the equivalent mass of HA per gram of organism (Tipping and Lofts 2013). The difference between the measurement and the WHAM prediction of the amount of metal cations bound to biotic ligands was hypothetically attributed only to the difference in the density of binding sites between the organism and the HA in WHAM. This hypothesis however overlooks the fact that the binding affinity for metal cations may also differ between organisms and HA in WHAM. For terrestrial higher plants, a recent investigation showed that WHAM was able to satisfactorily model cadmium (Cd), nickel (Ni), and zinc (Zn) concentrations in pea (Pisum sativum L.) roots, but that it overestimated the copper (Cu) concentration in roots (Le et al. 2015). These authors concluded that the default parameterization of HA in WHAM may be not applicable for metal cations having a high affinity for natural organic matter such as Cu. We recently characterized Cu binding on wheat (Triticum aestivum L.) and tomato (Solanum lycopersicum L.) roots by combining X-ray absorption spectroscopy with the specific parameterization of a two HA model based on WHAM (Guigues et al. 2016). We showed that Cu binding on wheat and tomato roots was driven by

two types of sites, i.e. low- and high-affinity sites respectively corresponding to carboxylic and nitrogen (N)

functional groups. As the high-affinity sites parameterized in WHAM presumably correspond to phenolic groups

75	rather than N functional groups, this finding suggested that specific parameterization of WHAM would be
76	necessary for terrestrial higher plants.
77	Accordingly, we aimed at assessing whether Cu root binding and rhizotoxicity could be adequately
78	predicted with the WHAM default parameterization or if tailored parameterization would be necessary. We first
79	compared the ability of WHAM parameterized with default settings (hereafter referred to as WHAM) and
80	WHAM specifically parameterized for terrestrial higher plants (hereafter referred to as WHAM-THP) to model
81	Cu competitive binding on roots. Wheat and tomato were chosen as model species to be respectively
82	representative of monocots and dicots. Secondly, we evaluated, on an external dataset, the ability of WHAM-
83	THP to predict the Cu concentration in roots and its rhizotoxicity relative to WHAM predictions.
84	
85	
86	2. Experimental approach
87	
88	We used only analytical grade reagents unless otherwise stated.
89	
90	2.1. Plant growth and root recovery
91	Wheat (cv. Premio) and tomato (cv. Moneymaker) were germinated for 7 days in darkness and then grown
92	for 14 days in hydroponic conditions in a growth chamber under the following climatic conditions (day/night):
93	$25/20^{\circ}$ C, $75/70\%$ relative humidity and $16/8$ h with a photon flux density of 450μ mol photons m ⁻² s ⁻¹ during the
94	day (see Guigues et al. 2014 for details). At harvest, roots were separated from shoots, blotted with paper towels,
95	subdivided into homogenous subsamples, and stored frozen.
96	After thawing, roots were rinsed with 1 mM Ca(NO ₃) ₂ to eliminate vacuolar compounds released due to
97	membrane leakage during freezing. Roots were stirred in HNO ₃ solution (trace analysis grade) at pH 3 for 1 h to
98	remove highly bound or precipitated cations (e.g. Fe and Al) and rinsed twice with ultrapure water (18.2 $M\Omega$)
99	for 30 min. Roots were finally oven-dried at 50°C to constant mass.
100	The plant root material obtained (hereafter referred to as roots) was metabolically inactive. This metabolic
101	inactivity prevented the physiologically-driven absorption of Cu in root cells and enabled us to study only Cu
102	binding onto root surfaces. Roots contained cell walls and plasma membranes, i.e. the two compartments which

give roots their cation binding properties (Guigues et al. 2014). Root pretreatment may have partly impacted

their binding properties in comparison with live plant roots. However, there is to our knowledge no other reliable

103

105	analytical technique to distinguish binding from absorption of metal cations in the several dozens of samples
106	necessary to test a model for practical ecotoxicological applications.
107	
108	2.2. Potentiometric titration
109	Potentiometric titration of wheat and tomato roots were extensively described by Guigues et al. (2014).
110	Briefly, ca. 0.2 g (dry mass basis) of roots was placed in 100 ml of 10 mM KNO ₃ under stirring and flushed with
111	ultra-pure nitrogen. During titration, the pH was first lowered to 2.5 with 0.2 M HNO ₃ (trace analysis grade)
112	addition and was then increased step-by-step to 11.5 with the incremental addition of 0.1 M KOH (trace analysis
113	grade) either at a rate of 100 μ l in the 2.5-3.5 and 10.5-11.5 pH ranges or at a rate of 20 μ l in the 3.5-10.5 pH
114	range.
115	
116	2.3. Copper sorption experiments
117	A dry mass of 10 (\pm 0.5) mg of wheat and tomato roots was shaken end-over-end for 24 h at 25°C in 25 ml
118	of solution with varying chemical conditions representative of acidic soil solutions and including the competitive
119	effect of some important major (H and Ca) and minor (Zn) metal cations (Tables S1 and S2). In experiment 1,
120	the initial total Cu concentration of the solution ranged from pCu_{in} 7.3 to 3.0 ($pCu_{in} = -log_{10}[Cu]_{in}$). The solution
121	ionic strength and pH was set at 30 mM with NaNO ₃ and 4.7 (\pm 0.2), respectively.
122	In experiment 2, the solution ionic strength was set at 0.6 or 300 mM with NaNO ₃ . The initial total Cu
123	concentration was set at pCu _{in} 4.2, 5.2, or 6.2 and the pH was set at 4.7 (\pm 0.2).
124	In experiment 3, the solution pH was set at 4.1 (\pm 0.1) or 6.3 (\pm 0.1). The initial total Cu concentration was
125	set at pCu _{in} 4.2, 5.2, or 6.2. The ionic strength was set at 30 mM with NaNO ₃ .
126	In experiment 4, the initial total solution Ca concentration ranged from pCa _T 2.0 to 4.0. The initial total
127	solution Cu concentration, ionic strength and pH was set at pCu _{in} 6.3, 30 mM with NaNO ₃ , and 5.1 (\pm 0.4),
128	respectively.
129	In experiment 5, the initial total solution Zn concentration ranged from pZn _T 4.5 to 7.2. The initial total
130	solution Cu concentration, ionic strength and pH was set at pCu _{in} 6.3, 30 mM with NaNO ₃ , and 4.7 (\pm 0.1),
131	respectively.
132	The pH was buffered with 1 mM 2-(N-morpholino) ethanesulfonic acid and adjusted with NaOH or HNO ₃
133	(trace analysis grade). Each sorption experiment was performed in duplicate. After a few minutes of root
134	sedimentation, the supernatant was collected for analysis. The copper concentration in the initial (pCu _{in}) and

final (i.e. at equilibrium, pCu_{eq}) solutions was determined by inductively coupled plasma mass spectrometry (ICP-MS, NexION 300X Perkin Elmer) to determine the amount of Cu bound to wheat and tomato roots. Blanks and certified reference material (EnviroMAT Driking water EP-L-3 and groundwater ES-H-2) were included in the analyses. The measurement uncertainty was lower than 10%. This procedure was cross-validated with Cu measurements obtained on digested root samples (Guigues et al. 2016).

3. Modelling approach

3.1. Specific parameterization of WHAM

Experimental data were modelled using the humic ion-binding model included in WHAM VII. The formalism of this model was extensively described by Tipping (1998) and Tipping et al. (2011). Briefly, WHAM was designed to simulate the cation binding properties of humic substances depicted as a regular array of two types of binding sites. The density (L_{Hi} , cmol_c.kg⁻¹) of type-1 sites is arbitrarily set as twofold higher than the density of the type-2 sites (i.e. $L_{Hi} = 2 \times L_{H2}$). Protons and metal cations compete for binding on type 1 and 2 sites. Metal cations are able to form mono-, bi- and tri-dendate complexes.

Proton sorption to humic substances was characterized by two intrinsic proton dissociation constants (p Ka_1 and p Ka_2) and two distribution terms (Δ p Ka_1 and Δ p Ka_2) for type 1 and 2 sites, respectively. Metal binding to humic substances was characterized by two intrinsic equilibrium constants ($K_{M,1}$ and $K_{M,2}$) for type 1 and 2 sites, respectively, and one heterogeneity parameter (Δ L $K2_M$). The parameter $K_{M,2}$ was calculated from $K_{M,1}$, p Ka_1 , and p Ka_2 as follows (Tipping et al. 2011):

156
$$Log K_{M,2} = Log K_{M,1} \times \frac{pKa_2}{pKa_1}$$
 Eq. 1

Electrostatic effects are accounted for in WHAM by approximating the diffuse layer/bulk solution system with a Donnan model. While WHAM can account for the complexation of the free ionic form and the first hydrolysis product of each metal, we only accounted for Cu^{2+} as a preliminary speciation calculation showed that Cu^{2+} represented > 95% of the total Cu in solution with $pH \le 6.3$. However, at higher pH the presence of Cu hydroxide should be considered. The partial pressure of CO_2 was assumed to be that of the ambient atmosphere $(10^{-3.5} \text{ atm})$ and the temperature was set at 25 °C for the calculations.

To develop a predictive model for ecotoxicological assessment, we aimed at fitting the experimental data as accurately as possible, but with the lowest possible number and the most generic set of parameters for wheat and

165	tomato. Accordingly, we first simulated the root binding properties with a single HA having the default
166	parameterization (p Ka_i , Δ p Ka_i , $K_{M,i}$, Δ L $K2_M$) used in WHAM (Tables 1 and 2). The HA concentration was set at
167	the concentration found in dry roots in batch solutions, i.e. 400 mg l ⁻¹ . The total density of binding sites on HA
168	was set according to the potentiometric titration of wheat and tomato roots reported by Guigues et al. (2014).
169	The ratio between the density of low-pKa (type-1) and high-pKa (type-2) sites (hereafter referred to as the
170	L/H-pKa ratio) that is arbitrarily assigned at 2 in WHAM was out of line with the L/H-pKa ratios of 0.4 and 0.9
171	experimentally determined for wheat and tomato roots, respectively (Guigues et al. 2014). In agreement, the
172	L/H-pKa ratios on roots of dicots and monocots found in the literature were also lower than 2, i.e. ranging from
173	0.5 to 1.7, except for Lupinus albus L. that had a ratio of 3.8 (Meychik and Yermakov 1999 and 2001; Ginn et al.
174	2008; Wu and Hendershot 2009; see Table S3).
175	To relax the L/H-pKa ratio, we thus mimicked the root binding properties with two HA that were
176	specifically parameterized in WHAM-THP (Tables 1 and 2). The concentration of each HA was set at the
177	concentration established in dry roots in batch solutions, i.e. $400 \text{ mg } \Gamma^1$. The total density of binding sites and the
178	distribution between low- and high-affinity sites was set for each HA according to the potentiometric titration of
179	wheat and tomato roots reported by Guigues et al. (2014). The first HA (HA _I) represented the low-pKa sites
180	while the second HA (HA _{II}) represented the high-p Ka sites. We first parameterized p Ka_1 , p Ka_2 , Δ p Ka_1 and
181	ΔpKa_2 for HA _I and HA _{II} to fit the experimental titration curves of wheat and tomato roots (Guigues et al. 2014).
182	We then parameterized $K_{Cu,1}$, $K_{Cu,2}$ and $\Delta LK2_{Cu}$ to fit the Cu sorption data from experiment 1. The ability of
183	WHAM-THP to account for ionic strength and pH effects on Cu binding was verified by predicting Cu sorption
184	data from experiments 2 and 3 without additional parameterization. Finally, the ability of WHAM-THP to
185	account for the competitive effect of Ca and Zn was assessed by parameterizing $K_{Ca,1}$, $K_{Ca,2}$, $\Delta LK2_{Ca}$, $K_{Zn,1}$, $K_{Zn,2}$
186	and $\Delta LK2_{Zn}$ to fit the Cu sorption data from experiments 4 and 5.
187	
188	3.2. Application of WHAM to an external dataset
189	To evaluate the extent to which WHAM-THP improves the prediction of Cu accumulation into roots and Cu
190	rhizotoxicity in comparison with WHAM, we concomitantly applied the two models to the dataset obtained by
191	Wu and Hendershot (2010). These authors measured the Cu concentration in roots and the root length of pea

192

193

at pH 4, 5, or 6.

seedlings exposed to solutions with varying Cu (0 to 24.8 μ M) and Ca (0.04, 0.18, and 1.92 mM) concentrations

194 The prediction of root Cu concentration with WHAM and WHAM-THP was done by considering a factor of $0.044~g~HA.g^{-1}~DW$ to convert a quantity of Cu per g of HA in a quantity of Cu per g of dry roots, as described 195 196 by Le et al. (2015) on the same dataset. The relative root elongation (RRE, %) was calculated from the root 197 length (RL, mm): $RRE = \frac{RL}{RL_{max}} \times 100$ 198 Eq. 2 199 with RL_{max} being the maximal RL measured. The RRE was predicted with a log-logistic dose-response curve: 200 Eq. 3 201 and 202 $Ftox = \sum \alpha_i \times \nu_i = \alpha_H \times \nu_H + \alpha_{Cu} \times \nu_{Cu}$ Eq. 4 203 with Ftox being the toxicity function of a mixture of metal cations (H and Cu herein) calculated by summing the 204 products of the metal-specific toxicity coefficient (α_i) and the concentration of metal bound to HA (ν_i , mol.g 205 ¹ HA) calculated with WHAM or WHAM-THP, Ftox₅₀ is the value of Ftox inducing a 50% reduction in the 206 *RRE*, and β is a shape parameter. The α_H was set at 1 according to Tipping and Lofts (2013). 207 208 3.3. Parameter optimization 209 The quality of the fits obtained with WHAM and WHAM-THP were determined by calculating the root 210 mean square error (RMSE) between the experimental data and model outputs (Table S4). RMSE was calculated from untransformed data for potentiometric titrations as some experimental data were negative. RMSE was 211 212 calculated from log₁₀-transformed data for Cu sorption experiments to balance the weight of the highest values. 213 The RRE was predicted by optimizing the α_{Cu} , Ftox₅₀, and β to minimize the RMSE between measured and 214 predicted values. 215 216 217 **Results and Discussion** 218 219 4.1. WHAM-THP substantially improves the modeling of acidic properties of wheat and tomato roots 220 Despite the fact that the total density of binding sites has been fitted to the experimental data (Guigues et al. 221 2014), WHAM estimates failed to fit the titration data for wheat and tomato (*RMSE* = 12.7 cmol_c.kg⁻¹; Figure 1; Figure S1). WHAM estimates overestimated the density of binding sites observed experimentally over the whole 222

223	investigated pH range. The shape of the WHAM simulation curves also differed substantially from that of the
224	experimental data. The inadequacy of WHAM estimates to fit the experimental data was partly due to the L/H-
225	pKa ratio arbitrarily assigned at 2 in WHAM (Table 1), which differs substantially from the L/H-pKa ratios
226	determined experimentally in previously published studies, and particularly for wheat and tomato roots in our
227	study (see 3.1 for rationale).
228	Relaxing the L/H-pKa ratio by using two HA but with the default parameterization of WHAM for the two
229	HA (e.g. not as with WHAM-THP for which the two HA were specifically parameterized) generally improved
230	the fit of the titration data for wheat and tomato $(RMSE = 4.7 \text{ and } 5.2 \text{ cmol}_c\text{.kg}^{-1})$, but this only satisfactorily
231	fitted the experimental data for tomato at $pH \le 6$ (data not shown). The inadequacy of WHAM estimates to fit
232	the experimental data was thus also partly due to the default parameterization of proton dissociation (p Ka and
233	ΔpKa) of HA in WHAM.
234	The acidic properties of plant roots are so different from those of HA that a specific parameterization of HA
235	for terrestrial higher plants in WHAM-THP is required (Table 1). By contrast with WHAM estimates, WHAM-
236	THP estimates accurately fitted the titration data for wheat and tomato (RMSE = 1.6 cmol _c .kg ⁻¹ ; Figure 1;
237	Figure S1).
238	
239	4.2. WHAM-THP slightly improves the modelling of copper competitive binding on wheat and tomato roots
240	Over the five experiments of Cu sorption for wheat and tomato, WHAM estimates fitted 79% of the
241	experimental data within twofold (Figure 2A). However, WHAM estimates almost systematically overestimated
242	Cu binding by a factor 1.6 ($RMSE = 0.24$). Le et al. (2015) showed that the WHAM default parameterization also
243	overestimated the Cu concentration in pea roots. The overestimation increased as the Cu concentration in roots
244	decreased.
245	WHAM-THP estimates better fitted the experimental data ($RMSE = 0.15$) than WHAM estimates, with 91%
246	of the experimental data within twofold and without any systematic bias (Figure 2B). The comparison of the
247	results obtained with WHAM and WHAM-THP in each of the five Cu sorption experiments is detailed below in
248	sections 4.2.1 to 4.2.4. The specific parameterization of WHAM-THP (Tables 1 and 2) thus slightly improved
249	the goodness of fit for the modelling of Cu competitive binding relative to the WHAM default parameterization.
250	This suggests that WHAM-THP should also improve modelling of the concentration in roots and the
251	rhizotoxicity of Cu.
252	

253	4.2.1. Experiment 1 on the copper binding affinity
254	For wheat, WHAM estimates overestimated Cu binding ($RMSE = 0.23$), with an increase in the
255	overestimation as the Cu concentration in solution increased (Figure S2A). By contrast, WHAM-THP estimates
256	neatly fitted ($RMSE = 0.04$) Cu binding on wheat roots throughout the investigated Cu concentration range.
257	For tomato, WHAM-THP estimates adequately fitted ($RMSE = 0.03$) Cu binding for pCu _{in} > 4.5 in solution
258	(i.e. $pCu_{eq} > 5$; Table S2) (Figure S2B). WHAM-THP estimates fitted Cu binding for $pCu_{in} > 4.5$ better than
259	WHAM estimates ($RMSE = 0.09$), which slightly but systematically overestimated the experimental data.
260	WHAM and WHAM-THP estimates showed a twofold deviation with the experimental data at pCu $_{in} \leq 4.5. \ This$
261	deviation increased with increasing Cu concentration. These high Cu concentrations (equivalent to $pCu_{eq} < 5$, i.e.
262	$Cu_{eq} > 10~\mu\text{M}$) however exceeded the concentration range that usually generates acute Cu rhizotoxicity (Kopittke
263	et al. 2010 and 2011). We thus did not attempt to specifically parameterize WHAM-THP to fit the experimental
264	data at $pCu_{in} \le 4.5$.
265	The $\log K_{Cu,I}$ of HA _I sites in WHAM set at 2.4 by default was intermediate between the $\log K_{Cu,I}$ (equal to
266	2.2) and the $\log K_{Cu,2}$ (equal to 2.7) of HA _I sites specifically parameterized in WHAM-THP (Table 2). Similar to
267	the low-pKa sites of HA _I parameterized by default in WHAM that presumably correspond to carboxyl groups
268	(Tipping 1998), our recent spectroscopic analyses on wheat and tomato roots showed that the low-pKa sites
269	involved in Cu binding on wheat and tomato roots corresponded to carboxyl groups (Guigues et al. 2016).
270	Considering the identical nature of the binding sites, it is thus hard to attribute the better fits obtained with
271	WHAM-THP as compared to those obtained with WHAM to the specific parameterization of Cu binding affinity
272	of HA _I in WHAM-THP.
273	The $\log K_{Cu,I}$ (equal to 6.0) and the $\log K_{Cu,2}$ (equal to 6.7) of HA_{II} sites specifically parameterized in
274	WHAM-THP was about one order of magnitude higher than the $\log K_{Cu,2}$ of HA _I sites in WHAM set at 5.1 by
275	default (Table 2). While the high-pKa sites of HA parameterized by default in WHAM presumably correspond to
276	phenolic groups (Tipping 1998), our recent spectroscopic analyses showed that the high-pKa sites involved in
277	Cu binding on wheat and tomato roots corresponded to N functional groups (Guigues et al. 2016). Since N
278	functional groups have a higher affinity for Cu than phenolic groups (Fry et al. 2002), the involvement of N
279	functional groups in Cu binding on wheat and tomato roots supports the higher $\log K_{Cu}$ fitted for the high-p Ka
280	sites of $\mathrm{HA}_{\mathrm{II}}$ in WHAM-THP. The better fits obtained with WHAM-THP than with WHAM could thus be
281	attributed to the specific parameterization of Cu binding affinity of HA_{II} in WHAM-THP.

The heterogeneity parameters, i.e. $\Delta LK2_{Cu,I}$ in WHAM, set at 2.3 by default were much higher than the
$\Delta LK2_{Cu,I}$ and $\Delta LK2_{Cu,II}$ that were fitted to 0 in WHAM-THP (Table 2). This heterogeneity parameter accounts for
binding sites that occur at a low density and that exhibit a particularly high affinity for Cu (Tipping 1998). With
our dataset, increasing the $\Delta LK2_{Cu}$ from 0 to 3 led to overestimation of the binding of Cu at low concentration
(i.e. pCu > 7) by up to four orders of magnitude (data not shown). The much lower $\Delta LK2_{Cu}$ fitted in WHAM-
THP than in WHAM thus likely explains why WHAM estimates overestimated Cu binding on wheat and tomato
roots at low Cu concentration compared to WHAM-THP estimates.

4.2.2. Experiment 2 on the effect of ionic strength

The increase in ionic strength from 0.6 to 300 mM decreased the amount of Cu bound to wheat and tomato roots by 43% on average (Figure S3). As commonly described in the literature, the higher the ionic strength, the higher the tendency for major cations (for a negatively-charged sorbent such as roots) to accumulate in the diffuse layer (Vidali et al. 2011). This accumulation of major cations thus masks the negative charges on root surfaces and thus decreases the ability of binding sites to attract and bind metal cations such as Cu (Wang et al. 2011).

At the two ionic strengths, WHAM estimates better fitted the experimental data for tomato (RMSE = 0.18) than for wheat (RMSE = 0.38) (Table S4). At 300 mM ionic strength, WHAM estimates more particularly overestimated Cu binding on wheat and tomato roots, except at the highest Cu concentration (i.e. pCu_{in} 4.2). WHAM-THP estimates better fitted the experimental data for the two ionic strengths (RMSE = 0.11 and 0.21 for tomato and wheat, respectively) than WHAM estimates (Table S4). These results show that the specific parameterization of WHAM-THP better accounted for the effect of the ionic strength on Cu binding on roots than the default parameterization.

4.2.3. Experiment 3 on proton competition

The increase of pH from 4 to 6 boosted the amount of Cu bound to wheat and tomato roots by 41 and 16% on average, respectively (Figure S4). As commonly described in the literature, an increase in pH increases the dissociation of protons from negatively-charged surfaces such as roots, thus decreasing the competition between protons and metal cations such as Cu for binding on roots (Ginn et al. 2008; Bulgariu and Bulgariu 2012).

At pH 6, WHAM and WHAM-THP estimates similarly overestimated Cu binding on wheat and tomato roots (RMSE = 0.19 and 0.14, respectively) (Figure S4). At pH 4, WHAM estimates overestimated Cu binding

on wheat and tomato roots (RMSE = 0.45 and 0.13, respectively). In comparison, WHAM-THP estimates underestimated Cu binding on wheat and tomato roots (RMSE = 0.38 and 0.20, respectively).

In the 4 to 6 pH range, WHAM modelled a very weak competitive effect of protons and thus consistently overestimated the amount of Cu bound on wheat and tomato roots (Figure S4). By contrast, WHAM-THP accounted for a substantial competitive effect of protons and overestimated it. This led WHAM-THP to overestimate the decrease in Cu bound to roots from pH 6 to 4. The WHAM-THP estimates closely fitted the potentiometric data between pH 3.5 and 10.5 (Figure S1), which should theoretically enable us to describe the increase in the proportion of the total binding sites available for metal binding as the pH increases. This indicated that the binding site affinity for Cu decreased from pH 4 to 6 and was consequently underestimated at pH 4 and overestimated at pH 6 in comparison with the initial optimization made at pH 5. Faced with the same issue, Wu and Hendershot (2010) chose to lower the $\log K_{Cu}$ by approximately 1 unit to fit the Cu binding on pea roots from pH 4 to 6. Overall, proton competition was the only effect for which WHAM-THP estimates (*RMSE* = 0.31 and 0.17 for wheat and tomato, respectively) did not improve the fit of the experimental data obtained with WHAM estimates (*RMSE* = 0.38 and 0.18) (Table S4).

4.2.4. Experiments 4 and 5 on calcium and zinc competition

While the Ca concentration range exceeded that of Cu by more than four orders of magnitude, Ca only had a weak competitive effect on Cu binding on roots (Figure S5). For wheat, the amount of Cu bound to roots decreased by only 15% as the Ca concentration increased. For tomato, the amount of Cu bound to roots did not significantly decrease as the Ca concentration increased. The competitive effect of Zn on Cu binding on wheat and tomato roots was also weak, but it was higher than the competitive effect of Ca (Figure S5). The amount of Cu bound to roots decreased by 30% and 18% for wheat and tomato, respectively, as the Zn concentration increased.

When determined for a given species (monocots or dicots) under similar experimental conditions for Cu, Ca, and Zn, the $\log K_{Cu}$ in roots was reported to be higher than the $\log K_{Zn}$ by 1.9 to 3.4 orders of magnitude (Vulkan et al. 2004; Wang et al. 2010 and 2012; Le et al. 2013) and were reported to be higher than the $\log K_{Ca}$ by 0.9 to 4.4 orders of magnitude (Cheng and Allen 2001; Luo et al. 2008; Wu and Hendershot 2010; Wang et al. 2012). The $\log K_{Zn}$ also remained higher than the $\log K_{Ca}$ by 1 to 2 orders of magnitude (Wang et al. 2010; Kinraide 2009). The literature thus supports our findings, which showed that the competitive effect of Ca and Zn on Cu binding on wheat and tomato roots was weak, but that Zn was a stronger competitor than Ca.

WHAM modelled almost no competitive effect of Ca and Zn and hence overestimated Cu binding on roots
in the presence of Ca or Zn for wheat $(RMSE = 0.28)$ and tomato $(RMSE = 0.12)$ (Figure S5; Table S4). In
contrast, WHAM-THP estimates correctly fitted ($RMSE = 0.03-0.04$) the competitive effect of Ca and Zn on Cu
binding on wheat and tomato roots (Figure S5). To obtain this good fit, the $\log K_{Ca}$ and $\log K_{Zn}$ of HA_{II} sites in
WHAM-THP was increased by 2 orders of magnitude compared to the default $\log K_{Ca}$ and $\log K_{Zn}$ of type-2 sites
in WHAM (Table 2). However, the difference between the corresponding $\log K$ for Cu and Ca ($\Delta = 1.0$ -1.2 for
HA_{I} and $\Delta=2.0$ -2.2 for HA_{II}) or for Cu and Zn ($\Delta=0.2$ for HA_{I} and $\Delta=0$ for HA_{II}) in WHAM-THP remained
approximately the same as in WHAM (Table 2). This suggests that the better fits obtained with WHAM-THP
than with WHAM could be attributed to the specific parameterization of the acidic properties of wheat and
tomato roots rather than to the specific parameterization of the binding affinity of Cu, Ca, and Zn.

4.3. WHAM-THP only slightly improves the prediction of copper concentration in pea roots

WHAM and WHAM-THP estimates exhibited the same goodness of fit for the Cu concentration in roots when considering the whole dataset of Wu and Hendershot (2010) (*RMSE* = 0.69 and 0.70, respectively), with almost all data points predicted within one order of magnitude. The deviation between root Cu concentrations measured and those modelled with WHAM increased as the root Cu concentration decreased (Figure 3), indicating that WHAM estimates tends to overestimate root Cu concentration at low Cu exposure levels.

It is noteworthy that the prediction of the root Cu concentration with WHAM could be improved (RMSE=0.56) by setting the $\Delta LK2$ at 0 for Ca and Cu (data not shown). This suggests that the deviation observed with WHAM estimates at low root Cu concentration was mainly due to a too strong contribution of low density sites exhibiting a particularly high affinity for metal cations in the default parameterization of WHAM. In WHAM-THP, the $\Delta LK2$ has been set at 0 for Ca and Cu. Accordingly, WHAM-THP estimates better fitted the root Cu concentration than WHAM estimates for root Cu concentrations approximately lower than 10^{-5} mol.g⁻¹ at pH 4 and 5 10^{-6} mol.g⁻¹ at pH 5 (Figure 3A and B).

WHAM estimates were very sensitive to pH as the *RMSE* between measured and modelled data increased from 0.42 at pH 4 to 0.90 at pH 6 (Figure 3). WHAM-THP estimates were less sensitive to pH than WHAM estimates at pH 4 and 5 as the *RMSE* between measured and modelled data were 0.33 and 0.49, respectively (Figure 3A and B). However, at pH 6, WHAM-THP estimates deviated more from the measured data than WHAM estimates (Figure 3C). This was in agreement with the results obtained in the Cu sorption experiment 3,

371	which showed that WHAM-THP estimates tended to overestimate the proton competition in comparison with
372	WHAM estimates (see 4.2.3; Figure S4).
373	
374	4.4. WHAM-THP does not improve the prediction of copper rhizotoxicity
375	Estimates of WHAM and WHAM-THP combined with Ftox fitted very similarly the measured RRE
376	$(R^2 = 0.73 \text{ and } RMSE = 13 \text{ %}; \text{ Figure 4A and B}). \text{ The } Ftox \text{ values calculated with WHAM-THP were closely}$
377	correlated with those of WHAM ($R^2 = 0.94$) although the <i>Ftox</i> values calculated with WHAM-THP were about
378	twofold higher. As the \bullet_{Cu} optimized in WHAM and WHAM-THP simulations was very similar (3.3 and 3.6,
379	respectively), the difference between the Ftox values calculated with WHAM and WHAM-THP comes,
380	according to Eq. 4, from the stronger complexation calculated with WHAM-THP (i.e. higher v_{Cu} and v_H) than
381	that calculated with WHAM.
382	Accordingly, WHAM and WHAM-THP estimates combined with Ftox predicted very similar RRE
383	$(R^2 = 0.97; Figure 4C)$, even at low root Cu concentration for which WHAM-THP better predicted the root Cu
384	concentration than WHAM (data not shown). This may have been due to the fact that the prediction of RRE with
385	Ftox values involved the optimization independently for WHAM and WHAM-THP of three supplementary
386	parameters, i.e. $Ftox_{50}$, β , and α_{Cu} . This supplemental optimization may enable correction of the small deviation
387	observed between WHAM and WHAM-THP estimates of Cu concentration in roots so as to finally achieve
388	similar <i>RRE</i> predictions with WHAM and WHAM-THP.
389	Although WHAM-THP slightly improved the prediction of Cu binding on roots (see 4.2) and the prediction
390	of Cu concentration in roots at low root Cu concentration (see 4.3) relative to WHAM, WHAM-THP hence did
391	not at all improve the prediction of Cu rhizotoxicity. Considering this result and how time-consuming it would
392	be to complete the parameterization of WHAM-THP for all metal cations of interest, we conclude that, although
393	the default parameterization of WHAM does not neatly predict the binding of metal cations on roots, it could be
394	used with a good level of confidence in predictive ecotoxicology for terrestrial higher plants without any specific
395	parameterization.
396	
397	
398	Supporting information
399	
400	Supporting information (Tables S1 to S4; Figures S1 to S5) can be found at http:

	ACCEPTED MANUSCRIPT
401	
402	
403	Acknowledgments
404	
405	ADEME and CIRAD funded the PhD scholarship of Stéphanie Guigues. INSU (EC2CO-CYTRIX call
406	CNRS) funded the study. The authors thank Patrick Cazevieille and Claire Chevassus-Rosset (CIRAD) for
407	technical support and Bernard Angeletti (CEREGE) for the ICP-MS analyses.
408	

409	References
410	
411	Antunes PMC, Scornaienchi ML, Roshon HD (2012) Copper toxicity to Lemna minor modelled using humic
412	acid as a surrogate for the plant root. Chemosphere 88 (4):389-394.
413	doi:10.1016/j.chemosphere.2012.02.052
414	Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae
415	waste biomass. Bioresource Technology 103 (1):489-493. doi:10.1016/j.biortech.2011.10.016
416	Cheng T, Allen HE (2001) Prediction of uptake of copper from solution by lettuce (Lactuca sativa romance).
417	Environmental Toxicology and Chemistry 20 (11):2544-2551.
418	Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute
419	toxicity of metals. 1. Technical Basis. Environmental Toxicology and Chemistry 20 (10):2383-2396.
420	doi:10.1002/etc.5620201034
421	Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant and Soil
422	247 (1):57-67. doi:10.1023/a:1021140022082
423	Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of Fescue rubra. Chemical
424	Geology 253 (3-4):130-135. doi:10.1016/j.chemgeo.2008.05.001
425	Guigues S, Bravin MN, Garnier C, Masion A, Doelsch E (2014) Isolated cell walls exhibit cation binding
426	properties distinct from those of plant roots. Plant and Soil:1-13. doi:10.1007/s11104-014-2138-1
427	Guigues S, Bravin M, Garnier C, Masion A, Chevassus-Rosset C, Cazevieille P, Doelsch E (2016) Involvement
428	of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts:
429	spectroscopic and thermodynamic evidence. Metallomics 8:366-376. doi:10.1039/C5MT00298B
430	Kinraide TB (2009) Improved scales for metal ion softness and toxicity. Environmental Toxicology and
431	Chemistry 28 (3):525-533.
432	Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a
433	review. Journal of Experimental Botany 61 (4):945-954. doi:10.1093/jxb/erp385
434	Kopittke PM, Blamey FPC, McKenna BA, Wang P, Menzies NW (2011) Toxicity of metals to roots of cowpea
435	in relation to their binding strength. Environmental Toxicology and Chemistry 30 (8):1827-1833.
436	doi:10.1002/etc.557

137	Kopittke PM, Menzies NW, Wang P, McKenna BA, Wehr JB, Lombi E, Kinraide TB, Blamey FPC (2014) The
138	rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental
139	Toxicology and Chemistry 33 (2):268-277. doi:10.1002/etc.2435
140	Luo X-S, Li L-Z, Zhou D-M (2008) Effect of cations on copper toxicity to wheat root: Implications for the biotic
141	ligand model. Chemosphere 73 (3):401-406. doi:10.1016/j.chemosphere.2008.05.031
142	Le YTT, Vijver MG, Hendricks AJ, Peijnenburg WJGM (2013) Modeling toxicity of binary metal mixtures
143	(Cu ²⁺ -Ag ⁺ , Cu ²⁺ -Zn ²⁺), Lactuca sativa, with the biotic ligand model. Environmental Toxicology and
144	Chemistry 32 (1):137-143. doi:10.1016/j.chemosphere.2014.11.003
145	Le YTT, Swartjes F, Römkens P, Groenenberg JE, Wang P, Lofts S, Hendricks AJ (2015) Modelling metal
146	accumulation using humic acid as a surrogate for plant roots. Chemosphere 124:61-69.
147	doi:10.1016/j.chemosphere.2014.11.00
148	Meychik NR, Yermakov IP (1999) A new approach to the investigation on the tonogenic groups of root cell
149	walls. Plant Soil 217:257-264.
150	Meychik NR, Yermakov IP (2001) Ion exchange properties of plant root cell walls. Plant Soil 234:181-193.
151	Plette ACC, Benedetti MF, van Riemsdijk WH (1996) Competitive Binding of Protons, Calcium, Cadmium, and
152	Zinc to Isolated Cell Walls of a Gram-Positive Soil Bacterium. Environmental Science & Technology
153	30 (6):1902-1910. doi:10.1021/es9505681
154	Qiu H, Vijver MG, He E, Liu Y, Wang P, Xia B, Smolders E, Versieren L, Peijnenburg WJGM (2015)
155	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the
156	extended biotic ligand model and the WHAM-Ftox approach. Environmental Science and Pollution
157	Rersearch 22:19213-19223. doi:10.1007/s11356-015-5130-2
158	Qiu H, Versieren L, Rangel GG, Smolders E (2016) Interactions and toxicity of Cu-Zn mixtures to Hordeum
159	vulgare in different soils can be rationalized with bioavailability-based prediction models.
160	Environmental Science & Technology 50:1014-1022. doi:10.1021/acs.est.5b05133
161	Tipping E (1998) Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and
162	Metal Ions with Humic Substances. Aquatic Geochemistry 4 (1):3-47. doi:10.1023/a:1009627214459
163	Tipping E, Lofts S (2013) Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the
164	WHAM-FTOX model. Aquatic Toxicology 142–143 (0):114-122. doi:10.1016/j.aquatox.2013.08.003
165	Tipping E, Lofts S, Sonke JE (2011) Humic Ion-Binding Model VII: a revised parameterisation of cation-
166	binding by humic substances. Environmental chemistry 8 (3):225-235. doi:10.1071/EN11016

467	Tipping E, Vincent CD, Lawlor AJ, Lofts S (2008) Metal accumulation by stream bryophytes, related to
468	chemical speciation. Environmental Pollution 156 (3):936-943. doi:10.1016/j.envpol.2008.05.010
469	Vidali R, Remoundaki E, Tsezos M (2011) An Experimental and Modelling Study of Cu2+ Binding on Humic
470	Acids at Various Solution Conditions. Application of the NICA-Donnan Model. Water, Air, & Soil
471	Pollution 218 (1-4):487-497. doi:10.1007/s11270-010-0662-z
472	Vulkan R, Yermiyahu U, Mingelgrin U, Rytwo G, Kinraide TB (2004) Soprtion of copper and zinc to the plasma
473	membrane of wheat root. J Membrane Biol 202:97-104. doi:10.1007/s00232-004-0722-7
474	Wang P, Zhou D, Kinraide TB, Luo X, Li L, Li D, Zhang H (2011) Plasma membrane surface potential: dual
475	effects upon ion uptake and toxicity. Plant Physiol 155:808-820. doi:10.1104/pp.110.165985
476	Wang X, Li B, Ma Y, Hua L (2010) Development of a biotic ligand model for acute zinc toxicity to barley root
477	elongation. Ecotoxicology and Environmental Safety 73:1272-1278.
478	Wang X, Hua L, Ma Y (2012) A biotic ligand model predicting acute copper toxicity for barley (Hordeum
479	vulgare): Influence of calcium, magnesium, sodium, potassium and pH. Chemosphere 89 (1):89-95.
480	doi:10.1016/j.chemosphere.2012.04.022
481	Wu Y, Hendershot W (2009) Cation Exchange Capacity and Proton Binding Properties of Pea (Pisum sativum
482	L.) Roots. Water, Air, Soil Pollution 200 (1):353-369. doi:10.1007/s11270-008-9918-2
483	Wu Y, Hendershot WH (2010) The effect of calcium and pH on copper binding and rhizotoxicity to pea (Pisum
484	sativum L.) root: empirical relationships and modeling. Arch Environ Contam Toxicol 59:109-119.
485	

486	Figure captions
487	
488	Fig. 1. Measured versus modelled acidic properties (expressed in charge Q corrected by the initial charge Q_0) of
489	wheat (crosses) and tomato (circles) roots. Green and red symbols correspond to data modelled with the
490	Windermere Humic Aqueous Model either parameterized by default (WHAM) or specifically parameterized
491	with two humic acids for terrestrial higher plants (WHAM-THP), respectively. The root mean square errors
492	(RMSE) pool data for wheat and tomato $(n = 176)$. The solid line refers to 1:1 line and dashed lines refer to a
493	factor ± 2 .
494	
495	Fig. 2. Measured versus modelled binding of copper (Cu) to wheat (crosses) and tomato (circles) roots. Green
496	and red symbols correspond to data modelled with the Windermere Humic Aqueous Model either parameterized
497	by default (WHAM, A) or specifically parameterized with two humic acids for terrestrial higher plants (WHAM-
498	THP, B), respectively. The root mean square errors (RMSE) pool data for wheat and tomato in the Cu sorption
499	experiments 1 to 5 ($n = 183$). The solid line refers to 1:1 line and dashed lines refer to a factor ± 2 .
500	
501	Fig. 3. Measured versus modelled copper (Cu) concentration in pea roots exposed to solutions at pH 4 (A), 5 (B),
502	and 6 (C) with varying calcium (0.04, 0.18, and 1.92 mM) and Cu (0 to 24.8 μ M) concentrations. Green and red
503	symbols correspond to data modelled with the Windermere Humic Aqueous Model either parameterized by
504	default (WHAM) or specifically parameterized with two humic acids for terrestrial higher plants (WHAM-THP),
505	respectively. The deviation between measured and modelled data is expressed as the root mean square errors
506	(RMSE). The solid line refers to 1:1 line and dashed lines refer to a factor \pm 10.
507	
508	Fig. 4. Relative root elongation (RRE) measured for pea as a function of the exposure to toxic cations (proton
509	and copper) in solutions at pH 4, 5 or, 6 and with varying calcium (0.04, 0.18, and 1.92 mM) and copper (0 to
510	24.8 μM) concentrations (A and B). The proton and copper toxicity is calculated by combining a toxicity
511	function (Ftox, see 3.2 for rationale) with the Windermere Humic Aqueous Model either parameterized by
512	default (WHAM, green circles, A) or specifically parameterized with two humic acids for terrestrial higher
513	plants (WHAM-THP, red circles, B). The solid line refers to the RRE predicted with WHAM (A) or WHAM-
514	THP (B) and dashed lines refer to a deviation of \pm 10%. The deviation between measured and modelled data is

- expressed as the root mean square errors (*RMSE*). Relative root elongation predicted with WHAM-THP versus
- 516 RRE predicted with WHAM (C). The solid line refers to 1:1 line.

Does specific parameterization of WHAM improve the prediction of copper 1 competitive binding and toxicity on plant roots? 2 3 4 Authors: Stéphanie Guigues^{1,2}, Matthieu N. Bravin^{3,*}, Cédric Garnier⁴ and Emmanuel Doelsch¹ 5 6 7 Affiliations: 8 ¹CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France 9 ² ADEME, 20 avenue du Grésillé, BP-90406, Angers cedex 01, France ³ CIRAD, UPR Recyclage et risque, F-97408 Saint-Denis, Réunion, France 10 ⁴ Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France 11 12 * Corresponding author: matthieu.bravin@cirad.fr 13 14 15 Tables = 216

17 Tables

Table 1

Proton dissociation constants (p Ka_i) and distribution terms (Δ p Ka_i) of wheat and tomato roots as parameterized in the Windermere Humic Aqueous Model by default (WHAM) for one humic acid (HA) and specifically parameterized for terrestrial higher plants (WHAM-THP) for two HA. Total site densities (L_{Hi} , cmol_c.kg⁻¹) were determined experimentally by Guigues et al. (2014).

			A _I Type 2				HA_{II}				$L_{H,total}$			
		Type 1				Type 1			Type 2					
		L_{HI}	pKa ₁	⊿p <i>Ka</i> ₁	L_{H2}	pKa ₂	Δ p Ka_2	L_{HI}	pKa ₁	⊿pKa ₁	L_{H2}	pKa ₂	Δ p Ka_2	
XVII A M	Wheat	24.4	4.1	2.6	12.2	92	3.1							36.6
WHAM	Tomato	64.9	4.1	2.6	32.5	8.3	3.1	_	_	_	_	_	_	97.4
	Wheat	6.3			3.3	Y		18.0			9.0			36.6
WHAM-THP	Tomato	31.3	4.2	1.5	15.7	5.2	2.0	33.6	9.8	0	16.8	8.8	1.5	97.4

Table 2

Intrinsic equilibrium constants ($K_{M,i}$) and heterogeneity parameters ($\Delta LK2_{M,i}$) of copper (Cu), calcium (Ca) and zinc (Zn) binding on wheat and tomato roots as parameterized in the Windermere Humic Aqueous Model by default (WHAM) for one humic acid (HA) and specifically parameterized for terrestrial higher plants (WHAM-THP) for two HA.

			HA _I			HA _{II}	
							/
		Type 1	Type 2		Type 1	Type 2	
		$Log K_{M,I}$	$Log K_{M,2}$	$\Delta LK2_{M,I}$	$Log K_{M,1}$	$Log K_{M,2}$	$\Delta LK2_{M,II}$
	WHAM	2.4	5.1	2.3	_	<u> </u>	
Cu	WHAM-THP	2.2	2.7	0	6.7	6.0	0
Ca	WHAM	1.3	2.3	0	(-)	_	_
Ca	WHAM-THP	1.2	1.5	0	4.5	4.0	0
	WHAM	1.9	4.1	1.3	-	_	_
Zn	WHAM-THP	2.0	2.5	0	6.7	6.0	0

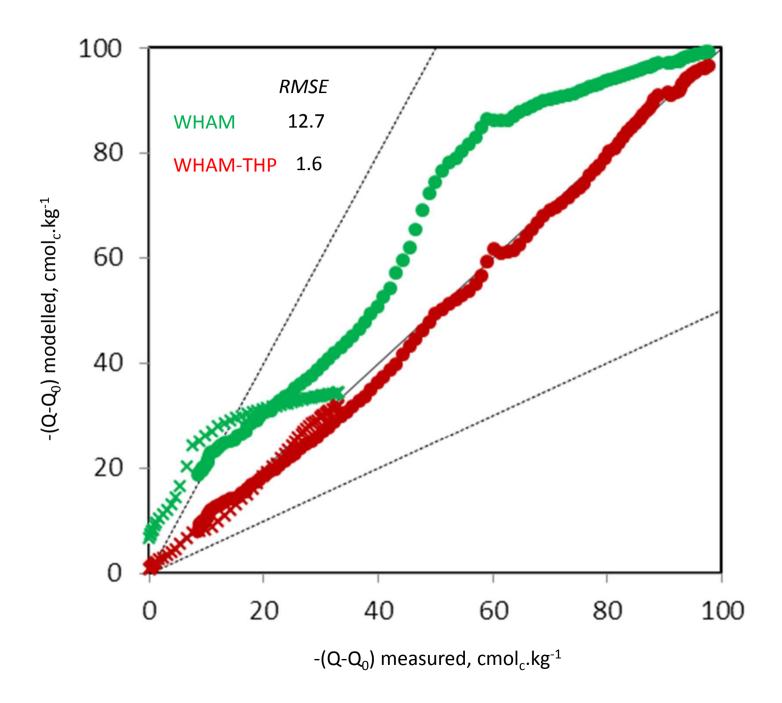


Fig. 1

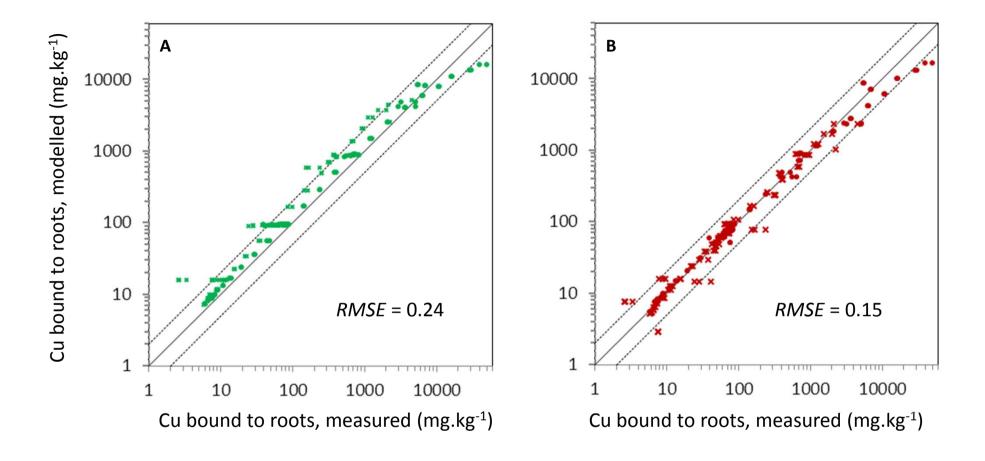
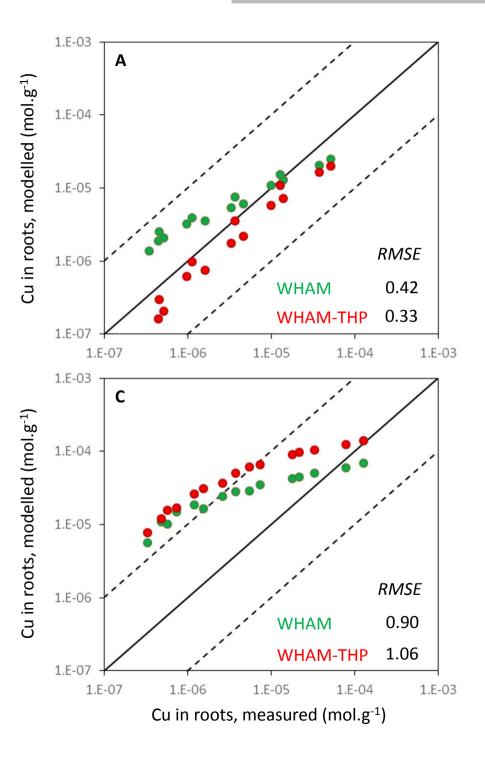



Fig. 2

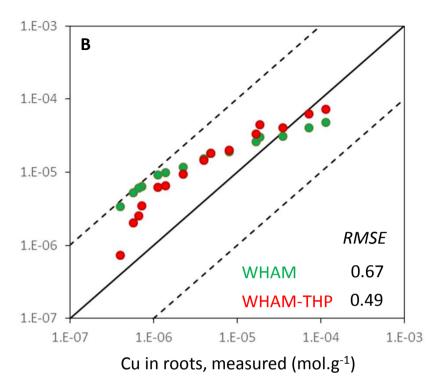
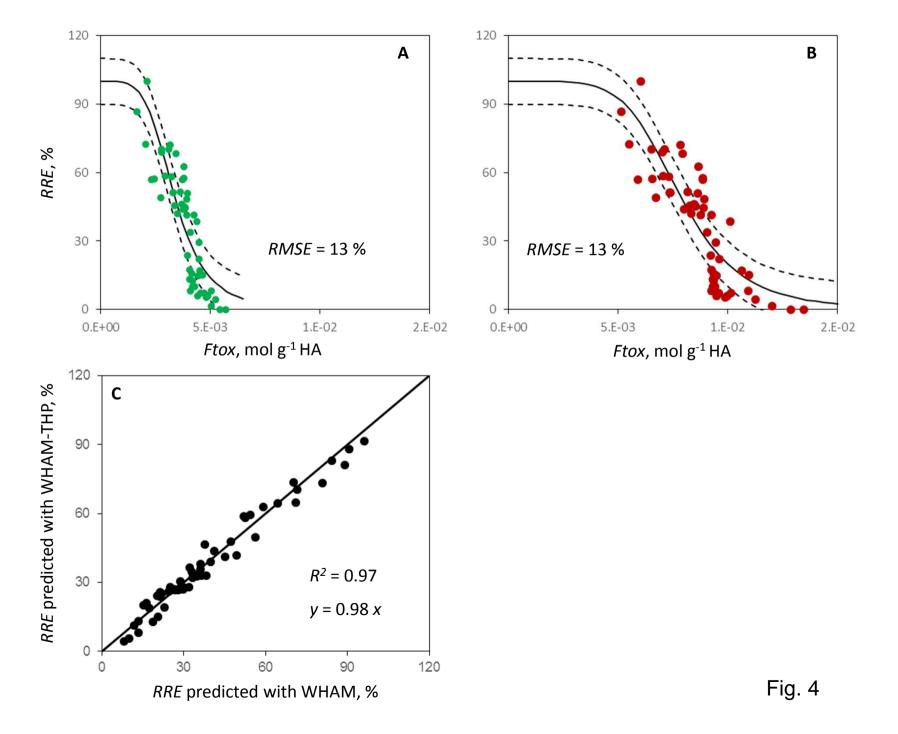



Fig. 3

Does specific parameterization of WHAM improve the prediction of copper

1

competitive binding and toxicity on plant roots? 2 3 4 Authors: Stéphanie Guigues^{a,b}, Matthieu N. Bravin^{c,*}, Cédric Garnier^d and Emmanuel Doelsch^a 5 6 7 Affiliations: 8 ^a CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France 9 ^b ADEME, 20 avenue du Grésillé, BP-90406, Angers cedex 01, France 10 ^c CIRAD, UPR Recyclage et risque, F-97408 Saint-Denis, Réunion, France ^d Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France 11 12 * Corresponding author: Cirad, 40 chemin Grand Canal, CS 12014, 97743 Saint-Denis cedex 9, La Réunion, 13 14 France, + 262 (0)2 62 52 80 30, matthieu.bravin@cirad.fr 15 16

17 Highlights

- WHAM-THP is a specific parameterization of WHAM for terrestrial higher plants
- WHAM-THP much improves the prediction of root acidic properties
- WHAM-THP only slightly improves the prediction of root copper competitive binding
- WHAM-THP does not improve the prediction of copper rhizotoxicity