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INTRODUCTION

Breeding phenology is one of the key components of adaptation to temporally variable environments. Temporal dynamics of both the biotic and abiotic environment impose selective constraints on parental development and physiological state (to be able to reproduce) as well as offspring survival (at the various developmental stages until they reach sexual maturity and start to reproduce) [START_REF] Rand | A Stochastic Model of the Temporal Aspect of Breeding Strategies[END_REF]. There is a vast amount of literature on intraspecific variation of breeding patterns in relation to environmental conditions, in particular latitude, altitude and climate. In the context of current climate change, many species in temperate regions have advanced their breeding time (e.g. [START_REF] Brown | Ecological and methodological drivers of species' distribution and phenology responses to climate change[END_REF][START_REF] Frederiksen | Scale-dependent climate signals drive breeding phenology of three seabird species[END_REF][START_REF] Møller | Climate change and micro-geographic variation in laying date[END_REF], as a result of microevolutionary changes and/or of phenotypic plasticity [START_REF] Charmantier | Climate change and timing of avian breeding and migration: Evolutionary versus plastic changes[END_REF]. Most of these studies concern species with a single reproductive peak in the year, which has to match as precisely as possible a seasonal peak of resource availability in order to maximise reproductive success (e.g. caterpillar availability for tits). The exact date of the resource peak may vary from year to year and species usually rely on cues to anticipate it and plastically delay or advance the onset of reproduction every year.

However, in some cases reproductive success depends on even irregular and/or unpredictable conditions. In such situations, species face the risk of complete reproductive failure at any given breeding attempt, a regime that favors expressing alternative phenotypes to spread the risk, a strategy known as bet-hedging [START_REF] Cohen | A Theoretical Model for the Optimal Timing of Diapause[END_REF][START_REF] Slatkin | Hedging one's evolutionary bets[END_REF][START_REF] Philippi | Hedging one's evolutionary bets, revisited[END_REF][START_REF] Leimar | The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching[END_REF][START_REF] Venable | Bet hedging in a guild of desert annuals[END_REF]).

Theory predicts that in stochastic environments, selection favors life history traits that reduce temporal fitness variation even if they result in lowered arithmetic mean fitness [START_REF] Philippi | Hedging one's evolutionary bets, revisited[END_REF]). In temporally variable environments, long-term fitness of a genotype is measured by the geometric mean of the fitness contribution over successive years at the individual level or over successive generations for a particular genotypic [START_REF] Lewontin | On population growth in a randomly varying environment[END_REF][START_REF] Olofsson | Bet-hedging as an evolutionary game: the trade-off between egg size and number[END_REF][START_REF] Simons | Modes of response to environmental change and the elusive empirical evidence for bet hedging[END_REF][START_REF] Yasui | Bet-hedging against male-caused reproductive failures may explain ubiquitous cuckoldry in female birds[END_REF]. This geometric mean fitness is highly impacted by low values; hence, traits with lower fitness variation may have higher long-term fitness. In principle, lower variation in fitness can be achieved either using the same low-risk strategy (conservative bet-hedging), or displaying several strategies, either at once or over several instances (diversified bet-hedging). While there is an abundant theoretical literature on bet-hedging, empirical studies have provided limited evidence so far [START_REF] Simons | Modes of response to environmental change and the elusive empirical evidence for bet hedging[END_REF], and the most comprehensive examples concern the timing of germination/diapause and the fraction of dormancy seeds/diapausing eggs [START_REF] Venable | Bet hedging in a guild of desert annuals[END_REF][START_REF] Gremer | Within-and among-year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment[END_REF][START_REF] García-Roger | Modes, mechanisms and evidence of bet hedging in rotifer diapause traits[END_REF][START_REF] Wang | Bet hedging in stochastic habitats: an approach through large branchiopods in a temporary wetland[END_REF]. Some studies even report experimental evolution of bet-hedging traits in response to unpredictable environment [START_REF] Beaumont | Experimental evolution of bet hedging[END_REF][START_REF] Maxwell | When sensing is gambling: An experimental system reveals how plasticity can generate tunable bet-hedging strategies[END_REF][START_REF] Tarazona | Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability[END_REF].

One of the best examples of stochastic, unpredictable environments are temporary ponds, alternating between inundation and drought where each breeding event is a bet as habitat desiccation can occur before the end of the breeding cycle. Several examples of bet-hedging occur in temporary ponds. Fairy shrimps (Anostraca) produce drought-resistant eggs showing asynchronous hatching at different hydroperiods [START_REF] Saiah | Autumnal vs spring hatching in the fairy shrimp Siphonophanes grubii (Dybowski)(Crustacea, Anostraca): diversified bet-hedging strategy?[END_REF][START_REF] Simovich | Diversified bet-hedging as a reproductive strategy of some ephemeral pool anostracans (Branchiopoda)[END_REF][START_REF] Wang | Bet hedging in stochastic habitats: an approach through large branchiopods in a temporary wetland[END_REF]. Similarly, rotifers produce diapausing eggs to overpass unfavorable planktonic growing season and only a fraction of those eggs hatch when conditions are suitable [START_REF] García-Roger | Modes, mechanisms and evidence of bet hedging in rotifer diapause traits[END_REF][START_REF] Tarazona | Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability[END_REF].

For amphibian species breeding in temporary ponds, drought can cause 100% mortality of eggs or larvae, resulting in complete failure of one breeding event. One way to reduce the risk of losing a breeding opportunity entirely is to spread this risk at a spatial scale, partitioning brood into various pools as done by the Neotropical poison frog Allobates femoralis [START_REF] Erich | Brood-partitioning behaviour in unpredictable environments: hedging the bets?[END_REF]. Another bet-hedging strategy could be to split the breeding effort at a temporal scale and exploit all suitable temporal windows.

From an ecological point of view, such temporal niche partitioning is expected to reduce inter and intra-specific competition as well as resource depletion [START_REF] Carothers | Time as a Niche Difference : The Role of Interference Competition[END_REF]. For example, species may share the same habitat but have opposite activity patterns (nocturnal versus diurnal species), as is the case in Neotropical felid community or in grassland ants [START_REF] Albrecht | Spatial and temporal niche partitioning in grassland ants[END_REF][START_REF] Di Bitetti | Niche partitioning and species coexistence in a Neotropical felid assemblage[END_REF]. The same type of temporal segregation at a daily scale is also observed within species: brown trout Salmo trutta reduces competition for a limiting resource by sequential use of foraging areas [START_REF] Alanärä | Intraspecific resource partitioning in brown trout: The temporal distribution of foraging is determined by social rank[END_REF]. Voltinism in insect is another well-studied example of temporal partitioning at the annual scale which is an adaptation to predictable seasonal cycles [START_REF] Kivelä | Seasonality maintains alternative lifehistory phenotypes[END_REF][START_REF] Zeuss | Environmental drivers of voltinism and body size in insect assemblages across Europe[END_REF][START_REF] Forrest | Two-year bee, or not two-year bee? How voltinism is affected by temperature and season length in a high-elevation solitary bee[END_REF] However, if successive seasonal cohorts overlap, fitness gains may be asymmetric, because progeny produced by late breeding may suffer from competition or even predation from earlier cohorts [START_REF] Morin | Predation, breeding asynchrony, and the outcome of competition among treefrog tadpoles[END_REF][START_REF] Ryan | Hatching asynchrony, survival, and the fitness of alternative adult morphs in Ambystoma talpoideum[END_REF][START_REF] Eitam | Density and intercohort priority effects on larval Salamandra salamandra in temporary pools[END_REF]. Those priority effects are often difficult to disentangle from seasonal effects due to environmental differences experienced by the temporal cohorts [START_REF] Morin | Ecology and Breeding Phenology of Larval Hyla-Andersonii -the Disadvantages of Breeding Late[END_REF]. If priority effects are strong, late breeders may select breeding sites in order to limit the competition by conspecifics [START_REF] Halloy | Oviposition Site Selection in Pleurodema borellii (Anura: Leptodactylidae) May Be Influenced by Tadpole Presence[END_REF][START_REF] Halloy | Choice of oviposition site in Pleurodema borellii (Leptodactylidae): importance of conspecific tadpole size[END_REF][START_REF] Sadeh | Context-dependent reproductive habitat selection: the interactive roles of structural complexity and cannibalistic conspecifics[END_REF]) and this may restrict late breeders to poorer sites [START_REF] Crump | Choice of Oviposition Site and Egg Load Assessment by a Treefrog[END_REF].

In amphibians, this temporal partitioning of breeding activity is thought to regulate community dynamics through interspecific competition [START_REF] Lawler | Temporal Overlap , Competition , and Priority Effects in Larval Anurans[END_REF][START_REF] Gottsberger | Temporal partitioning of reproductive activity in a neotropical anuran community[END_REF]Richter-Boix et al. 2006b, 2007c). Similarly, community composition may depend on species arrival and priority effects whereby species arriving earlier monopolize available resources and gain a competitive advantage over late species [START_REF] Morin | Ecology and Breeding Phenology of Larval Hyla-Andersonii -the Disadvantages of Breeding Late[END_REF][START_REF] Blaustein | Priority effects in temporary pools: nature and outcome of mosquito larva-toad tadpole interactions depend on order of entrance[END_REF][START_REF] Urban | Community monopolization: Local adaptation enhances priority effects in an evolving metacommunity[END_REF]. In Mediterranean regions, climatic conditions are characterized by dry, hot summers and mild winters, with the maximum rainfalls in autumn and spring. This leads to large breeding asynchrony observed between and within amphibian species (Diaz-Paniagua 1988;[START_REF] Jakob | Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology[END_REF]Richter-Boix, Llorente et al. 2006;Vignoli, Bologna et al. 2007): whereas most species typically breed in spring, some species breed earlier at the end of winter, and some even breed in autumn in addition to spring.

The Parsley Frog Pelodytes punctatus is a small sized Anuran distributed in Spain and most of France (locally reaching neighboring countries). It has a broad ecological niche but has poor competitive abilities and is sensible to fish predation [START_REF] Morand | Habitat variability and space utilization by the amphibian communities of the French upper-rhone floodplain[END_REF][START_REF] Crochet | No evidence of general decline in an amphibian community of Southern France[END_REF][START_REF] Richter-Boix | Hierarchical competition in pondbreeding anuran larvae in a Mediterranean area[END_REF]; it thus prefers seasonally flooded habitats to than large permanent water bodies [START_REF] Guyétant | Phénologie de la reproduction chez Pelodytes punctatus Daudin, 1802 (Amphibia, Anura)[END_REF][START_REF] Salvidio | Distribution, ecology and conservation of the parsley frog ( Pelodytes punctatus ) in Italy (Amphibia, Pelodytidae)[END_REF]Richter-Boix et al. 2007a). In Spain the parsley frog shows a bimodal breeding pattern with higher reproductive effort in spring than in autumn [START_REF] Guyétant | Phénologie de la reproduction chez Pelodytes punctatus Daudin, 1802 (Amphibia, Anura)[END_REF]Richter-Boix et al. 2006b). In France, in addition to spring breeding, autumnal breeding is also observed in Mediterranean regions and areas with mild oceanic climate [START_REF] Guyétant | Phénologie de la reproduction chez Pelodytes punctatus Daudin, 1802 (Amphibia, Anura)[END_REF][START_REF] Jakob | Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology[END_REF]Richter-Boix et al. 2006a;[START_REF] Cayuela | Reproductive dynamics of three amphibian species in Mediterranean wetlands: The role of local precipitation and hydrological regimes[END_REF] but the importance of autumn versus spring reproduction has not been quantified. In the rest of the range and in altitude, only spring breeding occurs.

In the Mediterranean areas of southern France, the parsley frog uses temporary ponds that refill in September and October but may dry during autumn or later in late spring. Adults have thus to deal with very unpredictable environmental conditions for their future offspring. In addition to this unpredictable risk, tadpole hatched in autumn or spring are exposed to very different environmental conditions, the most obvious being that the autumn tadpoles overwinter while the spring ones do not. This should result in drastically different developmental trajectories but also in different offspring survivals. Both seasonal cohorts may also interact, leading to a potential competitive advantage to the earlier cohort over the later, i.e. a priority effect. The relative success of each breeding period and the outcome of the interaction between cohorts are key parameters to understand the persistence of this twopeaks breeding strategy. In fact, several pieces of information are still lacking in order to understand the evolutionary basis of this seasonally variable breeding strategy. Do we have a single protracted breeding season or a really bimodal reproduction generated by the coexistence of alternative breeding timing (autumn or spring)? If so, what is the relative importance of autumn versus spring reproduction? What is the survival of offspring produced at the two breeding periods and how is it affected by the presence of conspecifics? Once this basic knowledge is obtained, it can be fed into theoretical models for the evolution of mixed breeding strategies.

In this paper, we characterize the breeding phenology (temporal dynamic, relative proportion of each breeding period) of parsley frog in a French Mediterranean area based on results from a 3-year field survey. We monitored the survival of offspring produced in each season to estimate the success of this breeding strategy. We also investigated the factors influencing breeding and tadpole survival, in particular whether there is a priority effects between seasonal cohorts. Finally, using an analytical model adapted from Cohen [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF] we tested whether the coexistence of the two breeding periods can be interpreted as a bethedging strategy.

MATERIAL AND METHODS

Field survey

The field study was carried out from September 2007 to August 2010 in 19 ponds situated around Montpellier, southern France (Annex 1). Those ponds are man-made environments, often dug out to provide drinking water for livestock (sheep and cows) or for game. The ponds surveyed included temporary and permanent sites. We define here the autumn breeding season as the period spanning from September to December and the spring breeding season from January to April. We surveyed each pond twice each month. During each visit, we recorded the depth of the pond.

Sampling methods

At every visit (mostly diurnal), we looked for newly deposited egg masses throughout the entire water body and classified the egg masses as small, medium and large, corresponding to an average of 75, 150 and 250 eggs per mass, respectively [START_REF] Salvador | Anfibios Espanoles[END_REF] and personal observation). The parsley frog's embryonic period ranges from 5 days at 15°C to 15 days at 10°C [START_REF] Toxopeus | Reproductive biology of the parsley frog, Pelodytes punctatus, at the northernmost part of its range[END_REF]. Moreover, embryos stay attached to the jelly for several additional days [START_REF] Guyétant | Phénologie de la reproduction chez Pelodytes punctatus Daudin, 1802 (Amphibia, Anura)[END_REF]. Thus, with an interval of 15 days between two successive visits, we may have missed a few masses but we have avoided double-counting masses since 15-day old masses can readily be distinguished from new ones based on the developmental stages of the embryos. In only 2% of the larval cohort produced, small larvae were observed in ponds where we did not notice the presence of egg masses before. Note that the probability of detection of an egg mass, even if not perfect, was similar in autumn and in spring.

We estimated the number of amphibian larvae and invertebrates present in the ponds using 5 to 10 dipnet sweeps (depending on the pond size). The anuran community of the area consists of 7 species: Pelodytes punctatus, Pelobates cultripes, Alytes obstetricans, Bufo bufo, Epidalea calamita, Hyla meridionalis, and Pelophylax sp., (P. ridibundus and/or P. perezi & P. kl. grafi, depending on the sites). Potential predators of tadpoles are urodeles and aquatic invertebrates. Two urodele species (Lissotriton helveticus and Triturus marmoratus) were recorded in the ponds but due to the rare occurrence of Triturus marmoratus, only Lissotriton helveticus was included in subsequent analyses (as adults as well as larvae).

We also surveyed dragonfly larvae (Anisoptera) and backswimmers (Heteroptera, Notonectidae) that are potential predators of tadpoles (Richter-Boix et al. 2007a) except during the first year. Diving beetles (Coleoptera, Dytiscidae) are also known to prey on tadpoles but were very rare in the studied ponds and thus not considered for this study.

We divided the total counts for each amphibian larvae and invertebrate predators captured in each pond by the number of dipnet sweeps taken in each pond. This procedure yielded a crude proxy for density on the basis of catch per unit effort and could therefore be compared across localities.

Reproductive effort and offspring survival

Reproductive strategy of parsley frog was described by two measures: the probability of spawning and the breeding effort. Spawning probability indicates if any new egg mass was observed during a visit. Breeding effort measures the quantity of eggs produced when there was at least one egg mass. We normalized the number of egg masses by their size (e.g. a small egg mass equals ½ medium egg mass).

For each breeding event, we estimated the hatching rate as the ratio of the number of small tadpoles (Gosner stage 26, free swimming tadpole) to the number of eggs spawned. Similarly, we quantified the survival from egg to metamorph as the ratio of the number of metamorphs (Gosner stage 42-43) to the number of eggs spawned. When hatching was successful (i.e. in about one third of the breeding event), we could calculate the survival during larval stage as the product of the two former ratios.

The number of tadpoles in a pond was estimated using the mean number of tadpoles caught per dipnet sweep scaled to a sampling surface of 1 m² (we estimated that one dipnet sweep sampled a surface of 0.5 m², taking the dipnet size and the length of the haul into account) and then multiplied by the surface of the pond. This should not be taken as an attempt to estimate precisely the number of tadpoles present in a pond at a given time but as an index of abundance that can be compared between ponds and between breeding events. It was sometimes impossible to follow the larval development and metamorphosis of offspring from a particular breeding event. Indeed, parsley frogs may breed three to four times during each seasonal breeding event. In these cases, the successive sub-cohorts produced are undistinguishable after a few weeks, and we summed the eggs counted in two or three successive visits to evaluate survival from a combination of breeding events within a given season (and within a site). Survival measures should be viewed as an index to assess the differences of reproductive success between seasons as there is no reason to expect any seasonal bias in this index.

Explanatory variables

Explanatory variables for the breeding probability and breeding effort are the depth of the pond as well as the presence of conspecific and inter-specific competitors (larvae of anuran species) and predators (invertebrates and adult newts) in the pond. The two last categories of variables were also applied to explain the success (offspring survival) of breeding events. We summed the density of competitors and similarly the density of predators despite the differences in competitive performance and predation pressure of the various species toward parsley frog tadpoles.

To assess the potential impact of predation and competition on survival rates, we evaluated the mean density of predators and competitors encountered by parsley frog tadpoles during their larval development. More precisely, data from literature indicates that only small tadpoles (<12 mm snout-vent length) have lower survival due to predation by aquatic invertebrates [START_REF] Tejedo | Size-dependent vulnerability and behavioral responses of tadpoles of two anuran species to beetle larvae predators[END_REF]. Above this size, the predators will only injure them or even fail to catch them. Larvae laid in autumn reached this limit size in about 3 months, whereas only 1.5 month is necessary for larvae laid in spring (personal observation). Thus, we used the mean density of predators and competitors over a period of 3 months after spawning date for autumn tadpoles and 1.5 months for spring tadpoles.

Statistical analyses

All statistical analyses were performed on R 3.4.1 (R Core Team 2018). To assess if pond characteristics differed between seasons, we apply a linear model for the depth of the pond and generalized linear models with a quasi-poisson family for all other variables to account for overdispersion. Breeding probability and breeding effort were analysed using a generalized mixed model with site as random effect, with a binomial family or a negative binomial family (to account for overdispersion), respectively. The survival rates were often zero hence we decided to analyse them as binary variables using a generalized mixed model with site as random effect and a binomial family. Those variables, called breeding success and hatching success, are the probability of producing at least one metamorph or one hatchling.

The significance of fixed effects were tested using Chi² tests to compare nested models [START_REF] Zuur | Mixed effects models and extensions in ecology with R[END_REF].

Bet-hedging model

Finally, we wondered if the coexistence of two breeding periods could result from a bethedging strategy, with the optimal strategy being to split the breeding effort between the two favourable seasons to spread the risk of complete failure [START_REF] Seger | What is bet-hedging?[END_REF]. The following model is derived from Saiah and Perrin [START_REF] Saiah | Autumnal vs spring hatching in the fairy shrimp Siphonophanes grubii (Dybowski)(Crustacea, Anostraca): diversified bet-hedging strategy?[END_REF] on the hatching probability of fairy shrimp seasonal cohorts. This model was primarily inspired by Cohen [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF], reviewed by [START_REF] Seger | What is bet-hedging?[END_REF] on the optimal reproduction strategy of an annual plant whose seeds can either germinate or remain dormant. In our case, there are two strategies: autumn breeding with initial success (i.e. the ability of offspring to persist until spring) depending on the environmental conditions and spring breeding with success depending mainly on the presence of autumn tadpoles, hence on the initial success of autumn breeding (as suggested by the results on success of autumn and spring breeding events, see below).

Let c be the proportion of eggs laid in autumn (thus 1-c in spring)we assume, in agreement with our data (see results), that c represents a fixed strategy, i.e. the frogs cannot predict failure in advance to avoid laying in autumn, nor can they avoid laying eggs in spring when an autumn cohort is present. As mentioned above, the autumn cohort is assumed to succeed or fail, at random, with probability q and 1-q respectively. When it succeeds, a fraction s 1 of the offspring survive to reproductive age. The spring cohort completely fails whenever the autumn cohort has survived in a pond (a reasonable simplification based on our survival rates estimates, see below ), otherwise a proportion s 2 of spring tadpoles survive. Overall the mean number of individuals produced per female is when the autumn cohort doesn't fail and when it does.

If each frog reproduced only during one year, the optimal strategy would maximize the geometric mean of the annual reproductive outcome [START_REF] Dempster | Maintenance of genetic heterogeneity[END_REF]) which is Or, equivalently However, reproductive life lasts more than one year in frogs (say, n years), which in itself is a way to spread the risk of failure among successive cohorts of offspringan uncertainty remains however, for each frog, on how many (k) of the n breeding years will not allow the autumn cohort to survive. For each individual, k is distributed binomially with probability 1-q so that where represents the number of possible repartitions of the k years with autumn failure among the total number of breeding years n.

The selection gradient is

We traced the fitness curves and the selection gradients using Mathematica (Wolfram Research Inc. 2018) based on the following parameter combinations. We set survival probabilities based on our estimates of survival from egg to metamorphose: s 1 = 0.047 (estimated among breeding events producing offspring that survived until spring) and s 2 = 0.038 (in the absence of autumn tadpoles). We assumed that survival and fecundity were equal for both seasonal cohorts for the rest of the life cycle. We set the number of reproductive years n = 3 to 5, according to a study of age structure of a breeding population in Spain [START_REF] Esteban | Age structure and growth in an isolated population of Pelodytes punctatus in northern Spain[END_REF]. Note that this model applies at the individual level (as developed above) as well as at the genotype level.

RESULTS

Characteristics of temporal niches

Pond depth was not significantly different between the autumn (here from September to December) and spring (here from January to April) breeding seasons (Table 1). The densities of amphibian larvae (other than parsley frog) were not significantly different. In autumn, extreme densities of Epidalea calamita tadpoles were recorded in some small ponds whereas the well-known spring breeding-species (Hyla meridionalis, Pelophylax sp., Triturus marmoratus, Lissotriton helveticus) reproduce later than the parsley frog, hence their larvae are only present from April onwards. The density of potential invertebrate predators was higher in autumn than in spring (χ ² 1 = 37.17, p-value = 0.005) with the lowest density being from December to March. On the contrary, the number of adult newts (potential predators of parsley frog tadpoles) was higher in spring than in autumn (χ ² 1 = 369.36, p-value = 2.2*10 -16 ).

Breeding phenology

We registered 184 breeding events, 79 in autumn and 105 in spring. The breeding effort showed a bimodal pattern with a peak in October and another in February (Figure 1). Note that in two sites, one breeding event was recorded in May.

The spawning probability (finding at least one egg mass when visiting a pond) was not significantly different between the two seasons (0.18 (0.02), mean (S.E) per visit in autumn and 0.22 (0.02) per visit in spring, (over 429 and 470 visits, respectively) χ ² 1 =2.31, p-value= 0.128, see also Annex 2). This spawning probability was not affected by the presence of anurans from other species (larvae), nor by the presence of predators (invertebrates or adult newts). It was positively related to the depth of the pond (χ ² 1 =20.40, p-value= 6.3*10 -6 ). The spring spawning probability was not affected by the presence of autumn tadpoles (χ ² 1 =0.03, p-value= 0.875).

The breeding effort was higher in autumn than in spring (23.0 (4.0) egg masses per breeding event in autumn and 13.7 (2.4) in spring; χ ² 1 =9.25, p-value=0.002, Fig. 2 and Annex 3). As a result, autumn breeding contributed slightly more than spring breeding to the production of egg masses (57% versus 42.9%).

Breeding success

Hatching success (i.e. the percentage of breeding events producing at least one larvae) was higher in autumn than in spring (68.4% and 43.8% respectively, χ²1=11.12, p-value= 0.001).

Drought (pond totally dried up) caused the total failure of 7 breeding events (9% of the breeding events) in autumn and of 5 breeding events in spring (4.8%) over the 3 year-survey and the 19 sites. Drought caused mortality of offspring at different developmental stages (mostly eggs for autumn cohort and tadpoles for spring cohort). As a consequence, breeding success (i.e. the percentage of breeding events producing at least one metamorph) was not significantly different between the two seasons (34.2% in autumn and 29.8% in spring χ² 1 = 0.39, p= 0.531).

Neither breeding success nor hatching success were explained by interspecific competition (the density of other amphibian larvae) or by predation (density of potential invertebrate predators or number of adult newts).

Survival rates are represented in Figure 3 and Annex 4. The survival rates from egg to metamorph were similarly low (autumn: 2.24 %( 0.61) and spring: 1.97 % (0.73)), resulting in a higher contribution (74.6%) of autumn breeding in the overall production of metamorphs per site and per year (due to the higher breeding effort in autumn, see above).

The autumn cohort persisted until spring in 34/79 breeding events (43%, corresponding to the rate of initial success, q, see bet-hedging model). In those cases, tadpoles laid in spring coexisted in their pond with tadpoles from the autumn cohort. From the point of view of spring breeders, in 28/57 cases, they found autumn tadpoles in the pond. The presence of an autumn cohort of parsley frog tadpoles significantly reduced the success of spring breeding event to 18.4% in presence of autumn tadpoles, versus 40.0% in absence of autumn tadpoles, χ²1=10.60, p-value= 0.005). This reduction effect was not significant for the hatching success (32.6% in presence of autumn tadpoles, versus 53.6% in absence of autumn tadpoles χ²1=4.63, p-value=0.099). Accordingly, all survival rates were reduced in the presence of autumn tadpoles and this effect was most pronounced for the survival from egg to metamorphs (3.77 (1.4) versus 0.16 (0.08) in absence versus presence of autumn tadpoles, Figure 4 and Annex 5).

Finally, the figure 5 summarize the breeding strategy of parsley frog showing the presence of egg masses, tadpoles and the outcome of the breeding event (production of metamorphs) in each studied site, over the three years of survey. It illustrated the quasi-exclusion between the two cohorts.

Maintenance of spring breeding

Selection gradients based on our bet-hedging model predict that a mixed strategy is maintained when the rate of initial success of the autumn cohort (q) is between 0.2 and 0.8 for a number of reproductive years n = 3. In this condition, a pure autumn strategy is predicted above 0.8, and a pure spring strategy below 0.2. (Figure 4). The maintenance of this strategy is less probable if the number of reproductive years increases (n = 5 years of breeding), with a reduced range of q leading to a stable mixed strategy.

DISCUSSION

Cost and benefits of a bimodal breeding phenology

We used field surveys to describe the breeding phenology of the parsley frog in the French Mediterranean region but also to quantify the relative contribution and success of each seasonal reproduction (autumn and spring reproduction). This quantification, rarely achieved in the wild (but see [START_REF] Licht | Survival of embryos, tadpoles, and adults of the frogs Rana aurora aurora and Rana pretiosa pretiosa sympatric in southwestern British Columbia[END_REF][START_REF] Banks | Reproductive success of natterjack toads Bufo calamita in two contrasting habitats[END_REF][START_REF] Gascon | Aquatic predators and tadpole prey in central Amazonia: field data and experimental manipulations[END_REF][START_REF] Wheeler | Effects of water temperature on breeding phenology, growth, and metamorphosis of foothill yellow-legged frogs (Rana boylii): a case study of the regulated mainstem and unregulated tributaries of California's Trinity River[END_REF], is essential to understand the evolution of this bimodal breeding strategy. We confirmed the existence of two distinct seasonal peaks in breeding activity, probably mediated by cold temperature in December and January as adult parsley frogs tend to breed in mild and rainy periods as was previously observed [START_REF] Toxopeus | Reproductive biology of the parsley frog, Pelodytes punctatus, at the northernmost part of its range[END_REF][START_REF] Guyétant | Phénologie de la reproduction chez Pelodytes punctatus Daudin, 1802 (Amphibia, Anura)[END_REF][START_REF] Jakob | Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology[END_REF]. However breeding episodes occurred even in the absence of rainfall as long as ponds were filled with water (personal observations and Richter-Boix et al. 2006b)).

The breeding effort in our population was higher in autumn than in spring. This is in apparent contradiction with Richter-Boix et al. (2006b) who found that spring breeding effort was fourfold higher than autumn breeding effort in the northeast of the Iberian Peninsula. While we don't have a definitive explanation for this difference, we suggest it could be related to higher competition among anuran larvae in autumn in north-east Spain compared to France. In our study area in southern France, larvae of Pelodytes punctatus are typically the only anuran larvae found after the summer drought in the ponds in autumn. In contrast, four other species of Anura (Hyla meridionalis, Epidalea calamita, Alytes obstetricans and Pelophylax perezi)

have tadpoles in autumn and three of them (i.e. all except E. calamita) can have overwintering tadpoles in Spanish ponds (Richter-Boix et al. 2006b). These authors also showed that Pelodytes punctatus tadpoles suffer from interaction with Hyla meridionalis [START_REF] Richter-Boix | Hierarchical competition in pondbreeding anuran larvae in a Mediterranean area[END_REF]. It is thus possible that increased competition for Pelodytes punctatus larvae in autumn and winter compared to our study area make the autumn niche less favourable in northeastern Spain compared to southern France and reduce parsley frog investment in autumn breeding there.

Offspring survival (from egg to metamorph) was low in both seasons. The combination of breeding effort and survival rates eventually resulted in a higher contribution of autumn breeding to the overall production of metamorphs. The overall low survival rates of offspring that we found is in line with previous field studies in anurans (e.g. [START_REF] Licht | Survival of embryos, tadpoles, and adults of the frogs Rana aurora aurora and Rana pretiosa pretiosa sympatric in southwestern British Columbia[END_REF][START_REF] Banks | Reproductive success of natterjack toads Bufo calamita in two contrasting habitats[END_REF]) and can be caused by pond desiccation, predation, inter and intra-specific competition for food and parasitism or pathogen infections. Our study revealed no obvious effect of variation in predation on tadpole survival even if the predation pressure encountered by tadpoles at the beginning of their development varies from site to site (but not between seasons). This may seem surprising since many studies experimentally demonstrated that predation cause substantial mortality to tadpole populations (e.g. [START_REF] Tejedo | Size-dependent vulnerability and behavioral responses of tadpoles of two anuran species to beetle larvae predators[END_REF][START_REF] Van Buskirk | Habitat specialization and adaptive phenotypic divergence of anuran populations[END_REF]). This may be due to the lack of information about predation during the first year of survey which reduced our statistical power or to the fact that causative factors are numerous and more complex to identify in the field. However, other studies reported no effect of predation on tadpole survival [START_REF] Hartel | Breeding phenology and spatio-temporal dynamics of pond use by the yellow-bellied toad (bombina variegata) population: The importance of pond availability and duration[END_REF] or even a positive effect [START_REF] Barandun | Reproductive ecology of Bombina variegata: development of eggs and larvae[END_REF] probably due to predator-induced phenotypic plasticity. Nevertheless, our results

suggest that the predation pressure is probably not a stronger constraint in one season than in the other.

Spring tadpoles should be exposed to more competitors during their development than autumn tadpoles since the majority of amphibian species in the local community breed in March and

April. Nevertheless, we found no effect of interspecific competition on survival for any of the two seasonal tadpole cohorts. This seems surprising since parsley frog is a poor competitor as a tadpole compared to most species of the anuran community, in particular Hyla meridionalis and Rana perezi, perezi present in spring in permanent ponds [START_REF] Richter-Boix | Hierarchical competition in pondbreeding anuran larvae in a Mediterranean area[END_REF]). On the contrary, in small temporary ponds and during autumn and winter season, Parsley frog tadpoles encounter mostly Bufo bufo and Epidalea calamita with even lower competitive abilities [START_REF] Richter-Boix | Hierarchical competition in pondbreeding anuran larvae in a Mediterranean area[END_REF]. We hypothesized that interspecific competition effect was not detected in our study due to numerous uncontrolled sources of variation.

Priority effects

We revealed a striking negative effect of the presence of conspecific autumn tadpoles on the survival of spring tadpoles in the Parsley Frog. Previous studies have demonstrated the occurrence of such intraspecific priority effect in amphibians in experimental settings [START_REF] Morin | Ecology and Breeding Phenology of Larval Hyla-Andersonii -the Disadvantages of Breeding Late[END_REF][START_REF] Eitam | Density and intercohort priority effects on larval Salamandra salamandra in temporary pools[END_REF][START_REF] Murillo-Rincón | Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian[END_REF] but as far as we know, our study is the first evidence for intraspecific, inter-cohort competition in amphibians in nature. In the field, we observed in several occasions that large autumn tadpoles were eating freshly laid eggs of their own species, which could partly explain the lower hatching rate of spring eggs in presence of autumn tadpoles. Moreover, [START_REF] Tejedo | Effect of Predation by 2 Species of Sympatric Tadpoles on Embryo Survival in Natterjack Toads (Bufo-Calamita)[END_REF] previously described how parsley frog tadpoles predates Epidalea calamita eggs. In this latter study, predaceous tadpoles were exclusively old tadpoles and they could cause a loss of 50 to 100% of the eggs. Oophagy has also been demonstrated to be responsible for interspecific priority effect between Scaphiosus couchii and Bufo speciosus [START_REF] Dayton | Priority effects and desert anuran communities[END_REF]. Intraspecific oophagy has been described on some anuran species [START_REF] Summers | The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools[END_REF][START_REF] Dayton | Cannibalistic Behavior in Scaphiopus couchii: More Evidence for Larval Anuran Oophagy[END_REF] and has been proposed as an energetic opportunistic response in food shortage in temporary ponds.

However, the presence of autumn tadpoles also affect the larval survival (post-hatching) of spring tadpoles. This may reflect competition for resources between large autumn and small spring tadpoles as shown in Rana arvalis [START_REF] Murillo-Rincón | Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian[END_REF]. Interference competition mediated by microorganism may also play a role: smaller tadpoles could display coprophagy instead of feeding on higher quality resources [START_REF] Beebee | Prototheca-mediated interference competition between anuran larvae operates by resource diversion[END_REF][START_REF] Baker | Evidence for the induction of interference competition between anuran larvae in plastic pond cages[END_REF]. This large priority effect between the two seasonal tadpole cohorts of parsley frog has a great impact on the overall efficiency of breeding: in most ponds, there could be only one successful breeding period, autumn or spring. Nonetheless, we found no indication that spring breeders select their oviposition site to avoid conspecifics, as other amphibian species sometimes do [START_REF] Sadeh | Context-dependent reproductive habitat selection: the interactive roles of structural complexity and cannibalistic conspecifics[END_REF]. Accordingly, the spawning probability was also

unaffected by the presence of potential competitors or predators.

Seasonal partitioning of breeding: a bet-hedging strategy?

The temporal partitioning of breeding activity could reflect several evolutionary processes: 1) the existence of two specialized phenotypes either genetically determined (in which case we would expect temporal genetic differentiation between cohorts) or set by early environmental cues (phenotypic plasticity); 2) a use of alternative strategies by some or all individuals (bethedging). We previously demonstrated that the two temporal cohorts do not reflect two genetically distinct temporal populations (Jourdan-Pineau et al. 2012) but breeding phenology may still be set once for good for each individual. In this case, breeding in autumn or in spring could be determined by the physiological state (and sexual maturity) of the breeder and maintained year after year, by physiological constraints (typically the case for a capital breeder species which stores energy for future reproduction e.g. [START_REF] Lardner | Growth or reproduction? Resource allocation by female frogs Rana temporaria[END_REF]). In a diversified bet-hedging strategy, individual breeding activities could vary from year to year (each year, individuals would "choose" one breeding season) or individuals could split their breeding effort between the two seasons in some or most years.

Based on our field survey, it appears that the bimodal breeding phenology of parsley frog is a typical diversified bet-hedging strategy. The large priority effect between the two seasonal cohorts, combined with high unpredictability of conditions that result in failure or success of entire cohorts, results in frequency dependent-selection and favour risk-spreading strategies:

the best option is to develop in ponds with the smaller number of conspecific competitors.

These conditions are found partly in autumn, when the habitat becomes favourable after the dry summer period, or in spring, as some of the autumn cohorts have died in the winter, leaving the habitat free. Poethke et al. [START_REF] Poethke | The evolution of optimal emergence times: bet hedging and the quest for an ideal free temporal distribution of individuals[END_REF]) developed a theoretical model in which they outlined this impact of competition on the evolution of bet-hedging strategy.

Using a model for optimal germination fraction, based on field data on desert plants, Gremer and Venable [START_REF] Gremer | Bet hedging in desert winter annual plants: Optimal germination strategies in a variable environment[END_REF]) also showed that density-dependence could explain the observed bet-hedging strategy of germination spread in time (i.e. not all seeds at once).

In the parsley frog, our model shows that the observed mixed breeding strategy is maintained if the rate of initial success of the autumn cohort (q) is between 0.2 and 0.8 (if females have on average 3 years of breeding in their lifetime) or between 0.35 and 0.65 (for 5 years of breeding). Those conditions are fulfilled according to our field estimates (0.43). We estimated the proportion of eggs laid in autumn by all breeders (0.57) but could not estimate this proportion at the individual level. Survival rates set in the model were based on our field estimates of survival from egg to metamorphosis; hence, we assumed similar survival after metamorphosis of the two cohorts. Unfortunately, we have no information about survival of parsley frog during its adult terrestrial life. However, the adult survival is an important parameter in our model since it determines the number of reproductive years. The mixed breeding strategy is less stable when the number of breeding opportunities per lifetime increasesas the risk is now spread over several successive years. Indeed, experiencing variation in reproductive success among those opportunities is less harmful when it is possible to try again the next year. A skeletochronology study conducted in a upland population in Spain indicated that the mean age of sampled parsley frog females was 5.01 years (with a standard deviation of 1.99) [START_REF] Esteban | Age structure and growth in an isolated population of Pelodytes punctatus in northern Spain[END_REF]). Assuming a minimal age at first reproduction of 1 year (as done by [START_REF] Esteban | Age structure and growth in an isolated population of Pelodytes punctatus in northern Spain[END_REF], this translates into an average number of reproductive years or females of n = 4. Our evaluation of the bet-hedging strategy with n = 5 is thus probably conservative.

We previously showed that the parsley frog successfully exploits two temporal niches in the Mediterranean region thanks to a high phenotypic plasticity of tadpole development to face very different seasonal environments [START_REF] David | Phenotypic plasticity allows the Mediterranean parsley frog Pelodytes punctatus to exploit two temporal niches under continuous gene flow[END_REF]. Recently, the combination of phenotypic plasticity and bet-hedging has been theoretically investigated, suggesting that phenotypic plasticity could further minimize fitness variances caused by mismatches between phenotype and environment [START_REF] Haaland | Individual reversible plasticity as a genotype-level bet-hedging strategy[END_REF][START_REF] Rádai | Cohort splitting from plastic bet-hedging: insights from empirical and theoretical investigations in a wolf spider[END_REF]. Interestingly, in the wolf spider, temperature and day length leads to alternative developmental types within broods.

This cohort splitting is both probabilistic and sensitive to environment , a phenomenon proposed as being a plastic bet-hedging strategy by Rádai [START_REF] Rádai | Cohort splitting from plastic bet-hedging: insights from empirical and theoretical investigations in a wolf spider[END_REF]. In this case, the various plastic phenotypes, triggered by environmental variations, constitute a bet-hedging response to grassland habitats with substantial and unpredictable year-to-year variation.

The breeding strategy of parsley frog seems to constitute an original example of bet-hedging strategy driven by high environmental stochasticity and large inter-cohort priority effect.

Characterizing adult survival and individual breeding pattern (using mark-recapture and parentage assignment of egg masses) would allow further refining our model and seeing how it can apply to other anuran species.
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