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ARTICLE

Biopesticides improve efficiency of the sterile
insect technique for controlling mosquito-driven
dengue epidemics
David R.J. Pleydell 1,2 & Jérémy Bouyer 1,3

Various mosquito control methods use factory raised males to suppress vector densities. But

the efficiency of these methods is currently insufficient to prevent epidemics of arbovirus

diseases such as dengue, chikungunya or Zika. Suggestions that the sterile insect technique

(SIT) could be “boosted” by applying biopesticides to sterile males remain unquantified. Here,

we assess mathematically the gains to SIT for Aedes control of either: boosting with the

pupicide pyriproxifen (BSIT); or, contaminating mosquitoes at auto-dissemination stations.

Thresholds in sterile male release rate and competitiveness are identified, above which

mosquitoes are eliminated asymptotically. Boosting reduces these thresholds and aids

population destabilisation, even at sub-threshold release rates. No equivalent bifurcation

exists in the auto-dissemination sub-model. Analysis suggests that BSIT can reduce by over

95% the total release required to circumvent dengue epidemics compared to SIT. We con-

clude, BSIT provides a powerful new tool for the integrated management of mosquito borne

diseases.
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The international spread of mosquitoes Aedes aegypti and
Ae. albopictus has triggered numerous epidemics of den-
gue, Zika, chikungunya and yellow-fever1–4. Without

effective vaccines5–7, mosquito abatement remains key to con-
trolling most of these diseases. Mosquito borne pathogens
account for one-sixth of infection-associated disability adjusted
life years8, highlighting the difficulty of area-wide mosquito
control9. The World Health Organisation has called for new
vector control technologies10. Here, we explore the potential
benefits of combining two prominent Aedes control techniques.

The auto-dissemination technique (ADT) uses mosquitoes to
deposit biopesticides at larval sites—providing efficient treatment
of the small, hidden and disseminated water bodies Aedes use as
larval habitat11. The most common biopesticide used is pyr-
iproxifen—a juvenile hormone analogue inhibiting metamor-
phosis to adult. Mosquitoes become contaminated with
pyriproxifen at dissemination stations12. Field trials with pyr-
iproxyfen have demonstrated elevated pupal mortality (emer-
gence inhibition) of 40–70% in Ae. albopictus populations12–15,
and 95–100% density reductions in Ae. aegypti populations16 and
mixed Ae. aegypti/Ae. albopictus populations17,18. Whilst the scale
of successful field trials has increased17,18, the required high
numbers of dissemination stations19 impose large maintenance
costs and the long-term efficacy of ADT has yet to be
demonstrated.

The sterile insect technique (SIT) reduces female reproductive
success through sexual competition between wild-type and
released males sterilized with ionizing radiation (formerly with
chemosterilants)20,21. Related methods include the Wolbachia-
based incompatible insect technique22,23, or gene modification
systems such as the release of transgenic mosquitoes carrying a
dominant lethal24,25. Successful SIT programmes have eradicated
screwworm and medfly from North and Central America26,27,
and tsetse from Zanzibar28. Mosquito SIT is less developed—
while trials have suppressed Ae. albopictus populations in Italy29,
elimination requires maintaining high sterile to wild male ratios
which proves prohibitively costly8. One proposed solution is to
couple SIT and ADT by treating sterile males with biopesticides
before release30,31. But the efficacy gain from this “boosted” sterile
insect technique (BSIT) remains unquantified. Using mathema-
tical modelling, we analyse the efficacy of SIT, BSIT and ADT for
controlling Aedes vectors and Aedes borne diseases.

The dynamics of an Aedes population, under BSIT and ADT,
were modelled using ordinary differential equations (Eqs. (1)–
(8)). The model characterises sexual competition between sterile
and wild males32, pyriproxifen transfer at dissemination sta-
tions12, during coupling30 and oviposition11, and concentration
dependent emergence inhibition of juveniles33 (Supplementary
Fig. 1). Sexual competition depends on the competitiveness (h)
and relative frequency of sterile males. When pyriproxifen
transfer is blocked, the model describes dynamics under standard
SIT. Parameterisation (Supplementary Table 1) reflects possible
dynamics under fixed favourable climatic conditions across a 1 ha
area with 200 larval sites, each of 250 mL and a carrying capacity
of 25 larvae. We assume regular maintenance and constant effi-
cacy of dissemination stations, and neglect dispersion34, land-
scape effects35, risk-mitigating oviposition site selection36, sterile
male induced larval site contamination37, substrate effects on
pyriproxifen efficacy38 and reduced female survival due to sexual
harassment39.

We present results indicating that sexual competition between
sterile and wild males creates a threshold sterile male release rate,
above which a population density of zero is the only stable
equilibrium. Boosting with pyriproxifen generates large reduc-
tions in the elimination threshold, the sub-threshold stable
equilibrium, the total number of sterile males required for

elimination, and the time to elimination. An equivalent elim-
ination threshold does not exist for the auto-dissemination
technique, which is most efficient at large densities. Epidemio-
logical analyses suggest if using SIT, without pyriproxifen and
with near elimination threshold release rates, the equilibrium
density of female mosquitoes can be greater than the density of
females required to bring the basic reproductive number of
dengue below one. This suggests that vector elimination may be
required to prevent dengue epidemics—something that has yet to
be achieved with mosquito SIT (or related techniques). Boosting
with pyriproxifen lowers both the elimination threshold and the
stable equilibrium, providing greater protection against dengue,
possibly even if elimination is not achieved. We conclude that
ADT and SIT are complimentary techniques and that BSIT can
provide a powerful new approach for protecting populations
against diseases such as dengue, chikungunya and Zika.

Results
Boosting reduces the thresholds and time for elimination. With
SIT, augmenting the daily release rate (R) decreases the asymp-
totic population density (stable equilibrium) (Fig. 1a, Supple-
mentary Fig. 2A). A bifurcation, where stable and unstable
equilibria converge, gives a threshold release rate RSIT

Thresh. Main-
taining R>RSIT

Thresh ensures eventual elimination, whilst R<RSIT
Thresh

ensures convergence to a new stable equilibrium (Supplementary
Figs. 2A, B). Elimination times rise asymptotically at RSIT

Thresh
(Fig. 1c) and quasi-zero gradients near RSIT

Thresh can trap trajec-
tories for many years (Supplementary Fig. 2B). Thus, Aedes
elimination with SIT requires R � RSIT

Thresh and sustaining such
high release rates entails non-trivial logistic difficulties29,40.

Boosting reduces the bifurcation point (by 80%) and the
distances between stable and unstable equilibria (Fig. 1b). Unlike
SIT, for BSIT the elimination time asymptote shifts to some
R<RBSIT

Thresh (Fig. 1c). The size of this shift depends on initial
population densities—large populations generate high pyriprox-
ifen concentration peaks (Supplementary Fig. 2C). When these
peaks push populations beneath the unstable equilibrium
elimination becomes easy, otherwise transient oscillations and
population recovery lead to a new stable equilibrium (Supple-
mentary Fig. 2D).

Elimination time responds asymptotically to sterile male
competitiveness h at a threshold hThresh. With R= 1414, boosting
reduces hThresh by 80% (Fig. 1d). Sensitivity analyses suggest
boosting induced reductions in hThresh would be greatest for low R
—but even with daily release rates as high as the adult male
carrying capacity (M0) boosting could reduce hThresh by as much
as one order of magnitude (Supplementary Fig. 3A). Thresholds
hThresh and RThresh are highly sensitive to variation in near-
threshold values of R and h, respectively (Supplementary Figs. 3A,
B). Elimination with sub-threshold values of R (or h) requires
sufficient pyriproxifen accumulation to prevent population
recovery to a new stable equilibrium (Supplementary Figs. 3C,
D). With R fixed at 500, an upper bound on hThresh is sensitive to
egg viability q, whereas the expected value of hThresh shows
greatest sensitivity to the quantity of pyriproxifen deposited at
oviposition (p) and its longevity in the environment (1/d)
(Supplementary Fig. 4A). Similar patterns are observed with
RThresh (Supplementary Fig. 4B) and (with R= 1500) elimination
time and RTotal (Supplementary Fig. 4C, D). The elimination
thresholds RThresh and hThresh are interdependent and boosting
permits rapid elimination under many R ~ h combinations that
would only suppress mosquitoes under SIT (Fig. 1e).

Control practitioners need to identify release rates that can
eliminate vectors with a minimum of sterile males. Numerical
integration indicates that, to eradicate a population initialised at
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carrying capacity, SIT requires at least 1,003,485 sterile males
released over 399 days, while BSIT requires just 46,464 sterile
males released over 231 days (Fig. 1f)—an efficiency gain of over
95%. These results suggest that BSIT may achieve elimination in
many scenarios where it is impractical with SIT.

Boosting shrinks the basic reproductive number of dengue. To
assess the epidemiological implications of boosting, the BSIT
model was coupled with a dengue transmission model where
transmission occurs between susceptible, exposed, infectious or
recovered humans and susceptible, exposed or infectious female

mosquitoes41 (Supplementary Fig. 5, Eqs. (19)–(28)). For sim-
plicity, we neglect spatial dynamics42,43, temperature driven
parameter fluctuations41,44, inapparent infections45,46, non-
linearity in bite rates47–49, multiple serotypes50–52 and multi-
annual cyclicity50,53. Parameters (Supplementary Table 2) reflect
transmission within 1 ha accommodating 50 susceptible humans.
This small spatial scale was adopted to minimise bias from
assuming homogeneous mixing and to characterise transmission
at localised hot-spots with high vector-host ratios54,55. The
asymptotic stable equilibrium of the system was used to calculate
the basic reproductive number (R0)—recall, epidemic spread in a
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Fig. 1 Equilibria, thresholds and optima of the BSIT model. Density of males at stable (solid lines) and unstable (dashed lines) equilibria given release rate
(R) under SIT (a) and BSIT (b). A bifurcation, where stable and unstable equilibria converge, provides an elimination threshold for SIT RSITThresh ¼ 1414:7

� �
.

Pyriproxifen reduces the threshold RBSITThresh ¼ 281:6
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and the distance between stable and unstable equilibria (b). With SIT, elimination time grows
asymptotically at RSITThresh (blue dashed), whereas boosting can shift this asymptote below RBSITThresh (red dashed) (c). With R fixed (R= 1414), elimination time
responds asymptotically to competitiveness (d), and boosting shifts the threshold (hThresh) towards zero. Thresholds for the eventual elimination of any
initial population (solid), and for eliminating from carrying capacity in one (dashed) or two (dotted) years respond non-linearly to release rate (R) and
competitiveness (h) (e). Two years (dotted) and 1 year (dashed) elimination thresholds for BSIT (red) are indistinguishable. The total release required for
elimination (RTotal) is minimised at 1:8 ´ RSITThresh and 0:7 ´ RBSITThresh for SIT and BSIT, respectively (f, dashed lines). All simulations were initialised at carrying
capacity, with M0 the initial density of males
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susceptible population requires R0 > 1. R0 calculation used two
parameter sets, labelled “optimistic” and “pessimistic”, with dif-
ferent bite rates, transmission probabilities and extrinsic incu-
bation periods (Supplementary Table 2). The notation ROpt

0 and
RPes
0 indicates the R0 associated with each parameter set. Boosting

reduced R0 for many combinations of R and h and expanded the
region of parameter space over which R0 < 1 (Fig. 2). For SIT, the
relation between R, h and the R0 unity threshold (Fig. 2) matched
the elimination thresholds (Fig. 1e). For BSIT, some R ~ h com-
binations lead to ROpt

0 <1 and RPes
0 <1 (light blue) without vector

elimination (dark blue). More R ~ h combinations were associated
with ROpt

0 <1 than with RPes
0 <1. Thus, BSIT (but not SIT) might

provide lasting protection against dengue without the need for
elimination, particularly in situations where a more optimistic
parameterization of R0 is justifiable.

Auto-dissemination is most effective at high densities. To
assess whether ADT could augment SIT and BSIT efficacy, we
estimated the contamination rate at dissemination stations (α)
using emergence inhibition (EI) data from five field trials (Sup-
plementary Table 3). Estimates of α were greatest for trials tar-
geting mixed Ae. albopictus/Ae. aegypi populations
(Supplementary Table 3). Some authors have suggested ADT is
more efficient when Ae. aegypi is present17, and our analyses are
consistent with that hypothesis. All EI trajectories peaked rapidly
and then oscillated to convergence at a stable equilibrium
(Fig. 3a). An inverse pattern was observed in female density,
where an initial crash was followed by recovery to a stable

equilibrium (Fig. 3b). The stable and unstable equilibria of the
ADT sub-model do not converge when dissemination station
density (A) is increased (Fig. 3c). Without a bifurcation, zero
remains an unstable equilibrium, suggesting it would be highly
unlikely to eliminate Aedes using ADT alone. Even if the total
contamination rate (α × A) was high, low mosquito numbers
would not sustain sufficient EI to prevent recovery.

Auto-dissemination improves SIT and BSIT efficacy. The
elimination threshold of BSIT ðRBSIT

ThreshÞ is reduced by ADT—but
the reduction is extremely small (Fig. 3d, red line). For SIT, the
effect of ADT on RSIT

Thresh is greater (Fig. 3d, blue line). The size of
this reduction depends on the total contamination rate α ×A —
we call this rate the ADT “intensity” for brevity. With α based on
Caputo et al.12 data (α= 0.0035), it would require A= 4350
dissemination station per hectare for RSIT

Thresh to match RBSIT
Thresh

without ADT (Fig. 3d, pink dashed). This number drops three
orders of magnitude using α estimated from Abad-Franch et al.18

(Fig. 3d, top axis).
To account for small-population effects, we complimented the

deterministic analyses above with stochastic simulation56,57.
Mosquitoes (initialised at carrying capacity) were subjected to
SIT or BSIT with ADT applied at four different intensity levels.
With BSIT, trajectories either displayed transitory oscillations
followed by convergence to a (stochastic) stable equilibrium, or
destabilisation followed by elimination (Fig. 4). With R= 0, ADT
displayed similar transitory dynamics, but with a higher stable
equilibrium and no elimination (black lines). For SIT and A= 0,
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elimination was only achieved when R>RSIT
Thresh (Fig. 4a)—the

minimum time to elimination was over 2 years, reflecting that
R� RSIT

Thresh was too small for rapid elimination. Increasing ADT
intensity lowered the stable equilibria and increased the
probability and rate of elimination. At highest ADT intensity,
SIT achieved elimination with R as low as 200, and trajectories
resembled those of BSIT with R close to RBSIT

Thresh (Fig. 4d, e). When
A= 0, the (non-zero) stable equilibria were lower for BSIT than
for SIT. Increasing ADT intensity reduced this difference. For
BSIT, only trajectories leading to elimination sustained RPes

0 <1,
but several trajectories converged below the ROpt

0 unity threshold.
For SIT, only trajectories leading to elimination sustained ROpt

0 <1.
Without ADT, boosting reduced by one order of magnitude the
release rates at which the probability of elimination became non-
negligible, and elimination was faster with boosting. Using ADT
alone (R= 0), even the highest intensity ADT scheme did not
suppress mosquito densities sufficiently to sustain ROpt

0 <1. These
results suggest boosting can provide a greater level of protection
against dengue than would be possible with SIT or ADT alone.
Moreover, an ADT-SIT combination could only provide the same
level of protection as BSIT with either highly efficient (α) or
highly numerous (A) dissemination stations.

Discussion
At present, insect control primarily depends on insecticides, with
major impacts on human/animal health and food safety58.
Moreover, negative effects of chemicals on predator populations,
and the evolution of insecticide resistance, can trigger outbreaks
of target (or secondary pest) populations and control failure59.
Various mosquito release schemes (SIT, incompatible insect
technique, transgenic mosquitoes) are being tested in the hope of
establishing more efficient control without the undesirable
impacts of insecticides. Yet despite the sophistication of modern
methods, we remain incapable of preventing large-scale epi-
demics of mosquito borne diseases. Our analyses highlight a tight
association between release rate and competitiveness thresholds
which provide minimum conditions for elimination with SIT.
Boosting with pyriproxifen shifts these thresholds, and could
reduce by over 95% (Fig. 1f) the number of sterile males required
for Aedes elimination.

Auto-dissemination field trials have reported impressive levels
of suppression17,18. However, our analyses suggest several
potential problems with ADT: a lack of bifurcation makes elim-
ination difficult; ADT works well at high, but not low, mosquito
densities; some degree of population recovery is expected once
pyriproxifen levels fall; very high EI has yet to be demonstrated
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over prolonged periods, or in the absence of Ae. aegypti. Coupling
ADT with SIT or BSIT therefore makes sense. These methods
work best at low densities and introduce a bifurcation that ren-
ders zero a stable equilibrium. Thus, so long as release rates
greater than RThresh are maintained, population recovery can be
kept in check.

Our model is relatively simple and relies on laboratory data for
the dose–response curve33 and venereal pyriproxifen transfer11.
Using data from alternative emergence-inhibition studies had
little impact on the difference between RSIT

Thresh and RBSIT
Thresh.

Although our estimate of female induced pyriproxifen transfer (p)
relies on one key study11, by neglecting direct male induced
contamination of larval sites we likely underestimate pyriproxifen
accumulation37—particularly at low female densities. The mag-
nitude of pupicidal action in our model corresponds well with
field-cage experiments and field trials that measured the impacts
of pyriproxifen transfer from (non-sterilised) males to females
and larval sites37. Moreover, whilst control trials with transgenic
mosquito OX513A in Brazil and the Cayman Islands have
demonstrated suppression of Ae. aegypti populations, in both
cases the release area was reduced mid-trial to augment R
locally40,60, and elimination with transgenic mosquitoes has never
been demonstrated8. Similarly, field trials with the incompatible
insect technique have only demonstrated suppression, not elim-
ination, resulting in the up-scaling of insect production61. Our
analyses are consistent with these observations, and explain why
(Fig. 1e) sustaining sufficient release rates for Ae. aegypti elim-
ination appears unrealistic given the competitiveness (h < 0.0640)
of OX513A. Boosting offers a powerful solution to the pragmatic
and economic difficulties of Aedes elimination with released male
methods.

Historically, Ae. aegypti has been the vector primarily asso-
ciated with dengue. Some authors have questioned whether
confounding factors, such as historical geographical distribution,
have led us to underestimate the vector competence of Ae.
albopictus62. The traditional view was that epidemics associated

with Ae. albopictus were small—such as those in Tokyo55,
Guangdong (before 2014)63 and Arunachal Pradesh64. However,
this view has been challenged by large outbreaks on Reunion
Island (over 8500 indigenous cases in 2018–201965) and in
Guangdong (over 45,000 indigenous cases in 201466). The auto-
dissemination technique has been shown to provide EI > 90% in
the presence of Ae. aegypti, apparently with sufficient suppression
to achieve R0 < 118. However, the same level of suppression has
yet to be demonstrated where Ae. albopictus is the sole vector.
Our results suggest that BSIT can provide greater protection from
dengue than is possible using ADT or SIT alone.

Whether or not mosquito abatement achieves R0 < 1 depends
upon numerous factors. We calculated R0 using two different
parameters sets reflecting variation in the literature of some key
parameters. Whether or not those parameters are appropriate in a
given control scenario will depend upon the specifics of the local
ecology. We neglect several sources of complexity such as tem-
perature effects67,68, variation in the availability of alternative
hosts69,70, dispersion34 and landscape effects35. We do this for
simplicity and emphasise that care is required when extrapolating
our results to real systems. Further simulation studies accounting
for seasonality and spatial heterogeneity in mosquito ecology
would be beneficial for generalising our results to real control
scenarios.

One highly variable R0 parameter is the vector-host ratio—but
estimating the density of an insect that is a master of stealth is
difficult. Vector densities can be highly aggregated in space71 and
localised hot-spots play an important epidemiological role55.
Without detailed knowledge of local vector densities, R0 studies
rely on assumptions such as simply assuming the ratio is two49, or
that trap density and true density are equivalent18. Sophisticated
density estimation studies have used mark-release-recapture with
BG-Sentinel traps and modern spatial statistics72,73—although
these studies often report much lower densities than those given
by human landing collections. In Forli district, Italy, human
landing collections in August averaged 5.73 females (s.d.= 4.48)
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Fig. 4 Stochastic simulation of Aedes control with SIT, BSIT and/or ADT. Mosquito populations were initiated as Poisson random variables with
expectancies set to the control-free stable equilibrium. For SIT (top row) and BSIT (bottom row), nine different release rates were evaluated (see colour
legends). For ADT, four different intensities (α × A) were evaluated. Values of α in columns two to four were estimated from different field trials
(Supplementary Table 3), the associated values of A were adjusted to provide a more even spread of intensities. For each R ~ A combination, ten
simulations are shown. Total female density (plus one) is shown on the natural log scale. Thresholds in female density corresponding to ROpt0 ¼ 1 and
RPes0 ¼ 1 are indicated as blue and pink dashed lines, respectively. In all simulations, an immigration rate of zero was assumed
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in 15 min54. Fitting a negative binomial distribution to that data
suggests 5% of sampling sites provided over 14 females per
human-trap in 15 min—numbers well within the range of find-
ings from a park in Tokyo55. Assuming the majority of biting
females within a 7 m radius are sampled within 15 min, extra-
polating over 1 ha and using the bite rate used in that study
(0.258), gives a mean of 5:73 ´ 1002

0:258 ´ π ´ 72 ¼ 1442:7 females/ha and a
95th percentile of 14 ´ 1002

0:258 ´ π ´ 72 ¼ 3525:0 females/ha. This later
estimate is similar to the carrying capacity of our study (F=
3283.9)—thus our ecological assumptions are coherent with
known hot-spots in Italy. On Reunion Island, densities of over
5800 males/ha have been reported using mark-release-recapture
with mice-baited BG-Sentinel traps74—our modelling predicts
that, if using SIT alone, it would be very difficult to bring R0

below one with such high mosquito densities.
The current study has focused on control within 1 ha. Given

that Aedes densities display spatial auto-correlation over just
some hundreds of metres71, 1 ha would be a suitable pixel size for
an R0 mapping study75,76 in an urban area. Although we have not
modelled spatial effects, it is important to remember spatial
processes when interpreting our results. Bringing R0 below one
locally may have near-zero impact on the epidemiology across a
large city77. Also, whilst BSIT might be able to achieve elimina-
tion with R<RBSIT

Thresh, this phenomenon relies on high mosquito
densities generating a large pyriproxifen peak. Subsequent
immigration would facilitate population recovery unless R was
greater than RBSIT

Thresh, or some higher threshold if using a ADT-SIT
combination without boosting. Thus an area-wide vector man-
agement strategy is recommended, and spatial simulation models,
extending the current model by including crucial sources of
ecological variation, are expected to provide valuable information
for planning mosquito control.

Whilst extreme weather events can reduce pyriproxifen effi-
cacy78, large ADT trials in towns of the Amazonian rain-forest
suggest regular rainfall does not prevent population
suppression17,18. In our model, we neglect this potential source of
variation. We also do not include variation in container size, thus
heterogeneity in pyriproxifen concentrations is neglected. Whilst
water tanks and tires are known to provide good larval habitat for
Aedes, large bodies of water, such as stagnant swimming pools,
appear to be less important—particularly when they receive little
shade79. Moreover, large non-cryptic habitats are relatively easy
to identify and treat manually (with pyriproxifen granules, for
example ref. 80). The greatest difficulty faced by traditional
methods of Aedes control comes from the high aptitude of these
mosquitoes to utilise small cryptic habitats that are protected
from insecticide spraying. It is here that both SIT and ADT excel,
both techniques utilise mosquito behaviour to bypass the limits of
conventional spraying methods. Moreover, where bigger pools are
attractive to Aedes, they will attract more pyriproxifen carrying
mosquitoes, thus increasing pyriproxifen accumulation. Further
research is required to fully understand the effects of container
size and climate in ADT and BSIT field trials.

Pyriproxifen is highly toxic for all water invertebrates, thus care
should be taken regarding undesirable ecological impacts of its
use. However, with BSIT or ADT, pyriproxifen contaminated
females are expected to specifically contaminate their larval
habitats. In urban areas, 95% of Ae. albopictus breeding habitats
are domestic containers and 99% are of artificial type81—factors
which should limit the risks for non-target fauna. Thus, the
environmental risks are expected to be much lower than those of
the widely used technique of ultra-low volume spraying78.
However, it is important to monitor the impacts of ADT and
BSIT on non-target organisms when testing in field conditions—a
factor that has been overlooked in many field trials to date.

In light of the large effects predicted here—and the coherence
between model results and available field trial data—we urge
mosquito control practitioners/developers to include BSIT in
their field trials to further quantify its potential. Although we have
concentrated on pyriproxifen, alternative biopesticides could be
used. Densoviruses, for example, may advantageously provide:
greater species specificity; replication at larval sites, ensuring
efficacy even with low transfer rates; and an additional tool for
resistance management31. Given the aptitude of Aedes mosqui-
toes for range expansion, the high burden of associated epi-
demics, and the resilience of R0 to modest declines in vector
density, the results of such trials would be of great importance for
global health management.

Methods
Boosted sterile insect technique model. The dynamics of an Aedes population in
response to the sterile insect technique (SIT), boosted sterile insect technique
(BSIT) and/or auto-dissemination technique (ADT) were modelled using the fol-
lowing system of ordinary differential equations.

E′ ¼ ðF þ qFcÞgf
M

M þ hS
� EðmE þ μEÞ; ð1Þ

L′ ¼ EmE � L mL þ μ0 þ
μK � μ0

K
L

� �
; ð2Þ

P′ ¼ LmL � PðmP þ μPÞ; ð3Þ

F′ ¼ PρmP 1þ C=V
EI50

� �σ� ��1

þFc
γ

κc
� F

rhS
F þ Fc

þ αAþ μF

� �
; ð4Þ

M′ ¼ Pð1� ρÞmP 1þ C=V
EI50

� �σ� ��1

�MμM ; ð5Þ

S′ ¼ R� SμS; ð6Þ

F′c ¼ F
rhS

F þ Fc
þ αA

� �
� Fc

γ

κc
þ μc

� �
; ð7Þ

C′ ¼ Fcγp� Cd: ð8Þ
Compartments in this system include eggs (E), larvae (L), pupae (P), adult

females (F), adult males (M), adult sterile males (S), pyriproxifen carrying
(contaminated) adult females (Fc) and the quantity of pyriproxifen at larval sites
(C). Parameters (Supplementary Table 1) include daily release rate (R);
dissemination station density (A); gonotrophic cycle rate (g); female fecundity per
gonotrophic cycle (f ); maturation rates of juveniles (mE, mL, mP); mortality rates of
eggs (μE), pupae (μP), females (μF), contaminated females (μc), males (μM) and
sterile males (μS), larval mortality—a linear function of larval density rising from μ0
at L= 0 to μK at L= K (carrying capacity); the proportion of females among
emerging adults (ρ); the number of larval sites (N); the volume of water at larval
sites, V=V1 ×N, where V1 is the mean volume per site; the carrying capacity at
larval sites, K= K1 ×N, where K1 is the mean carrying capacity per site; the
contamination level (in parts per billion, ppb) generating 50% emergence
inhibition (EI50); the slope of the dose–response curve modelling emergence
inhibition among maturing juveniles (σ); the mating rate of wild males (r);
competitiveness of sterile males (h); the mating rate of sterile males (rh); viability of
eggs from contaminated females (q); oviposition rate (γ); expected number of
ovipositions per gonotrophic cycle (κ); number of ovipositions required to clear
contamination (κc) and the expected quantity of pyriproxifen deposited by
contaminated females at oviposition (p).

The term M
MþhS is a classic representation of sexual competition32, providing the

proportion of couplings involving wild-type males (Eq. (1)). Sterilisation is
assumed absolute. The competitiveness of sterile males, h, is the ratio of (per
capita) sterile male to wild male coupling rates. The strength of sexual competition
depends on h and the relative frequency of M and S—represented as two red
dashed arrows in Supplementary Fig. 1. Based on Gaugler et al.11, we assume adult
females become contaminated when they couple with males carrying pyriproxifen.
These events occur at rate rhS

FþFc
per female (Supplementary Fig. 1, red dashed

arrows). These females deposit p µg of pyriproxifen at larval sites according to
oviposition rate (γ) and lose their pyriproxifen after an expected κc ovipositions—

we assume κc= 1 throughout. The term 1þ C=V
EI50

� �σ� ��1
provides the emergence

success according to a logit(EI) ~ ln(C/V) dose–response curve (Supplementary
Fig. 1, red dashed arrows). Swapping the logit function for probit, and/or the
natural logarithm for log10, made little difference to the dose–response curve—
hence, we adopted the algebraically and computationally more convenient form.
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Parameter σ gives the slope of a straight line on the transformed scales. The model
assumes pyriproxifen degrades in the environment at constant rate d.

Equilibria analysis. Differential Eqs. (1)–(8) return gradients of zero at (respec-
tively)

E� ¼ ðF þ qFcÞgfM
ðM þ hSÞðmE þ μEÞ

; ð9Þ

L� ¼
�ðmL þ μ0Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmL þ μ0Þ2 þ 4EmEðμK � μ0Þ=K

q
2ðμK � μ0Þ=K

; ð10Þ

P� ¼ LmL

ðmP þ μPÞ
; ð11Þ

F� ¼ �B þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A ; ð12Þ

M� ¼ PmPð1� ρÞ 1þ C=V
EI50

� �σ� ��1

=μM ; ð13Þ

S� ¼ R=μS; ð14Þ

F�
c ¼ �E þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4DF

p

2D ; ð15Þ

C� ¼ Fcγp
d

; ð16Þ

where * indicates the values at which the respective ordinary differential equations
have zero gradient and

A ¼ αAþ μF ;

B ¼ AFc þ rhSþ C=Fc;
C ¼ �Fc Pρmp 1þ C=V

EI50

� �σ� ��1
þFc

γ
κc

� �
;

D ¼ γ
κc þ μc;

E ¼ FðD � αAÞ;
F ¼ �FðαAF þ rhSÞ:

A trivial equilibrium of the system exists at E� ¼ L� ¼ P� ¼ M� ¼ F� ¼ F�
c ¼

C� ¼ 0 and S*= R/μS. Non-trivial equilibria of the system are found (for a given R)
at the intersections of the following two curves describing M* as a function of F.
With R and F fixed, S*, F�

c and C* are obtained from Eqs. (14)–(16). Then,
assuming F′= F′c=M′= 0, a process of substitution using Eqs. (4) and (7) gives

M� ¼ ðFμF þ F�
c μcÞð1� ρÞ=ðμMρÞ: ð17Þ

Secondly, assuming E′= L′= P′ =M′= S′= F′c= C′= 0, we obtain

M� ¼ �Hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 4GI

p
2G ; ð18Þ

where

G ¼ μM= mPð1� ρÞ 1þ C�=V
EI50

� �σ� ��1
� �

;

H ¼ hS� þ ðmLþμ0Þ�K�mL
ðμK�μ0ÞðmpþμpÞ ;

I ¼ KmL
ðμK�μ0ÞðmPþμPÞ ðmL þ μ0ÞhS� � ðFþqF�

c ÞgfmLmE
GðmEþμEÞðmPþμPÞ

� �
:

When R < RThresh, the curves (17) and (18) intersect at two points, giving one
stable equilibrium and one unstable equilibrium. When R= RThresh, the curves
meet at a single point. When R > RThresh, the curves no longer intersect and the
population will eventually be eliminated—irrespective of the initial population
density. The equilibria can be found using standard root finding algorithms.

Parameterisation of BSIT model. Parameters were set to values obtained from the
literature (Supplementary Table 1). Shape parameter σ of the dose–response curve
was estimated from published EI50 and EI95 data33 as the slope of the straight line
linking these two data points on transformed (logit(EI) ~ ln(C/V)) scales. The
quantity of pyriproxifen deposited by a female at oviposition (p) was estimated by
using the dose–response curve to predict the concentration of pyriproxifen in the
water of the venereal transfer experiments of Gaugler et al.11 based on their
reported emergence inhibition. The quantity deposited per oviposition (p) was
obtained assuming contaminated females lose their pyriproxifen in a single ovi-
position. The obtained value of p was then divided by five to account for Gaugler
et al. using five males to one female in their venereal transfer experiment. Using
alternative emergence inhibition data to generate the dose–response curve had
relatively little impact on our modelling results—RBSIT

Thresh was estimated as 286.1,
253.9, 299.0, 174.9 and 328.2 using emergence inhibition data from refs. 33,82–84

and ref. 85 (Rockefeller strain), respectively. The relative viability of eggs from
contaminated females (q) was assessed experimentally86. Two to five-day-old fertile
males were sprayed with a dry powder containing 20% pyriproxifen and mated
with 5-day-old virgin females. Egg papers were dried for 24 h and emergence was
monitored for 8 days. The expected value of q and bootstrap 95% confidence
intervals are shown in Supplementary Table 1.

In our model, each female mosquito is contaminated at ADT dissemination
stations with rate α × A—for brevity we call this rate the ADT “intensity”. Field trial
data (Supplementary Table 3) provided five different estimates of α. For each trial
we identified the α that minimised the absolute error between reported and fitted
EI at a given point in time. We assumed EI at larval sites matched EI in ovitraps.
Minimisation was performed over a finite sequence of 100 evenly spaced values
spanning two orders of magnitude. The appropriateness of the bounds of this finite
set were checked visually by plotting the absolute error for each potential α. Since
our model is deliberately simple, we did not expect it to characterise the full range
of EI variation observed in the field. Therefore, we did not explore more
complicated methods (such as Bayesian methods87,88) for fitting mechanistic
models. Regarding uncertainty in α, we note that the estimates are highly variable
between studies, and that an estimate from any one study might not transfer well to
other ecological contexts.

Time to elimination. The time required to bring the total population size below
one, when initialised at carrying capacity (the control-free stable equilibrium), was
evaluated using R function ode89 and is called “elimination time” throughout the
paper. All such simulations used a constant sterile male daily release rate R. The
quantity RTotal was defined as the product of elimination time and R.

Sensitivity analyses. Eight sensitivity analyses with the BSIT/SIT model were
performed (Supplementary Figs. 3 and 4). Parameters were sampled uniformly
over the plotted ranges, all other parameters were set to default values (Supple-
mentary Table 1). Each experiment consisted of 105 randomisations of the selected
parameter set. Trends in the generated data clouds were explored using the R
function loess90.

Dengue transmission model. The epidemiological model of dengue transmission
was adapted from ref. 41 by splitting compartment F into FS, FE and FI and
compartment Fc into FcS , FcE and FcI . The model uses Eqs. (1)–(3), (5)–(6) and (8)
(where F and Fc are the sum of their respective sub-compartments) and the fol-
lowing sub-system:

F′S ¼ PρmP 1þ C=V
EI50

� �σ� ��1

þFcS
γ

κc
� FS bβF

HI

HΣ

þ rhS
FΣ

þ αAþ μF

� �
ð19Þ

F′E ¼ FSbβF
HI

HΣ

þ FcE
γ

κc
� FE θF þ

rhS
FΣ

þ αAþ μF

� �
ð20Þ

F′I ¼ FEθF þ FcI
γ

κc
� FI

rhS
FΣ

þ αAþ μF

� �
ð21Þ

F′cS ¼ F
S

rhS
FΣ

þ αA

� �
� FcS bβF

HI

HΣ

þ γ

κc
þ μc

� �
ð22Þ

F′cE ¼ FcS bβF
HI

HΣ

þ FE
rhS
FΣ

þ αA

� �
� FcE θF þ

γ

κc
þ μc

� �
ð23Þ

F′cI ¼ FcE θF þ FI
rhS
FΣ

þ αA

� �
� FcI

γ

κc
þ μc

� �
ð24Þ

H′S ¼ μHðHΣ � HSÞ � ðFI þ FcI ÞbβH
HS

HΣ
ð25Þ

H′E ¼ bβHðFI þ FcI Þ
HS

HΣ

� ðθH þ μHÞHE ð26Þ

H′I ¼ HEθH � ðαH þ μHÞHI ð27Þ

H′R ¼ αHHI � HRμH ð28Þ
where FΣ ¼ ðFS þ FE þ FIÞ þ ðFcS þ FcE þ FcI Þ is the total population density of
adult females, HΣ ¼ HS þ HE þ HI þ HR is the total population density of
humans, b is the bite rate of a single female, βF is the probability that a susceptible
female mosquito becomes infected having bitten an infectious human, βH is the
probability that a susceptible human becomes infected following a bite from an
infectious mosquito, θF and θH are (respectively) the extrinsic and intrinsic
incubation rates and αH is the recovery rate in humans.

The basic reproductive number of dengue transmission. The basic reproductive
number (R0) was calculated using the next generation matrix approach91,92.
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Assuming the mortality rate of females carrying pyriproxifen (μc) equals that of
females without pyriproxifen (μF) permits R0 to be written

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFS þ FcS Þ

HΣ

bβF
θF

ðθF þ μFÞ
1

ðαH þ μHÞ
bβH

θH
ðθH þ μHÞ

1
μF

s
: ð29Þ

Throughout, we assume HΣ ¼ 50 people/ha, a population density typical of
many European cities (such as Montpellier or Seville). Two alternative
parameterizations were used (Supplementary Table 3), reflecting variation in the
literature and providing “optimistic” and “pessimistic” estimates of R0.

Stochastic simulation of population dynamics under control. To incorporate the
effects of demographic stochasticity in small populations, and the non-equilibrium
dynamics in the first months of control, stochastic simulation (of integer events)
was performed using a modification of Gillespie’s direct algorithm56. To reduce
computation time we incorporated modifications presented in ref. 57 and adopted
the following two approximations: eggs were generated in batches per oviposition
event with batch size set as either a draw from a Poisson distribution (when E <
5000) or the expected number of new eggs (at higher densities); egg maturation and
mortality was simulated using either the tau-leap method (when E < 5000)93 or by
using the solution to the linear ordinary differential equations (at higher densities).
The algorithm was coded in Nimble94, which automatically compiles code with R-
like syntax to C++. Scripts for all analyses are available. For SIT and BSIT, nine
values of R were evenly spaced in the intervals [0, 1600] and [0, 320], respectively.
ADT was applied at four levels of intensity corresponding to either no ADT, or
ADT with intensity equivalent to Caputo et al.12, Abad-Franch et al.17 with A
reduced from 14 to 4 or Abad-Franch et al.18 with A increased from 1.54 to 2. The
values of α and A used in each scenario are shown in Fig. 4. Ten simulations were
performed for each R ~A combination. In each simulation, mosquitoes were
initialised by drawing Poisson random numbers with expectancies given by the
control-free stable equilibrium, and control parameters were held constant for
3 years.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.

Code availability
All code used in the current study is available at the following Bitbucket repository
https://DRJP@bitbucket.org/DRJP/pleydell-bouyer-2019.git.

Received: 21 November 2018 Accepted: 30 April 2019

References
1. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496,

504–507 (2013).
2. Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C. & De Lamballerie, X.

Chikungunya in the Americas. Lancet 383, 514 (2014).
3. Lessler, J. et al. Assessing the global threat from Zika virus. Science 353,

aaf8160 (2016).
4. Paules, C. I. & Fauci, A. S. Yellow fever—once again on the radar screen in the

Americas. New. Engl. J. Med. 376, 1397–1399 (2017).
5. Poland, G. A. et al. Development of vaccines against Zika virus. Lancet Infect.

Dis. 18, e211–e219 (2018).
6. Powers, A. M. Vaccine and therapeutic options to control Chikungunya virus.

Clin. Microbiol. Rev. 31, e00104–16 (2018).
7. Flipse, J. & Smit, J. M. The complexity of a dengue vaccine: a review of the

human antibody response. PLoS Negl. Trop. D. 9, e0003749 (2015).
8. Flores, H. A. & O’Neill, S. L. Controlling vector-borne diseases by releasing

modified mosquitoes. Nat. Rev. Microbiol. 16, 508–518 (2018).
9. Baldacchino, F. et al. Control methods against invasive Aedes mosquitoes in

Europe: a review. Pest Manag. Sci. 71, 1471–1485 (2015).
10. World Health Organization, UNICEF et al. Global Vector Control Response

2017–2030 (World Health Organization, 2017).
11. Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the

transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet.
Entomol. 26, 37–45 (2012).

12. Caputo, B. et al. The auto-dissemination approach: a novel concept to fight
Aedes albopictus in urban areas. PLoS Negl. Trop. D. 6, e1793 (2012).

13. Chandel, K. et al. Targeting a hidden enemy: pyriproxyfen autodissemination
strategy for the control of the container mosquito Aedes albopictus in cryptic
habitats. PLoS Negl. Trop. D. 10, e0005235 (2016).

14. Unlu, I. et al. Effectiveness of autodissemination stations containing
pyriproxyfen in reducing immature Aedes albopictus populations. Parasit.
Vectors 10, 139 (2017).

15. Suman, D. S. et al. Seasonal field efficacy of pyriproxyfen autodissemination
stations against container-inhabiting mosquito Aedes albopictus under
different habitat conditions. Pest Manag. Sci. 74, 885–895 (2017).

16. Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to
Aedes aegypti larval habitats. Proc. Natl Acad. Sci. USA 106, 11530–11534
(2009).

17. Abad-Franch, F., Zamora-Perea, E., Ferraz, G., Padilla-Torres, S. D. & Luz, S.
L. B. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage
and boosts juvenile mosquito mortality at the neighborhood scale. PLoS Negl.
Trop. D. 9, e0003702 (2015).

18. Abad-Franch, F., Zamora-Perea, E. & Luz, S. L. Mosquito-disseminated
insecticide for citywide vector control and its potential to block arbovirus
epidemics: entomological observations and modeling results from Amazonian
Brazil. PLoS Med. 14, e1002213 (2017).

19. Kartzinel, M. A., Alto, B. W., Deblasio, M. W. & Burkett-Cadena, N. D.
Testing of visual and chemical attractants in correlation with the development
and field evaluation of an autodissemination station for the suppression of
Aedes aegypti and Aedes albopictus in Florida. J. Am. Mosq. Contr. 32,
194–202 (2016).

20. Knipling, E. F. Sterile-male method of population control: successful with
some insects, the method may also be effective when applied to other noxious
animals. Science 130, 902–904 (1959).

21. Bourtzis, K., Lees, R. S., Hendrichs, J. & Vreysen, M. J. B. More than one rabbit
out of the hat: radiation, transgenic and symbiont-based approaches for
sustainable management of mosquito and tsetse fly populations. Acta Trop.
157, 115–130 (2016).

22. Zhang, D. J., Zheng, X. Y., Xi, Z. Y., Bourtzis, K. & Gilles, J. R. L. Combining
the sterile insect technique with the incompatible insect technique: I-impact of
Wolbachia infection on the fitness of triple-and double-infected strains of
Aedes albopictus. PLoS ONE 10, e0121126 (2015).

23. Mains, J. W., Brelsfoard, C. L., Rose, R. I. & Dobson, S. L. Female adult Aedes
albopictus suppression by Wolbachia-infected male mosquitoes. Sci. Rep. 6,
33846 (2016).

24. Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 59, 205–224
(2014).

25. Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes
complete population suppression in caged Anopheles gambiae mosquitoes.
Nat. Biotechnol. 36, 1062–1066 (2018).

26. Wyss, J. H. Screwworm eradication in the Americas. Ann. N. Y. Acad. Sci. 916,
186–193 (2000).

27. Enkerlin, W. R. et al. The Moscamed regional programme: review of a success
story of area-wide sterile insect technique application. Entomol. Exp. Appl.
164, 188–203 (2017).

28. Vreysen, M. J. B. et al. Sterile insects to enhance agricultural development: the
case of sustainable tsetse eradication on Unguja Island, Zanzibar, using an
area-wide integrated pest management approach. PLoS Negl. Trop. D. 8, e2857
(2014).

29. Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field
trials with Aedes albopictus irradiated sterile males in Italian urban areas. J.
Med. Entomol. 50, 317–325 (2013).

30. Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control
mosquitoes. Trends Parasitol. 30, 271–273 (2014).

31. Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control
methods to manage the Zika virus outbreak: more haste, less speed. Lancet
Glob. Health 4, e364 (2016).

32. Fried, M. Determination of sterile-insect competitiveness. J. Econ. Entomol.
64, 869–872 (1971).

33. Dell Chism, B. & Apperson, C. S. Horizontal transfer of the insect growth
regulator pyriproxyfen to larval microcosms by gravid Aedes albopictus and
Ochlerotatus triseriatus mosquitoes in the laboratory. Med. Vet. Entomol. 17,
211–220 (2003).

34. Winskill, P. et al. Dispersal of engineered male Aedes aegypti mosquitoes. PLoS
Negl. Trop. D. 9, e0004156 (2015).

35. Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation
influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534
(2018).

36. Fonseca, D. M., Kaplan, L. R., Heiry, R. A. & Strickman, D. Density-dependent
oviposition by female Aedes albopictus (Diptera: Culicidae) spreads eggs
among containers during the summer but accumulates them in the fall. J.
Med. Entomol. 1, 8 (2015).

37. Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for
insecticide. PLoS Negl. Trop. D. 9, e0003406–e0003406 (2015).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0451-1 ARTICLE

COMMUNICATIONS BIOLOGY | _#####################_ | https://doi.org/10.1038/s42003-019-0451-1 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


38. Suman, D. S., Wang, Y., Dong, L. & Gaugler, R. Effects of larval habitat
substrate on pyriproxyfen efficacy against Aedes albopictus (Diptera:
Culicidae). J. Med. Entomol. 50, 1261–1266 (2013).

39. Clutton-Brock, T. & Langley, P. Persistent courtship reduces male and female
longevity in captive tsetse flies Glossina morsitans morsitans Westwood
(Diptera: Glossinidae). Behav. Ecol. 8, 392–395 (1997).

40. Carvalho, D. O. et al. Suppression of a field population of Aedes aegypti in
Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. D.
9, e0003864 (2015).

41. de Pinho, S. T. R. et al. Modelling the dynamics of dengue real epidemics.
Philos. T. R. Soc. A. 368, 5679–5693 (2010).

42. Wesolowski, A. et al. Impact of human mobility on the emergence of dengue
epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).

43. Zhu, D., Ren, J. & Zhu, H. Spatial-temporal basic reproduction number and
dynamics for a dengue disease diffusion model. Math. Methods Appl. Sci. 41,
5388–5403 (2018).

44. Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus
transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465
(2011).

45. Duong, V. et al. Asymptomatic humans transmit dengue virus to mosquitoes.
Proc. Natl Acad. Sci. USA 112, 14688–14693 (2015).

46. Wang, T. et al. Evaluation of inapparent dengue infections during an outbreak
in Southern China. PLoS Negl. Trop. D. 9, e0003677 (2015).

47. Wonham, M. J., Lewis, M. A., Rencławowicz, J. & Van den Driessche, P.
Transmission assumptions generate conflicting predictions in host–vector
disease models: a case study in West Nile virus. Ecol. Lett. 9, 706–725
(2006).

48. Chitnis, N., Cushing, J. & Hyman, J. Bifurcation analysis of a mathematical
model for malaria transmission. SIAM J. Appl. Math. 67, 24–45 (2006).

49. Manore, C. A., Hickmann, K. S., Xu, S., Wearing, H. J. & Hyman, J. M.
Comparing dengue and Chikungunya emergence and endemic transmission
in Ae. aegypti and Ae. albopictus. J. Theor. Biol. 356, 174–191 (2014).

50. Wearing, H. J. & Rohani, P. Ecological and immunological determinants of
dengue epidemics. Proc. Natl Acad. Sci. USA 103, 11802–11807 (2006).

51. Recker, M. et al. Immunological serotype interactions and their effect on the
epidemiological pattern of dengue. Proc. R. Soc. Lond., B, Biol. Sci. 276,
2541–2548 (2009).

52. Joanne, S. et al. Vector competence of Malaysian Aedes albopictus with and
without Wolbachia to four dengue virus serotypes. Trop. Med. Int. Health 22,
1154–1165 (2017).

53. Amaku, M. et al. Magnitude and frequency variations of vector-borne
infection outbreaks using the Ross–Macdonald model: explaining and
predicting outbreaks of dengue fever. Epidemiol. Infect. 144, 3435–3450
(2016).

54. Carrieri, M., Angelini, P., Venturelli, C., Maccagnani, B. & Bellini, R. Aedes
albopictus (Diptera: Culicidae) population size survey in the 2007
Chikungunya outbreak area in Italy. II: Estimating epidemic thresholds. J.
Med. Entomol. 49, 388–399 (2012).

55. Tsuda, Y. et al. Biting density and distribution of Aedes albopictus during the
September 2014 outbreak of dengue fever in Yoyogi Park and the vicinity in
Tokyo Metropolis, Japan. Jpn. J. Infect. Dis. 69, 1–5 (2015).

56. Gillespie, D. T. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434
(1976).

57. Gibson, M. A. & Bruck, J. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A. 104,
1876–1889 (2000).

58. World Health Organization et al. Public Health Impact of Pesticides Used in
Agriculture (WHO/UNEP, 1990).

59. Lu, Y. H., Wu, K. M., Jiang, Y. Y., Guo, Y. Y. & Desneux, N. Widespread
adoption of Bt cotton and insecticide decrease promotes biocontrol services.
Nature 487, 362 (2012).

60. Harris, A. F. et al. Successful suppression of a field mosquito population by
sustained release of engineered male mosquitoes. Nat. Biotechnol. 30, 828
(2012).

61. Gilbert, J. A. & Melton, L. Verily project releases millions of factory-reared
mosquitoes. Nat. Biotechnol. 36, 781–782 (2018).

62. Rezza, G. Aedes albopictus and the reemergence of Dengue. BMC Public
Health 12, 72 (2012).

63. Peng, H.-J. et al. A local outbreak of dengue caused by an imported case in
Dongguan China. BMC Public Health 12, 83 (2012).

64. Khan, S. A., Dutta, P., Topno, R., Soni, M. & Mahanta, J. Dengue outbreak in a
hilly state of Arunachal Pradesh in Northeast India. Sci. World J. 2014, 1–6
(2014).

65. Agences Régionales de Santé, Océan Indien. Epidémie de dengue à La
Réunion: la circulation du virus s’accélère. https://www.ocean-indien.ars.sante.
fr/system/files/2019-03/2019-03-12_CP_ARSOI_Epidemie%20Dengue%
202019_1.pdf. Date accessed: 12 March 2019.

66. Xiao, J.-P. et al. Characterizing a large outbreak of dengue fever in Guangdong
Province, China. Infect. Dis. Poverty 5, 44 (2016).

67. Carrington, L. B., Armijos, M. V., Lambrechts, L. & Scott, T. W. Fluctuations
at a low mean temperature accelerate dengue virus transmission by Aedes
aegypti. PLoS Negl. Trop. D. 7, e2190 (2013).

68. Carrington, L. B., Seifert, S. N., Armijos, M. V., Lambrechts, L. & Scott,
T. W. Reduction of Aedes aegypti vector competence for dengue virus under
large temperature fluctuations. Am. J. Trop. Med. 88, 689–697 (2013).

69. Sawabe, K. et al. Host-feeding habits of Culex pipiens and Aedes albopictus
(Diptera: Culicidae) collected at the urban and suburban residential areas of
Japan. J. Med. Entomol. 47, 442–450 (2010).

70. Barrera, R. et al. Vertebrate hosts of Aedes aegypti and Aedes mediovittatus
(Diptera: Culicidae) in rural Puerto Rico. J. Med. Entomol. 49, 917–921 (2012).

71. Tantowijoyo, W. et al. Spatial and temporal variation in Aedes aegypti and
Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta Area of Java,
Indonesia, with implications for Wolbachia releases. J. Med. Entomol. 53,
188–198 (2015).

72. Johnson, P., Spitzauer, V. & Ritchie, S. Field sampling rate of BG-Sentinel
traps for Aedes aegypti (Diptera: Culicidae) in suburban Cairns, Australia. J.
Med. Entomol. 49, 29–34 (2012).

73. Villela, D. A. et al. Bayesian hierarchical model for estimation of abundance
and spatial density of Aedes aegypti. PLoS ONE 10, e0123794 (2015).

74. Le Goff, G. et al. Field evaluation of seasonal trends in relative population sizes
and dispersal pattern of Aedes albopictus males in support of the design of a
sterile male release strategy. Parasit. Vectors 12, 81 (2019).

75. Hartemink, N. et al. Mapping the basic reproduction number (R0) for
vector-borne diseases: a case study on bluetongue virus. Epidemics 1, 153–161
(2009).

76. Guis, H. et al. Modelling the effects of past and future climate on the risk of
bluetongue emergence in Europe. J. R. Soc. Interface 9, 339–350 (2011).

77. Greenhalgh, D. et al. Modeling the effect of a novel auto-dissemination trap
on the spread of dengue in high-rise condominia, Malaysia. J. Biol. Syst. 26,
553–578 (2018).

78. Suman, D. S. et al. Point-source and area-wide field studies of pyriproxyfen
autodissemination against urban container-inhabiting mosquitoes. Acta Trop.
135, 96–103 (2014).

79. Carrieri, M., Bacchi, M., Bellini, R. & Maini, S. On the competition occurring
between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy.
Environ. Entomol. 32, 1313–1321 (2003).

80. Ritchie, S. A., Paton, C., Buhagiar, T., Webb, G. A. & Jovic, V. Residual
treatment of Aedes aegypti (Diptera: Culicidae) in containers using
pyriproxyfen slow-release granules (Sumilarv 0.5G). J. Med. Entomol. 50,
1169–1172 (2013).

81. Chan, K., Ho, B. & Chan, Y. Aedes aegypti (L.) and Aedes albopictus (Skuse) in
Singapore City: 2. Larval habitats. Bull. World Health Organ. 44, 629 (1971).

82. Ali, A., Nayar, J. K. & Xue, R.-D. Comparative toxicity of selected larvicides
and insect growth regulators to a Florida laboratory population of Aedes
albopictus. J. Am. Mosq. Contr. 11, 72–76 (1995).

83. Darriet, F. & Corbel, V. Laboratory evaluation of pyriproxyfen and spinosad,
alone and in combination, against Aedes aegypti larvae. J. Med. Entomol. 43,
1190–1194 (2006).

84. Sihuincha, M. et al. Potential use of pyriproxyfen for control of Aedes aegypti
(Diptera: Culicidae) in Iquitos, Peru. J. Med. Entomol. 42, 620–630 (2005).

85. Andrighetti, M. T. M., Cerone, F., Rigueti, M., Galvani, K. C. & da Graça
Macoris, Md. L. Effect of pyriproxyfen in Aedes aegypti populations with
different levels of susceptibility to the organophosphate temephos. Dengue 32,
186 (2008).

86. Primault, L. Comment booster la technique de l’insecte stérile? Transfert de
pyriproxyfène par les mâles aux femelles et impact sur leur reproduction
(Master’s thesis, Université de Montpellier, 2015).

87. Pleydell, D. R. J. et al. Estimation of the dispersal distances of an aphid-borne
virus in a patchy landscape. PLOS Comput. Biol. 14, e1006085 (2018).

88. Peccoud, J., Pleydell, D. R. J. & Sauvion, N. A framework for estimating
the effects of sequential reproductive barriers: implementation using
Bayesian models with field data from cryptic species. Evolution 72, 2503–2512
(2018).

89. Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R:
Package deSolve. J. Stat. Softw. 33, 1–25 (2010).

90. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.
org/ (2018).

91. Heffernan, J. M., Smith, R. J. & Wahl, L. M. Perspectives on the basic
reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005).

92. Diekmann, O., Heesterbeek, J. & Roberts, M. G. The construction of next-
generation matrices for compartmental epidemic models. J. R. Soc. Interface 7,
873–885 (2009).

93. Gillespie, D. T. Approximate accelerated stochastic simulation of chemically
reacting systems. J. Chem. Phys. 115, 1716–1733 (2001).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0451-1

10 COMMUNICATIONS BIOLOGY | _#####################_ | https://doi.org/10.1038/s42003-019-0451-1 | www.nature.com/commsbio

https://www.ocean-indien.ars.sante.fr/system/files/2019-03/2019-03-12_CP_ARSOI_Epidemie%20Dengue%202019_1.pdf
https://www.ocean-indien.ars.sante.fr/system/files/2019-03/2019-03-12_CP_ARSOI_Epidemie%20Dengue%202019_1.pdf
https://www.ocean-indien.ars.sante.fr/system/files/2019-03/2019-03-12_CP_ARSOI_Epidemie%20Dengue%202019_1.pdf
https://www.R-project.org/
https://www.R-project.org/
www.nature.com/commsbio


94. de Valpine, P. et al. Programming with models: writing statistical algorithms
for general model structures with NIMBLE. J. Comput. Graph. Stat. 26,
403–417 (2017).

Acknowledgements
The authors would like to thank Mark Vreysen, Kostas Bourtzis, Andrew Parker, Nicole
Culbert, Thierry Baldet and Haoues Alout for comments on early versions of this paper
and Lyse Primault, Geoffrey Gimonneau and Fabrice Chandre for providing egg viability
data. We also thank Randy Gaugler and Devi Shankar Suman for discussions regarding
their venereal transfer experiment. Financial support was provided by the Institute
Carnot Santé Animale (IVEMA project) and the REVOLINC (Revolutionising Insect
Control) ERC Consolidator Grant. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 682387).

Author contributions
J.B. (lead) and D.R.J.P. (supporting) conceived the study and acquired funding. D.R.J.P.
(lead) and J.B. (supporting) created and analysed the models and wrote the paper.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s42003-
019-0451-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0451-1 ARTICLE

COMMUNICATIONS BIOLOGY | _#####################_ | https://doi.org/10.1038/s42003-019-0451-1 | www.nature.com/commsbio 11

https://doi.org/10.1038/s42003-019-0451-1
https://doi.org/10.1038/s42003-019-0451-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics
	Results
	Boosting reduces the thresholds and time for elimination
	Boosting shrinks the basic reproductive number of dengue
	Auto-dissemination is most effective at high densities
	Auto-dissemination improves SIT and BSIT efficacy

	Discussion
	Methods
	Boosted sterile insect technique model
	Equilibria analysis
	Parameterisation of BSIT model
	Time to elimination
	Sensitivity analyses
	Dengue transmission model
	The basic reproductive number of dengue transmission
	Stochastic simulation of population dynamics under control
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




