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Abstract  13 

A wide range of environmental and societal issues such as food security policy implementation 14 

requires accurate information on biomass productivity and its underlying drivers at both regional and 15 

local scales. While many studies in West Africa are conducted with coarse resolution earth observation 16 

data, few have tried to relate vegetation trends to explanatory factors, as is generally done in land use 17 

and land cover change (LULCC) studies at finer scales. In this study we proposed to make a bridge 18 

between vegetation trend analysis and LULCC studies to improve the understanding of the various 19 

factors that influence the biomass production changes observed in satellite time series (using 20 

integrated Normalized Difference Vegetation Index [NDVI] as a proxy). The study was conducted in 21 

two steps. In the first step we analyzed MODIS NDVI linear trends together with TRMM growing 22 

season rainfall over the Sahel region from 2000–2015. A classification scheme was proposed that 23 

enables better specification of the relative role of the main drivers of biomass production dynamics. 24 

We found that 16% of the Sahel is re-greening—but found strong evidence that rainfall is not the only 25 

important driver of biomass increase. Moreover, a decrease found in 5% of the Sahel can be chiefly 26 

attributed to factors other than rainfall (88%). In the second step, we focused on the “Degré Carré de 27 

Niamey” site in Niger. Here, the observed biomass trends were analyzed in relation to land cover 28 

changes and a set of potential drivers of LULCC using the Random Forest algorithm. We observed 29 

negative trends (29% of the Niger site area) mainly in tiger bush areas located on lateritic plateaus, 30 

which are particularly prone to pressures from overgrazing and overlogging. The significant role of 31 

accessibility factors in biomass production trends was also highlighted. Our methodological 32 
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framework may be used to highlight changing areas and their major drivers to identify target areas for 33 

more detailed studies. Finer-scale assessments of the long-term vulnerability of populations can then 34 

be made to substantiate food security management policies.  35 

Keywords: Sahel, NDVI time series, trend, drivers of change, food security, land cover changes 36 

1. Introduction 37 

While the population of Africa is set to exceed 3 billion by 2050 (United Nations, 2013), increasing 38 

climate variability, as expressed by extreme climatic events (e.g., droughts or floods) threatens 39 

agricultural production and enhances household vulnerability and food insecurity. Schlenker and 40 

Lobell (2010) estimated that climate change would be responsible for yield declines of up to 22% in 41 

major food staples. However, the dynamics of agricultural production are not solely a result of 42 

climatic factors; they depend on many factors, including agricultural practices, population density and 43 

environmental and social constraints (type of soil, land accessibility, etc.). In the context of increasing 44 

food demand, the identification of areas particularly prone to degradation in agricultural production 45 

conditions, and a better understanding of the underlying drivers is increasingly important for long-term 46 

mitigation and adaptation strategies (Pricope et al., 2013).  47 

The Sahel belt, a transition zone between the Sahara Desert and the tropical savannas, is characterized 48 

by substantial rainfall variability and is particularly prone to food insecurity because most of the 49 

agropastoralist local population rely on low productivity rainfed agriculture (mainly millet and 50 

sorghum) for their livelihoods. Food crises caused by severe droughts are recurrent, some amounting 51 

to extreme starvation of the populations (e.g., in the late 1960s and 1980s; Hulme, 2001; Nicholson et 52 

al., 1998). Since the late 1990s, however, the Sahel region has seen a general increase in rainfall (Ali 53 

and Lebel, 2009; Nicholson, 2005), and the ensuing vegetation recovery, as viewed from space, has 54 

been termed a “re-greening” of the region (Eklundh and Olsson, 2003; Olsson et al., 2005; Prince et 55 

al., 2007, 1998). Most studies on the re-greening of the Sahel are founded on the Normalized 56 

Difference Vegetation Index (NDVI), a spectral ratio index based on the red and infrared bands 57 

(Tucker, 1979) and closely linked to vegetation productivity (Asrar et al., 1984; Pettorelli et al., 2005). 58 



The relationship between the Above Net Primary Production (ANPP) and NDVI relies, on one hand, 59 

on the close relationship between the fraction of Absorbed Photosynthetically Active Radiation 60 

(fAPAR) integrated over a time period and the growing season ANPP (Prince, 1991) and, on the other 61 

hand, on the linear correlation between NDVI and fAPAR, due to their similar functional responses to 62 

leaf orientation, solar zenith angle and atmospheric optical depth (Myneni and Williams, 1994). Thus, 63 

NDVI trends integrated over a time period have been widely used as a proxy to monitor changes in 64 

vegetation productivity. To date, the most frequently utilized NDVI dataset is the Advanced Very 65 

High Resolution Radiometer (AVHRR) dataset from the National Oceanic and Atmospheric 66 

Administration (NOAA) satellite due to its high temporal resolution and its availability since the 67 

beginning of the 1980s. This technology has enabled the monitoring of vegetation trends over nearly 68 

thirty-five years at a spatial resolution of 8 km (e.g., Anyamba et al., 2014; Dardel et al., 2014b; 69 

Herrmann et al., 2005; Huber et al., 2011). Most of these studies reported an increase in the greenness 70 

of vegetation over the whole Sahel since the 1980s and helped to fuel the debate on the "irreversible" 71 

desertification of the Sahel. However, recent studies based on Moderate Resolution Imagery 72 

Spectroradiometer (MODIS) data, which have supported vegetation monitoring at a 250 m spatial 73 

resolution since 2000, have highlighted the spatial heterogeneity of trends, with some areas showing 74 

negative trends or non-significant trends (Leroux et al., 2014; Rasmussen et al., 2014).  75 

Currently, one of the main challenges in analyzing biomass productivity dynamics is to document the 76 

underlying drivers consistently. On a global scale, it has recently been shown that the main driver of 77 

the greening of Earth may be increases in CO2, which augments photosynthesis and, consequently, 78 

increases the water use efficiency in water limited environments (Donohue et al., 2013; Zhu et al., 79 

2016). At the Sahelian scale, however, although it is generally acknowledged that variations in 80 

vegetation depend on rainfall, several studies have indicated that local NDVI trends might not be fully 81 

explained by global drivers such as rainfall and have suggested other causal local factors (Boschetti et 82 

al., 2013; Fensholt et al., 2013; Helldén and Tottrup, 2008; Herrmann and Hutchinson, 2005; Hoscilo 83 

et al., 2014; Huber et al., 2011; Rasmussen et al., 2014) such  as shifts in land use, as shown in Mali 84 

by Bégué et al. (2011) or many non-anthropogenic factors (e.g. intra-annual distribution of rainfall 85 



events, humidity or temperature) as recently shown in Rishmawi et al. (2016). Characterization of the 86 

main drivers of vegetation dynamics therefore relies mainly on the distinction between climate-87 

induced biomass changes and changes induced by other factors (both anthropogenic and natural) 88 

(Knauer et al., 2014; Mbow et al., 2015). For instance, Hickler et al. (2005) and Seaquist et al. (2009) 89 

used a process-based vegetation model in which vegetation dynamics predicted by the model without 90 

any human influence were compared to vegetation trends observed by remote sensing. The climate 91 

contribution can also be assessed with the Rain Use Efficiency (RUE) measure; however, the RUE has 92 

been widely questioned due to several limitations (Dardel et al., 2014a; Hein and Ridder, 2006; Hein 93 

et al., 2011; Prince et al., 2007). For regions where rainfall is the main limiting factor of vegetation 94 

growth, another method, considered robust and more widely accepted, is the residuals method (also 95 

called the RESTREND; Wessels et al., 2007) proposed by Evans and Geerken (2004), which is based 96 

on the trend analysis of the residuals between the observed NDVI and precipitation-normalized NDVI. 97 

While RUE is often considered as the relationship between rainfall and NDVI, RESTREND in turn is 98 

simply a rearrangement of RUE into a temporal sequence (Rishmawi and Prince, 2016). Trends in the 99 

residuals indicate deviations of NDVI from the NDVI-rainfall relationship and express land 100 

improvements or degradations greater than those that can be explained by rainfall alone. Thus, such 101 

changes are a potential effect of human activities. Several studies have tested the RESTREND method 102 

to identify potential changes in ecosystem conditions over Africa (Dardel et al., 2014a; Huber et al., 103 

2011; Ibrahim et al., 2015; Kaptué Tchuenté et al., 2015; Wessels et al., 2007). However, an important 104 

but often ignored conceptual limitation of using the RESTREND method is that the biophysical 105 

relationship between NDVI-based vegetation productivity and rainfall is supposed to be constant over 106 

the time. Yet, Hein et al. (2011) showed that in the Sahelian semi-arid areas, this relationship is far 107 

from being linear. In addition, RESTREND will not be able to account for other processes, such as 108 

changes in Water Use Efficiency induced by increases in CO2 that also have impacts on vegetation 109 

productivity (Donohue et al., 2013). Finally, in addition to the use of NDVI trends to understand 110 

vegetation dynamics, new opportunities are appearing in the understanding of vegetation dynamics in 111 

drylands by jointly using NDVI and Vegetation Optical Depth (VOD) trends, as attested by Andela et 112 

al. (2013) and more recently by Tian et al. (2016) in the Sahel. In particular, it has been shown that 113 



NDVI is more sensitive to herbaceous vegetation, while VOD can be used as a proxy for woody 114 

vegetation (Andela et al., 2013). 115 

Due to the scarcity of reliable long-term ground observations to validate and interpret the low-116 

resolution vegetation index trends, analyses of the underlying processes other than climate are rare. 117 

Dardel et al. (2014b) related GIMMS-3g NDVI trends with in situ observations of aboveground 118 

herbaceous biomass over the Fakara region in Niger and Gourma region in Mali and found a good 119 

agreement between the two datasets. By relating these vegetation trends to ground observations, the 120 

authors concluded that soil types and soil depth significantly impacted biomass production in Gourma, 121 

while no clear pattern could be found for the Fakara site. In Senegal, based on ground-based biomass 122 

estimation and a botanical inventory of woody vegetation species, Brandt et al. (2015) assumed that 123 

the greening trends come from an increase in tree density. 124 

Meanwhile, in line with the emergence of “Land Change Science” (Verburg et al., 2013a) aims at 125 

understanding the land system change as resulting from dynamic interplay of the sociological and 126 

ecological systems, a myriad of research on Land Use/Land Cover changes (LULCC) and their related 127 

drivers has been undertaken in Africa (e.g., Brinkmann et al., 2012; Estes et al., 2012; Kindu et al., 128 

2015; Nutini et al., 2013; Pricope et al., 2013; Teferi et al., 2013). These studies make use of different 129 

sources of data such as LULCC maps derived from remote sensing data, statistics, surveys or other 130 

geospatial data related to accessibility, biophysical or demographic factors (Brinkmann et al., 2012; 131 

Kindu et al., 2015; Mutoko et al., 2014; Teferi et al., 2013). While it is acknowledged in the literature 132 

that land system changes result from changes occurring in biophysical, social and economic systems 133 

across various spatial and temporal scales (van Asselen and Verburg, 2013; Verburg et al., 2013b), the 134 

incorporation of long-term vegetation trends observed at regional scale as a way to characterize 135 

LULCC has rarely been made in LULCC studies (e.g. Nutini et al., 2013). 136 

2. Objectives and overall approach 137 

In line with previous studies on the driving forces of vegetation changes in the Sahel, the overall aim 138 

of this study was to gain a better understanding of the factors involved in biomass production 139 



dynamics (using NDVI as a proxy) between 2000 and 2015, on both a regional (western Sahel) and 140 

local (degree square in southwestern Niger) levels, using a combination of remote sensing and various 141 

existing geospatial datasets. The specific objectives of this paper are to: 142 

(1) Identify areas of significant recent monotonic NDVI trends in the western Sahel zone. 143 

(2) Further specify the relative role of rainfall and human factors in NDVI changes on a regional 144 

level. 145 

(3) Further explore the importance of various types of potential climatic- and LULCC-related 146 

drivers of NDVI changes on a local level. 147 

Few analyses have been conducted combining regional and local approaches to disentangle the main 148 

drivers of biomass production trends at the level of the Sahel. Among them, we can mention the recent 149 

study of Brandt et al. (2016), which aimed to assess and understand the woody vegetation trends over 150 

the Sahelian belt. Here, we proposed an analysis of biomass production trends on a regional level 151 

based on NDVI data together with a more detailed analysis on a local level of the underlying processes 152 

by relating vegetation trends with rainfall and the related drivers of LULCC. However, while the 153 

Brandt et al. (2016) study focused on the woody vegetation cover during the dry season, the present 154 

study focuses on the green herbaceous layer and provides a more extensive analysis at the local level.  155 

Figure 1 presents the overall approach developed in this study. We have first analyzed the biomass 156 

production trends over a 16-year period (2000–2015) in the western Sahel using growing season 157 

integrated NDVI (MOD13Q1 collection 6) time series (iNDVI; Figure 1-1). Then, to assess the role of 158 

rainfall and human factors, a classification scheme based on (i) the iNDVI trends, (ii) the correlation 159 

between iNDVI and growing season rainfall (iRAIN; hereafter merely referred as rainfall) derived 160 

from the TRMM3B43 product, and (iii) the iNDVI residual trend was proposed (Figure 1-2). While it 161 

is acknowledged that vegetation productivity may be affected by climate variables other than rainfall, 162 

over the Sahel, growing season rainfall, however, remains the primary factor as recently evidenced in 163 

Rishmawi et al. (2016) among others. Thus, we chose to restrict our analysis to the study of the 164 

relationship between NDVI and growing season rainfall alone. After the main drivers of iNDVI trends 165 

were identified over the western Sahel, we conducted a local analysis over a southwestern Niger site to 166 



explain the observed iNDVI trends through detailed environmental (rainfall, topography and soil), 167 

human (demography, physical accessibility), and land cover change variable analysis using the 168 

Random Forest (Breiman, 2001) algorithm. 169 

 170 

Figure 1. Flowchart of the approach adopted in the study: links between the regional and local analyses. The first part 171 
(labeled ) corresponds to the first objective of the study, which is the iNDVI trend analysis over the western Sahel. 172 
The second part (labelled ) corresponds to the second objective: the identification of the main drivers of iNDVI 173 
trends over the western Sahel. The third part (labelled ) corresponds to the identification of the main drivers of 174 
iNDVI trends over the Niger site. 175 

3. Study site and material 176 

3.1. Study site 177 

We focused our study on two spatial levels: the regional level, the western Sahel zone, which is 178 

defined as the area receiving an annual rainfall ranging from 150 to 750 mm/year, and the local level, 179 

southwestern Niger (Figure 2).  180 

The western Sahel is characterized by marked seasonality with a long dry season and a short wet 181 

season lasting from 1–4 months depending on the latitude. The climate is mainly controlled by the 182 

timing, amount, and distribution of rainfall by the progression of the Intertropical Convergence Zone 183 

during the well-known West African Monsoon (Lebel and Ali, 2009). Consequently, the vegetation 184 

pattern over the Western Sahel area closely follows the rainfall gradient: the northern parts of the 185 

western Sahel are dominated by sparse vegetation cover (open sparse grassland and shrubland), and 186 

the land is used primarily for grazing, while the southern parts are characterized by a larger amount of 187 



vegetation cover with woodland and savanna. Rainfed agriculture and grazing are the main land uses 188 

observed in the area (Tucker, 1985). Over the whole western Sahel area, the climatic constraint (i.e., 189 

annual rainfall and its spatio-temporal variability) is considered as the most important controlling 190 

ecosystem driver.  191 

At the local level, we focused on an agropastoral site located in southwestern Niger (12.9°-13.6°N; 192 

1.6°-3.1°N), namely, the “Degré Carré de Niamey” (hereafter referred to as the DCN site), which 193 

covers an area of approximately 18,000 km². Niger was chosen as a study site because it appears as “a 194 

Sahelian exception.” While, overall, greening has been observed over the western Sahel, southwestern 195 

Niger has been marked by significant browning trends despite an increase in rainfall (e.g., Anyamba et 196 

al., 2014; Dardel et al., 2014b; Fensholt and Rasmussen, 2011a). In addition, between 2000 and 2015, 197 

Niger has suffered six major food crises. Thus, a better understanding of the role played by the 198 

underlying drivers of biomass productivity changes is essential for such a country for managing food 199 

security over the long term. The climate over the DCN site is typically Sahelian and is marked by a 200 

high latitudinal gradient with an average annual rainfall ranging from 480 to 630 mm/year despite the 201 

area's narrow ranges in latitude and longitude (about 160 km x 110 km). According to D’Herbès and 202 

Valentin (1997), the vegetation cover is highly fragmented and composed of three main units: tiger 203 

bush on the lateritic plateaus, fallow savanna, and crop fields on the sandy soils. The agricultural 204 

production system is dominated by rainfed pearl millet. The area is particularly vulnerable to climate 205 

variability because of its strong dependence on rainfall for both livestock and farming. In addition, 206 

because of rural population increases in recent decades, most of the arable land is already under 207 

cultivation (Hiernaux et al., 2009). 208 



 209 
Figure 2. The study sites. a) Mean integrated NDVI between July and October over the western Sahel zone; b) Main 210 
land cover classes (MODIS Land Cover Product, MCD12Q1), c) Landsat 8 image of the DCN site in September 2013 211 
(red-green-NIR color composition), and d) anomalies of cumulated rainfall between June and October (deviation 212 
from the mean values over the 2000–2015 period) from the TRMM3B43 product over the western Sahel (bar) and the 213 
DCN site (line). 214 

3.2. Data sources and pre-processing 215 

3.2.1. MODIS NDVI 16-day composite collection 6 data 216 

A set of 16-day images of NDVI from the new MODIS products available at 250 m (MOD13Q1 217 

collection 6; Didan, 2015) was downloaded. The images cover a period from 2000 to 2015 over the 218 

western Sahel zone. These images were used to analyze the NDVI trends as a proxy for biomass 219 

productivity changes. The MODIS product is corrected for atmospheric effects, including cirrus clouds 220 

and aerosols (Vermote et al., 2002) and preprocessed with the CV-MVC (Constrained View angle-221 

Maximum Value Composites) algorithm to retain the best observations during each 16-day period 222 



using pre-composited (8-day) surface reflectance data (Didan, 2015). However, in areas with a marked 223 

rainy season such as the Sahel, residual noise can still be present due to remnant cloud cover, which 224 

tends to decrease NDVI values. Thus, in addition to the abovementioned preprocessing, a Savitzky-225 

Golay filter was applied to reduce the noise in the NDVI time series(Chen et al., 2004) which allowed 226 

matching the upper envelope of the NDVI time series. Finally, the temporal resolution of the NDVI 227 

time series was reduced by cumulating the 16-day NDVI values on an annual basis to focus on 228 

vegetation growth and avoid noise related to non-vegetated areas or soil moisture contamination. 229 

Several methods have been proposed to compute “annual” NDVI values (e.g., Mbow et al., 2013) 230 

including NDVI annual sum (Brandt et al., 2015; Nicholson et al., 1998), the maximum growing 231 

season NDVI values (Eklundh and Olsson, 2003; Hickler et al., 2005) and the NDVI cumulated over 232 

the growing season after removing the dry season NDVI values (Anyamba and Tucker, 2005; Dardel 233 

et al., 2014a; Fensholt and Rasmussen, 2011; Tian et al., 2016). To minimize the potential impacts of 234 

woody cover (particularly evergreen species) on the NDVI trend analysis (Brandt et al., 2015; Mbow 235 

et al., 2013), we restrict our analysis to the annual herbaceous growth season (both rangelands and 236 

croplands dominant in the Sahel; including also deciduous trees and shrubs). Thus, NDVI was 237 

integrated over the growing season (iNDVI), which takes place in the Sahel between July and October 238 

(Anyamba et al., 2014; Anyamba and Tucker, 2005; Dardel et al., 2014a; Fensholt and Rasmussen, 239 

2011; Huber et al., 2011). 240 

3.2.2. TRMM3B43 rainfall data 241 

In the absence of a dense rain gauge network in the study area, a satellite rainfall estimation product 242 

was used in this study as a proxy for rainfall (Herrmann et al., 2005), namely, the merged TRMM 243 

(Tropical Rainfall Measuring Mission) 3B43v7 dataset, which delivers rainfall estimates at monthly 244 

intervals and with 25 km spatial resolution. It combines infrared and microwave information from 245 

different sources and is calibrated with monthly rain gauge data to adjust for bias (Huffman et al., 246 

2007). The TRMM data were downloaded from 2000 to 2015 and cumulated over 5 months (iRAIN, 247 

June-October) to take the time lag between rainfall and vegetative response into account (Fensholt and 248 

Rasmussen, 2011; Helldén and Tottrup, 2008). To allow the comparison between iNDVI and iRAIN, 249 



the nearest neighbor resampling method was applied to the TRMM3B43 data to match the spatial 250 

resolution of the MODIS NDVI data. 251 

3.2.3. Other geospatial data 252 

As mentioned in the introduction, apart from the climate factors, land use and land cover changes 253 

(LULCC) are also considered as change factors in biomass productivity at the local scale. Thus, based 254 

on a literature analysis regarding the main drivers of LULCC changes in semi-arid areas (e.g., 255 

Brinkmann et al., 2012; Lambin et al., 2001; Teferi et al., 2013) and the availability of data, a set of 256 

nine variables was selected that covered three categories (Table 1): (1) natural constraints (slope, 257 

toposequence, and type of soil), (2) accessibility (Euclidean distances from roads, rivers, and villages, 258 

and traveling time to market), and (3) demography (mean population density for the 2000–2015 period 259 

and the change in population density between 2000 and 2015). Among natural constraints, slope is a 260 

determinant of soil erosion because it leads to soil fertility loss and chemical soil degradation (e.g., 261 

Okou et al., 2016), which, in turn, has an impact on vegetation growth. Slope and toposequence 262 

together act as a constraint for land management for cropland expansion in particular, because gentle 263 

slopes and low elevations are generally more suitable for agricultural activities (e.g., Teferi et al., 264 

2013; van Asselen and Verburg, 2012). Lastly, soil type is recognized as one of the most important 265 

factors for vegetation growth and crop production due to nutrient availability, water retention 266 

capability or root conditions. Thus, soil type determines the probability of agricultural use.  267 

All the variables related to accessibility are considered as drivers of agricultural expansion or 268 

intensification, with (1) transportation cost and physical accessibility to a piece of parcel (distance 269 

from roads), (2) suitability of land for agricultural use through water availability (distance from 270 

rivers), and (3) proximities of farms to markets, which determine the availability of farming inputs and 271 

the possibility of selling harvest products (distance from a city and travelling time to market; e.g., 272 

Brinkmann et al., 2012; Geist and Lambin, 2002, 2004; van Asselen and Verburg, 2012). Lastly, 273 

population density and changes in population density can be considered as proxies for potential 274 

pressures on natural resources induced by a growing need to increase food production or fuelwood 275 

(e.g., Geist and Lambin, 2002; Kindu et al., 2015; Lambin et al., 2001). 276 



In addition to these variables, two climatic variables were also considered: trends in rainfall between 277 

2000–2015 growing periods and mean rainfall for the 2000–2015 growing periods. These variables 278 

can have a direct impact on biomass productivity because they determine the type and the 279 

development of natural and cropped vegetation. They can give rise to LULCC due to a potential shift 280 

in land management (e.g., adaptation of cropping practices and strategies). When persistent changes in 281 

rainfall patterns occur (e.g., Keys and McConnell, 2005; Nutini et al., 2013; van Asselen and Verburg, 282 

2012), changes in biomass productivity may also be the result. 283 

Table 1. Variables used as possible drivers of biomass productivity changes over the DCN site. 284 

Variable class Variable name Definition and units Data source Spatial resolution 

Climatic 

RAIN_M Mean growing period rainfall 2000-
2015 (mm/year) 

TRMM3B43 25 km 

RAIN_TREND Growing period rainfall trend (OLS) 

2000-2015  

TRMM3B43 25 km 

 

Natural 

constraints 

SLOPE Slope (degree) SRTM DEM 30+ 30 m 

TOPO Toposequence SRTM DEM 30+  

SOIL Type of soil Harmonized World 
Soil Database-

IIASA 1 

1 km 

Accessibility 

DIST_RIV Euclidean distance from river (meters) SRTM DEM 30+ vector 

DIST_CIT Euclidean distance from villages with 

more than 1000 habitants (meters) 

National Institute of 

Statistics, Niger  

vector 

DIST_ROAD Euclidean distance from road (meters) GIST Portal 2 vector 

MARKET Traveling time from city market with 
a population > 20,000 (hours) 

HarvestChoice 3 1 km 

Demography 

POP_DENS Mean population density for the 2000-

2015 period 
AfriPop4 

1 km 

POP_DIFF Population density difference between 

2000 and 2015 

AfriPop4  1 km 

Land Cover 

Changes 

LAND_COV Land Cover Changes between 2001 

and 2013 (10 classes) 

Landsat 5 and 

Landsat 8  

30 m 

1 
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ 285 

2
 https://gistdata.itos.uga.edu/ 286 

3 http://harvestchoice.org/data/tt_20k 287 
4 http://www.worldpop.org.uk/ 288 

 289 

Finally, a map of land cover change between 2001 and 2013 was used to analyze the hypothetical link 290 

between the iNDVI trends and the land cover change types. Classes of land cover change acquired 291 

from this map were also considered as a possible direct explanatory variable of biomass productivity 292 

changes (Figure 3). The land cover change map was obtained by using a post-classification 293 

comparison approach of two land cover classifications derived from Landsat images. The images were 294 

classified using a supervised object-based expert classification, and the resulting land cover maps 295 

(2001 and 2013) were validated against a set of 1200 independent validation objects randomly selected 296 

over the DCN site. The observed land cover classes of each object were manually labelled through 297 

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
https://gistdata.itos.uga.edu/
http://harvestchoice.org/data/tt_20k
http://www.worldpop.org.uk/


visual interpretations of Google Earth® high resolution satellite images and Landsat images for each 298 

date. An overall accuracy of 88% for 2001 and 82% for 2013 was obtained assuming that the 299 

validation dataset obtained by photo interpretations was free of error. The resulting land cover change 300 

map was composed of six land cover classes characterized by no change between 2001 and 2013 301 

(plateaus, waterbodies, cropland—both fallow and grassland—degraded hillslopes, bare soil and 302 

natural vegetation) and three classes characterized by changes: areas of cropland loss (cropland in 303 

2001 and degraded hillslopes, bare soil or natural vegetation in 2013), areas with natural vegetation 304 

expansion (degraded hillslopes or bare soil in 2001 but natural vegetation in 2013), and areas of 305 

cropland expansion (degraded hillslopes, bare soils or natural vegetation in 2001 and cropland in 306 

2013). 307 

 308 
Figure 3. Map of the land cover changes over the DCN site between 2001 and 2013 derived from Landsat images. 309 

4. Methods 310 

4.1. NDVI trends  311 

To investigate the NDVI changes, pixel-wise temporal trends (iNDVI) were computed over the 312 

western Sahel zone during the 2000-2015 period using an Ordinary Least Squares (OLS) regression. 313 

OLS is considered as a simple but robust way to detect long-term trends in NDVI time series (e.g., 314 

Anyamba et al., 2014; Helldén and Tottrup, 2008; Ibrahim et al., 2015). OLS measures the 315 



relationship between the iNDVI as a dependent variable and time (i.e., in the present case 16 years) as 316 

an independent variable and is represented by the following equation: 317 

Linear model                 (1) 

where   is the y-intercept, which gives       values at the start of the observed period, and  318 

  is the slope coefficient, which measures the rate of change of       per unit of     . 319 

By using Ordinary Least Squares regression as a means to measure change in iNDVI, we assumed in 320 

this study that changes in biomass productivity occur as gradual and linear processes through time. 321 

However, this approach cannot detect abrupt breaks in the time series and will necessarily obscure the 322 

existence of short-term trends as previously mentioned by Jamali et al. (2014). 323 

To examine the consistency of trends over time, the p-values of two-sided Student’s t-tests were 324 

computed for the slope coefficients ( ). While it has recently been suggested by Colquhoun (2014) to 325 

consider at least a p-value < 0.001 to make conclusions concerning the significance of obtained 326 

results, to be consistent with most of studies on NDVI trend analysis, all trends at the 95% confidence 327 

level (p-value<0.05) or higher were considered statistically significant (i.e., null hypothesis H0:   = 0). 328 

Nonetheless, different classes of significance (0.01<p-value<0.05, 0.001<p-value<0.01 and p-329 

value<0.001) are also presented. The direction of change (an increase or decrease in biomass 330 

production) was determined by analyzing the sign of the slope coefficient. 331 

4.2. Drivers of NDVI trends at the regional level 332 

4.2.1. NDVI-rainfall correlation 333 

In semi-arid areas such as in the Sahel, the biomass production, and thus NDVI, is known to be highly 334 

dependent on rainfall, both the inter-annual rainfall variability as well as the timing and intra-335 

seasonnal distribution of rainfall events. Since annual rainfall is usually considered as the main driver 336 

of biomass production, we focused this study only on the growing season rainfall. The pixel-wise 337 

Pearson correlation coefficient (r) between iNDVI (July–October NDVI) and iRAIN (June–October 338 

RAIN) over the 2000–2015 period was calculated for each pixel to evaluate the nature and strength of 339 

the NDVI-rainfall relationship. The iNDVI-iRAIN relationship was considered statistically significant 340 



at the 95% level (p-value<0.05, corresponding to r =0.49). The predicted values of iNDVI for each 341 

year and each pixel from the observed iRAIN were then computed.  342 

4.2.2. Residual NDVI trends (RESTREND) 343 

Because biomass production is greatly controlled by inter-annual rainfall variability in semi-arid 344 

environments, the trends in iNDVI contain a significant rainfall signal. As suggested by Evans and 345 

Geerken (2004), to distinguish rainfall-induced changes from changes induced by other factors, the 346 

rainfall component must be removed from the iNDVI signal. To isolate the iNDVI trends not 347 

explained by rainfall, we computed the pixel-wise iNDVI residuals (RESTREND; Wessels et al., 348 

2007)—the difference between the observed iNDVI and the predicted iNDVI. However, while it has 349 

been suggested that RESTREND is a useful method for detecting vegetation changes independent of 350 

rainfall (e.g. Wessels et al., 2007), it is not without inherent limitations and its validity is subjected to 351 

several requirements owing to its dependence to RUE, as recently discussed in Rishmawi and Prince 352 

(2016). Particularly, the use of RESTREND is relevant only in cases where significant linear 353 

relationships between iNDVI and iRAIN are observed (Fensholt et al., 2013; Fensholt and Rasmussen, 354 

2011; Wessels et al., 2012). For cases with high levels of changes, the relationship between iNDVI 355 

and iRAIN sometimes becomes weak, thus making the RESTREND method unreliable (Wessels et al., 356 

2012). In the present study, pixels with no significant vegetation productivity to rainfall correlation 357 

(r<0.49) were excluded from the residual analysis. Any trend in the iNDVI residuals could then be 358 

interpreted as a change in biomass production independent of growing seasonal rainfall, assuming 359 

other causative factors such as land cover or land use changes. Trends in the iNDVI residuals were 360 

computed following the approach used for the iNDVI and assuming that the MODIS NDVI and 361 

TRMM3B43 measurements were error-free thus not affecting the significance of the RESTREND 362 

regression line. However, if rainfall data are accompanied by a measure of errors, a correction can be 363 

applied in the process to test the significance of RESTREND values as in Rishmawi and Prince 364 

(2016).  365 



4.2.3. Mapping the main drivers of NDVI trends over the Sahel 366 

The conceptual approach developed in this study relies on the fact that biomass productivity dynamics 367 

(using iNDVI trends as a proxy) on a per-pixel basis result mainly from interactions with climate (i.e. 368 

rainfall) and human factors. Thus, we postulated that if we could isolate the climatic factors from the 369 

human factors, the relative roles of both factors in NDVI trends could be assessed and mapped.  370 

While most studies isolate rainfall-driven biomass production changes from changes induced by 371 

human factors (hereafter referred to as "other factors") using either RUE or RESTREND analyses (e.g. 372 

Evans and Geerken, 2004; Ibrahim et al., 2015; Prince et al., 2007; Wessels et al., 2007), this study 373 

proposes a classification scheme to assign relative roles to rainfall and other causative factors in NDVI 374 

changes.  375 

This classification scheme results in a set of 6 possible decision rules based on the slope of the iNDVI 376 

trend, the iNDVI-iRAIN coefficient of correlation and the slope of the iNDVI residual trend (Table 2). 377 

It reflects the assumption that biomass production could be driven (i) only by rainfall, (ii) only by 378 

factors other than rainfall, or (iii) by a combination of both factors (rainfall and other factors). The 379 

combination case was not taken into account when considering the first two methods. The impact of 380 

other factors is assessed using the slope of the iNDVI trend corrected from the rainfall effect (i.e., 381 

NDVI residual trend), for which a positive trend (slope >0) means that vegetation productivity 382 

increases more than can be explained by rainfall alone, and a negative trend (slope < 0) means that 383 

vegetation productivity decreases more than can be explained by rainfall alone (Table 2). Thus, a 384 

positive iNDVI trend (i.e., an increase in biomass productivity) associated with a significant iNDVI-385 

iRAIN correlation (r > 0.49) and a significant positive trend in iNDVI residual (slope > 0) indicates 386 

that the vegetation growth benefits both from rainfall and from other factors because—after removing 387 

the rainfall effect—a positive trend can still be observed in iNDVI (Table 2). In contrast, if a 388 

significant iNDVI-iRAIN correlation is observed together with an iNDVI residual negative (slope <0) 389 

or non-significant trend (p-value <0.05), the observed vegetation growth is due mainly to the rainfall 390 

factor. Finally, when there is no iNDVI-iRAIN correlation, it means that vegetation growth benefits 391 



only from factors other than rainfall (Table 2). The same reasoning is followed to interpret a negative 392 

iNDVI trend. 393 

The results of the iNDVI trends main drivers’ map over the Sahel are then illustrated through different 394 

case studies extracted from the literature. 395 

Table 2. Classification rules to disentangle rainfall-driven NDVI changes from changes induced by other factors. 396 

iNDVI trend (p-

value<0.05) 

 

 

Coefficient of 

correlation 

 iNDVI-iRAIN 

 

 

 

iNDVI residual trend (p-

value<0.05) 
 

Interpretation of the 

iNDVI trend 

Positive iNDVI trend 

(slope>0) 

 

 

r>0.49  Slope>0  
Rainfall factor and other 

factors 

r>0.49  
Slope<0 or Slope (p-

value>0.05) 
 Rainfall factor 

r<0.49   
 

 
Other factors 

Negative iNDVI trend 

(slope <0) 

 

 

r>0.49  Slope<0  
Rainfall factor and other 

factors 

r>0.49  
Slope>0 or Slope (p-

value>0.05) 
 Rainfall factor 

r<0.49   
 

 
Other factors 

4.3. Drivers of NDVI trends over the DCN site 397 

To extend the analysis of the underlying factors of the iNDVI trends, a Random Forest algorithm (RF) 398 

was used to classify and identify the most important factors at the local level. To accomplish this, the 399 

previous two classes (i.e., “rainfall factor” and “other factor” used at the regional level) were 400 

disaggregated into 14 potential drivers and used as explanatory variables in RF (Table 1), while 401 

iNDVI trend classes (negative, positive, or no significant trends) were treated as the variables to be 402 

explained. RF is an ensemble learning method based on bagging (repeated selecting of random 403 

sampling with replacement) and used for classification. It combines large numbers of classification 404 

trees to optimize classification accuracy (Breiman, 2001). RF fits several small classification trees 405 

based on random samples of observations and a random sample of variables. These small 406 

classification trees are then aggregated, and the resulting class is elected by a majority vote (Breiman, 407 

2001). Here, first and foremost, we were interested in identifying the drivers with the most important 408 

contributions in distinguishing the different iNDVI trend classes. Thus, we benefited from the capacity 409 

of RF to determine variable importance in a classification process using the RF internal variable 410 

importance measures. In the present study, we focused on the mean decrease in accuracy. The mean 411 



decrease in accuracy consists of a random permutation of explanatory variables in the construction of 412 

the classification trees. It then measures the difference in the accuracy (named Out-Of-the-Bag error 413 

and computed internally on the samples not used during tree construction) before and after the 414 

switching process (Cutler et al., 2007). Thus, in our case study, the larger the decrease in accuracy is, 415 

the higher the importance of the drivers is in explaining iNDVI trends. In this study, the RF algorithm 416 

was implemented using the RandomForest package available in R (Liaw and Wiener, 2002). 417 

5. Results 418 

5.1. NDVI trends analysis 419 

We found that 79% of the pixels of the western Sahel zone are characterized by no significant iNDVI 420 

trend (Table 3; Figure 4a) and that most of the significant trends were positive (16%). Among these, 421 

20% were highly significant (p-value < 0.001; Table 4; Figure 4a). When analyzing the spatial pattern 422 

of the iNDVI trends (Figure 4a), we observed that the changes in iNDVI across the western Sahel zone 423 

are spatially heterogeneous. The iNDVI trends were positive over the western Sahel (mainly in Mali, 424 

Mauritania and Burkina Faso, < 2°W) while the eastern part of the western Sahel (> 0°, mainly Niger 425 

and Nigeria) is predominantly characterized by a strong reduction in iNDVI over the period 2000–426 

2015 (p-value< 0.001 or p-value <0.01; Table 4). This spatial distribution of iNDVI trends appears to 427 

be the result of a recent process because it is generally observed only in studies conducted from 428 

approximately 2011 or later (e.g., Dardel et al., 2014b) and not in older studies (those conducted 429 

before 2007) (e.g., Herrmann et al., 2005; Huber et al., 2011). It is also in agreement with a study 430 

(Brandt et al., 2016) that covers the same period (2000–2014) but focuses on woody vegetation land 431 

cover changes. When analyzing the DCN site level, the spatial distribution of trends differed from 432 

those at the western Sahel level (Figure 5a; Table 3). While the western Sahel zone exhibits mainly 433 

linear positive trends (i.e., a greening trend), the distribution of linear trends was reversed for the DCN 434 

site, where negative linear trends accounted for 29% of the study area. Among these, 31% were highly 435 

significant (p-value < 0.001; Table 4; Figure 6a) meaning that the last 16 years (2000–2015) have been 436 

marked by a reduction in biomass productivity (i.e., a “browning” trend). 437 



Table 3. Distribution of the iNDVI and iNDVI Residual trends (p-value < 0.05) over the western Sahel region and the 438 
DCN site obtained using MODIS NDVI and TRMM3B43 time series images between 2000 and 2015. 439 

  
Trend types (p-value < 0.05) 

  

Linear 

Negative 

Linear 

Positive 
No trend 

western 

Sahel 

NDVI trend (%) 5 16 79 

Residual trend (%)* 2 13 85 

     

DCN site 

NDVI trend (%) 29 4 67 

Residual trend 

(%)** 
10 5 85 

* Among the 56% of pixels with a significant NDVI-rainfall correlation over the western Sahel 440 
** Among the 7.6% of pixels with a significant NDVI-rainfall correlation over the DCN site 441 

Table 4. Distribution of the iNDVI trends types according to their significance level over the western Sahel region and 442 
the DCN site using MODIS NDVI time series between 2000 and 2015. 443 

 Trend types (p-value < 0.05) 

 Linear Negative Linear Positive 
 p-value<0.001 0.001<p-value<0.01 0.01<p-value<0.05 p-value<0.001 0.001<p-value<0.01 0.01<p-value<0.05 

western Sahel 

NDVI trend (%) 
20 30 50 11 29 60 

DCN site  

NDVI trend (%) 
31 32 37 14 30 57 

5.2. Drivers of NDVI trends at the regional level 444 

5.2.1. The NDVI-rainfall relationships 445 

Slightly over half (56%) of the Sahelian belt exhibited significant iNDVI-iRAIN linear relationships, 446 

but this proportion fell to 7.6% for the DCN site. The spatial pattern of the iNDVI-iRAIN correlation 447 

showed that the area with low correlation seemed to be associated with highly significant negative 448 

changes (p-value < 0.001 and      in biomass production. This is particularly visible in Niger, as 449 

already noted by Fensholt and Rasmussen (2011) (Figure 5a and Figure 5b). 450 



 451 

Figure 4. Spatial distribution over the western Sahel of a) the MODIS       trends; b) the correlation coefficient 452 
between MODIS       and TRMM3B43 June–October rainfall (significant at the 5% level for r=0.49); c) the iNDVI 453 
residual trends obtained for pixels with a significant linear NDVI-rainfall relationship during the 2000–2015 period. 454 



5.2.2. NDVI residual trends analysis 455 

For pixels marked by a significant vegetation productivity-rainfall relationship, the iNDVI residuals 456 

represent the part of herbaceous biomass production that is not fully explained by rainfall variability 457 

during the growing season. Figure 4c shows the geographical distribution of trends in the iNDVI 458 

residuals throughout the western Sahel; Figure 5c shows the same trends for the DCN site, and Table 3 459 

lists the distribution of the trend types. Large areas without significant trends were detected (85%); 460 

however, some areas (e.g., east of Senegal or central part of Mali) displayed highly positive trends in 461 

the iNDVI residuals (13% of the residual trends). These correspond to spatially consistent areas where 462 

the herbaceous biomass production increased more than could be explained by rainfall only. When 463 

looking at the distribution of iNDVI residual trend types over the DCN site (Table 3), only 15% 464 

consisted of significant trends, of which approximately two-thirds were highly negative. Some authors 465 

have suggested that this NDVI decline trend may be due to land use or land cover changes around the 466 

city of Niamey (Anyamba et al., 2014; Kaptué Tchuenté et al., 2015), an assumption explored 467 

hereafter. 468 

5.2.3. Mapping the main drivers of NDVI over the Sahel 469 

The respective roles of rainfall and other factors of change in iNDVI changes were assessed following 470 

the rule sets presented in Table 2. Figure 6a shows that half the increase in biomass production over 471 

the 2000–2015 period is explained by factors other than rainfall only (52%; Figure 6b), and the other 472 

half is explained by rainfall alone or rainfall combined with other factors. The rainfall factor-driven 473 

trends occurred over a specific area: from the south of Mauritania to the north of Burkina Faso. The 474 

decrease in biomass production was mainly explained by the impacts of factors other than rainfall 475 

(88%), while the combination of both rainfall and other factors accounted for 11% of the negative 476 

iNDVI trends and could be pinpointed in the north of Nigeria. Figure 5c shows a zoomed area of the 477 

DCN site, making it clear that both increases and decreases in biomass production seemed to be 478 

mainly driven by factors other than rainfall only (90% and 98%, respectively). However, increases in 479 

biomass production occurred in only a few areas—mainly in the eastern portion of the site—while the 480 

rest of the DCN site was dominated by a degradation in vegetation conditions. 481 



 482 

 483 

Figure 5. Spatial distribution over the DCN site of a) the MODIS iNDVI trends; b) the correlation between MODIS 484 
iNDVI and TRMM3B43 June–October rainfall (significant at the 5% level for r=0.49); and c) the iNDVI residual 485 
trends obtained for pixels with a significant NDVI-rainfall linear relationship during the 2000–2015 period. 486 



 487 

Figure 6. a) Spatial distribution of the main drivers of the biomass production changes over the western Sahel; b) 488 
distribution of driver types according to the direction of changes (increase or decrease) for western Sahel and the 489 
DCN site; and c) zoomed area of the DCN site. 490 

5.3. Drivers of NDVI trends at the local level 491 

As noted previously, the DCN site presented large areas of negative iNDVI trends for which rainfall 492 

did not appear to be the main driver (Figure 6c). A local analysis was conducted to explore the 493 

interpretation of potential underlying causes more deeply. 494 

As a first overview, we analyzed the distribution of trend types on the basis of land cover changes. 495 

From Table 5, it can be observed that lateritic plateaus, degraded hillslopes, natural vegetation and, to 496 

a lesser extent, cropland loss (Figure 3) are land cover classes where a clear pattern in the distribution 497 

of trend types is particularly notable. Specifically, these classes experienced a strong decrease in 498 

biomass production between 2000 and 2015 (47% for plateaus, 38% for degraded hillslopes, 29% for 499 



natural vegetation and 25% for cropland loss). For the other types of land cover classes, no clear trend 500 

patterns were observed. 501 

Then, a RF algorithm was employed to identify the most important drivers of iNDVI changes based on 502 

the importance variable measures provided. The importance variables were used for both the general 503 

model (i.e., for all types of trend) and for each trend class separately, allowing a specific assessment of 504 

drivers. The overall accuracy of the final RF model was estimated at 80%. Figure 7 shows the relative 505 

importance of the contribution of the five most important variables to the RF classification model 506 

generated by considering rainfall, natural constraints, accessibility, demography and land cover data. 507 

For trend types or for the overall RF model, the three most contributions are, in order of importance, 508 

the mean growing period rainfall, the distance from villages, and the type of soils. Other contributing 509 

variables are the travel time from markets and the distance of farms from rivers, except for linear 510 

negative trends for which land cover changes and topography are the most important variables, in 511 

accordance with the results shown in Table 5. 512 

Table 5. Distribution of trend types according to land cover and land cover changes* between 2001 and 2013.  513 

  Linear 

Negative 

(29%)  

Linear 

Positive 

(4%)  

No trend 

(67%)  

Total 

N
o

 c
h

an
g

e 

Plateaus (34.45%) 47 2 51 100 

Cropland (35.40%) 14 5 81 100 

Degraded hillslopes (2.05%) 38 2 60 100 

Natural vegetation (12%) 29 6 65 100 

C
h

an
g

es
 

Cropland loss (3.82%) 25 4 71 100 

Natural vegetation expansion (5.35%) 20 9 71 100 

Cropland expansion (5.13%) 21 5 74 100 

* Waterbodies and bare soil classes were excluded from the analysis because they represent a non-significant area (less than 514 
1%). 515 



 516 
Figure 7. Importance of variables in the Random Forest model according to NDVI trend classes over the DCN site: a) 517 
all classes; b) no trend; c) linear negative trend; and d) positive linear trend. Only the first five variables are 518 
displayed. Their importance is given in the “Mean decrease in accuracy”. See Table 1 for variable abbreviations. 519 

The analysis of the distribution of trend types for the five RF most important variables (Figure 8) 520 

indicates that areas far from villages (> 6 km), from rivers (> 8 km) and from markets (> 2 h) were 521 

more prone to undergo decreases in biomass production (i.e., a linear negative trend). In contrast, the 522 

areas with increased biomass production (i.e., a linear positive trend) generally occurred around 523 

villages (<6 km) and close to rivers (< 8 km) and markets (< 2 h). 524 



 525 
Figure 8. Distribution of trend types for the five most important Random Forest variables a) mean growing period 526 
rainfall; b) Euclidean distance from villages; c) type of soil; d) Euclidean distance from rivers; and e) travelling time 527 
from city market; for the DCN site. 528 

6. Discussion 529 

6.1. NDVI trends between 2000 and 2015 530 

For the period 2000–2015, our results revealed that linear positive iNDVI trends occurred mainly in 531 

the central part of Mali or southern portion of Mauritania. These results correspond with recent 532 

greenness trends reported by Hoscilo et al. (2014), who considered the 2001–2010 period based on 533 



SPOT-VGT NDVI time series, and with Cho et al. (2015), based on MODIS EVI acquired between 534 

2000 and 2009. Our results also agreed with previous regional-scale findings that analyzed NDVI 535 

trends over longer time periods based on GIMMS NDVI data (Anyamba et al., 2014; Dardel et al., 536 

2014b; Herrmann et al., 2005; Huber et al., 2011; Seaquist et al., 2009), thus verifying a longer-term 537 

process.  538 

In contrast, hotspots of highly significant negative iNDVI trends were highlighted along the western 539 

Niger and the Niger-Nigeria border. In this area, regardless of what period is considered, what data is 540 

used, or which analysis techniques were employed, western Niger (corresponding to the Tillaberi 541 

province) has been recognized as an area of consistent degradation in biomass production since at least 542 

the beginning of the 21st century, according to the works of Boschetti et al. (2013) over the 1998–543 

2010 period, or Hoscilo et al. (2014) over the 2001–2010 period. More generally, however, this 544 

browning trend has been observed since the 1980s (e.g., Huber et al., 2011 over the 1982–2007 period 545 

or Dardel et al., 2014b over the 1982–2011 period). 546 

One salient point of difference between this study and previous studies concerned Senegal. This 547 

country has been considered as a hotspot of greening trends regardless of which period is considered 548 

(e.g., Brandt et al., 2014; Fensholt and Rasmussen, 2011; Huber et al., 2011), but we found mainly 549 

non-significant iNDVI trends. Based on the findings of a recent study, conducted over the same period 550 

but focusing on woody cover changes during the dry season (Brandt et al., 2016), we can assume that 551 

the generally observed greening trend in Senegal is probably more closely linked to a positive trend in 552 

vegetation productivity of long-living woody cover (evergreen species), while annual herbaceous layer 553 

(including also some deciduous trees and shrubs) has probably had inter-annual variations (i.e., no 554 

trend) as shown in our study. This assumption is supported by the studies of Brandt et al. (2015), 555 

which are based on ground-based herb biomass estimations, and of Kaptué Tchuenté et al. (2015). 556 

6.2. Drivers of NDVI at the regional level 557 

6.2.1. The mitigating impact of rainfall on NDVI trends 558 

As expected, iNDVI in the Sahel was found to be correlated with iRAIN over a large part of the study 559 

area. Nevertheless, this dependence on growing season rainfall is not general, because areas of low 560 



correlation (i.e., r <0.49) were found in Niger and in northern Mali, among others. For those areas, 561 

observed changes in biomass production are due to factors other than rainfall (e.g., temperature) or 562 

human factors (e.g., LULCC) that could have a stronger influence than rainfall variability. In the 563 

northern part of the western Sahel (the arid zone), this low correlation could be explained by the very 564 

patchy distribution of vegetation as well as the low annual rainfall: both are factors that are not 565 

correctly captured by satellite sensors. For the remaining portion of the western Sahel, when 566 

considering water availability as the sole driver ignoring, for now, other potential drivers, the low 567 

iNDVI-iRAIN correlation could be explained by: (i) greater dependence of herbaceous biomass 568 

production on intra-annual rainfall distribution and its timing rather than the total amount of annual 569 

growing season rainfall or (ii) a possible water supply other than rainfall. For the latter case, for areas 570 

such as the inner Niger delta (Mali) or along the river in southwest Niger, we can assume that 571 

vegetation production is less rainfall-limited due to exogenous stream flows, as already mentioned by 572 

Huber et al. (2011). In any case, this is valid only if water availability is the single determinant of 573 

vegetation growth, which is rarely the case at local scales where vegetation growth is determined by 574 

complex interactions between multiple drivers. By focusing our study on the 2000–2015 period, we 575 

provided a new insight on the impact of rainfall on vegetation over recent years. In contrast to studies 576 

conducted over earlier periods that generally showed an overall positive NDVI-rainfall correlation 577 

(e.g., Fensholt et al., 2012; Herrmann et al., 2005), this study showed that in recent years, only 56% of 578 

the area has a significant NDVI-rainfall correlation, meaning that for a large part of the Sahelian areas, 579 

the broadly accepted predominance of annual rainfall variability on vegetation growth and dynamics is 580 

now challenged by other factors. 581 

This is reinforced by the analysis of the NDVI residual trends that were used to detect trends in 582 

biomass production induced by factors other than rainfall such as land use changes or population 583 

pressure. Our study revealed mainly areas of positive iNDVI residual trends in the eastern part of the 584 

western Sahel (e.g., Senegal or Mali) meaning that biomass production has increased more than can be 585 

explained by rainfall. This result was also consistent with the findings of Fensholt and Rasmussen 586 

(2011), who found positive trends in the western part of the Sahel based on a RUE linear trend 587 

analysis using residual NDVI estimates (which can be considered equivalent to the RESTREND 588 



method) for the 1982–2007 period. For these areas, this suggests that iNDVI positive trends are 589 

temporally and spatially constant. The iNDVI residual trends obtained in this study were also spatially 590 

consistent with the study of Kaptué Tchuenté et al. (2015) and Ibrahim et al. (2015) who found areas 591 

of positive residual trends located mainly in Senegal and Mali over two 30-year periods (1983–2012 592 

and 1982–2012, respectively).  593 

6.2.2. Case study analyses of NDVI trends from the literature 594 

A classification scheme based on iNDVI trend, the iNDVI/iRAIN correlation and iNDVI residual 595 

trend was proposed as an original contribution to the existing literature on the underlying drivers of 596 

vegetation changes over the Sahelian zone. Here, we illustrate our results in the light of available 597 

independent knowledge. Four specific sites (numbered from 1 to 4 in Figure 6a) where studies have 598 

previously been carried out were identified in the literature and used here.  599 

In Senegal (zone 1, Figure 6a), we found some areas that were characterized by an increase in biomass 600 

production due to a combination of rainfall and other factors. In this study, these other factors were 601 

found to be dominant for biomass production increases in the western part of the Sahel. However, in 602 

some areas (close to where Senegal, Mauritania and Mali meet), rainfall and other-induced factors all 603 

played a significant role. For the Senegalese part, according to Tappan et al. (2004), this corresponds 604 

to the Shield ecoregion, which is characterized by low human population density and low 605 

environmental pressures, leading to a high degree of biodiversity for both fauna and flora. Thus, we 606 

could assume that the relatively high rainfall and the relative stability of summer rainfall since the 607 

2000s (Funk et al., 2012) have favored the growth of woody and crop vegetation.  608 

The second site we identified is situated in Soum province in northern Burkina Faso (zone 2, Figure 609 

6a) for which we found a predominance of negative iNDVI trends explained by other factors. This 610 

corresponded to the area studied by Rasmussen et al. (2014), according to whom the NDVI trends 611 

observed in the northern part of their study area were closely linked to landscape elements (plateaus 612 

and slopes). They suggested that a possible explanation was a loss of woody cover, possibly induced 613 

by increased grazing.  614 



Third, near the city of Tahoua in Niger (zone 3, Figure 6a), we found a small area of increase in 615 

biomass production due to other factors. This corresponded to the area of the “Keita Project,” which 616 

was launched in 1982 with the objective of increasing food security while combating desertification by 617 

promoting soil and water conservation, natural resource management, and reforestation (Tarchiani et 618 

al., 2008), as mentioned previously by Herrmann et al. (2005). 619 

Finally, the region of Zinder in south Niger (zone 4, Figure 6a) also displayed a significant increase in 620 

biomass production induced by other factors. Since the late 1980s, farmers from the Zinder region 621 

have been encouraged to reforest their fields through the Farmer-Managed Natural Regeneration 622 

(FMNR) project, which concentrates on protecting and managing the regeneration of small trees and 623 

shrubs among cropped fields (Reij et al., 2009). In the mid-2000s, it was estimated that nearly 1 624 

million ha have been affected by FMNR, with a tree density ranging between 20–120 trees/ha 625 

(Larwanou et al., 2006). Thus, by increasing the density of the woody cover, one impact of FMNR is, 626 

among others, the improvement of soil fertility through the decomposition of plant litter, added 627 

nutrient supply from animals due to the integration of livestock in cropping systems, and the 628 

conservation of nitrogen-fixing species such as Faidherbia Albida (Reij et al., 2009). As a 629 

consequence of this improvement in soil fertility, crop productivity increased; thus, positive iNDVI 630 

trends were observed.  631 

Apart from these specific case studies, where possible explanations can be found in the literature, the 632 

method developed here can only help localize and identify the main drivers of biomass production 633 

dynamics. Exact causes of the observed trends must be determined by more detailed analyses at a finer 634 

scale. 635 

6.3. Drivers of NDVI trends in the DCN site 636 

6.3.1. Explaining the overall trends 637 

Even though biomass production dynamics result from complex interactions between different factors, 638 

in arid environments such the western Sahel, rainfall is considered as an overriding factor. Thus, we 639 

expected that variables related to rainfall would be the most important factors of discrimination 640 

between all trend type classes. Our assumptions were verified by the RF model because overall, as 641 



well as for each of the four trend type classes, the rainfall averaged over all growing seasons, not the 642 

individual 16 years,  from 2000–2015 was identified as the most important driver for the classification. 643 

This means that iNDVI trends were, above all, sensitive to the spatial distribution of rainfall 644 

(latitudinal variations probably lead to variations in vegetation types) rather than its inter-annual 645 

distribution. This is in agreement with previous studies such as Cutler et al. (2007), who stated that the 646 

most important factor selected by the RF model should correspond to our knowledge of biophysical 647 

principles. However, we can note that the other four drivers were not linked to rainfall. They included 648 

distance from villages, distance from rivers, travel time to markets and soil type. These results 649 

strengthened the idea that human activities as well as environmental conditions (potential water 650 

availability or soil fertility) are important for biomass production. This also made it possible to 651 

confirm the relevance of the approach developed on a regional level as an initial approach to assess the 652 

relative role of rainfall and other factors in biomass production changes. 653 

6.3.2. Linear negative trends 654 

We found that linear negative trends were mainly related to the lateritic plateaus and, in general, to 655 

less accessible areas. In our study area, as in the whole Sahel, lateritic plateaus and degraded hillslopes 656 

(corresponding to plateaus edge areas) are covered by tiger bush, a typically banded vegetation pattern 657 

consisting of trees and bushes in alternating strips of dense vegetation separated by bare soils or low 658 

herbaceous cover. In previous studies (e.g. Brinkmann et al., 2012; Leblanc et al., 2008), a decrease in 659 

the tiger bush vegetation cover on lateritic plateaus around Niamey has been observed since the 1960s. 660 

A possible cause for this tiger bush degradation is overexploitation to satisfy the demand of the city of 661 

Niamey for fuelwood and extraction of certain tree species for traditional medicine. Thus, the expected 662 

growth in population, estimated at 66 million by 2050 for Niger (FEWS NET, 2014), together with an 663 

increase in urban population, will probably lead to increasing pressures on these woodlands. In 664 

addition to the overexploitation of wood, tiger bush is also prone to overgrazing from livestock 665 

increases because formerly pastoral lands are being converted into cropped areas (Hiernaux et al., 666 

2009). According to the National Institute of Niger (INS, 2014) the livestock population in the 667 

Tillaberi region was estimated at 4,791,000 head in 2006 and nearly 5,800,000 head in 2011. The 668 



decrease in woody coverage induced by wood harvesting and pasture is a common concern for many 669 

Sahel regions (van Vliet et al., 2013) such as those around Sikasso in Mali (Brinkmann et al., 2012) or 670 

in the Ferlo in Senegal (Brandt et al., 2014a). The same explanations for degradation may hold for 671 

areas with natural vegetation because most of them (particularly in the south of the DCN site) likely 672 

correspond to vegetation on lateritic plateaus misclassified as natural vegetation.  673 

Areas that experienced crop loss (i.e. crop abandonment) were also prone to biomass production 674 

degradation (Table 5). As Bégué et al. (2011) and Leroux et al. (2014) highlighted, in the Sahel, 675 

cropped vegetation tends in some cases to have a higher NDVI value than natural vegetation, 676 

particularly degraded savannahs with sparse vegetation, suggesting that a decrease in iNDVI should be 677 

expected when croplands are abandoned. In addition, cropland (which includes fallow land and 678 

grassland) was also prone to grazing pressure, meaning that high stocking rates, soil trampling and 679 

changes in the species composition may have contributed to a decrease in biomass production 680 

(Hiernaux et al., 2016). 681 

6.3.3. Linear positive trends 682 

The analysis of Table 5 shows that 10% of cropped areas in 2013 (cropland and cropland expansion) 683 

displayed an increase in biomass production. The importance of accessibility factors in linear positive 684 

trends (Figure 7) highlights the fact that they are key variables for agricultural expansion or 685 

intensification because they reduce transportation costs and allow better accessibility to markets for 686 

both seed purchasing and harvest selling. Another potential explanation for the increase in biomass 687 

production for both croplands and natural vegetation might be a direct consequence of the degradation 688 

of tiger bushes, because such degradation certainly leads to more runoff due to an increase in bare 689 

areas (Galle et al., 1999) and, thus, leads to more water being available for vegetation growth in the 690 

valleys. Moreover, San-Emeterio et al. (2013) also referred to a densification of ligneous vegetation 691 

cover in lowlands between 1965 and 2010 that was linked to the development of irrigated vegetable 692 

gardens, thus positively affecting biomass production. 693 



6.3.4. No significant trends 694 

Finally, it is interesting to note that a large share of cropland (81%) did not change significantly in 695 

terms of biomass production between 2000 and 2015. This lack of change can be considered an 696 

important issue in the context of a growing population, because food requirements increase 697 

accordingly. In the area of the Niamey Square Degree, land use was characterized by an increase in the 698 

length of the cropping period and a reduction in fallow periods, resulting in frequent shifts between 699 

cropping and fallowing periods since the 1950s (Hiernaux et al., 2009; Loireau, 1998). In our land 700 

cover classification, we considered the crop domain (both crop and fallow areas). Thus, shifting 701 

cultivation practices can influence year-to-year biomass production and be considered as displaying no 702 

significant trends.  703 

6.4. General discussion 704 

6.4.1. Interpretation, methodological and validation issues 705 

In this study, iNDVI is considered as an indicator of biological productivity and thus of land 706 

degradation or greening. Still, some studies have highlighted that changes in biodiversity or species 707 

composition may lead to a greening trend while not inducing environmental improvements (Brandt et 708 

al., 2014; Herrmann and Tappan, 2013). For example, based on ground measurements in Senegal, 709 

Herrmann and Tappan (2013) found a reduction in woody species richness despite a greening trend 710 

observed in NOAA AVHRR data. This type of change can have great importance for the assessment 711 

of livestock fodder availability, particularly when it results in an increase in unpalatable species (e.g., 712 

Mbow et al., 2013; Olsen et al., 2015). Care must thus be taken when associating variables such as 713 

iNDVI with food availability.  714 

For both our analysis at regional and local levels, the relevance of our approach can be challenged by 715 

the use of an inconsistent dataset in terms of spatial and temporal resolutions and geospatial properties 716 

(e.g., point data, continuous data, from 30 m to 25 km spatial resolution). This is particularly true for 717 

complex environments characterized by high spatial heterogeneity in processes. For instance, the best 718 

resolution used here is 30 m, but most of the processes certainly occurred at a finer scale. In addition, 719 

it has been shown that the results of the Random Forest variable importance measures from the R 720 



RandomForest package can be biased by an artificial variable selection when data of varying types and 721 

scales are used (Strobl et al., 2007). In particular, the coarse resolution of the TRMM data (25 km), 722 

which is associated with a strong latitudinal gradient, leads to a simplified patterned image composed 723 

of East-West bands following the gradient that can have an effect on the bootstrap sampling 724 

replacement and lead to a higher selection probability in each individual classification tree. The 725 

importance of the mean growing period rainfall (RAIN_M) in the RF model might be a result of this 726 

algorithm weakness. 727 

Finally, as pointed out previously (e.g., Herrmann et al., 2005; Nutini et al., 2013; Brandt et al., 2014b; 728 

Rasmussen et al., 2014), ground information is needed to validate trend analyses and to check whether 729 

observed trends are truly due to the drivers identified. This is also a major concern for LULCC studies, 730 

as previously highlighted by van Vliet et al. (2013) in their meta-analysis of cropland changes. 731 

Nevertheless, the validation of trends requires time-series of biomass data with a spatial and temporal 732 

scale suitable for comparison with remote sensing time series. For instance, to check whether 733 

degradation trends in tiger bush areas are caused by the overexploitation of woody vegetation for 734 

firewood and overgrazing, spatialized and quantitative information on livestock and firewood trading 735 

is required. In addition, local knowledge (both expert and traditional) might be a valuable source of 736 

information for interpreting trends and is still largely underused in remote sensing studies (Mbow et 737 

al., 2015).  738 

6.4.2. Perspectives for food security policies 739 

A specific application of the findings of our study can be considered in the framework of food security 740 

monitoring systems. Currently, the food security monitoring is mostly a result of Early Warning 741 

Systems (EWS), which primarily focus on food production by monitoring agricultural production and 742 

agroclimatic events. EWS have both a warning role when crises occur and a monitoring role from a 743 

long-term perspective. In most existing EWS, time-series vegetation indices are used to assess current 744 

vegetation conditions and phenology through the production of anomaly maps. Thus, they act only on 745 

food insecurity situations due to particular circumstances (e.g., adverse climatic events, pests or 746 

diseases) and focus on short-term quick fixes. However, for some countries (such as Niger), food 747 



insecurity has become endemic; for such cases, the scientific community agrees that there is a need for 748 

long-term structural solutions (The World Bank, 2013). By focusing more specifically on agricultural 749 

and pasture lands, the approach developed here could not only help to assess the vulnerability of 750 

populations and to delineate areas with decreases in crop and grassland production but also to target 751 

zones with good potential where long-term food security planning policies can be implemented. In 752 

addition, for countries in the Sahel, long-term monitoring of natural vegetation areas is also of great 753 

importance because, for example, harvesting and selling timber are among the proven coping 754 

strategies used during times of food shortages. Finally, because food security is not exclusively reliant 755 

on agricultural production, the whole food system must be considered to provide efficient food 756 

insecurity mitigation (Ericksen, 2008; Verburg et al., 2013b). In that way, by contextualizing regional 757 

land changes with local studies, our study contributes to a better understanding of the land system 758 

changes which, in turn, are considered as key drivers of the food system. Thus, our study can help by 759 

supporting proposals for context-specific food security policies (Ericksen, 2008). 760 

7. Conclusion 761 

This study contributes to the burgeoning scientific literature on the “re-greening” of the Sahel by 762 

further exploring the factors that have contributed to vegetation changes over the last 16 years and by 763 

considering both regional and local drivers. A bridge between vegetation trend analysis and LULCC 764 

studies is thus proposed. Our study showed clear spatial patterns of increasing/decreasing trends in 765 

biomass production over the western Sahel for the period 2000—2015. Within the areas of increasing 766 

trends, about half could be related to a combination of rainfall and other factors, whereas only the 767 

other factors were necessary for to explain the other half. Within the areas of decreasing trends, factors 768 

other than rainfall were predominant. At local level over the DCN site, biomass production trends 769 

were estimated from different potential drivers using a Random Forest algorithm. Here, we found that 770 

biomass production degradation was linked to specific land cover classes such as lateritic plateaus as 771 

well as to accessibility factors. By focusing on herbaceous vegetation, our study is complementary to 772 

the study of Brandt et al. (2016), which focused on woody vegetation. Taken together, these two 773 

studies form the most “up-to-date” analysis of the recent vegetation cover changes in the Sahel. 774 



While most studies to date have relied mainly on coarse spatial resolution data such as MODIS or 775 

NOAA-AHRR, in the future, the study of complex and spatially variable processes underlying 776 

vegetation changes will benefit from the availability of high resolution satellite Sentinel-2, which has 777 

been active since June 2015. This satellite offers new prospects for both long- and short-term 778 

monitoring of Sahelian ecosystems. In particular, by providing time series of frequent high quality 779 

observations, we expect detailed analyses of LULCC covering the entire Sahel, allowing a better 780 

interpretation of NDVI changes at regional levels. For example, although it is still a challenge today to 781 

link changes in agricultural production to intensification of agricultural practices or expansion of 782 

agricultural lands, we hope that this information will become more accessible in the near future and 783 

thus able to benefit a wide range of issues such as food security. 784 
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List of Figure Captions 1064 

Figure 1. Flowchart of the approach adopted in the study: links between the regional and local analyses. The first part 1065 
(labeled ) corresponds to the first objective of the study, which is the iNDVI trend analysis over the western Sahel. 1066 
The second part (labelled ) corresponds to the second objective: the identification of the main drivers of iNDVI 1067 
trends over the western Sahel. The third part (labelled ) corresponds to the identification of the main drivers of 1068 
iNDVI trends over the Niger site. 1069 

Figure 2. The study sites. a) Mean integrated NDVI between July and October over the western Sahel zone; b) Main 1070 
land cover classes (MODIS Land Cover Product, MCD12Q1), c) Landsat 8 image of the DCN site in September 2013 1071 
(red-green-NIR color composition), and d) anomalies of cumulated rainfall between June and October (deviation 1072 
from the mean values over the 2000–2015 period) from the TRMM3B43 product over the western Sahel (bar) and the 1073 
DCN site (line). 1074 

Figure 3. Map of the land cover changes over the DCN site between 2001 and 2013 derived from Landsat images. 1075 

Figure 4. Spatial distribution over the western Sahel of a) the MODIS       trends; b) the correlation coefficient 1076 
between MODIS       and TRMM3B43 June–October rainfall (significant at the 5% level for r=0.49); c) the iNDVI 1077 
residual trends obtained for pixels with a significant linear NDVI-rainfall relationship during the 2000–2015 period. 1078 

Figure 5. Spatial distribution over the DCN site of a) the MODIS iNDVI trends; b) the correlation between MODIS 1079 
iNDVI and TRMM3B43 June–October rainfall (significant at the 5% level for r=0.49); and c) the iNDVI residual 1080 
trends obtained for pixels with a significant NDVI-rainfall linear relationship during the 2000–2015 period. 1081 

Figure 6. a) Spatial distribution of the main drivers of the biomass production changes over the western Sahel; b) 1082 
distribution of driver types according to the direction of changes (increase or decrease) for western Sahel and the 1083 
DCN site; and c) zoomed area of the DCN site. 1084 

Figure 7. Importance of variables in the Random Forest model according to NDVI trend classes over the DCN site: a) 1085 
all classes; b) no trend; c) linear negative trend; and d) positive linear trend. Only the first five variables are 1086 
displayed. Their importance is given in the “Mean decrease in accuracy”. See Table 1 for variable abbreviations. 1087 

Figure 8. Distribution of trend types for the five most important Random Forest variables a) mean growing period 1088 
rainfall; b) Euclidean distance from villages; c) type of soil; d) Euclidean distance from rivers; and e) travelling time 1089 
from city market; for the DCN site. 1090 
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