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Abstract 11 

For the semi-arid Sahelian region, climate variability is one of the most important risks of food insecurity. 12 

Field experimentations as well as crop modelling are helpful tools for the monitoring and the 13 

understanding of yields at local scale. However, extrapolation of these methods at a regional scale remains 14 

a demanding task. Remote sensing observations appear as a good alternative or addition to existing crop 15 

monitoring systems. In this study, a new approach based on the combination of vegetation and thermal 16 

indices for rainfed cereal yield assessment in the Sahelian region was investigated. Empirical statistical 17 

models were developed between MODIS NDVI and LST variables and the crop model SARRA-H 18 

simulated aboveground biomass and harvest index in order to assess each component of the yield 19 

equation. The resulting model was successfully applied at the Niamey Square Degree (NSD) site scale 20 

with yield estimations close to the official agricultural statistics of Niger for a period of 11 years (2000-21 

2011) (r=0.82, pvalue<0.05). The combined NDVI and LST indices based model was found to clearly 22 

outperform the model based on NDVI alone (r=0.59, pvalue<0.10). In areas where access to ground 23 

measurements is difficult, a simple, robust and timely satellite-based model combining vegetation and 24 
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thermal indices from MODIS and calibrated using crop model outputs, can be pertinent. In particular, such 25 

a model can provide an assessment of the year-to-year yield variability shortly after harvest for regions 26 

with agronomic and climate characteristics close to those of the NSD study area.  27 

 28 

Keywords: Remote Sensing, Crop yield, NDVI, Land Surface Temperature, Crop model, MODIS, 29 

Rainfed cereal, Niger, Harvest Index 30 

1. Introduction 31 

 32 

In the Sahelian region of West Africa where traditional rainfed agriculture prevails [1], over 20 33 

million people suffered from food insecurity in 2014 [2]. Sahelian rainfed farming systems are known to 34 

be at high climatic risk due to a high spatio-temporal variability of rainfall and frequent drought events 35 

[3]. Rainfall variability results in large fluctuations in year-to-year crop productivity which leads to 36 

episodes of food insecurity. Moreover, the political and socio-economic instability of certain countries in 37 

the region also contribute to the variability of agricultural production [4]. These considerations highlight 38 

the need for an operational, timely and accurate yield estimation system to assist decision-making [5]–[7]. 39 

Yield estimation systems based on crop modelling allow accurate quantitative assessments (e.g. 40 

AGRHYMET in West Africa; the AGRI4CAST action in Europe), but are confronted with input data 41 

availability and spatial consistency constraints [8], [9].  42 

For more than two decades, Earth Observation systems have been known to play a significant role 43 

in vegetation monitoring by providing synoptic, repetitive, timely, objective and cost-effective 44 

information on Earth’s surfaces (e.g.[10]–[12]). They have been acknowledged for their valuable 45 

contribution to spatial and temporal monitoring of global vegetation and thus have been used extensively 46 

in many parts of the world for crop condition monitoring and yield forecasting [9], [13]–[18]. Combined 47 

or not with rainfall data, satellite data is currently being used in early warning systems to assess crop 48 

development conditions during the growing season (e.g. FEWS-NET (Famine Early Warning System 49 
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Network); GIEWS (Global Information and Early Warning System); FOODSEC (Food Security); 50 

GEOGLAM (Group on Earth Observation – Global Agricultural Monitoring)), mainly through the 51 

production of regularly updated crop growth anomalies’ maps based on the Normalized Difference 52 

Vegetation Index (NDVI). These systems benefit from timely and synoptic satellite data which 53 

compensate the lack of reliable and homogeneous ground data, but which remain mainly qualitative and 54 

do not include crop yield monitoring.  55 

The empirical relationship between remote sensing spectral vegetation indices and in situ 56 

observations to predict crop yields before harvest has been tested for a long time in many studies (for a 57 

review see [19]). The simplest approach involves the regression between observed yields and vegetation 58 

indices, either on a specific date or through a time integral of vegetation indices between two dates [20]–59 

[22]. Among the vegetation indices, the NDVI has been widely employed due to its close relationship to 60 

several vegetation parameters like the Leaf Area Index (LAI), the fraction of Absorbed Photosynthetically 61 

Active Radiation (fAPAR) or the green biomass [23]–[25]. Furthermore, several studies have found a 62 

good correlation between NDVI and crop yields in many study sites around the world [13], [15], [16], 63 

[26]–[28].  64 

Nonetheless, there are intrinsic limitations that prevent an operational use of vegetation indices to 65 

estimate crop yield. Apart from technical limitations such as low spatial and temporal resolution leading to 66 

mixed pixels and incomplete crop growth descriptions respectively, the main limitation is the indirect link 67 

between yield and spectral data. Since the 1980’s  NDVI is known to be a proxy of the aboveground 68 

biomass [11], [24], but the ratio between yield and aboveground biomass (referred hereafter as the harvest 69 

index, HI) is also known to be highly variable in space and time. [29], [30] showed that biomass 70 

production is linearly related to fAPAR for crop with no water stress, while [31] showed that a linear 71 

relation between NDVI and fAPAR can be assumed since their functional response to leaf orientation, 72 

solar zenith angle and atmospheric optical depth is similar.  73 

On the other hand, the harvest index, also known as the reproductive efficiency, is crop-dependent 74 

and sensitive to variables that impact the partitioning of the assimilates into grain, such as the genotype, 75 
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temperature and water/nutrients availability ([32]–[34]). In the Sahelian region, HI is strongly dependent 76 

on water conditions during the growing period, in particular during the reproductive stage [35]. Crop 77 

water conditions can also be derived from remote sensing data, with indices based on the difference 78 

between air and surface temperatures, which are useful indicators of water stress for yield estimation. 79 

Indeed, since the 1970’s various remote sensing-based studies have shown that final yields can be related 80 

to thermal indices [36], [37]. Based on land surface temperature (LST), the Crop Water Stress Index 81 

(CWSI) proposed by [38] was found useful for yield estimation and crop assessment (e.g.[39]–[42]).  82 

In the framework of current early warning systems for food security, crop yield monitoring would 83 

certainly benefit from the consistency in space and time of remote-sensing based crop yield estimations. 84 

For this reason, in this study, we investigate the possibility of combining vegetation and thermal indices 85 

for crop yield estimation in the Sahelian region, where, to our knowledge, this has not been attempted. Our 86 

objective is to build a simple, robust and timely satellite-based model for rainfed cereal yield estimates on 87 

the basis that: (i) aboveground biomass can be estimated using NDVI, and that (ii) LST data can provide 88 

useful information on the harvest index. Such a model would also provide effective assessments of year-89 

to-year yield variability. The study is conducted in the South-West of Niger (the Niamey Square Degree 90 

site) where rainfed pearl millet dominates the agricultural landscape, and soils as well as agricultural 91 

pratices are relatively homogeneous. We use the SARRA-H (System for Regional Analysis of Agro-92 

Climatic Risks) crop model [43], which has already been validated for pearl millet in the Sudano-Sahelian 93 

zone [4], to simulate biomass and the corresponding yield for a period of 11 years (2000-2011), using as 94 

input data the rainfall measurements from 28 rain gauges and a meteorological station. We derive the 95 

NDVI and the CWSI from MODIS data over the same 11-year period to explore their respective 96 

relationship with biomass and the harvest index. The model is then validated using crop statistics data at 97 

the scale of the Niger Square Degree site. The proposed approach is finally discussed in the framework of 98 

a potential operational yield estimation system that would also include data from the upcoming Sentinel-2 99 

sensors. 100 
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2. Material  101 

2.1. Overall approach 102 

We combine satellite-data with agro-meteorological modeling results to analyze the potential of 103 

MODIS derived NDVI and LST time series for pearl millet yield assessment in the Niger Square Degree 104 

site. The underlying assumptions of our approach are that: 105 

(1) Aboveground biomass can be determined from vegetative indices such as the NDVI [44], 106 

(2) Harvest indices can be significantly reduced under water-limited conditions [45] due to crop water 107 

stress. Land surface temperature (LST) observations can be used as an indicator of crop water 108 

stress [38] and thus be related to the harvest index, 109 

(3) The combination of NDVI and LST provides a better estimate of yields than the NDVI on its own 110 

in water-limited regions. 111 

Fig. 1 summarizes the overall methodology. Empirical statistical relationships are sought (1) between 112 

a cropland NDVI integrated over different time periods and aboveground biomass simulated by the crop 113 

model SARRA-H, and (2) between a cropland CWSI time series derived from LST data and simulated 114 

harvest indices by the same model. Crop yield is equal to aboveground biomass multiplied by harvest 115 

index, thus the relationships obtained are then (3) combined into a simple model for pearl millet yield 116 

assessment based on vegetation and thermal indices. Ideally, a remote sensing-based approach has to be 117 

calibrated with reliable ground-measurement data. For our study area, the ground truth data currently 118 

available are mainly based on farmer’s declarative survey and suffer from a lack of consistency both in 119 

space and time. Consequently, the choice has been made to use simulated data from SARRA-H crop 120 

model to overcome this issue knowing that SARRA-H has been validated for this region [4]. The 121 

predictive capacity of the remote sensing-based model is then verified at a regional scale with agricultural 122 

statistics.  123 
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 124 

Figure 1: Flowchart of the approach adopted corresponding to the three stage of the remote sensed based model 125 
development. 126 

2.2. Study area 127 

The study area (12.9° – 13.9°N; 1.6° – 3.1°E, hereafter referred to as the NSD site) which includes the 128 

Niamey Square Degree site covers about 18,000 km² and is located in South-West Niger (Fig. 2a). The 129 

site is part of the AMMA-CATCH observatory (African Monsoon Multidisciplinary Analysis-Coupling 130 

the Tropical Atmosphere and the Hydrological Cycle; http://www.amma-catch.org/) and has been chosen 131 

for two reasons: (1) rainfall is considered as the main driver of crop yield [46], and (2) the site is 132 

instrumented since the early 90’s including a dense network of rain-gauges which are continuously 133 

recording rainfall. 134 

http://www.amma-catch.org/
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 135 

Figure 2: The NSD site (Niger) : a) location of the NSD site (red square) and the five departments considered in the study; b) 136 
anomalies of annual rainfall (deviation from the mean between 2000 and 2010); c) mean NDVI annual amplitude between 137 
2000 and 2010, and location of the 28 rain gauge (red circles) and meteorological (star) stations. 138 

The climate is typically Sahelian. Annual ambient temperatures are high and rainfall distribution 139 

is monomodal during June-September. Rainfall is highly variable spatially [47] and temporally [48] with 140 

10-22% inter-annual variations between 2000-2010 (Fig. 2b). In addition, despite the small size of the 141 

study area (about 160 km x 110 km; Fig. 2c), the regional rainfall pattern shows a high latitudinal gradient 142 

from 480 mm/year (north of the study site) to 630 mm/year (south).  143 

The production system is rainfed, dominated by pearl millet [4] which is drought-resistant and well 144 

adapted to the sandy soils predominant in the study area [49]. It is characterized by low inputs [50] and 145 

low yields (generally lower than 700 kg/ha; [49]). 146 
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2.3. Satellite data 147 

2.3.1. The MODIS Vegetation Indices product (MOD13Q1) 148 

The MODIS Vegetation Indices (VI) product (MOD13Q1 collection 5) was used in this study because 149 

of its data consistency, providing spatial and temporal information on vegetation conditions every 16 days 150 

at 250-m spatial resolution since 2000 [51]. Even if the MODIS data are pre-processed with the CV-MVC 151 

(Constrained view angle-maximum value composites) algorithm, noise still exists in the time series due to 152 

cloudiness, sensor problems or Bidirectional Reflectance Distribution Function (BRDF) effects [53]. In 153 

consequence, we applied a Savitzky-Golay filter to reduce noise and improve the quality of the NDVI 154 

time series towards a more efficient crop yield monitoring [54]. After testing different smoothing 155 

parameters, a filter width of 4 and a degree of smoothing polynomial of 6 were retained, which allowed to 156 

match the upper envelope of the NDVI time series  157 

2.3.2. The MODIS Land Surface Temperature product (MOD11A2) 158 

The MODIS LST product (MOD11A2, collection 5) is composed of the average value of daily 1-159 

kilometer LSTs under clear sky conditions for an 8-day period [55]. The MODIS LST product was 160 

validated with in situ temperature measurements recorded at various places and under various surface and 161 

atmospheric conditions [56]. According to [56] the MODIS LST accuracy is better than 1 Kelvin. The 162 

LST data has been converted to degrees Celsius. As for the MODIS NDVI data, noisy pixels affected by 163 

clouds or other atmospheric disturbances were removed when temperatures were below 0°C and the 164 

neighboring values in the time series have been linearly interpolated. 165 

2.3.3. The MODIS Land Cover Type product (MCD12Q1) 166 

The MODIS LCP (MCD12Q1, version 51) contains the International Geosphere Biosphere Program’s 167 

(IGPB) classification,  describing 17 land cover classes on a yearly basis at a spatial resolution of 500-m 168 

[57], [58].Two classes are related to agriculture: cropland (class number 12) and cropland/natural 169 

vegetation mosaic (class number 14). Assuming that cultivated land cover area did not vary considerably 170 

during the 10-year period of study, only “consistent” pixels (i.e. pixels classified as cropland for more than 171 

six years between 2001 and 2010) were kept as cropland and the rest masked out. This crop mask was 172 
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tested against a land cover map based on Landsat images in 2013 and displayed a user accuracy of 73% 173 

and a producer accuracy of 50% for the crop classes (not shown here). Because of its availability at a 174 

regional scale, we chose to conduct the analysis with the MODIS LCP to ensure the reproducibility of the 175 

methodology elsewhere. In this study, we considered that the resulting cropland was approximately 176 

equivalent to the pearl millet cultivated area (since pearl millet represents over 70% of the total 177 

agricultural production in the study area; [4], [26]).  178 

2.4. Climate data 179 

A set of daily rainfall data recorded throughout the period 2000-2010 at 28 rain-gauges 180 

(corresponding to 28 villages) distributed across the study area (Fig. 2c) was used. This dataset was 181 

provided by the AMMA-CATCH observing system. Other weather data including daily minimum and 182 

maximum air temperature, wind speed, solar radiation and minimum and maximum air relative humidity 183 

measurements were obtained from a weather station located south of Niamey (Fig. 2c). According to [50], 184 

the variability of other meteorological data is very low compared to rainfall in this area, such that only one 185 

weather station was considered necessary. 186 

2.5. Agricultural statistics 187 

Agricultural statistics were used in the validation process of the remotely sensed-based yield model. 188 

Pearl millet yield data, collected from ground surveys of major staple crops in Niger, was used. These 189 

ground surveys are conducted every year by the Niger Agricultural Statistics service at department level 190 

and were therefore available for the 2000 and 2010 period. In this study, yield data for the Kollo 191 

department and the four surrounding departments were considered (Fig. 2a). 192 

3. Methods 193 

3.1. Crop model simulations 194 

3.1.1. The SARRA-H crop model  195 

SARRA-H V3.3 [43], [50] was used in this study to simulate attainable pearl millet yields under 196 

climatic constraint in the NSD site at village level. This model is particularly suited for the analysis of 197 
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climate impacts on cereal growth and yield in dry environments. It is currently used by AGRHYMET for 198 

operational agro-meteorological forecasting across West Africa. It simulates attainable yield under water-199 

limited conditions taking into account potential and actual evapotranspiration, phenology, potential and 200 

water-limited assimilation and biomass partitioning (for more details about the SARRA-H crop model see, 201 

http://sarra-h.teledetection.fr). The crop model SARRA-H has been calibrated and validated for local 202 

photoperiod sensitive pearl millet cultivars using ground surveys conducted in various location across 203 

West Africa such as in Senegal, Burkina Faso, Mali or Niger [4]. The model was found to perform well 204 

over West Africa through comparison with FAO statistics [58]–[60] or in comparison with other crop 205 

models in the framework of the Agricultural Model Intercomparison and Improvement Project (AgMIP, 206 

[61]). 207 

3.1.2. Aboveground biomass, harvest index and yield simulations 208 

Attainable pearl millet aboveground biomass, harvest index and yield were simulated with the 209 

SARRA-H crop model for each of the 28 rainfall stations of the NSD site between 2000 and 2010, 210 

according to soil type, rainfall regime and agricultural practices (crop varieties and sowing dates). A total 211 

of 1276 simulations were conducted. The range of parameters used for the simulation was derived from 212 

previous studies and expert knowledge: 213 

 Crop varieties: Two local pearl millet photoperiodic cultivars are found at the NSD site; Hainy 214 

Kirey (90-120 days cycle duration) and Somno (120-150 days cycle duration). These two 215 

photoperiodic varieties are particularly adapted to spatial and temporal variability of the length as 216 

well as the onset of the rainy season of the Sahelian zone [1], [59]. In the NSD site pearl millet 217 

HK represents among 80% of the crop [60], [61]. Pearl millet aboveground biomass, harvest index 218 

and yields were simulated considering neither fertilization nor irrigation. 219 

 Sowing dates: In Sahelian regions, farmer’s agricultural practices choice is highly determined by 220 

the climatic constraints. Farmers generally start sowing photoperiodic millet varieties as soon as 221 

possible after the first significant rain, to benefit from the flush of available nitrogen associated 222 

with early rains, in spite of a high risk of failure and subsequent need of re-sowing [59], [62]. In 223 

http://sarra-h.teledetection.fr/
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the model, the beginning of the time window considered for the search of the satisfying conditions 224 

for sowing was set on the 1
st 

May, and the sowing date was automatically generated by the model 225 

as the day when simulated soil water available for the plant is greater than 10 mm at the end of the 226 

day. 227 

 Soil type: According to the Harmonized World Soil Database [63], 75% of soils in the NSD site 228 

are sandy and 25% are sandy clay loam. Since there is no existing data presenting the proportion 229 

of each soil type in each of the NSD site’s villages respectively, we assumed the proportions 230 

proposed for the whole NSD site as being equivalent to the proportion in each village. Yields, 231 

aboveground biomass and harvest index were simulated for these two types of soils, weighted 232 

according to these proportions and considering two rooting depths (600 mm and 1800 mm) per 233 

type of soil. 234 

An example of the aboveground biomass output obtained for Torodi village in 2008 is presented in Fig. 3.  235 

 236 

Figure 3: Example of Somno millet simulated aboveground biomass with the crop model SARRA-H for the village of Torodi in 237 
2008. The dark curves represent aboveground biomass for a sandy clay loam soil (thin soil in dashed line and deep soil in solid 238 
line), the gray curves represent a sandy soil (thin soil in dashed line and deep soil in solid line) and red curve represent the 239 
resulting weighted average. 240 
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3.2. Relationships between crop model simulations and remote sensing 241 

indices for pearl millet 242 

3.2.1. Processing of remote sensing indices 243 

MODIS NDVI time series 244 

In Niger cultivated areas are principally gathered around villages within a distance of less than 10-km 245 

[26]. To compare the NDVI with simulated aboveground biomass, NDVI median values within a square 246 

of 10-km by 10-km (corresponding to 1600 MODIS pixels) around each village were extracted in order to 247 

limit the analysis to areas with the higher density of crop surfaces. The median value was used to represent 248 

the average situation while minimizing the effect of pixels with a significant proportion of natural 249 

vegetation as can be expected when working with a broad-scale crop mask. Mean values were also not 250 

appropriate because the NDVI values were found not to be normally distributed.  In this study three NDVI 251 

time integrals (cumulative values) were defined (Fig. 4):  252 

 The rainy season (NDVI_RS) extends from its onset to its retreat. In order to take into 253 

consideration the spatial and temporal variability of the length of the rainy season, the onset and 254 

retreat of the rainy season was computed for each year and for each village of the NSD site 255 

following Sivakumar’s definition [64].  256 

 The growing period (NDVI_GP) extends from the onset of the rainy season to the end of 257 

September (Fig. 4). The end of the crop growing period corresponds approximatively to the 258 

harvesting period which was fixed here to the end of September (270
th
 day of the year) since it 259 

generally occurs during September [65]. 260 

 The productive period (NDVI_PP) of the crop growing period corresponds to phenological stages, 261 

such as the reproductive or the first maturing stages, which are especially sensitive to water stress. 262 

Consequently, yield loss becomes significant under water stress conditions during these drought-263 

sensitive stages. The NDVI between the beginning of August (213
th
 day of the year) and the end 264 

of September (including the reproductive and the maturation phases as well as the harvesting 265 

period) were used to calculate the NDVI integral during the crop productive period. 266 
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The cropland extent obtained from the MODIS Land Cover Product was used to keep only cropland 267 

classified pixels in the NDVI integral calculation which allows minimizing the influence of natural 268 

vegetation signals.  269 

 270 

Figure 4: The three NDVI time integrated periods, example of the Kollo village in 2005. NDVI profile (black line) during the 271 
season is compared to the simulated aboveground biomass (red line). 272 

The Crop Water Stress Index (CWSI) 273 

The CWSI, commonly used as a plant stress detection index, is originally based on canopy-air 274 

temperature difference and their relation to air vapor pressure deficit. It ranges from 0 (ample water) to 1 275 

(maximum stress) [38]. [66] suggest an equivalent approach based only on canopy-air temperature 276 

differences. The CWSI used in this study can be expressed as: 277 

 

      
                       

                     
 

 

(1) 

 278 

where    is the canopy-temperature from MODIS LST data and    is the air temperature measurement 279 

from the meteorological AGRHYMET station. Subscripts    ,     and     refer to the minimum (non-280 

stressed crop), maximum (cover no longer transpiring), and observed canopy-air temperature differences 281 
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respectively, computed for each date within the crop mask over the study area. Since the HI of pearl millet 282 

is more sensitive to water stress during the crop productive period of the growing season [35], an integral 283 

of CWSI was calculated over the productive period as defined previously (CWSI_PP).  284 

3.2.2. Model development for aboveground biomass, HI and yield estimation  285 

In Niger, pearl millet is characterized by a LAI generally lower than 2, which suggests that the 286 

relationships between NDVI and LAI are below the saturation level explained in [67]. The relationship 287 

between simulated aboveground biomass and each of the three NDVI time integrals was modeled with an 288 

Ordinary Least Square regression (OLS) through the following expression: 289 

                                

 

(2) 

 290 

where            represents the simulated aboveground biomass in year t and village n with the crop 291 

model SARRA-H,           is the NDVI variable for the same year and village,           are the 292 

parameters to be estimated and       is the error term. An OLS was run at village level for the three NDVI 293 

time integrals.  294 

As for the aboveground biomass estimation, an OLS regression was applied to derive HI from the CWSI, 295 

while the crop model output was used to calibrate the remote sensed based model: 296 

                              

 

(3) 

 297 

where          represents the simulated HI in year t and village n with the crop model SARRA-H,  298 

         is the CWSI variable for the same year and village,           are the parameters to be estimated 299 

and       is the error term. 300 

The basic equation to estimate yield, is: 301 

                 (4) 
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Thus, by replacing each term of Eq. (4) by Eq. (2) and Eq. (3), the following model for yield estimation 302 

can be derived (Eq.5): 303 

                                                    (5) 

4. Results 304 

4.1. Crop model simulation results  305 

The crop model SARRA-H was run for the 28 villages of the NSD site for a period of 11 years (from 306 

2000 to 2010). In these simulations, the mean annual simulated yields at village scale vary from 100 307 

kg ha
-1

 to 1400 kg ha
-1

 (not shown). The yields are in the same order of magnitude that the ones measured 308 

by CIRAD (French agricultural research center for development) and AGRHYMET in the NSD site 309 

between 2004 and 2008 (400 to 1100 kg ha
-1

; [71]). The temporal and spatial variability of the outputs of 310 

the simulation protocol are presented in Table 1 and Table 2 respectively. Table 1 shows a general high 311 

temporal variability of simulated pearl millet aboveground biomass for the 28 villages with a coefficient 312 

of variation (CV) ranging from 31% for Gorou Goussa to 63% for Kollo. Compared to the high year-to-313 

year variability of the aboveground biomass, the temporal variability of the simulated yields (CV ranged 314 

from 19% to 46% between 2000 and 2010) and harvest indices (CV below 40% and mean HI = 0.29) are 315 

moderate. Given the size of the study area, the aboveground biomass, the HI and the yield’s spatial 316 

variability could be considered relatively high (CV between 9% and 59% Table 2). The years 2000, 2002, 317 

2007 and 2010 are those showing the highest spatial variability between the villages (e.g. 30%, 36%, 30% 318 

and 52% respectively, for simulated yields). The analysis of the crop model output during these years (not 319 

shown) reveals high water stress conditions at the beginning of the growing period (during the vegetative 320 

stage), affecting locally some of the villages and resulting in very low simulated aboveground biomass 321 

and yields for those years. We also validate the SARRA-H crop model against agricultural statistics by 322 

averaging simulated yield at the NSD site level (Fig.5). The yields are overestimated which is one of the 323 
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main drawbacks of many crop models since they simulate potential yields limited by water supply which 324 

could be different from the actual yields attained in the field [72]. 325 

Table 1: Temporal variability of simulated aboveground biomass, harvest index (HI) and yield. The mean values and the 326 
coefficients of variation (CV) are calculated on the 2000-2010 period, and are given for each village. In bold, the values 327 
averaged of means and CV over the dataset are given. 328 

 
Aboveground biomass Harvest Index Yield 

 
Mean  (kg ha-1) CV (%) Mean CV (%) Mean (kg ha-1) CV (%) 

Alkama 2063 46 0.29 27 813 33 

Banizoumbou 2285 51 0.27 26 768 34 

Beri Koira 2290 48 0.31 33 911 19 

Berkiawel 2365 52 0.30 30 920 32 

Bololadie 2138 58 0.29 28 789 46 

Boubon Golf 2387 44 0.31 31 972 17 

Darey 2012 40 0.32 21 914 22 

Debere Gati 2381 55 0.29 24 888 41 

Fandou Beri 2001 43 0.31 22 903 33 

Gardamakora 2066 51 0.30 33 808 36 

Gorou Goussa 2653 31 0.26 27 956 18 

Guilahel 2416 52 0.28 35 855 30 

Harikanassou 2732 33 0.27 22 1033 9 

IH Jachere 2254 49 0.30 29 902 23 

Kaligorou 2349 35 0.28 27 896 25 

Kare 2318 51 0.30 25 922 30 

Kokorbe Fandou 1936 62 0.33 31 829 37 

Kollo 2074 63 0.30 36 754 41 

Koure Sud 2321 42 0.29 21 940 25 

Koyria 2350 38 0.29 26 924 18 

Massi Koubou 2155 49 0.30 35 857 34 

Niamey Aeroport 2386 52 0.30 31 892 25 

Niamey Orstom 2103 51 0.32 26 907 24 

Sandideye 2573 42 0.28 26 963 25 

Tanaberi 2302 38 0.29 22 949 25 

Torodi 3271 43 0.24 39 934 37 

Wankama 1915 49 0.32 23 844 37 

Yillade 2674 40 0.27 24 994 19 

Mean 2313 47 0.29 28 894 28 

 329 

Table 2: Spatial variability of simulated aboveground biomass, harvest index (HI) and yield. The mean coefficients of variation 330 
(CV) are calculated on the 28-village data set, and are for each year. In bold, the values averaged of means and CV over the 331 
dataset are given. 332 

 
Aboveground biomass Harvest Index Yield 
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Mean  (kg ha-1) CV (%) Mean CV (%) Mean (kg ha-1) CV (%) 

2000 2332 24 0.22 21 719 30 

2001 2536 23 0.25 23 943 18 

2002 1501 52 0.35 15 768 36 

2003 3054 24 0.24 17 1050 14 

2004 2386 34 0.28 16 949 22 

2005 3967 23 0.21 17 1082 12 

2006 1706 26 0.36 16 911 15 

2007 1989 41 0.31 17 879 30 

2008 2781 28 0.27 21 1029 11 

2009 2365 41 0.31 24 990 19 

2010 828 59 0.43 9 518 52 

Mean 2313 34 0.29 18 894 24 

 333 

 334 

Figure 5: Observed pearl millet yields from agricultural statistics for the department of Kollo vs simulated yields obtained 335 
with SARRA-H aggregated at the NSD site level. 336 

4.2. Biomass estimation based on NDVI data 337 

4.2.1. Results at village scale 338 

In order to support the choice of using median values to extract NDVI around each villages, different 339 

descriptive statistics have been extracted for each of the NDVI-integrated variables in order to determine 340 

the best NDVI-integrated x descriptive statistics combination for aboveground biomass estimation: the 341 

median value, the maximum value, the range (the difference between the maximum and the minimum) 342 

and the standard deviation. The results are illustrated in Table 3. The four descriptive statistics x the three 343 

NDVI-integrated variables were compared to the simulated aboveground biomass using an OLS 344 
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regression (Table 3). For all the combinations tested the correlation coefficients are low (below 0.40 but 345 

all highly significant). The Root Mean Square Errors (RMSE) is high with an RMSE equal to 989 kg ha
-1

 346 

(RRMSE=42%) for the best combination (NDVI median x NDVI_PP), and an RMSE equal to 1060 kg ha-347 

1 (RRMSE=46%) for the less performing combination (NDVI range x NDVI_RS). Fig. 6 shows the 348 

resulting scatterplot of NDVI_PP versus simulated aboveground biomass. The dispersion of the points 349 

along the regression lines suggests the low ability of MODIS NDVI to reveal spatial and temporal 350 

aboveground biomass variability at a village scale. According to the Table 3, the best results are observed 351 

for the median NDVI values extracted around villages, thus only the combination NDVI median x NDVI-352 

integrated variables are considered in the remainder of the study. 353 

Table 3: Elements of the regression analysis obtained between the simulated aboveground biomass and the descriptive 354 
statistics x NDVI variables (NDVI integrated during the rainy season, the growing period and the productive period) obtained 355 
at the village scale for years 2000-2010. 356 

Descriptive 

statistics 

NDVI 

Variables 
Intercept Slope r p-value RMSE (kg ha-1) 

RRMSE 

(%) 

Median 

NDVI_RS  336 0.07 0.32 6.08E-09 1012 43 

NDVI_GP  255 0.10 0.34 1.20E-09 1006 43 

NDVI_PP  -704 0.24 0.38 5.80E-12 989 42 

Max 

NDVI_RS 893 0.03 0.26 5.07E-06 1033 45 

NDVI_GP 437 0.06 0.33 5.11E-09 1011 43 

NDVI_PP -99 0.13 0.31 1.86E-08 1017 44 

Range 

NDVI_RS 1886 0.01 0.13 0.02 1060 46 

NDVI_GP 1585 0.04 0.21 0.0002 1046 45 

NDVI_PP 1634 0.06 0.18 0.002 1052 46 

Standard 

Deviation 

NDVI_RS 1810 0.14 0.16 0.005 1056 45 

NDVI_GP 1389 0.34 0.24 3.07E-05 1039 45 

NDVI_PP 1280 0.59 0.21 0.0001 1045 45 
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 357 

Figure 6: Scatterplot of the simulated aboveground biomass (kg ha
-1

) and the NDVI integrated over the productive period for 358 
the 28 villages of the NSD site and over the 11 years of data. The RMSE of the aboveground biomass is 989 kg ha

-1 
which is 359 

equivalent to a RRMSE of 42%, and the correlation coefficient is 0.38. The solid line is the linear regression line and the blue 360 
area is the confidence interval for pvalue<0.1. 361 

4.2.2. Results at the NSD site scale 362 

Since neither NDVI observations nor simulated aboveground biomass follow normal distributions, 363 

median values were preferred to mean values to compare NDVI and simulated aboveground biomass over 364 

the 28 villages (NSD site scale). The aggregated NDVI value at the NSD site scale was computed 365 

considering the NDVI median value for all cropped pixels of the 28 villages. Fig. 7 shows that overall 366 

NDVI observations represent well the magnitude of the simulated aboveground biomass variability (Fig. 367 

7a, 7b and 7c) as well as the global trends and extreme events (Fig. 7d). Among the three NDVI variables, 368 

the NDVI_PP presents the best indicator of pear millet aboveground biomass with a correlation coefficient 369 

0.60 (significant at 10%) and a RMSE of 654 kg ha
-1 

which is equivalent to a RRMSE of 28%, whereas 370 

NDVI_RS appears to be the less reliable indicator (Fig 7c and Fig. 7a, respectively). The year-to-year 371 

variability is correctly displayed, with a positive trend between 2000 and 2005, a negative trend between 372 

2005 and 2010, and NDVI observations differing from simulated aboveground biomass by less than one 373 

standard deviation (Fig. 7d). These NDVI trends coincide with the observed rainfall anomalies at the NSD 374 

site scale (Fig. 2b). At the site scale, the remote sensing based model for aboveground biomass estimation 375 

is expressed as follows: 376 
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(6) 

where         is the production of pearl millet aboveground biomass estimated at the harvest period in 377 

kg ha
-1

, and     _PP is the NDVI integral during the productive period at the NSD site scale.  378 

 379 

Figure 7: SARRA-H simulated aboveground biomass (kg ha
-1

) vs a) MODIS NDVI integrated during the rainy season, b) MODIS 380 
NDVI integrated during the growing season, and c) MODIS NDVI integrated during the productive period. The regression line 381 
is in black solid line. d) Comparison of the interannual variability of simulated aboveground biomass and NDVI observations, 382 
expressed in z-score values. The grey area is the ± standard deviation computed from simulated aboveground biomass. 383 

4.3. Harvest index estimation based of LST data 384 

Since aboveground biomass is estimated at the NSD site scale, the model for HI estimation was 385 

developed at this same scale by taking the median value of the CWSI_PP derived from the LST data, and 386 

integrated over the crop productive period. The resulting model is presented in Fig.8, which shows that the 387 

HI and the CWSI_PP are linearly and negatively correlated, with a correlation coefficient of -0.68 388 

(significant at 5%) and a RMSE of 0.07 (Fig.8a). This relationship may be explain by a new biomass 389 
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production allocated to grain decreasing as crop water stress increases, leading to a consequent decrease in 390 

yield. In order to better visualize the year-to-year variability of both simulated HI and CWSI_PP, we have 391 

plotted the (1-CWSI_PP) value (Fig.8b). The year-to-year variability is generally well represented by the 392 

CWSI_PP except for 2005. The model derived for the HI estimation is expressed as follows: 393 

 

                      

 

(7) 

where    is the estimated harvest index and         is the Crop Water Stress Index’s integrated over 394 

the productive period at the NSD site scale. 395 

 396 

Figure 8: a) SARRA-H simulated harvest index vs CWSI_PP estimated from MODIS LST data, over the 2000-2010 period (the 397 
regression line is in black solid line); b) comparison of the interannual variability of SARRA-H simulated harvest index and (1-398 
CWSI_PP) values, expressed in z-score values. The grey area is the ± standard deviation computed from simulated harvest 399 
index. 400 

4.4. Yield estimation based on NDVI and LST data and evaluation 401 

Pearl millet yields at the NSD site scale were obtained by multiplying the estimated aboveground 402 

biomass (Eq.6; Fig.9a) by the estimated HI (Eq.7; Fig.9b). The estimated yields vary from 390 kg ha
-1

 to 403 

1294 kg ha
-1

 (Fig.9c). The estimated yields show an overall stable trend between 2000 and 2010 and a 404 

decline between 2005 and 2007 (Fig.9c).  405 
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 406 

Figure 9: Evolution of a) the aboveground biomass estimated from the MODIS NDVI model (Eq. 6), b) the harvest index 407 
estimated from the MODIS-derived CWSI model (Eq. 7), and c) the resulting pearl millet yield derived from the combination 408 
of Eq. 6 and Eq. 7, over the study site. 409 

The predictive capacity of the remote–sensing-based model for pearl millet yield estimation is 410 

shown in Fig.10. The combined model based on NDVI and LST data is first evaluated by comparing 411 

simulated crop yield (from SARRA-H) to estimates based on the remote sensing-based model (Fig. 10a). 412 

The combined model is in moderate agreement with simulated yields (r=0.50, RMSE of 219 kg ha
-1 

and a 413 

Mean Signed Difference [MSD] of 74 kg ha
-1

; Fig.10a).  414 

In order to show the contribution of thermal indices in crop yield estimation, we compared the 415 

results with the estimated yields based only on NDVI data. The model (based on both NDVI and LST 416 

data) results are in good agreement with the official yield statistics (r=0.82 significant at 5%, Fig.10b). 417 
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Furthermore, the combination of NDVI and LST data clearly contributes to improve yield estimation 418 

compared to NDVI data alone (r=0.59, Fig.10c). However, like the crop model used for the calibration, 419 

the remote sensing-based models clearly overestimate yields (Fig.10b and Fig.10c) which leads us to 420 

consider the ability of these models to render the yield’s year-to-year variability observed by the 421 

agricultural statistics. To do so, both estimated and observed yields were normalized. For each year, the 422 

absolute differences between agricultural statistics z-score values and those of the models were computed 423 

(Fig. 11a). In order to provide an overall indication on the performance of each of the models, the sum of 424 

the absolute differences is also assessed. Yield’s year-to-year variability from 2000 to 2010 is quite well 425 

rendered in both models in Fig. 11a, particularly for the second half of the period (between 2005 and 426 

2010). The combined model based on NDVI and LST data is the closest of the agricultural statistics 427 

temporal profile (absolute difference sum = 5.61), particularly in extreme dry years such as in 2000 428 

(Fig.11b). Nevertheless, the overall trend is also well transcribed, split in a stable period between 2000 429 

and 2005, followed by a decrease trend in yields between 2005 and 2010 (Fig.11b).  430 

To test the robustness of the remote sensing-based model, yields for the four surrounding 431 

departments were computed and compared with the corresponding official yield statistics (Table 4). 432 

Overall, computed yields coincide with the yield statistics, with correlation coefficients above 0.50 433 

(significant at 10%) for 3 departments (Table 4). As for the NSD site the remote-sensing based model 434 

systematically overestimates yields (RMSE ranging from 237 kg ha
-1

 to 742 kg ha
-1

). 435 
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 436 

Figure 10: a) Simulated yields from SARRA-H vs estimated yields from the combination of NDVI and LST data, and vs 437 
estimated yield from remote sensing with (b) or without (c) LST data. The 1:1 line is given in grey dashed line.  438 

  
Figure 11: a) Year-to-year yield variability (SARRA-H, NDVI data, NDVI x LST data) comparison with agricultural statistics. The 
y-axis indicates the absolute difference between yields anomalies (expressed in z-score) estimated and yield anomalies from 
agricultural statistics. In brackets are specified the sum of absolute differences. b) Agricultural statistics and simulated yields 
(NDVI x LST data) standardized anomalies (in z-score). 

 439 
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Table 4: Estimated yields from the remote-sensed based model vs the agricultural statistics yields 440 

 
r p-value RMSE (kg ha-1) 

Fillingue 0.45 0.15 238 

Kollo 0.82 0.01 423 

Ouallam 0.23 0.48 237 

Tera 0.58 0.06 505 

Tillaberi 0.64 0.03 742 

5. Discussion 441 

5.1. Aboveground biomass estimation based on NDVI time series 442 

The first stage of the remote sensing-based model consisted in developing an empirical 443 

relationship between NDVI time series and pearl millet aboveground biomass simulated by the crop 444 

model SARRA-H.  445 

The study first highlighted that the ability of the MODIS NDVI time series to estimate 446 

aboveground biomass depends on the scale considered. At the village scale (considering the whole dataset: 447 

28 villages, 11 years) , the study found out that the MODIS NDVI time series are not able to reveal both 448 

the spatial and temporal variability of the simulated aboveground biomass (RRMSE > 40%; Table 3 and 449 

Fig.6). As previously shown by [46], in the semi-arid zone of Niamey, aboveground biomass and final 450 

yields are mainly influenced by the spatio-temporal distribution of rainfall, and so a high variability of 451 

aboveground biomass can be observed between villages which are only a few kilometers apart. Thus, the 452 

low correlation between NDVI and aboveground biomass at the village scale implies that the spatial 453 

variability of NDVI is not as strongly associated with the spatial variability of rainfall. Further analyses 454 

are required on other potential factors that could influence NDVI at this scale. We could assume for 455 

instance that, in semi-arid regions where vegetation cover is relatively sparse, soil may cause high 456 

variations in the NDVI values at such a small scale, causing NDVI values artifacts [74] and therefore 457 

reducing the correlation between NDVI and aboveground biomass. [16], considering a direct relation 458 

between NDVI and yield, found that including soil information improved yield prediction in the Peanut 459 

Basin in Senegal. On the other hand, at the NSD site scale (temporal analysis), a good correlation was 460 
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found between simulated aboveground biomass and NDVI_PP (r=0.60). This improvement could be 461 

explained by (1) the reduction of the noise in the NDVI time series when aggregating at a coarser level 462 

and (2) a better representativeness of the overall crop growth conditions over the NSD site that is mainly 463 

driven by rainfall variability.   464 

The capacity of the MODIS NDVI time series to estimate aboveground biomass depends also on 465 

the time period used for the integration. On that point our results are different from [11], [75]  who found 466 

a good correlation between NDVI integrated over the whole growing season and aboveground biomass in 467 

Senegal. In these studies, only natural herbaceous vegetation was considered, for which final aboveground 468 

biomass is not much different from vegetative biomass, thus justifying NDVI integration over the entire 469 

length of the growing season. Our study focuses on a final aboveground biomass that depends on both 470 

vegetative biomass and grains. NDVI values were integrated over the crop productive period to account 471 

for grains, since it corresponds to the reproductive period and maturation phases, which include grain 472 

filling when plants reach their maximum development [26]. Our results corroborate other studies that 473 

directly relate NDVI to yields such as [76] who found that the strongest correlation of NDVI with wheat 474 

yields is achieved when taking into consideration NDVI values around their maximum which includes the 475 

sensitive stages of grain production.[15] then tested the influence of different NDVI integration periods 476 

and found a coefficient of determination R²=0.50 (i.e. r=0.70) for the productive period. In another 477 

analysis, using NOAA AVHRR data between 1982 and 1990 for Niger, [26] concluded that the best time 478 

integration period for millet and sorghum yield assessment is from August to September. Finally, more 479 

recently in a study conducted in China [77] it was also found that the productive and maturing stages 480 

including the heading, flowering and filling of the crops are the best suitable periods for yield estimation 481 

of paddy rice, corn and winter wheat due to the stress sensitivity of these periods that would lead to 482 

biomass reduction and thus potentially yield losses. In our study, NDVI_RS and NDVI_GP (both 483 

determined by the onset of the rainy season) appear to be less correlated to aboveground biomass. A 484 

potential explanation for this could be the delay between the NDVI onset of the growing season and the 485 

calculated start-of-season, which occur one month apart, as previously shown by [78]. At the beginning of 486 
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the growing season in a MODIS pixel the proportion of the millet cover is probably lower than the 487 

proportion of the surrounding natural vegetation. The latter reacts immediately to the first significant 488 

rainfall, whereas crops are sown later, when sufficient water (>10 mm) is available in the soil [1] and have 489 

a growth rate lower than natural vegetation.  490 

On the year-to-year variability analysis, a decrease in both the simulated aboveground biomass 491 

and the NDVI was observed from 2005 to 2010, with an important decline between 2005 and 2006 (Fig. 492 

7d.). When comparing this result with annual rainfall anomalies (Fig. 2b) and it can be concluded that 493 

both aboveground biomass and NDVI follow the major trends of rainfall anomalies (as seems particularly 494 

evident between 2005 and 2006). This comes in support of the previous assumption that rainfall remains 495 

the main determinant of NDVI variability at the NSD site scale. 496 

5.2.  Harvest index estimation based on an indicator of crop water stress: the 497 

CWSI 498 

For most crop models, including SARRA-H, DSSAT and CROPWAT [43], [79], [80], water 499 

stress during the reproductive and maturation phases is considered a crop yield limiting factor. In the 500 

remote-sensing model, we take into account the crop water stress effect on yield through the use of the 501 

CWSI, an indicator based on LST. To our knowledge, it is the first time that a link is sought between an 502 

indicator of crop stress and HI. An overall good correlation (r=-0.68) was found between HI and 503 

CWSI_PP at the NSD site scale, meaning that the HI decreased linearly as the water supply became more 504 

limited for plants. However, as for the use of vegetation indices in semi-arid zones, the main issue with 505 

thermal indices based on canopy temperature is the spatial heterogeneity due to the soil influence when 506 

the canopy does not completely cover the ground. Because bare soil is often much warmer than the air, the 507 

soil background temperature included in the LST can lead to false detections of crop water stress [81]. To 508 

overcome this limitation, a possibility may be to use the Water Deficit Index developed by [69], which 509 

considers both the difference between air and surface temperatures and the fraction of crop cover derived 510 

from vegetation indices, to estimate the water status. This method was not tested in this study, as some 511 
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adaptations are ongoing to test the construction of the vegetation index – temperature trapezoid from 512 

satellite time series.  513 

5.3. Estimation of pearl millet yields 514 

The two previous approaches for aboveground biomass and HI estimation were combined into a 515 

simple, robust and timely satellite-based model of rainfed cereal yield, applicable at the department level. 516 

If in absolute values, yields are overestimated compared to official agricultural statistics of the Kollo 517 

department, the analysis of the standardized values has shown a good agreement in terms of year-to-year 518 

variability reproduction, translating into a high correlation with statistics. In their recent meta-analysis [8] 519 

found that for four studies conducted in Senegal, Burkina Faso and Niger using NOAA AVHRR data, the 520 

correlation coefficients between NDVI alone and millet yield were comprised between 0.75 and 0.94 521 

which is comparable to the present work (r=0.82). However, caution in the interpretations has to be taken 522 

particularly because (1) although the size of the study area considered in these studies is similar to that of 523 

the present study (i.e. results aggregated at a department level), the time period considered was much 524 

shorter  (2 years in[15]) and (2) when the time period considered is comparable to ours, results were 525 

aggregated at  higher administrative levels than for us (several departments or country level; e.g. [16], 526 

[28]).  527 

The comparison with a model based only on NDVI has highlighted the usefulness of combining 528 

vegetation and thermal indices (NDVI and CWSI) for yield estimation. The ability to render the year-to-529 

year variability of pearl millet yield was clearly improved through this combination, with a correlation 530 

coefficient increasing from 0.59 to 0.82 and the z-score absolute difference sum decreasing from 7.28 to 531 

6.21. Indeed, because of the spatial variability of management practices, soil water capacity or nitrogen 532 

availability, different yields could be observed for the same amount of biomass. In addition, events such as 533 

droughts during the reproductive stage, with potentially drastic yield reduction but negligible effects on 534 

vegetative biomass, are certainly poorly detected by a model based only on vegetation indices. Thus the 535 

direct relation NDVI/yield mostly allows assessing potential harvestable yields when assuming non-536 

limiting conditions (i.e. when yield is proportional to aboveground biomass). These potential yields could 537 
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however be reduced by crop water stress during the reproductive stages as shown in this study. 538 

Consequently the direct relation NDVI/yield should be considered valid only for specific areas or years 539 

without major limiting factors affecting yield.  540 

5.4. Limitations of the method  541 

 542 

The remote sensing-based model was applied directly to four surrounding departments and the 543 

correlation coefficients were globally good despite an overall tendency to yield overestimation by the 544 

model. The four departments are situated at the North of Kollo. They are mainly dominated by 545 

agropastoral activities, with a mixture of livestock and crop cultivation [82]. Therefore, the probability to 546 

have a mixture of crop vegetation and grasslands within a MODIS cropped pixel is high, which may 547 

explain a lower performance of the model. Moreover, in these mixed zones of pasture, the seeding rates 548 

are also very low leading to a sparse vegetation cover that causes high NDVI variations due to soil effects. 549 

This highlights the main limitation of such models, based on empirical relationships between remote 550 

sensing indices and yields: they depend on the environmental characteristics of the study area, which 551 

restricts their application elsewhere without recalibration. In addition, such models also depend on the 552 

farming system considered. For this reason, the model we developed in this study is only valid for a 553 

system based on a single crop and should be tested or adapted for other farming systems such as in the 554 

cereal-root crop mixed system where a wide range of different cereals is grown (maize, millet, sorghum or 555 

cassava among other) including cases of intercropping. 556 

Another consideration to take into account concerning our methodology is the need of a crop 557 

mask to isolate cropped pixels. Since a pearl millet crop type map is not available for the NSD site, a crop 558 

mask from the MODIS LCP was used here. The same approach was also applied to NDVI and CWSI 559 

values extracted from the Landsat Crop mask. A coefficient of correlation of 0.80 is obtained when the 560 

resulting estimated yields are compared to official statistics (not shown) which is close to the one obtained 561 

with the MODIS LCP product. This confirms the relevance of the approach for the NSD site. However, 562 

while the MODIS LCP has been validated for our study area, [83] recently spatialized the uncertainties in 563 



30 
 

the localization of cropland in the MODIS LCP over West Africa and showed a high spatial variability 564 

with user accuracy varying between 17% to 70% according to farming systems. Thus to extrapolate our 565 

methods in other locations, further efforts are needed to develop at least a map locating cultivated zones 566 

and if possible the main crop type at a regional scale.  567 

The use of a crop model instead of ground measurements to calibrate the remote-sensing model 568 

can also be questioned. SARRA-H as most crop models tends to overestimate yields (Fig. 5) since it 569 

simulates attainable yields according to agro-meteorological constraints but does not integrate all biotic 570 

(e.g. birds, pests, and diseases due to excess moisture) or other non-environmental factors that influence 571 

crop management which can lead to yield variations [14], [46], [84] . Remote sensing indices do integrate 572 

biotic and non-environmental factors, and because they are calibrated using crop model outputs, an 573 

overestimation of yields by the remote sensing-based model could be expected. In addition, since the 574 

simulated yields from SARRA-H are overestimated, does that mean that the aboveground biomass and the 575 

harvest index are also overestimated? For the latter, the simulated HI as well as the estimated HI are 576 

within the range of those measured by [73] over 168 pearl millet plots in the Niamey area. Authors found 577 

a mean HI of 0.22, we found a mean simulated and estimated HI of 0.29. For aboveground biomass, 578 

reliable measurements in on-farm situations are not available. However, under controlled conditions it has 579 

been shown in [46] in Senegal for pearl millet and in [62] for Sorghum in Mali that the aboveground 580 

biomass (both yields and growth dynamics) were well simulated by SARRA-H.  The same conclusion can 581 

be drawn from the study of [4] based on on-farms survey near Niamey (Niger) for pearl millet. 582 

Nonetheless, beyond the yields overestimation, our study show that the year-to-year variability is quiet 583 

well simulated by the remote sensing based model.  584 

Remote sensing indices also present intrinsic limitations. Despite the fact that a filter was applied 585 

to reduce noise in the NDVI and LST time series, the presence of clouds, aerosols or dust residues may 586 

lead to noise and the downgrading of data quality [85]. Thus, the poor performance of the 587 

NDVI/aboveground biomass relation at local scale may also be explained by the 250m x 250m pixel size 588 
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of MODIS images that integrates a mixture of elements (crops, natural vegetation, bare soils) particularly 589 

in the semi-arid region with low and sparse vegetation and where crop fields are often smaller than the 590 

pixel size.  591 

Finally, our study is limited to a period of eleven years and to 28 sites due to the unavailability of 592 

more climatic data from ground observations to run the crop model. Agro-meteorological variables 593 

derived from satellite could also be considered as an alternative. However, the correct estimation of these 594 

variables from satellite, especially rainfall, remains an open issue. For instance, [86] found in the same 595 

area that the TRMM 3B42 product, which delivers rainfall estimates at a daily time step, was not able to 596 

accurately detect rainfall temporal pattern at the station level, and particularly the intra-seasonal rainfall 597 

distribution. We hope that in a few years, the statistical relationships between aboveground biomass and 598 

NDVI, and between HI and CWSI, can be updated and made more robust when more climatic data are 599 

available. 600 

6. Conclusion and perspectives 601 

 602 

The difficulty to access ground measurements in West Africa and to estimate yields over large 603 

areas using other monitoring methods such as agrometeorological modelling makes remote sensing 604 

observation a good alternative or addition to consider for early warning systems. In this study, we 605 

investigated a new approach based on the combination of vegetation and thermal indices for rainfed cereal 606 

yield assessment in the Sahelian region. Empirical statistical models were developed between remote-607 

sensing indices (MODIS NDVI and LST), and SARRA-H simulated aboveground biomass and harvest 608 

index respectively, and combined for the assessment of crop yield. We demonstrated that the combined 609 

model performed better than the one using vegetation index alone. The inclusion of LST improves yield 610 

estimations by accounting for the harvest index which is an indicator of the proportion of total 611 

aboveground biomass really transformed into grains. In addition, it allows using NDVI as an estimator of 612 

aboveground biomass, which is its primary function, rather than an indirect estimator of yield. 613 
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Furthermore, by using a crop model validated over the study area, this study showed that the combination 614 

of satellite data with crop modelling is a good option for yield estimation and its year-to-year variability 615 

based on remote sensing, especially for areas where ground measurements, required for the calibration of 616 

the remote sensing-based model, are not available. 617 

Our study confirms that even in small-holder agriculture such as those of the Sahelian region, the 618 

use of coarse resolution satellite information for yield monitoring is possible. As the model proposed is 619 

simple, robust and based on empirical relations with vegetation and thermal MODIS indices, there is 620 

scope for operational implementation of yield estimation at regional scale in a food security early warning 621 

system, in particular for the assessment of the year-to-year yield variability in regions with agronomic and 622 

climatologic characteristics close to those of the NSD site. In addition, such a system could provide an 623 

early estimation of yield shortly after harvest for an area equivalent to an administrative unit unlike 624 

agricultural statistics that are currently available from three to six months after harvest. But that would 625 

require addressing the issue of multi-crop type systems on which, to the best of our knowledge, no studies 626 

have been conducted in the context of the West African farming systems. That would also require the use 627 

of a different model for each broad climatic region and each crop type, and their necessary calibration 628 

with appropriate ground measurements or crop model simulations. These in turn point out to the need for a 629 

better identification of the crop domain and crop types. For instance, upcoming new sensors such as 630 

Sentinel-2 (planned launch in June 2015) are expected to significantly improve yield monitoring by 631 

providing high spectral, spatial and temporal data, which will allow more regular information on 632 

agricultural land use practices. Consequently, a high quality crop type map as well as a stratification map 633 

of West Africa according to crop types will become possible and thus the derivation of a remote sensing 634 

model calibrated for each crop type. New optical sensors like Sentinel-2 will probably not resolve the 635 

problem of data quality loss due to atmospheric effects. Future research must develop improved methods 636 

based on the combination of optical and radar data (e.g. Sentinel 2 and 1) to allow vegetation monitoring 637 

under all atmospheric conditions.  638 
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