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Characteristic trajectories of ecosystem 
services in mountains
Bruno Locatelli1,2*, Sandra Lavorel3, Sean Sloan4, Ulrike Tappeiner5,6, and Davide Geneletti7

Intensification of land use and management over recent decades has resulted in trade- offs between food or 
timber production and other ecosystem services (ES). Despite an increase in scholarly publications on ES, the 
temporal aspects of ES trade- offs have largely been neglected to date. Here we explore how past and future 
land- use trajectories (pathways of change) influence ES over time, using mountain landscapes as a model. 
Based on a synthesis of 51 cases of temporal changes in ES within mountain landscapes, we analyze how 
changes in land- use intensity influence the supply of ten key services and we describe six typical examples 
(archetypes) of ES change. Our analysis reveals that land- use intensity is an important factor shaping these 
archetypes. Land- use intensification often degrades ES (eg recreation and water regulation), with the excep-
tion of services targeted by intensification (food or timber) and with differences between forest and agricul-
tural intensification. Service degradation following intensification is not always reversed by reductions in 
land- use intensity (termed “extensification”).

Front Ecol Environ 2017; 15(3): 150–159, doi:10.1002/fee.1470

Although human modifications of ecosystems affect 
 the flow of ecosystem services (ES), policy and man-

agement interventions can be designed to at least partially 
restore ES and their contribution to human well- being 
(MA 2005). However, the management of multiple ES 
across landscapes can be challenging, given that trade- 
offs between services often occur over space and time 
(Raudsepp- Hearne et al. 2010; Locatelli et al. 2014), for 

example, where increasing food production leads to 
decreases in regulating services. In contrast to the spa-
tial dimension of ES, little attention has been paid to 
the temporal dimension of ES trade- offs (Holland et al. 
2011; Bennett et al. 2015). Because critical land- use 
changes are anticipated in the future and competing 
demands on land imply trade- offs (Laurance et al. 2014), 
understanding the temporal changes in multiple ES 
caused by current and impending land- use is necessary 
to inform sound management decisions (Bennett et al. 
2009), especially when these decisions are intended to 
re- establish complex services and restore biodiversity. 
Our aim is to contribute to this understanding by ana-
lyzing the temporal changes of multiple ES, using moun-
tain landscapes as a model.

The temporal trajectories (or pathways of changes) of 
ES are typically driven by human activities that modify 
land use and cover (Lautenbach et al. 2011; Renard 
et al. 2015). Changes in land use and land cover may 
lead to changes in ES, both qualitative (converting for-
ests to agricultural lands replaces timber with food pro-
duction) and quantitative (water- quality metrics are 
negatively affected by increased fertilizer use with agri-
culture) (Foley et al. 2005. Land intensification (ie 
increase in land- use intensity) has been a major motiva-
tion behind land- management changes in the past 50 
years, and has resulted in rapid increases in agricultural 
yields but has also lead to biodiversity losses (Lambin 
et al. 2000). Conversely, large areas in developed 
nations or in countries with transition economies (those 
proceeding toward market economies) have been recol-
onized by forest as a result of extensification (ie decrease 
in land- use intensity) or abandonment, leading to sub-
stantial improvements in biodiversity and carbon 
sequestration (Levers et al. 2015). Although often 
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In a nutshell:
• Our analysis of case studies in mountains identifies six 

typical cases of changes in ecosystem services (ES) fol-
lowing changes in land-use intensity

• Land-use intensification often leads to declines in ES (eg 
recreation and water regulation), except for services targeted 
by intensification (food or timber) and carbon to a lesser 
extent, which diverge between tree and grass-dominated 
systems

• Services degraded by intensification may not be improved 
by subsequent reduction in land-use intensity

• Simple stylized models of the effects of land-use intensity 
on ES can be used to communicate trade-offs between 
services but should be adjusted to specific contexts
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defined as the degree of agricultural 
input or output per unit of area and 
time (Turner and Doolittle 1978), 
land- use intensity can also be 
defined as the magnitude of impact 
of land- based production on biodi-
versity, water quality, or carbon 
(Erb et al. 2013).

Not surprisingly, research on 
land- use intensity has tended to 
focus on agriculture but has largely 
neglected the interface between 
agriculture and agroforestry or for-
est management (Lambin et al. 
2000). Only a few studies on inten-
sification have considered forestry 
or agroforestry (Erb et al. 2013); for 
example, Klein et al. (2002) 
described a sequence of increasing 
land- use intensity, from a near- 
natural forest to an intensively 
managed agroforestry system. It is worth paying more 
attention to the land uses that are in between agricul-
ture and forestry, given the extensive and often increas-
ing tree cover within agricultural landscapes (Schnell 
et al. 2015).

In attempting to determine an “optimal” spatial agri-
cultural configuration for biodiversity conservation, 
 previous studies have analyzed the nature of the relation-
ships between agricultural intensity and biodiversity 
(Flynn et al. 2009; Kleijn et al. 2009; Balmford et al. 
2012). Although valuable, such research is ultimately 
incomplete as land- use intensification affects biodiversity 
and multiple ES in a variety of ways (Tscharntke et al. 
2005; Seppelt et al. 2013). Any configuration considered 
“ideal” specifically for biodiversity may be sub- optimal for 
ES. Additional research is needed to clarify the overall 
effects of intensification on ES in diverse landscapes that 
include agriculture and forest mosaics in order to guide 
land- allocation decisions in real- world contexts in which 
ES priorities compete with each other for attention 
(Swift et al. 2004; Erb et al. 2013).

Stylized models have been used in global or regional ES 
assessments to characterize the services supplied by vari-
ous land management techniques (Burkhard et al. 2009; 
Schneiders et al. 2012). More specifically, Braat and Ten 
Brink (2008) proposed a stylized model – the only one of 
its kind – that shows how ES are affected by changes in 
land- use intensity (defined as the degree of impacts of 
land use on biodiversity) with six land- use classes ranging 
from natural to urban (Figure 1). In this model, provi-
sioning services (eg food or fiber) were assumed to be 
negligible in natural unmanaged ecosystems and to reach 
a maximum in intensively used lands; in contrast, regu-
lating services were optimal in natural ecosystems and 
decreased with intensification. In the case of cultural ser-
vices, recreation services peaked in ecosystems with light 

use, whereas spiritual services were assumed to decrease 
with greater levels of land intensification (Braat and Ten 
Brink 2008; De Groot et al. 2010). The changes in ES 
across land- use intensities in Figure 1 can be interpreted 
as having both a  temporal and spatial dimension, whereby 
different land covers with varying degrees of perturbation 
represent the temporal progression of degradation and 
disturbance in a single place. The temporal dimension of 
the model is amenable to elaboration and testing against 
empirical studies.

Mountain landscapes offer a valuable context in 
which to explore temporal trade- offs in ES associated 
with changing land- use intensity for two reasons. First, 
by virtue of their topography and climate, mountainous 
landscapes are key providers of certain ES – particularly 
water regulation, timber production, grazing, and recre-
ation – that make substantial contributions to lowland 
and highland economies (Grêt- Regamey et al. 2012). 
Twenty percent of the world’s population lives on 
mountains or in their foothills, and many more inhabit 
adjacent lowlands; all benefit from ES immediately 
derived from mountains (Marston 2008). Second, 
mountain and upland landscapes are undergoing and are 
expected to continue experiencing major changes in 
land use and ES provision (Schirpke et al. 2013; Crouzat 
et al. 2015). Mountains are hotspots of forest- transition 
dynamics across Latin America and Asia, the geography 
of recent forest regrowth is overwhelmingly described as 
“upland” or “marginal” (Asner et al. 2009; Lambin and 
Meyfroidt 2011). Likewise, forest recolonization follow-
ing land abandonment or polarization of land use 
between valleys and uplands has substantially changed 
the appearance of European mountains (Zimmermann 
et al. 2010).

By describing archetypal ES trajectories and testing 
how temporal changes in land- use intensity influence 

Figure 1. Stylized model (line graph) proposed by Braat and Ten Brink (2008) and De 
Groot et al. (2010), linking the supply of four types of ecosystem services (ES) to land- 
use intensity. P = provisioning services; R = regulating services; C = cultural services. 
Archetypes of ES trajectories (A to F) in this model are shown below the graph’s x axis 
(arrows and accompanying text).
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the supply of and trade- offs between multiple ES, we 
profile the diversity of temporal trajectories of ES in 
mountain landscapes. We base our model on a review of 
case studies conducted in these landscapes and a synthe-
sis of case study observations along a gradient of land- 
use intensity.

 J Materials and methods

We surveyed and analyzed studies on changes to ES 
in mountainous landscapes to identify innate “clusters” 
of ES change. These clusters define a typology (clas-
sification scheme) of ES change in mountain contexts 
and are characterized by the synthesis of their con-
stituent studies. This typology serves to test and expand 
popular conceptual models of ES change.

Selection and analysis of case studies

In January 2016, we searched Web of Science and 
Scopus literature databases for peer- reviewed studies 
quantifying historical dynamics of multiple (ie at least 
two) ES in mountain landscapes. Our search technique 
relied on three groups of keywords linked with the 
AND operator, namely: geographic keywords (eg moun-
tain* OR highland*) AND subject keywords (eg “eco-
system service*” OR “ecosystem function*”) AND 
approach keywords (eg history OR change) (see 
WebPanel 1 for additional details). This search yielded 
844 studies and, after removing duplicates and reviewing 
abstracts or full texts, we retained 30 studies that 
 assessed (with measurements or models) changes in 
two or more services at a landscape scale over periods 
greater than 5 years. Many of these studies surveyed 
several sites or several periods; thus, the 30 studies 
resulted in 51 cases (ie a given site over a given time 
period).

Analysis and ES change typology

For all 51 cases, we coded the reported temporal changes 
of ten key ES (three provisioning services, four regulating 
services, and three cultural services; Table 1) in four 
categories (increase, decrease, no change, or missing 
information). Given the diversity of metrics used to 
assess ES in the reviewed studies and the varying level 
of detail in the results reported by those studies, we 
could not apply a qualitative meta- analysis.

The ten categorical variables describing temporal 
changes of ES were used for clustering the 51 cases 
(WebPanel 2 and WebTable 1). We found that the 
optimal number of clusters was seven using the NbClust 
 package in R (Charrad et al. 2014), which identifies the 
optimal number of clusters after testing 30 indices of 
clustering performance. We performed hierarchical 
cluster analysis using hclust in the stats package in R (R 
Core Team 2014). Because results were sensitive to 
clustering options, we combined five agglomeration 
methods (ward.D, ward.D2, complete, average, and 
mcquitty) with two distance measures (euclidean and 
manhattan), resulting in 10 different clustering out-
comes. If a case fell within the same cluster in more 
than two- thirds of the clustering outcomes, we consid-
ered that this case was an archetype (ie a very typical 
example) of the cluster.

 J Results

Overview of the archetypes of ES change

The cluster analysis resulted in seven clusters hereafter 
labelled Clusters A through G, which defined a mean-
ingful typology of ES change. Clusters A and B were 
characterized by increases in land- use intensity; all 
cases in Cluster A related to the expansion of 

Table 1. Ecosystem services (ES) surveyed in reviewed studies

ES category Subcategory Description

Provisioning services Food Food from agricultural systems, including crops, meat, and milk

Timber Timber, wood, and fuel wood

Others Wild plants and animals

Regulating services Soil Mass stabilization and control of soil erosion

Water flow Hydrological cycle and water flow maintenance, flood protection

Water quality Water purification and filtration

Carbon Global climate regulation by reduction of greenhouse- gas 
concentrations

Cultural services Spiritual Emblematic or sacred plants and animals, ritual identity, artistic 
representations of nature

Recreation Use of ecosystems for walking, hiking, climbing, leisure hunting

Heritage Historic records, cultural heritage, sense of place
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agriculture and most cases in Cluster B related to 
expansion of forest plantations and cities over areas 
formerly dominated by extensive agriculture (Table 2). 
In contrast, Clusters C, D, and E described decreases 
in land- use intensity due to reduced agricultural ac-
tivities, land abandonment, or restoration, resulting in 
a variety of post- agricultural ES dynamics with differing 
implications for regulating and cultural services. Most 
clusters from A to E highlighted trade- offs between 
provisioning and other services and underscored a di-
versity of such trade- offs, with D also showing trade- 
offs between regulating and cultural services. Cluster 
F encompassed cases where all three ES groups de-
creased, whereas Cluster G was composed of cases for 
which ES changes were either unreported or limited 
(for this reason, we did not consider an archetype 
associated with Cluster G). We describe each archetype 
in turn below before considering this typology as a 
model for ES change.

Archetype A: agricultural development

Cluster A described increases in food production at 
the expense of regulating and cultural services, as ex-
emplified by cases of agriculture expansion. An arche-
typal case was the agricultural expansion on paramos 
(alpine grassland of South American uplands) and cloud 
forests of Ecuador from 1963 to 1991, which broadly 

decreased timber, soil and water services, carbon, and 
recreation (Balthazar et al. 2015). Most cases in this 
cluster were located in developing countries (eg Kenya, 
Nepal, and Ethiopia) and were driven by increasing 
demand for food from expanding human populations 
or markets. Considering the substantial expansion of 
global agricultural activity over the past 40 years 
(Laurance et al. 2014), it is notable that this cluster 
accounts for only a small fraction of our cases of ES 
change (Table 2).

Archetype B: shift from food to other products

Cluster B included cases describing the intensification 
of timber production, which often led specifically to 
the degradation of soil and water services. Increased 
timber production is typically achieved by plantation 
reforestation over grasslands or low- intensity croplands. 
The expansion of conifer plantations on grasslands, for 
example in the Araucania region of Chile (Geneletti 
2013) and the Ecuadorian highlands (Farley 2007), 
increased the provision of timber and in some cases 
carbon, but the replacement of native grasslands by 
ecologically simple plantations greatly reduced soil pro-
tection and water infiltration. The expansion of intensive 
timber plantations is frequently an extension of earlier 
agricultural expansion, both conceptually and practically 
(Sloan 2016), and as such cases in Cluster B may 

Table 2. Description of the seven clusters of ES dynamics in mountains

Cluster n (n robust)
Provisioning  
services

Regulating  
services Cultural services Main landscape changes

(A) Agricultural 
development

7 (7) More food Less regulating Less cultural Cropland intensification or 
expansion (or grassland 
 intensification in some cases)

(B) Shift from food  
to other products

8 (4) Shift from food  
to timber and  
other products

Fewer soil and  
water services

No change Expansion of forest plantations, 
urbanization

(C) From food to 
regulating services

11 (5) Less food More regulating No change Agricultural extensification; land 
abandonment; natural vegetation 
regrowth

(D) From food to 
more regulating  
but fewer cultural 
services

7 (7) Less food More regulating Less cultural Agricultural extensification; land 
abandonment; natural vegetation 
regrowth; restoration

(E) Fewer products 
and sometimes  
more recreation

8 (7) Less food or  
less provisioning  
in general

No change More recreation  
or no changes

Agricultural extensification; land 
abandonment; rewilding

(F) Worst- case 
scenarios

3 (3) Less provisioning Less regulating Less cultural Urbanization; invasive species; 
reduction or degradation of forests, 
grasslands, and wetlands

(G) Limited or  
unclear changes

7 (7) No change No change No change Urbanization; effects of CO2 
increase; extensification

Notes: “No change” means limited or unclear changes or missing data, n is the number of cases belonging to this cluster according to the majority rule (ie the cluster most 
frequently determined by a set of clustering options), and “n robust” is the number of cases belonging to this cluster according to a robust rule (ie the cluster determined by 
more than two- thirds of the clustering options).
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develop in close geographic and temporal proximity 
to cases in Cluster A. In most cases in Cluster B, 
land- use dynamics were driven by timber markets and 
forest policies that incentivized plantations for addressing 
forest product scarcity, reducing pressure on natural 
forests and sequestering carbon.

Archetype C: from food to regulating services

Cluster C involved an increase in regulating services 
with a concurrent decrease in agricultural production 
but without consistent changes in cultural services. In 
Switzerland (Briner et al. 2013), for instance, and in 
the Pamir, Altai, and Tian Shan mountains of Central 
Asia (Chen et al. 2013), drivers were generally linked 
to an increased demand for regulating services (carbon, 
water quality, water flow regulation) through environ-
mental policies and a decreased demand for food through 
agricultural and trade policies or greater competiveness 
of other regions worldwide.

Archetype D: from food to more regulating but fewer 
cultural services

Similar to Cluster C, Cluster D was associated with 
increased regulating services and decreased agricultural 
production; yet unlike Cluster C, cultural services 
were noticeably reduced in Cluster D. For example, 
in a hypothetical scenario for marginal upland peat-
lands in the UK, restoration would lead to a decrease 
in sheep stocking densities (provisioning service) and 
improved buffering of water peak flows (regulating 
service) but would negatively affect species of con-
servation concern and recreational activities (eg hill 
walking, deer hunting, or horse riding) (Grand-Clement 
et al. 2013). Drivers included changes in markets and 
agricultural and environmental policies, as well as 
socioeconomic changes (eg migration from rural to 
urban areas).

Archetype E: fewer products and sometimes more 
recreation

Cluster E was characterized by a decrease in multiple 
provisioning services (such as food and timber) and 
an increase in cultural (specifically recreation) services, 
with drivers similar to those in Cluster D. In the 
Cantabrian Mountains of Spain, for instance, urbani-
zation and industrialization have led to the abandonment 
of traditionally managed heath–pasture mosaics, which 
has increased the value of the landscape for recreation 
and tourism activities while simultaneously decreasing 
its value for agricultural production and heritage (Morán- 
Ordóñez et al. 2013). In light of the probability that 
heritage and recreation appeal to different groups of 
people, this trade- off may have major implications for 
equity, for example between local people losing their 

heritage values and visitors gaining recreation 
opportunities.

Archetype F: worst- case scenarios

Cluster F described declines in all three groups of 
ES. For example, the degradation of grasslands and 
wetlands in China’s Zoige Plateau – due to overgraz-
ing, excessive land reclamation for agriculture, and 
misuse of water resources (Li et al. 2010) – reduced 
food and timber, carbon storage, water and soil reg-
ulation, and cultural values. Such generalized decline 
is typically attributable to poor environmental man-
agement and leads to ecological collapse with “cas-
cading” effects. There was, however, neither an 
apparent pattern of causation  (sequence of ES change) 
among provisioning and regulating services in the case 
studies nor evidence of so- called “vicious circles” (for 
instance, when an initial degradation of regulating 
services causes the loss of provisioning services and 
stimulates a further compensatory intensification in 
provisioning services, which in turn degrades ecosystem 
productivity further, thereby initiating a negative 
feedback).

 J Discussion

In light of the paucity of studies to date, our synthesis 
fills critical knowledge gaps concerning the nature and 
diversity of multiple ES trade- offs over time in moun-
tainous landscapes (Seppelt et al. 2011; Lee and 
Lautenbach 2015). Given that the ES- change trajectories 
among the 51 cases spanned a variety of ecological 
and socioeconomic contexts as well as landscape 
 configurations and uses, we assume that our typology 
encompasses virtually all major trajectories of ES changes 
in mountain landscapes. We therefore propose revisions 
to current conceptual models of multiple ES change 
over time.

Land- use intensity and ES

Land- use intensity was an important factor shaping 
the archetypes of ES change. Archetypes A through 
E were distinguished according to whether intensifi-
cation (A–B) or extensification (C–E) predominated. 
The ES trade- offs across the archetypes align with 
the stylized model proposed by Braat and Ten Brink 
(2008) and De Groot et al. (2010) (Figure 1), with 
certain caveats. First, the positive effects of land- use 
extensification on regulating and cultural services were 
variable (Archetypes C–E in Figure 1), underscoring 
the key roles of political, socioeconomic, and cultural 
contexts in shaping ES trade- offs. Second, the trade- 
offs entailed by land- use intensification varied acc-
ording to whether agriculture or combined 
forestry–agricultural activities predominated, 
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suggesting an evolution of trade- offs over the course 
of a landscape’s exploitation. Finally, trade- offs varied 
greatly depending on whether grassland or forest bi-
omes occurred in a landscape (Figures 2 and 3). We 
elaborate these caveats below to refine a conceptual 
model of ES change in mountainous landscapes on 
the basis of the archetypes.

The adjustments to the model (Figure 4) reflect a 
distinction – implicit in our typology (eg between cases 

in Clusters A and B) – between grassland and tree- 
dominated ecosystems as well as between trajectories of 
change to carbon sequestration and to soil and water 
services (De Groot et al. 2010). Soil and water services 
may decline comparably between intensive agriculture 
and forestry operations but carbon sequestration poten-
tial will differ greatly, particularly between natural 
grassland and forest biomes (Su et al. 2012; Geneletti 
2013). Indeed, whether in grassland or forest, both 

Figure 2. Mountain landscapes with grass- dominated eco-
systems along a gradient of land- use intensity: from natural and 
light use ([a] Chirripó National Park, Costa Rica) to extensive 
([b] Cordillera Blanca, Peru) and intensive ([c] Sulawesi 
Highlands, Indonesia).

(a)

(b)

(c)

Figure 3. Mountain landscapes with tree- dominated ecosystems 
along a gradient of land- use intensity: from natural and light use 
([a] Tapantí National Park, Costa Rica) to extensive ([b] Pilat 
Mountains, France) and intensive ([c] Pilat Mountains, 
France).

(a)

(b)

(c)
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 trajectories of intensification entail concurrent declines 
in most ES, except for those services targeted by 
 intensification (food or timber) and, to a lesser extent, 
carbon (Figure 4). Although targeting agricultural 
expansion in savanna biomes is sometimes proposed to 
spare development of the supposedly more ecologically 
valuable and carbon- rich forest biomes, this expansion 
may degrade multiple ES and fine- scale analyses should 
be used to identify potential sites that have the least 
harmful outcomes if developed (Searchinger et al. 
2015).

Our amendments to the model (Figure 4) also reveal 
the variable dynamics of cultural services, particularly 
heritage values that were not well depicted by the 
 simple model. One reason for this is the difficulty of 
generalizing cultural services, which are highly context 
specific (Daniel et al. 2012). Another reason is that the 
heritage values of many anthropogenic landscapes are 
maintained by active land management and decrease 
with extensification or land abandonment. The revised 
model considers high heritage values in managed land-
scapes and decreases in such values with landscape 
abandonment or degradation and urbanization 
(Figure 4). Whether the highest heritage values are 

found in extensively or intensively managed landscapes 
is questionable, given that such values are often context- 
dependent (eg intensively cultivated rice  terraces can 
have high heritage  values).

Although the adjusted model captures the dynamics 
of ES in the broad archetypes identified in our study, 
we note three caveats: (1) specific cases may differ from 
the model because of local peculiarities attributed to 
certain services, (2) the model fails to capture the 
entire complexity of how services respond along the 
gradient of land- use intensification, and (3) the model 
is value laden with regard to particular ES. For instance, 
urban landscapes represent a mix of land- use intensi-
ties, and some urban designs might have more favorable 
impacts on some services than others, as well as in dif-
ferent locations. Indeed, urban ecosystems may provide 
important provisioning services and a variety of cul-
tural  services.

At the local scale, idiosyncratic trade- offs between ES 
may be influenced by management practices. For exam-
ple, agricultural intensification based on sound manage-
ment practices does not necessarily degrade water and 
soil services as shown by Cluster A cases (Bommarco 
et al. 2013), and timber production can be increased 

through managed regrowth, agro-
forestry, and mixed plantations of 
native species, with generally less 
severe effects on water, soil, and 
biodiversity than in Cluster B cases 
(Farley 2007; Rudel 2010). Actual 
trade- offs may differ from those 
presented in the stylized model 
because of the existence of mixed 
systems (ie neither grass- dominated 
nor tree- dominated). For example, 
agroforestry systems have been pro-
posed for sustainable intensifica-
tion (ie increasing production of 
goods without causing undue deg-
radation to natural resources; 
Shriar 2000).

Figure 4. Adjustments to the model by Braat and Ten Brink (2008) and De Groot et al. (2010) in the case of grass- dominated 
systems (left), tree- dominated systems (center), and all systems (right). P = provisioning services; R = regulating services; 
 C  = cultural services.

Figure 5. Possible relationships between land- use intensity and ecosystem services: 
(a) linear, (b) convex, (c) concave, (d) sigmoid with thresholds, and (e) double sigmoid 
with hysteresis.

(a) (b) (c) (d) (e)
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Thresholds and hysteresis in ES dynamics

Our limited understanding of non- linear, temporally 
lagged dynamics in ES trade- offs remains a major 
 scientific challenge (Bennett et al. 2015). Conceptual 
depictions of smooth ES curves across different levels 
of land- use intensity (Figures 1 and 4) are ultimately 
only illustrative of the general direction of change, 
which may in fact assume a variety of non- linear forms 
(Figure 5, a–c) or may indicate abrupt changes 
(Figure 5d), as illustrated in the case of soil- related 
services (Labrière et al. 2015).

Simple conceptual models and related relationships 
between land use and ES have implicitly assumed that 
the degradation of an ES following a given degree of land- 
use intensification may be reversed by an equal degree of 
subsequent land- use extensification (Wright and Muller-
Landau 2006). In reality, relationships between land- use 
intensity and the state of ES are typically not bi- 
directional because of system hysteresis (ie the fact that 
past system history affects current system state) (Figure 5e; 
Walker et al. 2012).

The degree to which relationships are bi- directional 
depends greatly on both the ES in question and its degree 
of degradation but also on temporal lags, which are not 
reflected in conceptual models. For example, soil proper-
ties, erosion control, and water infiltration are relatively 
amenable to recovery upon extensification, albeit with a 
major time lag (Bruijnzeel 2004), whereas biodiversity 
may not recover or may advance toward a new state. 
Biodiversity recovery may fail to occur despite complete 
land abandonment if fauna previously accumulated 
“extinction debts” during sustained periods of habitat 
degradation (Kuussaari et al. 2009). Different velocities of 
changes in ES also occur with heritage values. Where 
landscapes have been traditionally managed by rural 
activities, extensification can lead to land abandonment 
and the rapid loss of landscape- associated heritage values 
(Navarro and Pereira 2015), which had accumulated over 
decades or centuries of previous land management and 
resulted from a coevolution between landscapes and soci-
eties (Gómez- Sal et al. 2003).

Scale issues

Further analyses of the links between land- use inten-
sification and ES should consider scale and landscape 
heterogeneity (Grêt- Regamey et al. 2014). We described 
mountain landscape trajectories by their dominant land- 
use change (in terms of land- use intensity and vege-
tation type), yet landscapes invariably include a 
combination of different land uses of varying intensities 
and with interrelated dynamics at multiple scales. 
Agricultural intensification in some parts of a mountain 
landscape may coincide with – if not encourage – 
rewilding in other areas, and this “land- sparing” dynamic 
can also occur within smaller units such as farms 

(Balmford et al. 2012). Extensification in mountains 
may be possible only because agricultural intensification 
occurs in the lowlands (Habel et al. 2013). The net 
effects on ES of such “nested” intensification and ex-
tensification within larger landscapes remain highly 
uncertain. ES dynamics need to be considered at dif-
ferent scales, including outside mountain areas, in order 
to understand mountain landscape trajectories.

 J Conclusion

We investigated how past and future land- use trajectories 
influence multiple ES over time, using mountain land-
scapes as a model. Our analysis revealed several arche-
types of ES trajectories and highlighted the importance 
of land- use intensity in driving concurrent changes to 
multiple services. The trade- offs between services iden-
tified by these archetypes are consistent with output 
from the model proposed by Braat and Ten Brink (2008) 
and De Groot et al. (2010), and suggest possible revi-
sions to that model. Our revised stylized model – dep-
icting changes to ES along a gradient of land- use intensity 
in mountains – could be tested and adjusted to other 
contexts, such as drylands and the humid tropics. Due 
to its relative simplicity, our model can be used to 
communicate scientific findings regarding trade- offs to 
practitioners and policy makers but should be modified 
to account for distinctive local features before application 
within specific contexts.
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