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Tropical coasts are highly vulnerable to climatic pressures, 
the future impacts of which are projected to propagate 
through the natural and human components of coastal 
systems. One single event (e.g., intense storm) or gradual 
changes (e.g., upland deforestation or sea-level rise) can 
have multiple direct and indirect impacts in coral reefs, 
seagrass meadows, mangroves and human settlements and 
can compromise the resilience of the whole system. 

Risks related to climate change are frequently examined  
in isolation through the assessment of a single economic 
sector or ecosystem. However, this approach may lead to 
the indirect impacts, mal-adaptation risks and feedback 
loops being overlooked. Alternatively, impact chain maps 
offer a way of illustrating the potential impacts of climate 
change in a holistic and systemic way. An impact chain 
represents how a pressure propagates through a system  
via direct and indirect impacts. This brief summarises the 
climate change impact chains in tropical coastal areas 
based on a literature review of 289 papers. Impact chains 
are presented for five climate-change-related pressures. 

 
The impact chain concept is used by the Climate Impacts: 
Global and Regional Adaptation Support Platform 
(ci:grasp) to structure climate-related information on 
impacts. ci:grasp is a web-based climate information 
service developed by the Potsdam Institute for Climate 
Impact Research (PIK) and the Deutsche Gesellschaft 
für Internationale Zusammenarbeit (GIZ). It is funded by 
Germany’s Federal Ministry for the Environment, Nature 
Conservation and Nuclear Safety (BMU) as part of its 
International Climate Initiative (IKI).

Policy Brief 

Climate change impact chains in tropical coastal areas 

Ocean acidification 

Ocean acidification primarily affects coral reefs and 
marine organisms, with subsequent effects on people and 
other ecosystems. It leads to changes in the marine carbon-
ate chemistry, which can directly cause declines in coral 
reef calcification and growth.1 Erosional processes might 
then overcome coral growth, weakening reef stability and 
coral competitiveness for space and light. As a result, fleshy 
and non-calcifying algae will dominate, damaging biodi-
versity and weakening the ability of reefs to recover from 
disturbances.2 

Any reef degradation and coral mortality will lead to losses  
in provisioning and protective (or regulating) ecosystem 
services.3 Coral reefs serve as breakwaters, protecting 
shorelines and creating quiet habitats for other ecosystems, 
such as mangroves and seagrass beds. They are also an 
important habitat for reef fish. The loss of these ecosystem 
services will increase the overall vulnerability of people 
living in coastal areas.

Acidification is projected to have a direct impact on fish 
communities also. Increased CO₂ dissolution in ocean 
waters has long-term effects on the metabolic functions, 
growth, and reproduction of fish, with subsequent altera-
tions in population and species levels.2 Seagrass beds, by 
contrast, are expected to benefit from the increased levels 
of CO₂ for their photosynthesis. 

To slow down acidification and minimise its impacts, mit-
igation measures are needed to limit anthropogenic CO₂ 
emissions. Developing adaptation measures to minimise or 
delay the impacts will require additional research, such as 
biogeographical surveys of the range shifts of economically 
and ecologically critical species to adjust harvesting practices 
for resilience.2 Either way, minimising human pressures 
constitutes a ‘no-regrets’ measure for increased resilience.2 

http://www.cigrasp.org


STORMS IMPACT CHAIN MAP

Ocean warming and sea-surface temperature 
increases

Ocean warming, including increases in sea-surface tem-
peratures, has a direct impact on reef-building corals as 
it decreases their growth rates4 and induces bleaching. 
For example, the 1998 ENSO events led to the bleach-
ing of many Indian Ocean coral communities, with up 
to 90% mortality in shallow areas.5 The delayed effects of 
coral bleaching include predator concentration, increased 
bio-erosion, susceptibility to disease and parasites, and 
decreased capacity for wound healing.6 

The direct socio-economic effects of bleaching on coastal 
communities include decreases in diving tourism7, declines 
in reef fish stocks8 and general losses of coral ecosystem 
services (e.g., regulating) because of the decline in coral 
cover. Coastal erosion also increases because the reefs can 
no longer serve as protective barriers.5 

Declines in coral cover will reduce the habitat available 
for reef fish, which will also be directly affected by ocean 
warming because it will weaken their physiological per-
formance and change their behaviours, especially in early 
life and reproduction phases.8 Range shifts are expected to 
occur for subtropical and temperate species.9 
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Fish can potentially adapt through acclimatisation over 
multiple generations, but this adaptation ability may be 
compromised by other pressures such as overfishing. Coral 
reefs also have the potential to adapt through the acqui-
sition and maintenance of more thermally tolerant sym-
bionts (algae living in symbiosis with corals).10 However, 
anthropogenic pressures such as nutrient enrichment and 
overfishing can greatly affect coral tolerance of and recov-
ery from thermal stress.11, 12 Coastal management should 
better account for the cumulative, synergistic and mount-
ing stresses arising from climate change and concurrent 
human activities.

Changes in precipitation

Decreases or increases in rainfall and associated extreme 
events (e.g., drought, flooding) will affect coastal areas in 
different ways. In mangrove ecosystems, drought could 
lead to increased salinity, which in turn results in growth 
decline, altered competition between species and the  
conversion of upper tidal zones to hypersaline flats.13 In 
coastal settlements, major crop losses can be expected 
under drought because of the lack of fresh water for irriga-
tion, especially in small islands. Such events have already 
weakened food security in the South Pacific Islands.14 

On the other hand, increases in rainfall (both in coastal 
areas and in upland areas) will have an impact not only on 
coastal communities and wetlands, but also on coral reefs. 
Inland flooding can cause sediment discharge into coral 
reefs, which can be detrimental to their health.15 Prolonged 
rainfall and flooding can also cause freshwater-induced 
bleaching, especially in reefs located further from the open 
ocean (e. g., in lagoons).16 

Localised coastal flooding and inland/riverine flooding 
both have impacts on downstream coastal communities, 
as such events lead to the mass transportation of sediments 
and pollutants, and cause direct physical damage to set-
tlements and agriculture.14, 17 Limiting pollution and sedi-
ment discharge is the first step towards reducing ecosystem 
and community vulnerability. 

Although extreme floods can have adverse impacts on 
mangroves, moderate increases in rainfall can be beneficial 
for coastal wetlands. To minimise any negative impacts 
from changes in rainfall and enhance any potential posi-
tive effects, sustainable management at the broader water-
shed level is needed. 

Sea-level rise

Sea-level rise (SLR) is one of the most certain outcomes of 
climate change. Relative SLR that exceeds mangrove sed-
iment accretion and elevation is a substantial 
cause of recent and predicted reductions in 
mangrove areas and health, as it leads to sed-

iment erosion, inundation stress and increased salinity at 
landward zones.13 Even when mangroves have the possibil-
ity of migrating landwards (i. e., no barriers are present), 
conservation concerns are not eased, because it is the sea-
ward fringes that provide the most valuable ecosystem ser-
vices for fisheries and coastal protection.18 Any degradation 
or loss of mangroves will also result in substantial carbon 
emissions.

Accelerating SLR can also have an impact on coral reefs 
through increases in energy and sediment resuspension, 
and drowning. Sediment particles that settle on coral sur-
faces interfere with photosynthesis and feeding, and tur-
bidity induced by suspended sediment reduces incident 
light levels.19 As mentioned above, coral reef degradation 
will have detrimental effects on reef fish, and subsequently 
on the coastal communities that depend on them for their 
livelihoods. Mangrove ecosystems also provide important 
habitats for fish and crustaceans and any losses in their 
extent will increase people’s vulnerability. Furthermore, 
alterations in tidal patterns and increased turbidity and 
salinity will directly lead to modifications of fish habitats 
and, in turn, to changes in the distribution of many fish 
species, especially estuary species.17

Following mangrove losses, and hence the protective ser-
vices they provide, coastal communities will experience the 
negative impacts of SLR and tropical storms more strongly. 
The SLR impacts of inundation and shoreline erosion have 
been exacerbated along many coasts in the Pacific by the 
clearance of coastal vegetation, the mining of sand and the 
construction of artificial structures that fail to take into 
account coastal dynamics.20 

SLR will have both direct and indirect impacts on coastal 
settlements and agriculture. Indirect impacts are associated  
with the loss of ecosystem services caused by the inunda-
tion and degradation of ecosystems. Direct impacts are 
inundation and erosion of land, saline water intrusion and 
coastal flooding. The losses of land, livelihoods and prop-
erty caused by SLR are projected to be significant and to 
force many coastal communities to migrate.21 

Sea levels will continue to rise even under the strictest mit-
igation scenarios, and measures should be taken to protect 
coastal communities and ecosystems. However, ecosys-
tem management should be done at the landscape level to 
manage sediment and other inputs that can induce further 
stress on coastal ecosystems. Activities can be conducted 
within the mangrove catchment to maintain or enhance 
elevation.13 

Tropical storms

Tropical storms (e.g., cyclones, hurricanes and typhoons) 
first have direct impacts on both ecosystems and peo-
ple, followed by cascading effects. The physical force of 



hurricanes, for example, can directly degrade and kill 
mangroves. By changing the space available to different 
species, hurricanes can also reset succession and thus alter 
species composition.22 Storms influence mangrove sedi-
ment elevation through soil erosion, soil deposition, peat 
collapse and soil compression.13 However, an increase in 
soil elevation can have a positive impact on mangrove eco-
systems as it can counterbalance the effects of relative SLR. 

Positive impacts can occur for coral reefs as well. At broad 
spatial scales, tropical cyclones can cool the upper ocean, 
which reduces thermal stress for bleached corals and accel-
erates their recovery. Moderate storms can transfer sedi-
ment particles that uplift reef layers without breaking the 
corals23 and can aid larvae dispersal from and onto reefs. 
Strong storms, however, induce physical damage through 
breakage and dislodgement, adversely affect coral recruit-
ment and reduce salinity levels to points that can be 
lethal.24 They also cause large sediment blowouts that can 
clear seagrass meadows, leading to long-term effects such 
as the colonisation of the cleared space by macroalgae.25 

Again, degradation and losses in ecosystems affect coastal 
communities through the loss of ecosystem services. The 
loss of storm-protection services of mangroves, for exam-
ple, renders people progressively more vulnerable to cli-
mate stressors. By contrast, settlements protected by man-
grove ecosystems have been shown to suffer significantly 
less damage during past cyclone events than unprotected 
ones.26, 27 

As climate change progresses, tropical storms are predicted 
to become more intense and frequent. In the absence of 
coastal protection, direct impacts such as coastal flood-
ing, erosion and beach degradation will become even more 
severe, as will the loss of life, property and livelihoods. In 
addition to ecosystem conservation activities, actions must 
be taken to minimise disaster risk. Such actions include 
constructing or modernising early warning systems, devel-
oping shelters and evacuation plans, constructing coastal 
embankments, raising awareness at the community level, 
mapping high-risk areas, and establishing and enforcing 
appropriate building codes.28 

Conclusion

Impact chain maps can improve understanding of the 
direct and indirect effects that can be triggered by 
climate-related pressures at different levels in socio-
ecological systems. However, whereas the maps illustrate 
potential impacts, the actual impacts will depend on 
specific socio-economic and ecological factors, such as 
disaster preparedness and geomorphology. In addition, 
decision making for adaptation should take into account 
the effects of multiple interacting stressors.

Nevertheless, impact chains make it apparent that the 
resilience of each system component is interconnected: the 
more resilient the ecosystems, the greater the resilience and 
adaptation of the people that depend on them. In turn, 
people must manage ecosystems appropriately to ensure 
their resilience and the ongoing delivery of important eco-
system services, as degraded ecosystems are more vulner-
able to stressors and recover more slowly (if at all) after a 
disturbance. 
 
Ecosystem-based adaptation, defined as the use of biodi-
versity and ecosystem services to help people to adapt to 
climate change, offers one approach for achieving this, if 
planned and implemented appropriately and according 
to local conditions. However, it should be supplemented 
by additional measures such as preparedness activities 
(e.g., early warning systems), infrastructural measures and 
capacity building. 

 
Download the full study report “Climate Change Impact 
Chains in Coastal Areas (ICCA)” and the Annex.
Access the individual impact chain maps on ci:grasp:
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