
HAL Id: cirad-00703085
https://hal.science/cirad-00703085v1

Submitted on 12 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L-Py: an L-system simulation framework for modeling
plant architecture development based on a dynamic

language
Frédéric Boudon, Christophe Pradal, Thomas Cokelaer, Przemyslaw

Prusinkiewicz, Christophe Godin

To cite this version:
Frédéric Boudon, Christophe Pradal, Thomas Cokelaer, Przemyslaw Prusinkiewicz, Christophe
Godin. L-Py: an L-system simulation framework for modeling plant architecture development based
on a dynamic language. Frontiers in Plant Science, 2012, 3 (76), doi: 10.3389/fpls.2012.00076.
�10.3389/fpls.2012.00076�. �cirad-00703085�

https://hal.science/cirad-00703085v1
https://hal.archives-ouvertes.fr

METHODS ARTICLE
published: 30 May 2012

doi: 10.3389/fpls.2012.00076

L-Py: an L-system simulation framework for modeling plant
architecture development based on a dynamic language
Frédéric Boudon1*, Christophe Pradal 1,Thomas Cokelaer 2, Przemyslaw Prusinkiewicz 3 and

Christophe Godin2*

1 CIRAD, Virtual Plants INRIA Team, Montpellier, France
2 INRIA, Virtual Plants INRIA Team, Montpellier, France
3 Department of Computer Science, University of Calgary, Calgary, AB, Canada

Edited by:

Basil Nikolau, Iowa State University,
USA

Reviewed by:

Roeland Merks, Centrum Wiskunde &
Informatica, Netherlands
Haiquan Li, National University of
Singapore, Singapore

*Correspondence:

Frédéric Boudon and
Christophe Godin, INRIA Team Virtual
Plants, UMR AGAP, TA A-108/02,
Avenue Agropolis, 34398 Montpellier
Cedex 5, France.
e-mail: frederic.boudon@cirad.fr;
christophe.godin@inria.fr

The study of plant development requires increasingly powerful modeling tools to help under-
stand and simulate the growth and functioning of plants. In the last decade, the formalism
of L-systems has emerged as a major paradigm for modeling plant development. Previous
implementations of this formalism were made based on static languages, i.e., languages
that require explicit definition of variable types before using them. These languages are
often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility
of use for modelers. In this work, we present an adaptation of L-systems to the Python
language, a popular and powerful open-license dynamic language. We show that the use
of dynamic language properties makes it possible to enhance the development of plant
growth models: (i) by keeping a simple syntax while allowing for high-level programming
constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by
allowing a high-level of model reusability and the building of complex modular models, and
(iv) by providing powerful solutions to integrate MTG data-structures (that are a common
way to represent plants at several scales) into L-systems and thus enabling to use a wide
spectrum of computer tools based on MTGs developed for plant architecture. We then
illustrate the use of L-Py in real applications to build complex models or to teach plant
modeling in the classroom.

Keywords: L-system, Python language, plant modeling, MTG, development, environment, FSPM

INTRODUCTION
In the last two decades, the study of plant functioning and develop-
ment has been accompanied and supported by the development
of a new family of models called functional–structural models
(FSPMs, Sievänen et al., 1997; Godin and Sinoquet, 2005; Hanan
and Prusinkiewicz, 2008). These computational models use 3D
representations of plant architecture to simulate different types
of physical, physiological, or ecophysiological processes in plants,
and make it possible to assess the effects of these processes on plant
functioning, development, and form.

The formalism of L-systems has emerged as the major par-
adigm for constructing FSPMs (c.f. FSPM Special Issue, 2005,
2008, 2011). Introduced in the late 1960s by A. Lindenmayer as
a formalism for describing developmental processes in biology
(Lindenmayer, 1968), L-systems proved well suited to describe
models of plant development (Prusinkiewicz and Lindenmayer,
1990; Prusinkiewicz, 1998, 1999). In L-systems, the plant is rep-
resented by a bracketed string, whose elements, called modules,
represent the plant’s components (metamers, meristems, flowers,
etc.). Modules consist of a symbolic name and an optional set
of parameters. Modules with the same name represent the same
type of component (e.g., I for internode, M for meristem, etc.).
A set of rules (also called productions) then defines how each
module transforms over time. In particular, a module can pro-
duce one or more new modules, thus giving a possibility of adding

new components to the structure. Brackets are used to delimit
the branches. When using L-systems, the modeler designs a set of
L-system rules which, when applied step after step to the initial
string (representing the initial state of the plant), will simulate its
development.

During the past 20 years, several implementations of L-systems
have been designed. The main ones used in plant modeling
have been cpfg (Prusinkiewicz and Lindenmayer, 1990; Hanan,
1992; Prusinkiewicz et al., 1999a), lpfg (Prusinkiewicz et al.,
2007; Karwowski and Prusinkiewicz, 2003), and XL (Kniemeyer
and Kurth, 2008). Cpfg introduced a dedicated modeling lan-
guage, in which L-system rules are written using a mathemati-
cal notation based on formal language theory. This notation is
extended with C-like statements for specifying changes in para-
meters values. In the early 2000s, cpfg was completely reengi-
neered to address the needs of building more complex functional–
structural models. This gave rise to a new modeling program
lpfg and the modeling language L + C. L + C extends C++
with the notion of L-system productions. XL relies on a simi-
lar approach, but is based on a different support language, Java,
usually considered as a bit less efficient than C++ but which
offers at no cost portability between the different operating sys-
tems on which it runs. XL manipulates dynamic structures made
of modules that fully support object-oriented definition and
extends the L-systems paradigm by making it possible to define

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 1

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/10.3389/fpls.2012.00076/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Fr�d�ricBoudon&UID=46349
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ChristophePradal&UID=45393
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PrzemyslawPrusinkiewicz&UID=45343
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ChristopheGodin&UID=32335
mailto:frederic.boudon@cirad.fr
mailto:christophe.godin@inria.fr
http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

production rules on structures more general than trees, such as
graphs.

Despite the language difference, both L + C and XL, share the
common feature of being based on languages that are statically
typed. By making it mandatory to define the exact type of variables
that are manipulated in every part of the programs, statically typed
languages can optimize the handling of data-structures, efficiency
of computation, and early detection of errors (at compilation
time, before execution). On the other hand, they constrain the
user to strictly respect typing rules during programming, which
involves high-level of programming expertize for users and, as a
consequence, requires a steep learning curve (Ousterhout, 1998;
Prechelt, 2000; Tratt, 2009). In contrast, dynamic languages are
less exigent and do not require the specification of variable types
in the code. They do manipulate types, but the correctness of
variable types in expressions is mainly checked during execution.
This involves an extra burden in program execution, resulting in
a loss of overall efficiency with respect to statically typed lan-
guages, as many optimization schemes cannot be applied. On
the positive side, the programming is more intuitive, the syn-
tax is less austere, and the learning curve is much more shallow
than for static languages (Tratt, 2009). Ousterhout (1998) illus-
trates this difference by pointing out that a typical statement in a
dynamic language is equivalent to 100–1000 elementary instruc-
tions of the target machine while, in similar conditions, a typical
statement in a static language corresponds to 1–10 elementary
instructions. A higher level of abstraction is thus enabled by
dynamic languages. Consequently, dynamic languages are fre-
quently used as scripting languages, i.e., languages that allow
fast prototyping both by fostering interactivity between program-
mers and their programs during development and by making
it possible to glue together macroscopic software components
easily.

The difference between static and dynamic languages can
appear at first sight to be of a technical nature and of lit-
tle interest to biologists. However, we suggest here that the
use of dynamic languages is particularly well adapted to the
building of simulation systems in developmental biology. In
many modeling applications, the advantages of dynamic lan-
guages over static ones make the former an attractive choice
despite their relative lower computational efficiency. They are
more intuitive for users with a limited background in com-
puter science, while offering recent, powerful object-oriented
programming constructs for more computationally oriented
users.

In this work, we explored the adaptation of dynamic lan-
guages to the modeling of plant growth. For this, we designed a
new open-source L-system-based modeling environment based on
Python, a popular and powerful dynamic language. An overview
of the resulting language, L-Py, and its programming environ-
ment is presented in Section “L-Py Overview.” Then we describe
how L-Py can be used to model plant development at sev-
eral scales. For topology, we extend classical L-strings to rep-
resent MTGs (formalism to represent the multiscale nature of
plants), which makes it possible to seamlessly integrate a wide
set of model components and tools already designed for MTGs

into L-Py programs. For geometry, new primitives have been
introduced in the language to describe plant components in a
high-level manner and at different scales. Finally, we illustrate the
use of L-Py in real modeling applications, composed of multi-
ple modeling components and for developing training programs
on modeling in the classroom (see Example of FSPM Appli-
cations in L-Py). All the code excerpts given in the paper are
actual L-Py code. The corresponding example files can be down-
loaded together with the L-Py software through the OpenAlea
distribution (http://openalea.gforge.inria.fr).

L-Py OVERVIEW
Embedding L-systems into a dynamic language such as Python has
a number of consequences on the language syntax, its interpreter,
the programming environment, and the openness of the system
(i.e., its ability to interact with external components).

A SIMPLE SYNTAX OWING TO DYNAMIC TYPING
To integrate L-systems into Python, we followed a methodology
similar to that used by Karwowski and Prusinkiewicz (2003) to
design and implement L + C. L-system constructs were thus added
to the syntax of Python, following the syntax of cpfg and L + C
as closely as possible for compatibility between L + C and L-Py.
However, some constructs inherit specifically from the Python lan-
guage syntax. Compared to L + C, the L-Py syntax is simplified by
avoiding type declaration of parameters and variables. A simple
example of L-Py code is given below.

Lsystem1:
1 module Apex(age), Internode(length, radius)
2 MAX_AGE, dr = 10, 0.02 # constants
3 Axiom: Apex(0)
4 production:
5 Internode(l,r) --> Internode(l,r + dr)
6 Apex(age):
7 if age < MAX_AGE:
8 produce Internode(1,0.05)/(137.5)[+(40)Apex(age+1)]

Apex(age+1)

The main components of this code are as follows.

Modules
In L-systems, plant structures are decomposed into physical units
called modules. The set of modules forms a branching structure
that is represented by a bracketed string of modules (Linden-
mayer, 1968; Prusinkiewicz and Lindenmayer, 1990; Hanan, 1992),
here that we call here L-string. By default, any character can be a
valid module name. Modules containing more than one charac-
ter must be declared. Module parameters may also be declared
to make explicit their role (although this is not mandatory), e.g.,
Apex(age) may represent an apex characterized by its age, as
in line 1 of the above example. In this case, if Apex is found in a
string, it will be interpreted as one module instead of four differ-
ent modules, namely A, p, e, and x. Module parameters (such as
age) are Python objects and can be of any type.

Axiom
A specific string of modules, called the axiom, defines the ini-
tial state of the simulation. This string is declared by using the

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 2

http://openalea.gforge.inria.fr
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

keyword Axiom. In the example, the axiom is a string made of a
single module Apex(0), representing the initial structure of the
plant.

Rules
The keyword production indicates the beginning of rule
declarations. As in cpfg, rules may have the syntax:

Predecessor --> Successor

or, more generally

LeftContext < Predecessor > RightContext --> Successor

where Predecessor and Successor are strings of modules,
and both LeftContext and RightContext are optional
strings of modules. The rules can be expressed using two conven-
tions. Simple rules can be written in a compact mathematical style
similar to cpfg (Prusinkiewicz and Lindenmayer, 1990; Hanan,
1992), e.g., line 5. Alternatively, for more complex rules, succes-
sor specifications are declared as in L + C using the produce
statement (instead of the arrow -->) embedded into regular
Python code, e.g., line 8. In this case, predecessors are separated
from the right-hand side of the rules by a colon (line 6) con-
sistently with the syntax of Python functions. For example, the
rule of lines (6–8) replaces every Apex with parameter age infe-
rior to MAX_AGE (line 7) with an Internode module followed
by a lateral Apex and the main Apex. Lateral Apex is included
in brackets. Two geometric symbols, / and +, make it possible
to specify phyllotactic and insertion angles for the interpreta-
tion, respectively. The strings generated by this simple L-system
in the first three simulation steps (starting with the axiom w0)
will be:

w0:Apex(0)
w1:Internode(1,0.05)/(137.5)[+(40)Apex(1)]Apex(1)
w2:Internode(1,0.07)/(137.5)[+(40)Internode(1,0.05)/
(137.5)[+(40)Apex(2)]Apex(2)]Internode(1,0.05)/
(137.5)[+(40)Apex(2)]Apex(2)

A visual representation of these strings is given in Figure 1. In
summary, the syntax of L-Py is largely compatible with both cpfg
and L + C to facilitate code porting between these languages. See
Appendix for additional description of L-Py syntax.

A FLEXIBLE INTERPRETER BASED ON DYNAMIC EVALUATION
The L-Py interpreter makes it possible to execute L-Py expres-
sions. The first phase consists of compiling the code of a model
into bytecode that can be executed by Python (more precisely by
the Python virtual machine). For this, L-Py code is first trans-
lated into pure Python code by the L-Py language parser which
also generates some internal structures for the interpreter. During
this process, the predecessor of each rule is stored in a dedicated
data-structure, and the rule is transformed into a corresponding
Python function. Due to the runtime evaluation ability of dynamic
languages (Tratt, 2009), evaluation of the Python code was easy to
implement in L-Py.

FIGURE 1 | Visual representation of the five first step of L-system 1. The
Apex modules are represented by green spheres and Internodes by brown
cylinders.

Following the definition of L-systems, the L-Py interpreter
applies productions to the current string of modules (called L-
string) as many times as specified by the user. In each derivation
step, a new L-string is computed by transforming the L-string
resulting from the previous step (or the axiom in the first step). To
this end, the interpreter parses the L-string and looks for modules
matching production predecessors. In L-Py, modules may have
a dynamic number of parameters, therefore both the name of a
module and its actual number of parameters are taken into account
while matching a module in the string to a production predecessor,
as in cpfg (Prusinkiewicz and Lindenmayer, 1990; Hanan, 1992).
If a match is found, a Python function corresponding to the iden-
tified production is called and the string of modules returned
by this function (typically found after a produce statement) is
appended to the currently constructed L-string. If several matches
are found, the first one is used.

In addition to applying productions, L-Py can perform a geo-
metric interpretation of the new L-string in each derivation step
upon request. The blocks of rules used for this purpose are pre-
ceded by the keyword interpretation. Interpretation rules
that match the new L-string modules transform modules of the
new L-string into predefined symbols that can be geometrically
interpreted by a Logo-style turtle (Prusinkiewicz, 1986). To this
end, L-Py was strongly coupled with PlantGL, a Python-based
graphic library for plant modeling (Pradal et al., 2009), which
provides many high-level graphic and turtle geometry primitives
(see also High-Level Constructs for the Control of Turtle Geome-
try). Given an L-string, the turtle builds a graphic scene that can
be displayed with the PlantGL 3D viewer (Pradal et al., 2009).

A POWERFUL OPEN SYSTEM ENABLED BY LANGUAGE INTROSPECTION
Thanks to the embedding in a dynamic language, L-Py function-
alities can be easily accessed either through a graphical interface
or directly using Python commands. This enables users to control
L-Py programs in three different manners.

A complete integrated development environment
The cpfg and lpfg simulators are embedded in modeling pack-
ages vlab (Mercer et al., 1990; Federl and Prusinkiewicz, 1999) and
L-studio (Prusinkiewicz et al., 1999b; Prusinkiewicz, 2004), which

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

provide graphical editors of model attributes such as colors, optical
properties of materials and graphically defined functions, curves,
and surfaces. Likewise, the L-Py interpreter has been embedded
into an integrated development environment (IDE) that includes
code and visual parameter editors. The code editor incorpo-
rates dedicated syntax highlighting. When an error occurs, the
corresponding line is automatically highlighted, facilitating the
debugging of the model. Visual editors make it possible to inter-
actively edit scalars, curves, patches, materials, and graphically
defined functions. Names of these objects can be defined in the
editors and are used to manipulate the objects in the L-Py code
of the models. Similarly to L-studio, L-Py also contains a contin-
uous modeling mode in which interactions with parameters are
immediately propagated and visualization of the model automat-
ically updated. This facilitates interaction with the model during
simulations.

In addition to the visualization of the graphical interpretation
of the model, an interactive exploration of the computed L-string
is of great help to characterize and validate a model. To achieve this,
a standard Python shell has been integrated in the development

environment with primitives to access the computed L-strings and
other variables. This allows inspection and a posteriori processing
of the structure. A similar approach can be found in the GroImp
platform, which includes a home-made interactive interpreter, XL
(Kniemeyer and Kurth, 2008).

The L-Py IDE is also inspired by programming environments
such as Visual Studio (Microsoft Corporation, 2011). Its config-
urable interface using dockable panel widgets (see Figure 2) makes
it possible to easily customize the working environment and its
advanced development tools (profiler and debugger, etc.). The L-
Py IDE incorporates two tools that help optimize models. First, a
debugger shows the user the successive rule applications that occur
during a derivation step with actual parameters and global variable
values. The debugging can be constrained to detect the applica-
tion of particular rules only. Second, a profiler provides the user
with a detailed report of the time spent in each rule and function,
and makes it possible to identify bottlenecks in the execution. The
creation of these tools was facilitated by the introspection property
of dynamic languages (introspection is the ability of a program to
explore and possibly modify its own code). For instance, access at

FIGURE 2 |The L-Py IDE with its utility windows for parameter edition.

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 4

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

runtime to the names and values of the different variables involved
in a procedure is simple in a dynamic language and facilitates, for
instance, the creation of the debugger.

L-Py as a component library: controlling L-systems execution from
Python
L-Py has been developed as a C++ library embedded in Python
that can thus be integrated into any Python-compatible appli-
cation. For this, the L-Py library defines a number of structures
(module, L-string, rule, L-system, etc.) that can be accessed from
Python in an object-oriented manner. As a result, an L-system
model can easily be manipulated by an external process. Such a
process typically creates an L-system object, executes it for a num-
ber of specified steps, possibly changes its parameters, resumes
the execution, and finally gets the computed L-string. In this way,
L-Py can be encapsulated as a simple component of a more com-
plex modeling pipeline that integrates other components, possibly
using formalisms different from L-systems.

The central issue of such an encapsulation strategy is to control
the execution of L-Py models. An L-Py program contains global
variables, functions, rules, and configuration/execution variables
such as the number of derivation steps. From an external process, a
user may want to access and change any of these elements. In L-Py,
this can be done by using the Python/L-Py introspection mecha-
nism or by using dedicated primitives implemented in L-Py. For
instance, to explore a large parameter space for a given L-system,
a user may want to vary parameters (e.g., global variables) of an
L-system model after each execution. Such exploration cannot be
made easily manually. The use of the introspection property of L-Py
makes it possible to resolve this issue elegantly: a process that uses
L-Py as a component can inquire about the internal variables of
the L-Py model (global and configuration/execution variable) and
directly access and modify them in memory. Global variables of
the model become automatically and dynamically attributes of the
L-system structure that contains the model, and can be modified as
easily as any attribute of a Python object. Execution variables can
also be modified with predefined L-Py functions. For example, to
overwrite the axiom of an existing L-system object, an L-string can
be built from a specified string of characters with the Lstring
construct and then used to overwrite the contents of the L-system
axiom. More generally, L-strings can be built from modules con-
taining objects of any complex type as parameter values. Thanks
to the dynamic typing of the language, parameters of any type
can be introduced into the L-string and passed to an L-system.
For example, the following program creates and runs iteratively
Lsystem1 using an increasing value of the global variable dr,
incremented externally in each step.

Code2:
1 lsys = Lsystem(‘Lsystem1.lpy’)
2 print lsys.dr # This would print 0.02
3 axiom = Lstring(‘Apex(2)’,lsys)
4 for i in range(10):
5 lsys.dr += 0.02
6 lstring = lsys.derive(axiom,5)
7 interpretedstring = lsys.interpret(lstring)
8 scene = lsys.turtle_interpretation(interpretedstring)
9 Viewer.display(scene)

Line 1 reads in and creates an L-system structure from the
Lsystem1 code. The second line requests and prints the value

of the internal variable dr from the model lsys. Note that the
global variables such as dr are automatically considered as attrib-
utes of the L-system object. Line 3 creates an L-system string from
a text string, using lsys module definition to interpret correctly
the module names. This L-string will be used subsequently as the
L-system axiom. Line 4 initiates a loop that will perform parame-
ter space exploration for ten values of the dr parameter. At each
iteration step, Line 5 changes the value of dr before performing
5 Lsystem derivation steps starting from the axiom (line 6) and
assigns the resulting string to lstring. Note that in this case,
only the production rules and the global variables of the L-system
are used in the object, while the initial string (axiom) can be con-
sidered as a variable (notion of L-system scheme, Herman and
Rozenberg, 1975). The function derive can also be called with
no argument and will use in this case the values of the axiom and
the number of derivation to perform declared in the L-system.
Finally, lines 7–9 interpret the resulting string geometrically using
the turtle interpretation, and display the result in the viewer. These
lines can also be summarized into one (more efficient) com-
mand lsys.plot (lstring). However, they are given here to
show that a user can finely control the execution of an L-system.
Importantly, entire functions and productions of complex models
can be changed similarly to the simple variable dr in the above
example.

Creation and manipulation of an L-system object have also
been encapsulated into OpenAlea (Pradal et al., 2008) as compu-
tational nodes. Similarly to the example provided here, these nodes
can be created with L-Py code and parameterized with a dictionary
containing the names and new values of the variables. Examples
of such use are given in Section “L-Py as Growth Component for
Simulating an FSPM.”

The L-Py introspection mechanism: controlling L-system execution
from L-Py programs
L-Py makes it also possible to control its execution, vari-
ables, and rules from within L-Py models. For instance,
the ExecutionContext object is accessible through the
execContext() function and makes it possible to ask and
modify the values of the L-Py model configuration/execution vari-
ables. These variables control the number of derivation steps, the
currently used group, etc. (a complete list is given in the online
help; see also Standard L-Systems Features of L-Py in Appen-
dix). After each iteration modelers also have access, through the
EndEach function, to the resulting L-string and the correspond-
ing scene graph. This enables global post-processing of the mod-
eled structure using regular Python code and external modules
from within a model. In this way, an L-Py model can also act
as an integrative framework for different modeling components
(see for instance section “Minimizing Measurements in 3D Plant
Architecture Reconstruction”). For example,

Lsystem3:
1 Axiom: A
2 production:
3 A--> B
4 B--> AB

produces a sequence of strings whose lengths follow the Fibonacci
series. It can also be shown that the string produced in step t is the

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

concatenation of the strings produced in steps t-2 and t-1. Check-
ing visually these properties with L-Py is easy and requires only
adding two lines of code:

Lsystem3 (continued):
5 def EndEach(lstring):
6 print len(lstring), lstring

These lines print the length and the value of the current L-string
and are called after each derivation step. The output exhibits the
Fibonacci properties of the model:

Lsystem3 (output):
1 A
1 B
2 AB
3 BAB
5 ABBAB
8 BABABBAB

Modification to the string can be made in a similar way from within
a L-Py model. Likewise, thanks to the dynamic language evalua-
tion, it is possible to add or remove a rule during the execution of
an L-system.

MODULAR L-SYSTEMS IN L-Py
Code modularity is the key to build complex and reusable mod-
els. In our context, this raises the question of building reusable
blocks based on L-systems that can subsequently be assembled.
Modularity of the model may result from the decomposition of
the structure into components such as internodes or leaves, which
can be processed and defined independently (Hanan, 1992; Godin
et al., 1998; Prusinkiewicz et al., 1999a) or from the decomposition
of the model into of component aspects such as growth, photo-
synthesis, and hormone transport (Cieslak et al., 2011). In this
section, we discuss the support for decomposition into aspects,
offered by L-Py.

One technique supporting such decomposition was proposed
by Federl and Prusinkiewicz (2004), based on the concept of con-
trolled derivations in L-systems. Different groups of production
rules are identified by group Ids. Only one group is active in
any derivation step. However, another group may be activated in
the next derivation step, and so on. The selection of the appro-
priate group can be conveniently made before each derivation
step using the StartEach statement. Within a static language,
however, parameters of the modules are declared at the begin-
ning of the model and their declaration should take into account
all parameters required for all groups. This limits the indepen-
dence of the groups and thus the modularity of the composite
L-system.

More recently, Cieslak et al. (2011) proposed another strategy
to develop modular L-systems, based on the use of separate mod-
ules to represent different aspects of the model. These modules
can be combined such that one organ of the plant is represented
by a list of modules, each reflecting a different aspect of the model.
The rules related to the different aspects are described in different
groups and are invoked sequentially. While this makes it possible
to have separate definition of each group with their own modules
and rules, a given element is modeled in this approach with several
modules, which blurs its identity.

In L-Py, we elaborated on the approach of Federl and
Prusinkiewicz (2004) and extended it with the use of a dynamic
language to reinforce the decoupling of the different L-systems to
assemble. The goal is to combine several independent L-systems,
typically written by different persons, in different files (say for
example files A.lpy, B.lpy, C.lpy). Each L-system can be
considered as a processing unit dealing with an aspect of sim-
ulation, for example substance transport, branch mechanics, or
growth. An order may have to be respected in the application of
the corresponding L-systems, as some of them may update L-string
parameters subsequently used by other L-systems. We assume that
the different L-systems operate on the same or closely related sets
of plant components, e.g., apices, growth units, or internodes. As
similar components in different L-systems may be identified by dif-
ferent module names, a mapping between these names is defined
in the third “translation” L-system. For instance, if the module
representing an internode is named I in L-system A and S in L-
system B, a ruleI-->Swill be created in the translation L-system
A2B.Module parameters must also be translated. Detailed exam-
ples of how this is done are given in Section “Managing L-System
Modularity” in Appendix.

Different L-systems and their translations can be chained
by the programmer to make up a unique compound L-
system. To easily handle such chaining, a generic Python class
ComposedLsystem is provided in L-Py. It takes two arguments:
a list of L-systems to be chained (including translation schemes)
and a list of interpretation schemes to be chained. A sketch of a
typical code that must be defined to combine different L-systems
follows.

Code4:
1 a,b,c = Lsystem(‘A.lpy’),Lsystem(‘B.lpy’),
Lsystem(‘C.lpy’)

2 a2b, b2a, a2c = Lsystem(‘A2B.lpy’),Lsystem(‘B2A.lpy’),
Lsystem(‘A2C.lpy’)

3 clsystem = ComposedLsystem([a,a2b,b,b2a],[a2c,c])
4 lstring = clsystem.axiom
5 for i in xrange(K):
6 lstring = clsystem.derive(lstring)
7 clsystem.plot(lstring)

The first two lines create the different L-systems required for the
model. The third line gathers them into a ComposedLsystem struc-
ture. As arguments, two lists of L-systems are given. The first list
contains the set of L-systems responsible for the production rules
and the second list for the interpretation, given in the order in
which they should be called. In the first list, the target L-system of
the last translation (the “a” in b2a in the example below) must
be identical to the first L-system of this list, while in the second
list, the source L-system of the first translation (“a” in a2c) must
be identical to the last L-system of the first list (i.e., “a” also). The
next four lines simply run and plot the ComposedLsystem for a
number K of iterations as if it were a simple L-system. In this case
the chaining of L-systems is controlled by the ComposedLsystem
primitive, but the modeler still has the possibility to write code
that calls each Lsystem one after another a number of times (for
instance to handle different time units in the different L-systems).

This approach shows a great flexibility in assembling com-
ponents by transforming L-strings expressed in the alphabet of

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 6

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

one L-system to that of another one. This approach may be com-
bined with sub-Lsystems or other aspect-oriented approaches into
a completely flexible and modular L-system framework.

MODELING PLANT GROWTH AT DIFFERENT SCALES IN L-Py
The embedding of L-Py in a dynamic language has a number of
consequences on the modeling possibilities themselves. Due to the
non-strict typing system, connection with external modules and
models is much simpler than with static languages. Here, we inves-
tigate the consequences of this language specificity to key aspects
of plant modeling.

SEAMLESSLY COMBINING L-SYSTEMS AND MTGs
In the late 1990s, Godin and Caraglio (1998) introduced a formal
model called Multiscale Tree Graph (MTG) to represent a wide
range of plant architectures, at varying scales of description, in a
flexible and unified way. Since then, MTGs have been used widely
to encode various types of plant architectures at varying scales
(e.g., Godin et al., 1999; Mündermann et al., 2005; Teobaldelli
et al., 2008) and to analyze the resulting data with dedicated soft-
ware such as AMAPmod (Godin and Guédon,1997) and OpenAlea
(Pradal et al., 2008). Today, in OpenAlea, MTG is the central data-
structure that different modeling packages use as a standardized
way to represent plants.

In order to exploit the large library of algorithms and mod-
els built for MTGs in L-Py, we designed bidirectional translation
and mapping mechanisms between L-strings and MTGs. Conver-
sion between these structures is possible as they both represent
a particular type of labeled tree graphs. L-strings represent axial
tree graphs (Prusinkiewicz and Lindenmayer, 1990) while MTGs
may integrate tree graph descriptions at several scales (Godin and
Caraglio, 1998). Fortunately, it has been shown that, similarly
to simple tree graphs, multiscale tree graphs can be encoded as
strings (Godin et al., 1999). L-strings corresponding to MTGs can
be defined using this property (Godin et al., 1999; Ferraro and
Godin, 2000).

In brief, let us first consider an L-string representing the tree
graph at the most microscopic scale of the MTG (e.g., at the scale
of internodes I), of Figure 3 (left) e.g.,

I I I [I I] I...

where each I represent a plant module (here an internode), and
opening brackets indicate branching points. Modules representing
more macroscopic nodes of the MTG, corresponding for example
to growth units U or to branching systems S, are inserted before
the first microscopic module that composes them (Godin et al.,
2005). The resulting string mixes modules at different scales. A
small branching system S composed of growth unit U that can be
decomposed as internodes I is thus encoded as:

S U I I I [U I I] U I...

This defines a multiscale L-string associated with the MTG (see
Figure 3). For the L-Py interpreter to recognize that modules in
the string belong to different scales, the user must explicitly asso-
ciate each module type with a scale using the keyword “scale”
in the module type declaration of the L-Py program:

FIGURE 3 | Comparison of MTG and an L-string. A branching system S is
composed of three growth units, which are in turn composed of two or
three internodes. Left: a detailed representation of S at the scale of the
internode. Middle: representation of the MTG on the top and the
corresponding multiscale L-string on the bottom. Right: A geometric
representation of the multiscale L-string.

module S: scale = 0
module U: scale = 1
module I: scale = 2

As in classical L-strings, modules in multiscale L-strings can have
parameters of any type, including complex types and objects. The
use of a dynamic language makes it possible to seamlessly con-
vert L-strings into MTGs and, reciprocally, MTGs into L-strings.
Indeed, in the conversion, L-string module parameters are auto-
matically transformed into MTG node parameters (or vice versa)
without the burden of duplicating parameters in memory or
writing/reading data through exchange files.

Primitives to read/write and convert MTGs into L-strings
(and reciprocally) have been designed and make it possible to
manipulate MTGs directly within L-Py rules. These can be used
for instance to initialize a simulation with a plant architecture
measured experimentally:

Lsystem5:
1 from openalea.mtg import *
2 intialmtg = MTG(‘walnut.mtg’)
3 Axiom:
4 PlantFrame(intialmtg, scale = 3)
5 parameters = [’tipposition’,’bottomdiameter’,

’topdiameter’]
6 lstring = mtg2lstring(initialmtg,{‘S’: parameters,

‘U’: parameters, ‘V’: parameters})
7 sproduce(lstring)

8 interpretation:

9 S(tippos,bottomdiam,topdiam) --> _(bottomdiam)
LineTo(tippos,topdiam)

10 U(tippos,bottomdiam,topdiam) --> _(bottomdiam)
LineTo(tippos,topdiam)

11 V(tippos,bottomdiam,topdiam) --> _(bottomdiam)
LineTo(tippos,topdiam)

Axiom is now defined as a rule (lines 3–7) that produces a string
(line 7). The MTG of a measured walnut tree (Juglans regia L.;

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

Sinoquet et al., 1997) is first loaded (line 2, note that the func-
tions for manipulating MTGs, such as MTG and PlantFrame
used here, are independently provided by the MTG package of
OpenAlea). This file contains the information related to the topol-
ogy of the plant at three different scales (axis segments, axes,
and plant). In addition, for some plant segments, it contains
key information about their geometry, called “frame” informa-
tion (this information was not systematically measured for all
plant segments in the field). The frame information consists of
the spatial location of the segment tip in a reference coordinate
system originating at the basis of the plant, together with their
bottom and top diameters. Based on the frame information avail-
able for some segments in the MTG, the PlantFrame function
makes it possible to compute the frame information for all the
plant segments where it is missing, using predefined inference
rules (Godin et al., 1999). As a result, the frame attributes (’tip
position’,’bottomdiameter’,’topdiameter’) of
the segments of the MTG are updated with the computed infor-
mation. The MTG is then transformed into a multiscale L-string
(lines 5–6), where the different modules corresponding to the
plant segments (here labeled S, U, V) are given parameters
corresponding to their frame information in the MTG. Finally,
the sproduce statement of line 7 produces the multiscale L-
string corresponding to the MTG (one can note the difference
between produce and sproduce: produce creates a suc-
cessor L-string from a list of modules, while sproduce creates
a successor L-string from an already built L-string structure). The
axiom defined by this string has thus been procedurally evaluated.
Finally, to plot a graphical representation of the axiom, a simple
interpretation rule is defined for each type of module (line 9–11)
that uses the turtle to draw the complete plant structure by exploit-
ing the frame data of the successive plant segments along the plant
axes (Figure 9, left).

HIGH-LEVEL CONSTRUCTS FOR THE CONTROL OF TURTLE GEOMETRY
As illustrated in the previous sections, the use of a dynamic lan-
guage such as Python favors the openness of the modeling language
(i.e., its ability to be extended) and its simplicity of use by pro-
viding high-level constructs in the language. Both characteristics
were considered as key guiding principles throughout the design
of L-Py. In this section, we show how these principles were used
to simplify the modeling of plant geometry by introducing new
constructs to manipulate turtle geometry at high abstraction level.

Custom geometric primitives for plant representation at different
scales
When representing plant architecture, most simulation systems
use an explicit geometric representation of plant organs: intern-
odes are represented by cylinders, leaves by small parametric
surfaces, fruits by volumetric models, roots by generalized cylin-
ders, etc. In recent years, however, abstract geometric models of
plant organs have been introduced to represent plant architectures
at more macroscopic scales in simulation models (e.g., Cescatti,
1997; Boudon, 2004; Pradal et al., 2009; Livny et al., 2011). These
approaches are based on the use of either volume or envelope
models that represent groups of organs instead of individual
organs. Such models can be readily designed in L-Py thanks to

the tight coupling with the PlantGL library (Pradal et al., 2009). A
generic primitive, @g(geometry), allows the modeler to posi-
tion any PlantGL model in space using the current turtle location
and orientation. In this way, coarse geometric representations of
plant architecture can be defined where parts of the tree crown are
represented by parametric envelopes. The resulting architecture
may then be used in conjunction with ecophysiological models
that take a 3D scene as an input. Here we illustrate this possibility
by computing the direct illumination of each crownlet in the plant
using the Fractalysis library (Da Silva et al., 2008) from OpenAlea:

Lsystem6:
1 from openalea.plantgl.all import AsymmetricHull
2 from openalea.fractalysis.ligth import

diffuseInterception
3 def EndEach(lstring,lscene):
4 lighting = diffuseInterception(lscene)
5 for id, light in lighting.iteritems():
6 if lstring[id].name == ‘Crownlet’:
7 lstring[id].light = light
8
9 module Crownlet(height,radii,light)
10 production:
11 ... # generation of the tree containing Crownlet
12 interpretation:
13 Crownlet(height,radii,light)-->; (colormap(light))

@g(AsymmetricHull(height,radii))

This L-system produces in each derivation step an L-string that
is composed of modules Crownlet which are characterized by
their height,maximum radii in four directions in the plane perpen-
dicular to their main axis, and the total amount of light that they
receive (defined in line 9). As explained in Section“The L-Py Intro-
spection Mechanism: Controlling L-System Execution from L-Py
Programs,” the L-string produced at each step and the correspond-
ing L-scene can be post-processed in the EndEach function. The
L-scene is a set of PlantGL objects that were derived from the L-
string modules by the application of the interpretation rules (line
13). Each L-scene object thus contains an id corresponding to its
associated module in the L-string (in L-Py, the L-scene ids sim-
ply correspond to the position of their associated module in the
L-string). In the EndEach function, the amount of diffuse light
intercepted by every module of the plant is evaluated by a call to
the Fractalysis library (line 4). The diffuseInterception
primitive is passed a PlantGL scene and returns a dictionary con-
taining pairs composed of module ids and of the amount of light
intercepted by that module. To import this information back into
the string, an iteration over the dictionary is made in lines 5–7. For
each module id, the module name is checked (line 6) to select only
crownlet modules and their light parameter is updated (line 7).
Figure 4 shows a representation of the L-scene after construction
of a tree made of a branching system bearing crownlets represented
by asymmetric hulls and colored according to the total amount of
light intercepted by each crownlet.

Seamless control of differential turtle geometry
In particular modeling situations, one needs to instruct the tur-
tle to follow a predefined curve in 3D space. This is required for
example when one wants to control the shape of a branch using
a predefined template shape. For this, we assume that a curve of

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 8

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

length L is defined that represents the shape of a particular branch.
In the 3D scene, at the position of the branch insertion on the par-
ent branch, we then need to instruct the turtle to move along this
curve from its current position. To achieve this, Prusinkiewicz et al.
(2001) designed an algorithm to move the turtle in the 3D space
based on differential geometry and using quantities such as local
tangent, curvature, and step size. The following L-Py code gives a
simple 2D version inspired from this algorithm.

Lsystem7:
1 length = 12.4
2 dl = 0.01
3 Axiom: FFF [+M(0)] FF
4 production:
5 M(l):
6 if l < length:
7 u, nextu = l/length, (l + dl)/length
8 tgt = curve.getTangent(u)
9 nexttgt = curve.getTangent(nextu)
10 rotangle = degrees(atan2(cross(tgt,nexttgt),

dot(tgt,nexttg)))
11 produce +(rotangle) F(dl) M(l + dl)

The axiom defines a parent branch made of five segments
and bearing a branch on the third one (line 3). The branch
is produced by incremental application of rule M(i) until
length length is reached (lines 5–6). First, normalized lin-
ear abscissa of current and next points are computed (line
7), assuming that the turtle will make steps of constant size
dl. This makes it possible to compute the angle by which
the turtle should turn (lines 8–10) according to the reorien-
tation of the tangent between these points before making the
move (line 11). The recursive application of this rule produces
the branch shape as specified by the PlantGL Curve2D object
curve, defined elsewhere either graphically or procedurally (see
section “A Complete Integrated Development Environment” and
Figure 5B).

However, one can note that the corresponding code contains
low-level instructions related to the computation of the local

FIGURE 4 | Representation of a tree at the scale of crownlet using of

the asymmetric hull primitive of PlantGL and with light interception

computation using Fractalysis (Da Silva et al., 2008).

curvature on the template curve (lines 7–10). This may obscure
the overall code with instructions related to differential geom-
etry management, which are not essential to the expression of
the model itself. To alleviate this difficulty, we abstracted this
differential geometry management by introducing the primitive
SetGuide(curve,length), which instructs the turtle to fol-
low the given curve until the total length of its moves reaches
the prescribed value length. The algorithm used to control the
turtle frame movement from the curve definition is inspired from
Bloomenthal (1990) to control branch shape in a global to local
manner (details of the SetGuide primitive are depicted in section
“The SetGuide Primitive” in Appendix). Using this primitive, we
can define the shape of a branch and keep clear the main L-system
code:

Lsystem8:
1 Axiom: FFF [&(90) SetGuide(curve,length) M(0)] FF
2 production:
3 M(l):
4 if l < length:
5 produce F(dl) M(l + dl)

In the axiom (line 1), as soon as the turtle has been rotated
to draw the branch, it is instructed to follow the curvature
specified by the template curve curve (SetGuide primitive).
The turtle is moved recursively forward following at each step
the bends defined by curve, leading to the result depicted in
Figure 5B. Note that if the SetGuide primitive is removed,
the code is still valid L-Py code, where the turtle goes straight
instead of following any curved trajectory (Figure 5A). In fact,
SetGuide made it possible to completely separate the spec-
ification of the branch geometry from the specification of the
topology.

This design pattern can be applied to a more complex branch-
ing system to control the shape of branches in a global to local
manner. The following code illustrates the use of SetGuide to
control the bending of a complete branching system recursively
with a unique template curve.

FIGURE 5 | Construction of the geometry without (A) and with (B) the

SetGuide primitive. It takes as input a user-defined template curve
(represented in the inserted window) and control curvature of turtle path.

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

Lsystem9:
1 Axiom: M(0,0)
2 production:
3 M(l,order):
4 if order < MAXORDER and l < length:
5 produce F(dl) iRoll(phi)[ˆ(60)SetGuide(curve,

length-l)M(l,order+1)]M(l+dl, order)
6 else: produce

The apex M now has an additional parameter “order” to con-
trol the order of the branch. Apices whose order is greater than
MAXORDER abort (line 4). The apex of order 0 is not prefixed by
any SetGuide (line 1) and thus assumes a Euclidean space and
develops a straight vertical trunk. By contrast, the branches built by
lateral apices at order 1 and 2 are all prefixed by a SetGuide (line
5) and will then follow the specified template curve curve for the
remaining length length-l. The resulting branching structure
is illustrated in Figure 6.

Modeling shape variation
Plants architectures frequently show gradients in the shape of their
organs. At different scales smooth variations of form and ori-
entation may be observed: in petal shapes in flowers, in branch
bending along a trunk, or in crownlet shapes and volumes in
a tree crown (e.g., Bell, 1991; Barthélémy and Caraglio, 2007).
Continuous variations in shapes may also arise throughout time
due to growth and aging: leaves may unfold out of the bud for
instance or fold due to a change in their water status, branches may
change their shape due to interaction between gravity and growth,
while trees may undergo deep shape metamorphosis throughout
their lifespan (Hallé, 1978). Common to all these processes is
the notion that a shape changes seamlessly (or “continuously”)
either in space or in time. Describing such changes is critical
in models of plant architecture. In the context of L-systems, the
importance of this phenomenon was recognized by Prusinkiewicz
et al. (2001) who proposed to model attributes of plant architec-
ture as functions of their location along the main axis (positional
information).

Here again, the tight coupling between L-Py and PlantGL
provides a powerful solution to address this issue. The
ProfileInterpolation object of PlantGL makes it possible

FIGURE 6 | Left: simple recursive structure with straight branches,

Right: use of a template curve shown in the inset to define branch

geometry. S-shaped branches produce a more realistic appearance and can
be easily specified in L-Py.

to smoothly interpolate between user-defined curves. The user
specifies a set of keyframe curves at given index values. Then the
ProfileInterpolation uses an interpolation scheme (e.g.,
the BSpline interpolation scheme; Piegl and Tiller, 1997) to com-
pute intermediate curve values for any index between the extreme
index values.

This function can be used for instance in combination with
SetGuide to control the shape of axes in a branching system in a
high-level manner. Using positional information (Prusinkiewicz
et al., 2001) and ProfileInterpolation, we can compute
for every position on the trunk of the plant a branch shape defined
as a smoothly interpolated value between user-defined curves at
different key altitudes on the trunk.

Let us modify for instance the previous L-system to control the
shape of branches on the trunk according to a gradient of template
curves.

Lsystem10:
1 axisfunc = ProfileInterpolation([axis1,axis2,axis3],

index = [0,0.6,1],degree = 2)
2 Axiom: M(0,0)
3 production:
4 M(l,order):
5 if order < MAXORDER and l < length:
6 produce F(dl) iRollR(phyllotaxy)[ˆ(60) SetGuide

(axisfunc(l/length),length-l) M(l,order+1)]
M(l + dl, order)

7 else: produce

An interpolation scheme, using these reference curves is set up by
specifying the normalized indexes corresponding to these curves,
and the degree of interpolation (line 1). Then the SetGuide is
set up to move on the axis curve defined for the normalized index
l/length by the interpolation scheme. Figure 7 illustrates the
result of this scheme applied to different sets of key curves.

This interpolation procedure can also be used to animate plant
development in a flexible manner as illustrated by the example
code below (Figure 8).

Lsystem11:
1 axisfunc = ProfileInterpolation([axis1,...,axis4],

times = [0,0.25,0.5,0.75,1],degree = 3)
2 length, dl, dt = 10, 1, 0.01 # constants
3 Axiom: Leaf(0,length)
4 production:
5 Leaf(t,l) --> Leaf (t+dt,l)
6 interpretation:
7 Leaf (t,l)--> Sweep(axisfunc(t), profile,l, dl,leafwidth)

FIGURE 7 | Examples of structures whose branches shapes are defined

as interpolation of three curves (shown on the right of each tree).

Lengths of lateral branches are also dependant of the position of the
branches on the trunk and is controlled with an extra graphical function.

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 10

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

FIGURE 8 | Animating a rolling leaf (bottom) using graphically specified curves and functions (top). The first curve specifies the cross section of the leaf,
the second specifies leaf width along the main axis of the leaf, and the remaining four curves specify the key shapes of the main axis of the leaf over time.

A sequence of keyframe curves defining the midrib of a leaf
gradually rolling down were defined graphically by the user
(Figure 8, top right). An interpolation scheme is set up using
these reference curves by specifying their time points and the
degree of interpolation (line 1). The L-system production sim-
ply advances the “age” t of a module representing the leaf (line
5). Each application of this production is followed by an inter-
pretation step (line 7). The produce statement in line 7 creates
the leaf blade geometry. The leaf midrib is specified by the L-
Py built-in Sweep primitive that corresponds to an extension of
generalized cylinders (Bloomenthal, 1985) to arbitrary contours,
including non-closed contours. This primitive is itself defined on
the basis of the SetGuide primitive. In the example code, the
contour is specified by the SetSection primitive and defines
the transversal section of the leaf blade. The axis of this general
cylinder is defined as the interpolated curve at time point t. The
resulting sample frames of the animation are depicted on Figure 8.

EXAMPLE OF FSPM APPLICATIONS IN L-Py
In this section, we show how L-Py can be used to create complex
FSPM scenarios. A first example illustrates how advanced analysis
tools can be used to parameterize a L-system that reconstructs trees
from observed data. The second example illustrates how modu-
larity can be used to decompose an existing FSPM into reusable
components. A last example reports the use of L-Py as a training
tool for high school students to reconstruct a virtual ecosystem.

MINIMIZING MEASUREMENTS IN 3D PLANT ARCHITECTURE
RECONSTRUCTION
The compatibility between L-Py and MTGs opens powerful new
possibilities to manipulate plant simulations. Let us consider for
example the problem of digitizing complex tree architectures. Dif-
ferent techniques to address this problem have been proposed in
the literature and only manual techniques, such as magnetic 3D
digitizing (Sinoquet et al., 1997), can currently precisely record
both the 3D spatial coordinates and the topological structure of
a plant in terms of annual shoots or growth units. Unfortunately,
manual digitizing techniques are extremely time consuming and
methods to simplify them are much needed. An intuitive idea is to
exploit the redundancy of tree structures and only digitize the main
branches of the tree. Smaller branchlets, which are highly repeti-
tive, are then generated procedurally. Assuming that such a scheme

has been implemented, the question is how to assess the resulting
semi-automatic reconstruction method. The seamless combina-
tion of plant architecture simulation and analysis provided in L-Py
makes it possible to simply address this issue.

Let us illustrate how such an approach would be implemented
using L-Py. We assume that a reference plant has been digitized.
Here, for sake of simplicity, we reuse the digitized walnut tree
introduced previously. We also assume that a simple L-Py proba-
bilistic model has been designed to generate small branches from
bud modules. We want to assess the ability of this model to recon-
struct faithfully the digitized small branches of the tree, and thus
to avoid the overhead of digitizing small branches in similar trees.

For this, we first remove the small branching systems from the
digitized tree. Modules of the digitized tree have three different
types: modules of type V (resp. U) represent growth unit segments
from the last year (resp. from the second last year). All other mod-
ules are of type S and represent branch segments from previous
years (Figure 9, left). In our example, we chose to remove the
branching systems made up by growth units from the last 2 years,
i.e., of type V and U. This can be done by defining a simple L-Py
rule in the previous L-system file (lsystem5.lpy) that replaces every
branching system starting with a U and following a segment S by
a bud:

Lsystem5 (sequel):
1 production:
2 S(tip0,dbot0, dtop0) < U(tip,dbot,dtop) --> Bud%

This rule removes in a single derivation step all the branch extrem-
ities starting with a U from the multiscale L-string representing the
digitized plant and replaces them by Bud modules (Figure 9, right).

In a subsequent derivation step, the bud modules are then used
to produce new branching systems using a probabilistic model.
This model is defined by an L-Py rule:

Lsystem12:
1 production:
1 Bud:
2 nbelem = gauss(AVG_NBELEM,STDEV_NBELEM) # Gaussian

distribution
3 for i in xrange(nbelem):
4 nproduce U # generates the growth units of the

main axis
5 ramif = random()
6 if ramif < BRANCHINGPROB: # create a branch on U

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

(with fixed probability)
7 nproduce [V]
8 nproduce V

This rule specifies that a bud is replaced by a shoot made of a ran-
domly chosen number of segments U that can each bear (or not) a
segment V and that terminate by a segment V. Note that we omit-
ted to show the computation of the branch geometry to keep the
example simple. As a result, all the removed digitized branches are
replaced by artificially generated small branches, thus providing a
partially digitized and partially simulated tree.

Then, to assess the quality of the resulting semi-simulated tree,
we make use of the plant structural comparison primitive avail-
able in the VPlants package of OpenAlea (Ferraro and Godin,
2000). This function compares the structures of two plants (here
the digitized and semi-simulated trees) and returns a list of pairs

FIGURE 9 | Use of a digitized 20-year-old walnut tree (Juglans regia L.)

as the axiom of a simulation. Right, shoots produced during the last
2 years are removed. Simulation process will use this structure as new
axiom and produce algorithmically new shoots. Generated shoots will be
compared with measured ones. Bottom, a detail view of the process: from
top to bottom, original branching system, pruned system with insertion of
Bud represented as red sphere, and example of regenerated structure.

of plant segments from both plants that were found to match each
other. The more matching segments are found in both trees, the
better the reconstruction. The normalized length of the returned
list, Q = 2 × L/(L1 + L2), L being the size of the returned list and
L1 and L2 respectively the sizes of the compared trees, can thus
be used as an indicator of the faithfulness of the model. If Q is
greater than a specified threshold, the simulated tree is considered
as a faithful reconstruction and the list contains pairs referring to
most of the components of both plants. In the opposite case, the
list is close to being empty and the reconstruction is considered
poor. The following function illustrates how such a comparison
can be carried out in L-Py:

Code13:
1 from openalea.treematching import *
2 def compare(lstring, initialmtg):
3 reconsmtg = lstring2mtg(lstring)
4 m = Matching(reconsmtg,initialmtg)
5 return 2 * len(m.getMatchingList())/(len(reconsmtg)+

len(initialmtg))

The compare function takes as arguments the current L-string
representing the reconstructed plant and an MTG representing the
initial digitized tree. It first transforms the L-string into an MTG
and then compares the two MTG structures using a primitive from
the treematching module of OpenAlea. As a result, it returns
the estimated value of Q for this comparison.

This function can then be used to explore the parameter space
of the probabilistic branching model (here through varying the
branching probability) so as to find those parameters that make it
possible to reconstruct trees faithfully with respect to the original
digitized tree. This is done in the following function that assembles
the different components of this pipeline:

Code13 (sequel):
6 def optimize_reconstruction (minv,maxv,vstep):
7 l = Lsystem(‘lsystem5.lpy’)

FIGURE 10 | Result of the comparison between regenerated structures

and the measured one. The scores of the different branching systems are
given by the colored curves and the average value by the black curve.
Maximum average score is reached with a probability of 0.77 and gives a
score of 0.8.

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 12

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

8 initialmtg = l.initialmtg
9 prunedstring = l.derive()
10 Q = zeros((maxv-minv)/vstep)
11 for i, branchingprob in enumerate (arange(minv,

maxv,vstep)):
12 l = Lsystem(‘lsystem12.lpy’)
13 l.BRANCHINGPROB = branchingprob
14 lstring = l.derive(prunedstring,1)
15 Q[i] = compare(lstring,initialmtg)
16 plot(arange(minv,maxv,vstep),Q)

In our example, Q varies non-monotonically between 0.65 and
0.85 when varying the probability parameter between 0 and 1 (see
Figure 10), showing that best reconstructions are reached for a
branching probability close to 0.77 in our stochastic model. Three
examples of evaluated reconstruction are given in Figure 11 with
branching probability of 0.4, 0.6, and 0.77 respectively. Red color
represents parts of the structure whose Q coefficient is greater
than 0.8.

L-Py AS GROWTH COMPONENT FOR SIMULATING AN FSPM
We now illustrate the use of the above modular approach on
a real complex FSPM, MAppleT, simulating the growth of an
apple tree (Costes et al., 2008) and originally developed using L-
studio/lpfg. This model mixes stochastic topological construction
with a bio-mechanical model for the geometry (see Figure 12).
Thanks to syntax compatibility between L-Py and L + C, the
code port mainly consisted in translating and simplifying the
C++ instructions into Python. Additionally, scientific tools from
Python and OpenAlea were readily accessible from within the
model (for instance, 2D plot with Matplotlib).

An L-system model, such as MAppleT, is composed of sev-
eral processes that simulate the growth and internal processes of
a plant. In the original model, groups of rules were defined to
model different processes: (a) updating state of organs accord-
ing to a calendar (bud break, flowering, etc.), (b) computa-
tion of growth units lateral productions according to stochastic

FIGURE 11 | Comparison between regenerated structure and measured

one. Reconstructions showed here are built with ramification probability of
0.4, 0.6, and 0.8 respectively. The six main branching systems of the tree are

compared to the original ones using a structural comparison method (Ferraro
and Godin, 2000). Red and blue color means that structural difference is more
or less than 20% respectively.

FIGURE 12 |The MAppleT model on L-Py: with (left) and without (right) computation of branch bending using mechanical simulation.

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

models, (c) growth process, (d) biomechanics. During refactor-
ing, the code was divided into distinct L-systems correspond-
ing to these different groups of rule to achieve modularity.
Because they came from a single original L-system code, these
L-systems components used similar module naming convention
and thus were readily compatible with each other (see Modular
L-Systems in L-Py). The parameters of the modules were stored
in a generic container object whose contents can be updated
by each L-system component. Parameters used by different L-
system components were given a unique name in all of these.
For instance, the growth process component (c) requires infor-
mation on the number and types of components to create at
each time step. This information is provided by the stochastic
process component (b) using a consistent naming convention in
both components.

Usually the different processes also rely on a number of global
variables. To change their values, a dictionary containing the

names and values of global variables can be passed to the L-systems
and can be applied using the introspection mechanism presented
in Section “L-Py as a Component Library: Controlling L-Systems
Execution from Python.” In this way, the global variables can be
passed from one process to the next one. Each process can thus
update these settings to inform the other processes if needed.

To better demonstrate the modularity of the code resulting
from this decomposition of MAppleT, the L-system compo-
nents were assembled graphically using a dataflow in OpenAlea
(Figure 13). As opposed to code representation, dataflows give a
visual representation of the logical dependency structure of the
FSPM. The composition of the components can be made graphi-
cally by the modeler by linking input and output of the different
L-systems components and making it possible for the system to
pass on the L-string and the dictionary of global parameters. The
resulting graph (dataflow) can be executed and runs the pipeline
throughout.

FIGURE 13 | Data flow of the MAppleT simulation. The model has been decomposed into several independent processes that can be combined and
parameterized by user to drive the simulation graphically.

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 14

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

Thanks to this modular decomposition, interesting manipula-
tion of the assembled models can be made. For example, the user
has the possibility to enable/disable some of them upon request.
Figure 12 right illustrates for example the result of the model in
which the Biomechanics component has been disabled.

Based on this implementation of a real-size FSPM, we could
carry out a comparative analysis of the computational perfor-
mances of L-Py and that of static language implementations. L-Py
was able to generate an entire architecture (10,000 components
generated over 4 years) in reasonable time (5–10 min). In gen-
eral, simulation with L-Py can be faster than with lpfg for small
models (since it avoids compilation), but is five to six time slower
than lpfg for more complex models of a 4-year-old apple tree (see

FIGURE 14 | Computation time comparison with between L-Py and

lpfg for MAppleT. The horizontal axis represents age of the simulated tree
with estimated number of elements of the tree.

Figure 14). This is due to Python code interpretation of rules
which is relatively slow compared to a compiled language like C
or C++ (Prechelt, 2000). However, the L-Py interpreter written in
C++ maintains acceptable performances.

L-Py AS A TRAINING TOOL FOR THE CLASSROOM
During French school year 2009–2010, we tested the use of L-
Py as a tool for teaching scientific method in the context of a
multi-disciplinary class on botany and computer science at high-
school level (15- to 16-years-old pupils, 3 h per week during
35 weeks). The program of the class included both botanical and
computer science/mathematics courses. The aim of the class was
to reconstruct in 3D the vegetal structure of a 10 m × 10 m plot of
plants typical from the local flora. The pupils measured the plants
in the field, made diagrams and drawings of the plant architectures
(see Figure 15), and registered the spatial distribution of observed
plants. In the classroom, they were working hands on the computer
and using L-Py as a modeling platform. They first learnt how to
generate simple fractal and plant structures. They could create
soon first simple models of plant structures. Then, using more
sophisticated and generic models prepared for the occasion, they
easily used their knowledge of L-Py to extend and customize these
models according to the measured plants. Modifications ranged
from simple parameter modification to addition of new rules in
the L-systems. A number of individual plant models were thus
designed by different groups of pupils in L-Py and were assembled
into a single scene according to the measured distribution. Finally
the scene was exported and rendered with Blender (2011) and a
film corresponding to a virtual exploration of the 3D scene was
produced. This experience gave us important feedback on L-Py
during its testing phase. It first showed that the software can be
used with success for training students in a multi-disciplinary con-
text. L-Py turned out to be robust enough to support intensive use
(and misuse) by pupils. The feedback from the classroom led us
to adapt L-Py in various ways: simplify the visual interface, intro-
duce debugging tools, and design new language features (such as
the SetGuide and the curve interpolation primitives).

FIGURE 15 | Illustration of an application of L-Py in teaching. Students were in the field to map some botanical drawing of Euphorbia. Some virtual models
were then build with L-Py and gathered in a complex botanical scene rendered with Blender.

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

CONCLUSION
In this paper, we presented L-Py, an open-source software platform
for L-system simulation based on Python. Compared to previous
L-system simulation software packages, L-Py makes intensive use
of Python’s property of being a dynamic language to achieve flex-
ibility in modeling and high-level programming. Inherited from
Python, the L-Py language syntax remains simple, with no or min-
imal bracketing of expressions, and very clear block structures.
L-Py was designed as both an integrative framework and a library
of L-system constructs that can be called from Python. Owing to
its dynamic language structure, L-Py facilitates the design of mod-
ular models by assembling elementary models without modifying
their code, provided they respect minimal specifications. For the
design of plant models, special language constructs were intro-
duced for compliance with MTG data-structures, for which large
libraries of computational models and tools already exist (e.g.,
OpenAlea software platform and its packages). Likewise, for geom-
etry, constructs were introduced to reuse any model from PlantGL,

a library of geometric primitives dedicated to plant representation
at different scales, and to simplify the specification of complex geo-
metric models with the L-system turtle. To illustrate the flexibility
and power of L-Py, we presented its application to real modeling
situations. The problem of optimizing plant digitizing strategy
illustrated the benefit of using jointly L-systems and MTGs in a
modeling application. MappleT was used to illustrate the possi-
bility to design complex simulation systems in a modular way.
The last example illustrated the pedagogic value of L-Py based
on a real experiment carried out with high-school students in
France.

ACKNOWLEDGMENTS
The authors are grateful to M. Beziz, E. Farcot, Y. Caraglio, D.
Lacour, L. Comte, and J. Chopard who were involved in the
high-school classes. This project is partially supported by Agropo-
lis Foundation and the INRIA VPlants-BMV associated team
project.

REFERENCES
Barthélémy, D., and Caraglio, Y. (2007).

Plant architecture: a dynamic, mul-
tilevel and comprehensive appro-
ach to plant form, structure and
ontogeny. Ann. Bot. 99, 375–407.

Bell, A. D. (1991). Plant Form: An Illus-
trated Guide to Flowering Plant Mor-
phology. Oxford: Oxford University
Press.

Blender. (2011). The Blender Foun-
dation. Amsterdam. Available at:
http://www.blender.org

Bloomenthal, J. (1985). “Modeling the
mighty maple,” in Proceedings of the
12th Annual Conference on Computer
Graphics and Interactive Techniques,
SIGGRAPH ‘85 (New York: ACM).

Bloomenthal, J. (1990). “Calculation
of reference frames along a space
curve,” in Graphics Gems, ed A. S.
Glassner (Boston: Academic Press),
567–571.

Boudon, F. (2004). Représentation
Géométrique de L’architecture des
Plantes. Ph.D. thesis, University of
Montpellier II, Montpellier.

Cescatti, A. (1997). Modelling the
radiative transfer in discontinuous
canopies of asymmetric crowns. I.
Model structure and algorithms.
Ecol. Modell. 101, 263–274.

Cieslak, M., Seleznyova, A. N., Prusin-
kiewicz, P., and Hanan, J. (2011).
Towards aspect-oriented functional-
structural plant modelling. Ann. Bot.
108, 1025–1041.

Costes, E., Smith, C., Renton, M.,
Guédon, Y., Prusinkiewicz, P., and
Godin, C. (2008). MAppleT: simula-
tion of apple tree development using
mixed stochastic and biomechani-
cal models. Funct. Plant Biol. 35,
936–950.

Da Silva, D., Boudon, F., Godin, C.,
and Sinoquet, H. (2008). Multiscale
framework for modeling and ana-
lyzing light interception by trees.
Multiscale Model. Simul. 7, 910–933.

Federl, P., and Prusinkiewicz, P. (1999).
“Virtual laboratory: an interactive
software environment for computer
graphics,” in Proceedings of Com-
puter Graphics International, Can-
more: Alberta. ’99, 93–100.

Federl, P., and Prusinkiewicz, P. (2004).
“Solving differential equations in
developmental models of mul-
ticellular structures expressed
using L-systems,” in Proceedings
of Computational Science. ICCS
2004 (Krakow, Poland, June 6–9,
2004), Part II, Lecture Notes in
Computer Science 3037, eds M.
Bubak, G. van Albada, P. Sloot,
and J. Dongarra (Berlin: Springer),
65–72.

Ferraro, P., and Godin, C. (2000). A dis-
tance measure between plant archi-
tecture. Ann. For. Sci. 57, 445–461.

FSPM Special Issue. (2005). New Phy-
tologist. Blackwell Publishing. 166,
771–894.

FSPM Special Issue. (2008). Functional
Plant Biology. Eds J. Hanan and
P. Prusinkiewicz, CSIRO Publishing,
35, 739–1090.

FSPM Special Issue. (2011). Annals of
Botany. Eds T. de Jong and D. Da
Silva (Oxford: Oxford University),
108, 987–1223,

Godin, C., and Caraglio, Y. (1998). A
multiscale model of plant topolog-
ical structures. J. Theor. Biol. 191,
1–46.

Godin, C., Costes, C., and Caraglio,
Y. (1998). Exploring plant topolog-
ical structure with the AMAPmod

software; an outline. Silva Fennica
31, 357–368.

Godin, C., Costes, E., and Sinoquet,
H. (1999). A method for describing
plant architecture which integrates
topology and geometry. Ann. Bot. 84,
343–357.

Godin, C., Costes, E., and Sinoquet,
H. (2005). “Plant architecture mod-
elling – virtual plants and com-
plex systems,” in Plant Architecture
and its Manipulation, Vol. 17, ed C.
G. N. Turnbull (Oxford: Blackwell)
238–287.

Godin, C., and Guédon, Y. (1997).
AMAPmod v1.8. Introduction and
Reference Manual. CIRAD Report,
Montpellier.

Godin, C., and Sinoquet, H. (2005).
Functional–structural plant model-
ling. New Phytol. 166, 705–708.

Hallé, F. (1978). “Architectural vari-
ation at specific level of tropi-
cal trees,” in Tropical Trees as Liv-
ing Systems, eds P. B. Tomlinson
and M. H. Zimmermann (Cam-
bridge: Cambridge University Press),
209–221.

Hanan, J. (1992). Parametric L-Systems
and their Application to the Model-
ing and Visualization of Plants. Ph.D.
dissertation, University of Regina,
Regina, Saskatchewan.

Hanan, J., and Prusinkiewicz, P. (2008).
Foreword: studying plants with
functional–structural models.
Funct. Plant Biol. 35, vi–viii.

Herman, G. T., and Rozenberg, G.
(1975). Developmental systems and
languages. North-Holland: Amster-
dam.

Karwowski, R., and Prusinkiewicz, P.
(2003). Design and implementa-
tion of the L+C modeling language.

Electron. Notes Theor. Comput. Sci.
86, 134–152.

Kniemeyer, O., and Kurth, W. (2008).
“The modelling platform GroIMP
and the programming language XL,”
in Applications of Graph Trans-
formations with Industrial Rele-
vance: Third International Sympo-
sium, AGTIVE 2007, Kassel, Ger-
many, October 10-12, 2007, Revised
Selected and Invited Papers, Lecture
Notes In Computer Science, 5088,
eds A. Schürr, M. Nagl, and A.
Zündorf (Kassel: Springer-Verlag),
570–572.

Lindenmayer, A. (1968). Mathematical
models for cellular interaction in
development, Parts I and II. J. Theor.
Biol. 18, 280–315.

Livny, Y., Pirk, S., Cheng, Z., Yan,
F., Deussen, O., Cohen-Or, D., and
Chen, B. (2011). Texture-lobes for
tree modelling. ACM Trans. Graph.
30, 53.

Mercer, L., Prusinkiewicz, P., and
Hanan, J. (1990). “The concept and
design of a virtual laboratory,” in
Proceedings of Graphics Interface.
Halifax, Nova Scotia. ‘90, 149–155.

Microsoft Corporation. (2011). The
Visual Studio. Available at: http://
www.microsoft.com/visualstudio/

Mündermann, L., Erasmus, Y., Lane,
B., Coen, E., and Prusinkiewicz,
P. (2005). Quantitative modeling
of Arabidopsis development. Plant
Physiol. 139, 960–968.

Ousterhout, J. K. (1998). Scripting:
higher-level programming for the
21st century. IEEE Comput. 31,
23–30.

Piegl, L. A., and Tiller, W. (1997).
The Nurbs Book, 2nd Edn. Berlin:
Springer.

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 16

http://www.blender.org
http://www.microsoft.com/visualstudio/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

Pradal, C., Boudon, F., Nouguier, C.,
Chopard, J., and Godin, C. (2009).
PlantGL: a Python-based geometric
library for 3D plant modelling at
different scales. Graph. Models 71,
1–21.

Pradal, C., Dufour-Kowalski, S.,
Boudon, F., Fournier, C., and Godin,
C. (2008). OpenAlea: a visual
programming and component-
based software platform for plant
modeling. Funct. Plant Biol. 35,
751–760.

Prechelt, L. (2000). An empirical com-
parison of seven programming lan-
guages. IEEE Comput. 33, 23–29.

Prusinkiewicz, P. (1986). “Graphical
applications of L-systems,” in Pro-
ceedings of Graphics Interface ‘86,
247–253.

Prusinkiewicz, P. (1998). Modeling of
spatial structure and development of
plants. Sci. Hortic. 74, 113–149.

Prusinkiewicz, P. (1999). A look at the
visual modeling of plants using L-
systems. Agron. Agric. Environ. 19,
211–224.

Prusinkiewicz, P. (2004). “Art and sci-
ence for life: designing and grow-
ing virtual plants with L-systems,” in
Nursery Crops: Development, Evalu-
ation, Production and Use: Proceed-
ings of the XXVI International Horti-
cultural Congress, Acta Horticulturae

630, eds C. Davidson and T. Fernan-
dez, (ISHS: Toronto), 15–28.

Prusinkiewicz, P., Hanan, J., and Mech,
R. (1999a). “An L-system-based
plant modeling language,” in Appli-
cations of Graph Transformations
with Industrial Relevance. Proceed-
ings of the International Workshop
AGTIVE ‘99, Lecture Notes in Com-
puter Science 1779, eds M. Nagl, A.
Schuerr, and M. Muench (Berlin:
Springer), 395–410.

Prusinkiewicz, P., Karwowski, R., Mech,
R., and Hanan, J. (1999b). “L-
studio/cpfg: A software system for
modeling plants,” in Applications of
Graph Transformations with Indus-
trial Relevance. Proceedings of the
International Workshop AGTIVE ’99,
Lecture Notes in Computer Science
1779, eds M. Nagl,A. Schuerr, and M.
Muench (Berlin: Springer),457–464.

Prusinkiewicz, P., James, M., and Mech,
R. (1994). “Synthetic topiary,” in
Proceedings of SIGGRAPH Orlando,
Florida. ‘94, 351–358.

Prusinkiewicz, P., Karwowski, R., and
Lane, B. (2007). “The L+C plant
modeling language,” in Functional-
Structural Plant Modeling in Crop
Production, eds. J. Vos, L. F. M.
Marcelis, P. H. B. de Visser, P. C.
Struik, J. B. Evers and R. J. Bogers,
(Wageningen: Springer), 27–42.

Prusinkiewicz, P., and Lindenmayer, A.
(1990). The Algorithmic Beauty of
Plants. New York: Springer.

Prusinkiewicz, P., Lindenmayer, A., and
Hanan, J. (1988). Developmental
models of herbaceous plants for
computer imagery purposes. Com-
put. Graph. 22, 141–150.

Prusinkiewicz, P., Mündermann, L.,
Karwowski, R., and Lane, B. (2001).
“The use of positional information
in the modeling of plants,” in Pro-
ceedings of SIGGRAPH ‘2001, Los
Angeles, 289–300.

Sievänen, R., Mäkelä, A., Nikinmaa,
E., and Korpilahti, E. (1997), Spe-
cial issue on functional-structural
tree models. Silva Fennica 31,
237–238.

Sinoquet, H., Rivet, P., and Godin, C.
(1997). Assessment of the three-
dimensional architecture of walnut
trees using digitising. Silva Fennica
31, 265–273.

Teobaldelli, M., Puig, A. D., Zenone,
T., Matteucci, M., Seufert, G., and
Sequeira, V. (2008). Building a
topological and geometrical model
of poplar tree using portable on-
ground scanning LIDAR. Funct.
Plant Biol. 35, 1080–1090.

Tratt, L. (2009). Dynamically typed
languages. Adv. Comput. 77,
149–184.

Wang, W., Jüttler, B., Zheng, D., and
Liu, Y. (2008). Computation of rota-
tion minimizing frame. ACM Trans.
Graph. 27, 18.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 16 December 2011; accepted:
04 April 2012; published online: 30 May
2012.
Citation: Boudon F, Pradal C, Coke-
laer T, Prusinkiewicz P and Godin C
(2012) L-Py: an L-system simulation
framework for modeling plant architec-
ture development based on a dynamic
language. Front. Plant Sci. 3:76. doi:
10.3389/fpls.2012.00076
This article was submitted to Frontiers
in Technical Advances in Plant Science,
a specialty of Frontiers in Plant Science.
Copyright © 2012 Boudon, Pradal, Coke-
laer , Prusinkiewicz and Godin. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 17

http://dx.doi.org/10.3389/fpls.2012.00076
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

APPENDIX
STANDARD L-SYSTEMS FEATURES OF L-Py
L-Py supports a number of standard features introduced in other
L-system-based programming languages. As illustrated by the first
example of this paper, L-Py supports parametric L-systems with
flexible parameter types. Conditional rule application is thus pos-
sible. By default, rules are deterministic. However, stochastic rules
are quite natural to build using functions from statistical packages
provided by Python. A typical example would be

Lsystem18:
1 from random import *
2 p0 = 0.5 # constants
3 Axiom: Apex(0)
4 production:
5 Apex(age):
6 nproduce Internode(1,0.1)/(180)
7 if uniform() < p0: nproduce[+(20)Apex(age+1)]
8 produce Apex(age+1)

The first line imports the Python package random for random
number generation. This package includes the uniform function
used at line 8. Line 2 defines branching probability p0. The rule in
lines 5–8 uses the nproduce statement to assemble the succes-
sor in several steps. In particular, the production of a lateral apex
(line 8) depends on the value returned by the uniform random
function, which is compared to p0.

Production rules make it possible to insert new module. Like-
wise, the disappearance of a module is specified using productions
with an empty successor. An entire sub-tree can be removed
by inserting the module %, which prunes out all the following
sub-structure in the string until the end of the enclosing branch.

Several aspects of a derivation step can be controlled by the
user. First, a rule can be applied by scanning the string from left
to right (forward), which corresponds to an acropetal progres-
sion from the root of the structure to the leaves, or from right to
left (backward), i.e., basipetally from the leaves to the root (Kar-
wowski and Prusinkiewicz, 2003). The functions Forward and
Backward can be called to parameterize the direction of the next
iteration. This is usually set up using the control functionsStart,
End, StartEach, and EndEach, which are defined by the user
and called by the system at the beginning, end, before, and after
a derivation step, respectively (Hanan, 1992). Second, it is possi-
ble to select a subset of rules at a given step. For this, a group of
rules can be defined and activated during execution of the model
to simulate separately different aspects of the behavior of a model
(Prusinkiewicz et al., 2007).

Application of a rule may depend on the context of the pre-
decessor using context-sensitive rules. L-Py also supports four
types of context, namely left, right, new left, and new right con-
texts (Karwowski and Prusinkiewicz, 2003). Notation follows the
L + C syntax, i.e., the predecessor may have the following form for
forward and backward derivation, respectively

1 left_context < new_left_context << strict_predecessor
> right_context

2 left_context < strict_predecessor << new_right_context
> right_context

The context search takes into account the branching structure of
trees. For instance the following pattern A<C supposes a father–
child relationship between module A and C, but does not exclude
other children of A. In particular, the string w=A[B][C] repre-
sents a topology where a module A has two children B and C.
The previous pattern thus applies to C. Some modules within
branches may thus be skipped during a linear scan of the tree.
Contexts are particularly useful to simulate signals and communi-
cation between organs (Prusinkiewicz et al., 1988; Prusinkiewicz
and Lindenmayer, 1990).

L-Py models may also be sensitive to their spatial location. For
this, query modules, such as ?P, make it possible to get position
and orientation of the geometrical interpretation of the model in
the rewriting process (Prusinkiewicz et al., 1994).

MANAGING L-SYSTEM MODULARITY
To design modular simulation systems in L-Py, the user must com-
ply with three simple rules when breaking down the system into
different L-systems.

Rule 1. Model consistency
Assume that, at a given time t, all the L-systems will be applied to
identical plant topological structures. Only names and attributes
of plant components can be different.

Rule 2. Single generic module parameter
If different attributes must be attached to a particular module
(e.g., age, diameter, etc.), they must be encapsulated within a
single parameter that consists of an object of the built-in type
ParameterSet. The plant components attributes are then
represented as attributes of this object.

For example, let us consider a model A that uses two types of
modules namely Apex and Internode:

Lsystem S2.1: A
1 module Apex(p), Internode(p),
2 Axiom: Apex(ParameterSet(age=0))
3 production:
4 Apex(p): ...

In the L-string, the modules have one parameter p, which is a
predefined generic container of type ParameterSet. Each L-
system rule can then dynamically add or modify attributes to this
generic parameter p. Here, we again take advantage of the flex-
ibility of dynamic language, in which a Python structure can be
complemented with new attributes at any moment by any L-system
without any explicit pre-declaration. This makes it possible for
each L-system to add its own attributes to the generic parame-
ter p, without requiring that these attributes are know to other
L-systems. This mechanism is clearly more flexible that of static
languages in which parameter declaration is mandatory at the ini-
tialization and should be conform to this declaration in every part
of the code, thus contaminating all the L-systems components.

Rule 3. Translation schemes. Each L-system may have different
module naming convention and attributes. For a given L-system B
to be able to process the L-string of L-system A, it is necessary that
a mapping from A modules to B modules be defined, thus acting
as a translation from the language of A to the language of B. Our
approach consists of transforming A modules into B modules and

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 18

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

back using L-system rules. Module name translation can easily be
expressed with L-system rules as illustrated by the Lsystem A2B
below that transforms A modules into corresponding B ones.

Lsystem S2.2: B
1 module A(param), I(param),
2 production:
3 A(param): ...

Lsystem S2.3: A2B
1 module Apex(p), A(p), Internode(p), I(p)
2
3 production:
4 Apex(p) --> A(p)
5 Internode(p) --> I(p)

Symmetric rules may be required to translate back from the lan-
guage of B into the language of A, in particular if one wants to
iteratively apply L-systems A, B several times consecutively. Such a
bidirectional translation requires that mapping from the alphabet
of A to the alphabet of B is one to one. This is done by defining a
new L-system:

Lsystem S2.4: B2A
1 module Apex(p), A(p), Internode(p), I(p)
2
3 production:
4 A(p) --> Apex(p)
5 I(p) --> Internode(p)

Similarly, attribute names used in the parameter container should
be consistent between different L-systems. If, for instance, two
processes rely on similar attributes but use different naming con-
vention, attributes will also have to be renamed during translation
step. Conversely, if two processes use the same attribute name for
different things, attributes will also have to be renamed to avoid a
conflict.

Then, at a given time step, starting from an A L-string, the user
applies L-system A which computes a new A L-string. Then this A
L-string is translated into a B L-string with L-system B2A so that
the L-system B can be applied. Then B is applied and finally, the
resulting B string is translated back into A L-string to come back
to the initial A L-system and continue the simulation. The proce-
dure can be readily extended to the combination of any number
of L-systems.

The L-systems can then be assembled into a super-L-system
using the built-in ComposedLsystem primitive described in the
main text.

THE SetGuide PRIMITIVE
A turtle is associated with a position P and frame F T composed
of three orientation vectors mutually perpendicular that indicates
its heading H, up U, and left directions L (Prusinkiewicz et al.,
2001). The turtle can perform a number of geometric operations.
In particular, it can step forward in its heading direction or can
rotate along its three orientation axis. Following a predefined path
with turtle geometry was described in Prusinkiewicz et al. (2001)
and consists of adjusting orientation of the turtle before each step
to fit the heading vector to the local path tangent T.

Similarly, the SetGuidemakes it possible that steps of a turtle
follow the path of a user-defined curve C, scaled to reach a length

L also specified by the user. The turtle steps are not supposed in
this case to be small. The curve is supposed to be positioned and
oriented in the initial location of the turtle. It is also supposed to
be parameterized with curvilinear abscissa u.

To compute orientations along a curve, a frame can be com-
puted at each point of C. A frame is made of three vector (r, s,
t) with t representing the tangent to the curve. Classical solu-
tion relies on the Frenet frame. However, it produces important
twist of the frame at inflection point of the curve. Some meth-
ods make it possible to compute frame with minimized rotation
(Bloomenthal, 1990; Wang et al., 2008). In our approach, we adapt
the method described in Prusinkiewicz et al. (2001). It starts from
a frame F(r, s, t) at C(u). To compute F ′(r ′, s ′, t ′) at C(u + du),
the tangent t ′ of the curve is first estimated. Then the rotation R
that maps t to t ′ is computed. This rotation can then be applied to
s and r of F to have r ′ and s ′ values. The advantage of this method
is that it is consistent (no twist) and iterative with only the value
of the previous step needed to compute the next one.

To follow the path of the curve, rotations of the turtle will be
performed before and after each step to orient it in a direction
given by the curve C. The step forward command (F) with a para-
meter du representing step length is thus decomposed into three
steps: adjust orientation to reach C(u + du), move the turtle for-
ward, and adjust the orientation of the turtle to fit tangent of C
at u + du (see Figure A1). The first and last operations are turtle
orientation performed using the method presented previously. In
the first case, the new tangent direction is approximated with the
vector d = C(u + du) − C(u).

One problem comes from the fact that the rotation is com-
puted in the coordinate system of the curve. To adapt it for
the turtle frame, the axis A of rotation R is translated from the
reference frame F(u) of the curve to the frame F T of the turtle:
A′ = F T × F(u)−1 × A. The transformation R′(A′, α) can then be
applied to the vectors H, L, and U of the turtle frame to express
the reorientation of the turtle. Note that R(A, α) is still used to
computed the new frame of the curve at C(u + du). Finally when
moving the turtle forward, the length of the step has to be adapted.

FIGURE A1 | A step with the SetGuide command. On the left,
computation on the guide curve. On the right, the application of the
command for the turtle. Three steps are made for the step forward: first a
reorientation R(A1, α1) in the direction of C (u + du), a move forward of
length ||C (u + du) − C (u)||, and a reorientation R(A2, α2) in the direction of
the tangent at C (u + du). A1 and A2 have to be translated first in the local
coordinate system of the turtle to be applied on the turtle.

www.frontiersin.org May 2012 | Volume 3 | Article 76 | 19

http://www.frontiersin.org
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

Boudon et al. L-Py, L-systems in Python

Indeed, the length of the curve between C(u) and C(u + du) is
du but the curve between this two points is approximated with a
straight segment by the turtle. Thus the length of turtle step should
be changed for ||C(u + du) − C(u)||.

The turtle will thus produce a path with curvature similar to the
curve C when moving forward. Additionally, some rotations can
also be explicitly asked by the user to the turtle between each step.
By default, these rotations will provide additional curvature to the
turtle path. For instance, trunk and main branches can be built
using the same SetGuide command except that at the begin-
ning of branches an additional rotation is made to have lateral
direction. In this case, guide and turtle are rigidly linked since the

rotation of the turtle will also change the guide curve reference
frame.

It is also possible to apply similar rotations of the turtle to the
frame along the guide. For instance, the Roll operation consists
in turning around the heading H of the turtle. Its counterpart
consists in turning the reference frame F(r, s, t) of the curve C
at C(u) around its tangent t. Both operations can be made at the
same time when turtle is requested to turn. In this case, guide and
turtle are non-rigidly linked since a turtle rotation will change the
corresponding position and orientation on the curve C. Such oper-
ations are made possible in L-Py with special command iRollR
and iRollL.

Frontiers in Plant Science | Technical Advances in Plant Science May 2012 | Volume 3 | Article 76 | 20

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive

	L-Py: an L-system simulation framework for modeling plant architecture development based on a dynamic language
	Introduction
	L-Py overview
	A simple syntax owing to dynamic typing
	Modules
	Axiom
	Rules

	A flexible interpreter based on dynamic evaluation
	A powerful open system enabled by language introspection
	A complete integrated development environment
	L-Py as a component library: controlling L-systems execution from Python
	The L-Py introspection mechanism: controlling L-system execution from L-Py programs

	Modular L-systems in L-Py

	Modeling plant growth at different scales in L-Py
	Seamlessly combining L-systems and MTGs
	High-level constructs for the control of turtle geometry
	Custom geometric primitives for plant representation at different scales
	Seamless control of differential turtle geometry
	Modeling shape variation

	Example of FSPM applications in L-Py
	Minimizing measurements in 3D plant architecture reconstruction
	L-Py as growth component for simulating an FSPM
	L-Py as a training tool for the classroom

	Conclusion
	Acknowledgments
	References
	Appendix
	Standard L-systems features of L-Py
	Managing L-system modularity
	The SetGuide primitive

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

