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ABSTRACT 

Within-field spatial variability is related to multiple factors that can be time-independent or 

time-dependent. In this study, our working hypothesis is that a multi-time scale analysis of 

the dynamics of spatial patterns can help establish a diagnosis of crop condition. To test this 

hypothesis, we analyzed the within-field variability of a sugarcane crop at seasonal and an-

nual time scales, and tried to link this variability to environmental (climate, topography, and 

soil depth) and cropping (harvest date) factors. The analysis was based on a sugarcane 

field vegetation index (NDVI) time series of fifteen SPOT images acquired in the French 

West Indies (Guadeloupe) in 2002 and 2003, and on an original classification method that 

enabled us to focus on crop spatial variability independently of crop growth stages.  

We showed that at the seasonal scale, the within-field growth pattern depended on the 

phenological stage of the crop and on cropping operations. At the annual scale, NDVI maps 

revealed a stable pattern for the two consecutive years at peak vegetation, despite very dif-

ferent rainfall amounts, but with inverse NDVI values. This inversion is linked with the topog-

raphy and consequently to the plant water status.  

We conclude that (1) it is necessary to know the crop growing cycle to correctly interpret the 

spatial pattern, (2) single-date images may be insufficient for the diagnosis of crop condition 

or for prediction, and (3) the pattern of vigour occurrence within fields can help diagnose 

growth anomalies. 
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INTRODUCTION 

Image-based remote sensing can provide spatially and temporally distributed information for 

precision agriculture (Moran et al., 1997; Pinter et al., 2003). Aerial photographs and crop 

images, for instance, have been used to draw management zones as portions of a field that 

express homogeneous combinations of yield-limiting factors (e.g. Anderson and Yang, 

1996). In order to optimize the inputs and the cropping schedule, however, it is also neces-

sary to determine the causes of spatial variability in crop vigour.  

Crop growth variability is related to multiple factors that can be time-independent or time-

dependent. The main time-independent factors of variability are linked to the substrate, like 

topography and soil type and depth, or to previous land use. Annual-linked factors may in-

clude anomalies in planting and emergence, or in weather conditions. Seasonal-linked fac-

tors may include plant diseases, weed development, severe climatic events or irrigation sys-

tem mal-function. These time-independent and time-variable factors can also interact, lead-

ing to complex spatio-temporal patterns of crop vigour (Machado et al., 2002). Hyperspectral 

images, acquired in multiple and narrow spectral bands, can be used to detect crop nutri-

ents and water stress conditions (Lelong et al., 1998). Unfortunately, most of the satellite or 

airborne sensors have a small number of broad spectral bands, and typically lack the diag-

nostic capability to identify a particular type of stress or to determine why biomass is at a 

certain level. According to Pinter et al. (2003), historic imagery, at field and farm levels, 

could be combined with agronomic and climatic data to map areas prone to water stress, 

nutrient deficiency, or pest problems under a particular environmental scenario. 

Remote sensing studies using historic images are generally based on the premise that the 

spatial variability in crop yield is influenced by spatial variability in soil factors at a similar 

scale, and make use of image time series at an annual scale (e.g. Boydell and Mc Bratney, 
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2002). However, the number of years of consecutive image data required to return an ac-

ceptably stable map differs depending on the study, from the recommended five years 

(Boydell and Mc Bratney, 2002) to a longer term database for crops under variable environ-

mental conditions (Lamb et al., 1997; Schepers et al., 2004). At the seasonal scale, the dy-

namics of spectral vegetation indices are generally studied in order to determine the best 

period to delineate yield potential zones (Zarco-Tejada et al., 2005; Yang and Everitt, 2002), 

which is not sufficient to establish crop diagnosis.  

In this study, since spatial variability is related to multiple factors that can be time-

independent or time-dependent, our working hypothesis is that a multi-time scale analysis of 

the dynamics of spatial patterns can help to establish diagnosis on crop conditions. To test 

this original hypothesis, we analyzed the within-field variability of sugarcane crop at two dif-

ferent time-scales, seasonal and annual, and tried to relate this variability to cropping (har-

vest date) and environmental (climate, topography and soil depth) factors. This analysis is 

based on a sugarcane field normalized difference vegetation index (NDVI) time series of 

fifteen SPOT images of the French West Indies (Guadeloupe) from 2002, 2003, and 2004 

(SUCRETTE project; Ribbes et al., 2002).  

 

MATERIAL AND METHODS 

Crop material and study site 

Sugarcane (Saccharum officinarum L.) is a semi-perennial grass with fibrous stalks two to 

six meters tall, belonging to the Graminae family. It is a vegetatively propagated crop, and 

the propagules are the stem cuttings. After 18-24 months from initial planting, the plant crop 

is harvested, and the buds on the leftover underground stubbles germinate again and give 
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rise to another crop. This crop, called a ratoon crop, is harvested about every 12 months for 

up to four years or more, before being renewed due to decreasing yield. 

The study site is a 8 ha field named Sahara located in Gardel Estate (16°18’24’’ N; 

61°20’29’’ W), a planter-miller growing sugarcane i n the French West Indies (Guadeloupe).  

 

Cropping data 

Sahara field was planted with CO6415 cultivar in 2000, and harvested on June 10, 2002, 

April 30, 2003 (41.9 t) and June 9, 2004 (63.8 t) during the study period. During this period, 

the crop was rainfed and healthy.  

 

Environmental data acquisition and processing 

The climate station closest to Sahara field is Boisvin, less than 2 km away. The recorded 

rainfall was respectively 1185 mm and 1905 mm for the 2002-03 and 2003-04 growing sea-

sons (from June to May); the average annual rainfall (1977-2000 period) on the Gardel area 

being 1325 mm. 

The Sahara field Digital Elevation Model (DEM) was extracted from the Guadeloupe DEM. 

The Guadeloupe DEM was produced in 2002 by DDAF1 from aerial orthophotos (ORTHO® 

DB, IGN) and ground control points. The DEM is in UTM 20N projection, and with horizontal 

and vertical resolutions of 10 m and 1 m respective. 

Soil depth over the reef limestone subsoil was measured on Sahara field in 2004 using the 

electric resistivity method (Hesse, 1966). Measurements of resistivity r (Ωm) were made at 
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the corners of a 20 m by 20 m grid, localized with a Trimble Pathfinder GPS, and converted 

into soil depths z (m) with coefficients calibrated for the Gardel vertisols (Cabidoche, 1985) : 

z = 2 - 0.74 ln(r-3)       (1) 

Soil depth values were then interpolated using kriging and rasterized at 10 m resolution to 

be compatible with the spatial resolution of SPOT images. 

 

 

 

 

 

 

a) Digital Elevation Model b) Soil depth 
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Figure 1: Environmental data maps of Sahara field: a) Digital Elevation Model (Source: 

DDAF, 2002), and b) soil depth (Source: Catsidonis 2004, personal communication). 

 

Satellite data acquisition and processing 

A time series of SPOT images were acquired in 2002, 2003, and 2004 over Guadeloupe as 

part of a research project (Ribbes et al., 2002). For this study, a set of fifteen cloud-free im-

ages (thirteen SPOT5 images and two SPOT4 images) were selected over Gardel Estate 

(Table 1). The images were acquired at 20 m and 10 m resolution respectively for SPOT4 

and SPOT5 satellites (red and near infrared bands), in raw format (level 1a) with no geomet-

ric pre-processing. 
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Table 1 : List of the SPOT images and characteristics used in the study 

 Acquisition date Satellite  

(sensor) 

Incidence  

Angle1 (°)  

Solar Elevation 

Angle (°)  

Solar Azimuth 

Angle(°)  

Phase 

Angle (°)  

1 September 19, 2002 SPOT4 6.9 67.2 127.8 29.0 
2 October 24, 2002 SPOT5 -6.8 52.1 143.3 31.7 
3 January 21, 2003 SPOT5 -16.5 46.7 145.7 32.9 
4 February 11, 2003 SPOT5 -23.5 50.1 138.5 24.5 
5 March 29, 2003 SPOT5 7.0 66.3 122.2 30.4 
6 April 30,2003 SPOT5 -23.5 68.9 91.7 4.6 
7 May 4, 2003 SPOT5 22.1 74.7 90.1 37.1 
8 May 25,2003 SPOT5 14.6 73.4 71.5 30.0 
9 July 17, 2003 SPOT5 -25.1 66.5 73.2 11.9 
10 September 12, 2003 SPOT5 -17.6 66.3 117.3 8.0 
11 January 4, 2004 SPOT5 -2.2 45.9 151.0 42.7 
12 January 31, 2004 SPOT4 13.4 50.2 146.9 49.7 
13 March 1, 2004 SPOT5 5.8 57.4 135.5 37.5 
14 April 12, 2004 SPOT5 -10.5 67.9 107.4 11.7 
15 June 19, 2004 SPOT5 -24.9 67.0 68.0 13.8 

1 : Negative values for Right viewing  

 

Image pre-processing 

SPOT images were ortho-rectified using the SPOT geometric model provided by ERDAS 

IMAGINE™ software (UTM 20N). For the orthorectification, we used the DEM and thirty con-

trol points scattered over the whole island. The control points were extracted from aerial or-

tho-photos (ORTHO® DB, IGN). The image registration error was less than 10 m (less than 

1 SPOT5 pixel). 

In order to get comparable physical values between the images, the digital counts were con-

verted to Top of Atmosphere (TOA) reflectances, using the following equation: 
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SS EG

DC

⋅⋅
⋅=

)cos(θ
πρ  (2) 

where ρ is the TOA (Top Of Atmosphere) reflectance, DC is the digital count, G is the sen-

sor absolute calibration gain (provided in the metadata associated with the image), θS is the 

solar zenith angle and ES is the solar radiation in the appropriate wavelength. To minimize 

the radiometric residual effects due to varying irradiance conditions, we used a ratio-based 

vegetation index (Tucker, 1979). The most commonly used is the Normalized Difference 

Vegetation Index (NDVI; Rouse et al., 1974), calculated as:  

REDNIR

REDNIRNDVI
ρρ
ρρ

−
−

=  (3) 

where rNIR and rRED are respectively the TOA reflectances in the near infrared and the red 

bands. 

No atmospheric correction was performed since only clear sky images were selected and 

because the images were mainly processed (classification and correlation) on a daily basis.  

 

Field image classification  

To help visualize and summarize field spectral data for each date the field NDVI values were 

aggregated into five discrete categories. To do this, subset NDVI images corresponding to 

the boundaries of Sahara field (minus a buffer zone of 20 m) were created from the time 

series. The aggregation was done according to the equal count (quintiles) or equal-area 

classification, where approximately the same number of observations (20% of the total) was 

put into each class. This technique allows focusing on crop spatial variability independent of 

the crop growth stages. 
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Correlation between variables 

To complement the visual and qualitative result obtained from the image classification, we 

used the Spearman coefficient to calculate the correlation between the NDVI images, and 

between NDVI values, elevation, and soil depth. The Spearman coefficient assesses how 

well an arbitrary monotonic function can describe the relationship between two variables, 

without making any assumptions about the frequency distribution of the variables or the 

linearity of the relationship.  

 

RESULTS 

Environmental data 

The satellite time series covered two consecutive cycles of sugarcane growth with different 

rainfall amounts (Figure 2a). The 2002-2003 cycle showed a rainfall deficit of 140 mm com-

pared to the 24-year rainfall average, with deficit records in November and December (re-

spectively 112 mm and 87 mm) at the end of the rainy season. In contrast, the rainfall of the 

2003-2004 cycle showed a surplus of 580 mm compared to the 24-year average with peaks 

in November and December (respectively 116 mm and 327 mm), due to particularly strong 

rainfall events. 
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Figure 2 (a: top to d: bottom): a) Boisvin monthly rainfall deviation from average over 24 

years (1977-2000) at Gardel Estate, b) mean and standard deviation of Sahara field SPOT 

NDVI; Spearman coefficient between NDVI and soil depth (c) and elevation (d) at pixel scale. 

 

NDVI time series of sugarcane 

Figure 2b shows the evolution of the mean NDVI of Sahara field throughout the two growing 

cycles. After harvest, in May and June 2003, when there are only crop residues present on 
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the soil, the value of the NDVI is low, between 0.15 and 0.2. The NDVI then increases rap-

idly as the vegetation re-grows and reaches its maximum at the end of the rainy season, 

with values between 0.7 and 0.8, typical of a fully developed dense green canopy. When 

there is no water stress, as in 2003-2004 in Guadeloupe, the NDVI remains stable or de-

creases slowly during the maturation phase due to a slight decline in leaf chlorophyll and 

change in the canopy architecture (Almeida et al., 2006), and continues as such until har-

vest. In contrast, in cases of severe water stress as in 2002–2003 in Guadeloupe, the NDVI, 

after reaching its maximum, can decrease all the way down to 0.25 mainly due to the severe 

senescence of the leaves.  

 

Seasonal variations of NDVI patterns 

Within-field growth pattern depends on the phenological stage of the crop and the cropping 

operations. Figure 3 shows equal-population classes of Sahara field NDVI for each acquisi-

tion date during two consecutive growing cycles. During the growth stages (images 7, 8, and 

15), the within-field spatial variability is high; at this stage, the vegetation cover is partial and 

the background is still visible. The within-field variability is linked to background variability 

factors such as the density and degradation status of cane residues, and to possible devel-

opment of weeds. From the end of the growing stage to the initial maturation phase (images 

1 to 4, for the 2002-2003 season, and images 11 to 14 for the 2003-2004 season), the pat-

tern of within-field variability stabilizes. This visual interpretation is confirmed by the high 

values of the correlation coefficients (from 0.63 to 0.83) obtained between images 1, 3, 4 for 

the 2002-2003 season, and between images 11, 12, 13 for the 2003-2004 season (Table 2). 

At this stage, the crop is fully developed and the soil is no longer visible. On April 30, 2003 

(image 6), the within-field variability map displays striped patterns, characteristic of the har-

vest in progress. 
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However, in this time series, two images display unexpected growth patterns: the October 

24, 2002 image (image 2) and the April 12, 2004 image (image 14). Although no particular 

conditions were noticed when they were acquired (Table 1), a heavy rainfall occurring two 

days before the October 24, 2002 image may have modified the crop architecture signifi-

cantly enough to induce a change in the growth pattern observed in that image. For the April 

2004 outlier, however, no reasonable explanation can be put forward at this point.  

 

# 
image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1.00                             
2 0.25 1.00                           
3 0.71 0.08 1.00                         
4 0.66 0.08 0.83 1.00                       
5 -0.10 -0.40 0.04 0.11 1.00                     
6 0.14 0.04 0.09 0.12 -0.12 1.00                   
7 -0.31 0.01 -0.28 -0.23 0.05 0.01 1.00                 
8 -0.51 -0.22 -0.53 -0.49 0.19 -0.04 0.23 1.00               
9 0.31 0.34 0.29 0.27 -0.40 0.11 -0.24 -0.34 1.00             
10 0.52 -0.25 0.64 0.53 0.17 0.00 -0.35 -0.35 0.10 1.00           
11 -0.45 -0.19 -0.43 -0.45 0.17 -0.36 0.18 0.35 -0.09 -0.13 1.00         
12 -0.40 -0.12 -0.53 -0.52 -0.02 -0.19 0.22 0.31 -0.15 -0.27 0.66 1.00       
13 -0.38 -0.15 -0.35 -0.33 0.15 -0.28 0.20 0.35 -0.10 -0.16 0.79 0.63 1.00     
14 -0.01 0.02 0.14 0.08 -0.09 0.04 -0.13 -0.08 0.27 -0.13 -0.11 -0.16 0.03 1.00   
15 -0.46 -0.14 -0.52 -0.48 0.00 -0.02 0.18 0.41 -0.21 -0.40 0.32 0.45 0.32 0.00 1.00 

  

Table 2: Spearman correlation matrix calculated between the fifteen SPOT NDVI images of 

Sahara field. Values in bold are significantly different from 0 at P<0.01.  
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Figure 3: Sahara field images of equal-classified NDVI, for 2 crop cycles, 2002-2003 and 

2003-2004, and for one date in 2004. 
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Annual variations of NDVI patterns 

Around the peak of vegetation growth (images 1, 3, and 4 for 2002-2003 - image 2 was 

eliminated, cf. previous section - and images 11, 12, and 13 for 2003-2004 in Figure 3), the 

within-field NDVI patterns are comparable for both crop cycles, but the values of the classes 

are inverted (Figure 4;Table 2). This unexpected feature can be attributed to the interaction 

between topography and climate conditions. The analysis of the field topography (Figure 1) 

indicates that during the dry year (2002/03), the NDVI is maximal in the lower part of the 

field, while in the rainy year (2003/04), the NDVI is maximal in the higher part of the field. 

Similarly, during the wet year, the NDVI is minimal in the lower part of the field, while in the 

rainy year (2003/04), the NDVI is minimal in the higher part of the field. This observation is 

confirmed by the correlation values obtained between elevation and NDVI at pixel scale 

(Figure 2); negative values are obtained for the dry year, while positive values are found for 

the wet year. The best correlations are obtained with the images acquired around the peak 

of vegetation growth (between November and February), except for the two outliers (Octo-

ber 24, 2002 and April 12, 2004).  

 

  

a) 2002-2003 growing season b) 2003-2004 growing season 

 

1st tercile (lower NDVI) 

2rd tercile  

3rd tercile (higher NDVI) 

 100 m 

 

Figure 4 : Tercile representation of average NDVI images for the (a) 2002-03 and (b) 2003-

04 vegetation peak periods.  Images involved in the mean calculation were Sept. 19, Oct. 

24, January 21 and February 11 for (a) and January 4, January 31 and March 1 for (b). 
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DISCUSSION  

At the seasonal scale, the within-field growth pattern depends on the phenological stage of 

the crop. During the early growth stages, the within-field spatial variability pattern is erratic 

and then stabilizes when the crop is fully developed and the soil is no longer visible. This 

result is in agreement with the studies of Zarco-Tejada et al. (2005) and Yang and Everitt 

(2002) which showed that the best correspondence between the spatial pattern of NDVI and 

yield were obtained with airborne images acquired around peak vegetative development, 

before the maturation stage when the plants are senescing. However, we showed in our 

data set that even images acquired around the vegetation peak could be outliers, showing 

unexpected spatial patterns. Our hypothesis is that specific climatic events could be strong 

enough to momentarily change the architecture of the crop. 

At the annual scale, when averaging the NDVI maps around peak biomass, we found a sta-

ble pattern for both years, but with very different NDVI values. These potential yield varia-

tions can be directly linked to the topography and consequently to the water conditions of 

the plant, with limited water stress during the dry year in the lower part of the field and water 

logging during the rainy year. The influence of the topography was previously shown by 

Marques Da Silva and Alexandre (2005), who proposed topographical indices to help in site-

specific management for delineating areas where crop yields are more sensitive to extreme 

water conditions. Our results confirmed the observations obtained by yield monitoring; 

Eghball and Varvel (1997) and Lamb et al. (1997) showed that, under rainfed conditions, the 

temporal variability of yields was more dominant than spatial variability, indicating that spa-

tial patterns in grain yields were greatly affected by yearly climatic conditions, particularly by 

year-to-year changes in seasonal water supply. Schepers et al. (2004) reached the same 

conclusions on irrigated corn crops and explained it by variations in soil properties affecting 

water-supplying capacity.  
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CONCLUSION 

From the literature, results from within-field variability studies do not always agree. This may 

be due to a lack of consistency of the results over a series of years, or because soil proper-

ties may not have explained the observed yield. To respond to the difficulties in the interpre-

tation of the studies carried out, the use of high resolution satellite imagery or aerial photog-

raphy time series could be one solution. In this paper, we showed through an example using 

satellite remote sensing, how the cropping and environmental factors impact the within-field 

temporal variability. Our results showed that (1) it is necessary to know the crop phenology 

in order to interpret correctly the spatial pattern, and that (2) single date images can be in-

sufficient for the diagnosis of crop conditions or for predictions. We concluded that the pat-

tern of crop vigour occurrence within fields could help to diagnose the causes of crop growth 

anomalies which can then be verified by ground inspection and sampling. 

The results obtained in this paper highlight the potential of satellite remote sensing to sup-

port crop management decision-making. This contribution is mainly based on multi-temporal 

NDVI acquired at the field-scale. An increase in the availability of decametric/metric image 

time series can be expected soon with the launch of satellites with high revisit time such as 

Formosat or Venµs, or with the growing use of light airborne systems. This contribution 

should be further improved when NDVI time series are combined with other data sources 

such as hyperspectral measurements, or when the NDVI times series are analysed with 

tools such as geostatistics to better characterize crop conditions, hasten crop diagnosis, and 

improve yield predictions.  
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