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Porquerolles

R. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 1 / 61



Content

Optimization under uncertainties: an overview with a focus
on Gaussian processes

1 Problem formulation
Motivation and the two classes of variables
Formulations as an optimization of statistical measures

2 Methods
A pointer to methods without metamodels

Approximation methods
Approaches based on stochastic gradients

Methods with metamodels
Overall scheme
Choice of x
Choice of u knowing x

3 Bibliography

R. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 2 / 61



Goals of the class

Optimization under uncertainty is a huge field: 3480 article have
“optimization” and “uncertainty” in their title (google scholar).

We focus on uncertainties within an optimization problem.
There are two aspects:

1 How to formulate the problem.
2 How to solve it ← we will mainly cover approaches involving

Gaussian processes (as they are the most integrated), and
mention connexions.

We will not cover statistical estimation (in particular simulation
methods for reliability), generic adaptive design of experiments
for kriging (in particular for constraints) beyond the strict
minimum needed.
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A motivating example: robust air duct design
Minimize the pressure loss by changing the parameterized shape
[Janusevskis and Le Riche, 2011]. Uncertain bottom position.

deterministic design

∆P = 0.604

but ∆P
MC
= 3.011± 2.033

robust design

∆P
MC
= 1.198± 0.069

The deterministic optimization exploits mesh flaws. The robust
optimization (mean of ∆P) has two advantages: the final solution
accounts for uncertainties in production; the numerical model flaws
are avoided.
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Besides this specific example, uncertainties affect simulation models
(lack of knowledge, epistemic) and their working conditions
(aleatory) and must be accounted for when the simulation is used
within an optimization problem.

Optimization
algorithm

[sec]

Uncertainty
model
[0,sec]

x

Simulation
algorithm
(FE,. . . )

[min,hours]

x , u

Post-process
of simulation

[0,sec]
s(x , u)

f (x , u), g(x , u)

minx f (s(x , u))
s.t. g(s(x , u)) ≤ 0

no clear
meaning for now

R. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 5 / 61



The double (x ,U) parameterization

x ∈ X , vector of deterministic, controlled variables over which
the optimization is carried out.

U : Ω→ A, vector of random variables of pdf pU(.).
⇒ s(x ,U), f (x ,U), g(x ,U) are dependent random variables.

This double parameterization, underlying Taguchi’s methods in
the 80’s, is general. It is also called “augmented space” or
“hybrid space”. Cf. [Beyer and Sendhoff, 2007],
[Pujol et al., 2009].
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x ∈ X , vector of deterministic, controlled variables over which
the optimization is carried out. U : Ω→ A, vector of random
variables of pdf pU(.).

Expl with a structure, s(, ) is the stress and/or displacement:

w

r

s(r ,w)

- Noise homogeneous to x : r = x + U , both
x and U are length, s(x + U ,w).

- Noise exogenous to x : U perturbation to
the load w , s(r ,w + U).

- Noise as an error model for the simulation:
s(r ,w) + U .

- Noise controlled by x : x tolerance class,
s(r + xU ,w) (any parameter of pU() can
be x ’s).
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Problem formulation: the noisy case

Let’s not do anything about the
uncertainties i.e., solve

minx f (x ,U)
such that g(x ,U) ≤ 0

It does not look good : gradients are not defined, what is the result
of the optimization ?
But sometimes (often!?) one still wants to do it: f () and g() are
inexpensive, large base of ui ’s available ← application scope of
stochastic gradient methods.
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Problem formulation: statistical measures
Remove the uncertainty (mathematically) by formulating the problem
with statistical risk measures, either as a constrained optimization
problem,

minx �f (x) , �f (x) = �f (f (x ,U))
such that �g (x) ≤ 0 , �g (x) = �g (g(x ,U))

or through an aggregation of statistical measures (remember f (.,U)
and g(.,U) are dependent),

min
x

�(x) , �(x) = � (f (x ,U), g(x ,U))

or a combination thereof, minx �(x) s.t. �g (x) ≤ 0.

f (x , ui ) in black, blue, red, green.

�f (x) = Ef (x ,U) in thick light blue does
not explicitely depend on the u’s

(marginalized, implicit dependance through
pU())
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Risk measures for the objective function (1/2)

The “robust” formulations, single criteria:

�f ≡ expectation (E) as average performance.

≡ variance (V) as performance dispersion.

≡ quantile (Qα) as guaranteed performance since α% of the
realizations will be better. Q50, the median, as representative
performance. Q100 is the worst-case formulation.

≡ a quantile difference (Qα − Q1−α) as a performance dispersion.

≡ super-quantile as guaranteed performance with an account for
extreme values.
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Risk measures for the objective function (2/2)

The “robust” formulations, multiple criteria:

�f ≡ a multi-objective formulation accounting for an average
performance and a deviation measure [Park et al., 2006], with
various subsequent resolution approaches (goal programming,
ordering, full Pareto, aggregations) and in particular

≡ a linear combination of average and dispersion measures,
typically Ef (x ,U) + α

√
Vf (x ,U): minimize average cost

penalized by dispersion.
For f (x ,U) ∼ N , it is equivalent to the quantile (e.g.
α = 1.645 for Q90).

R. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 12 / 61



Risk measures for the constraints

The “reliable” formulations:

�g ≡ α− P(g(x ,U) ≤ 0) ≤ 0, as at least α% chances of satisfying
the constraints.

P(g(x ,U) ≤ 0) =

∫
g(x ,u)≤0

pU(u)du =

∫
A
1g(x ,u)≤0pU(u)du

= E(1g(x ,u)≤0)

≡ Equivalently, Qα(g(x ,U)) ≤ 0.

but other formulations involving Eg(x ,U) and Vg(x ,U) (common
in the litterature) do not match the meaning of what a
constraint is. What counts is the risk of not satisfying the
constraint, not the average quantity by which it is violated.
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Risk measures: illustrations

Illustrations taken from [Baudoui, 2012]
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The choice of the risk measure
changes the optimum and the
mathematical properties of the
problem!
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Risk measures for both objective and constraints

The robust and reliable formulations:

� They are based on the feasible trajectories,
[f (x ,U) | g(x ,U) ≤ 0 ], used within the �f measures, e.g.,
E (f (x ,U) | g(x ,U)),
associated to a constraint risk measure �g .

An ideal series formulation:

G (x) the random event “all constraints are satisfied at x”,
G (x) ≡

⋂
i [gi(x ,U) ≤ 0] ← now several constraints gi(, ),

minx∈X Qα(f (x ,U) | G (x))
such that α′ − P(G (x)) ≤ 0

(to the best of my knowledge, no contribution to solve this problem: it cumulates the

difficulties of quantile estimation and dependent criteria)
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The double loop issue
The cumulation of the search on x with the estimation of the risk
measures creates a double loop that takes too long to calculate in the
context of expensive functions.
(this, in addition with the importance of taking uncertainties into account, explains the number

of articles dealing with both uncertainties and optimization.)

1 Optimization loop: propose new x based on past [x , �(x)],
n times

2 Risk estimation loop: at a given x loop on u’s to
estimate �(x).
For example, crude Monte Carlo and mean,
Ef (x ,U) ≈ 1

m

∑m
i=1 f (s(x , ui))

u

x

for a multiplicative cost of n ×m ⇒ methods to avoid the double
loop.
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Approximation methods

The original reliability optimization problem (RBDO) is transformed
into a problem expressed in terms of reliability indices

minx∈X f (x)
such that P(g(x ,U) ≤ 0) ≥ α

⇒ minx∈X f (x)
such that β(x) ≥ βtol

where βtol = Φ−1(α) and the reliability index is solution of

β(x) = arg min
v
‖v‖ such that g(x ,Tvu(v)) > 0

and Tvu() is a transformation from a vector of random variables V
that are standard normal to U , typically the inverse of
v = Φ−1(CDF(u)) ← trade the cost of an integral for an
optimization problem.
See I. Papaioannou’s class for transformation,
[Hasofer and Lind, 1974] for the reliability indices,
[Valdebenito and Schuëller, 2010] for a review of FORM / SORM in
optimization.
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If g(x ,Tvu(.)) is linear in v , there is an equivalence with the
probabilities, P(g(x , u) ≤ 0) = Φ(β(x)). The equivalence exists also
with quadratic g(x ,Tvu(.)), but in general it is an approximation.
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Approximation methods: 2, 1, 0 loop

2 loops

1 Optimization algorithm: proposes x t+1

2 Calculate β(x t+1) (reliability analysis, sub-optimization with
iteration on u through Tvu(v)) and f (x t+1)

Stop or go back to 1

1 loop

1 Optimization algorithm: proposes x t+1 and approximate
reliability analyses, e.g., β̂(x t+1) = β(x t) +∇xβ(x t)(x t+1 − x t)

Stop or sometimes update approximation β̂(.) and go back to 1

“decoupled”
(find worst uncertainty)

maxv g(x t ,Tvu(v))
such that ‖v‖ = βtol

v t

⇀↽
x t

(optim with fixed uncertainty)
minx f (x)

such that g(x ,Tvu(v t))
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Optimization under uncertainty with stochastic

gradients

Many risk measures can be written as sums over u samples:

1

N

N∑
i=1

f (x , ui)
N↗→ Ef (x ,U)

1

N2

N∑
i<j

(
f (x , ui)− f (x , uj)

)2 N↗→ Vf (x ,U)

1

N

N∑
i=1

1g(x ,ui )≤0
N↗→ P(g(x ,U) ≤ 0)

which makes them appropriate for stochastic gradients. Parallel with
machine learning methods where the ui ’s are data samples.
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Example with the mean minimization, the Arrow-Hurwicz iteration
reads

x i+1 = ProjX
(
x i − εi∇x f (x i , ui)

)
, ui ∼ pU(.) ,∑

i∈N

εi = +∞ ,
∑
i∈N

ε2
i < +∞

If ∇x f (x i , ui) is known and an unbiased noisy sample of ∇xEf (x ,U),
the algorithm converges to a local minimizer of the mean.

Cf. [Andrieu et al., 2011] for RBDO formulation & theory (like what
do you do with the gradient of 1g(x ,ui )≤0).
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Methods with metamodels (kriging)

1 Create an initial Design of Experiments (DoE),(
x i , ui , f or g(x i , ui)

)
and use it to initialize 1/many Gaussian

Processes (GPs) (in X or in augmented X ,A).

Then, there are 2 steps

2 Use the GP(s) to choose the next x t+1

3 Choose the next ut+1 knowing x t+1

4 Evaluate f (x t+1, ut+1) and g(x t+1, ut+1) (i.e., s(x t+1, ut+1)),
update the GPs, stop or return to 2.
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Methods with metamodels (kriging)

Ideally, x t+1 and ut+1 should be such that

x t+1 guides the search towards good regions (low risk
estimators): global optimization.

ut+1 helps improve the risk estimators at x t+1: statistical
estimation.

both x t+1 and ut+1 once evaluated, contributed to an improved
GP in important parts of the design space.

It is sometimes possible to build the metamodel in the lower
dimensional space of real variables x real(x , u), for example the earlier
radius where x real = r = x + u, Y (x , u) = Z (x + u).

Batch versions: many x t+1’s, many ut+1’s. Ex: brute force Monte
Carlo (MC), parallel EGO [Ginsbourger et al., 2010].
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Global optimization methods are a trade-off between

Intensification in known good regions

Exploration of new regions

How can GPR models be helpful?

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

(EGO figures from [Durrande and Le Riche, 2017])
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In our example, the best observed value is 1.79

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

We need a criterion that uses the GP and seeks a compromise
between exploration and intensification: the expected improvement
. . .

R. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 29 / 61



The Expected Improvement

EI(x) =

∫ +∞

−∞
max (0, (min(F )− Y (x))) dy(x) = · · · =√
c(x , x) [w(x)cdfN (w(x)) + pdfN (w(x))]

with w(x) = min(F )−m(x)√
(c(x ,x))

.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
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Expected Improvement

Let’s see how it works... iteration 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
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Expected Improvement

Let’s see how it works... iteration 2

0.0 0.2 0.4 0.6 0.8 1.0
0
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6
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Expected Improvement

Let’s see how it works... iteration 3

0.0 0.2 0.4 0.6 0.8 1.0
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6
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Expected Improvement

Let’s see how it works... iteration 4

0.0 0.2 0.4 0.6 0.8 1.0
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6
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Expected Improvement

Let’s see how it works... iteration 5
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6
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This algorithm is called Efficient Global Optimization (EGO,
[Jones et al., 1998]):

1 make an initial design of experiments X and calculate the
associated F , t = length(F )

2 built a GP from (X ,F ) (max. log-likelihood on σ and θi ’s)
3 Xt+1 = arg maxx EI (x) (with another optimizer, e.g. CMA-ES

[Hansen and Ostermeier, 2001])
4 calculate Ft+1 = f (Xt+1), increment t
5 stop (t > tmax) or go to 2.

+ EGO provides a good trade-off between intensification and
exploration without arbitrary parameters.

+ It requires few function observations to get close to optima.

× EGO does not converge in the traditional sense: it creates dense
samples in the volume of S. The efficiency comes from the order
in which points are sampled.
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EGO for uncertain responses

Consider an optimization problem under uncertainty and its
implementation with an estimator

min
x

�f (x)
implemented as−→ min

x
�̂f (x)

Example: �f (x) = Ef (x ,U), �̂f (x) = f (x) = 1
N

∑N
i=1 f (x , ui),

ui ∼ pU().
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The estimator of the risk, the objective function, is either noisy or
biased.

Example of noisy estimator:
Crude MC estimation of mean is noisy and has variance

V
(
f (x)

)
= 1

N(N−1)

(
f (x , ui)− f (x)

)2

Example of biased estimator: the common random numbers
strategy

Choose a unique set u1
CRN, . . . , u

N
CRN, following pU(), for

all x ’s. Use your favorite MC estimator with these u’s,
e.g., f (x)CRN = 1

N

∑N
i=1 f (x , ui

CRN).

In both cases, don’t trust the response, consider it noisy.
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GP to guide the optimization of risk estimates

Let’s start putting things together.

EGO can be applied to the response �̂f (x) but 2 changes are needed
to account for the noise:

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

x

f(x
)
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2 additions to EGO to optimize the
estimator �̂f (x):

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

x

f(x
)

1. Use kriging with noise: c(X ,X )→ c(X ,X ) + N(X ,X ) (cf. course
[Le Riche and Durrande, 2019])

Homogeneous nugget, N(X ,X ) = diag(τ 2), and τ is estimated
with the other GP parameters in the likelihood maximization.

Heterogeneous nugget, N(X ,X ) = diag(τ 2
i ), the τ 2

i are the
variances of the risk estimator at the x i ’s (example with a
quantile in [Le Riche et al., 2009]). Cannot be estimated
because not enough data points (ill-posed max likelihood).
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2 additions to EGO to optimize the
estimator �̂f (x):

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

x

f(x
)

2. Don’t trust the best observation:

Let noisy kriging filter out the noise: replace min(F ) in the EI
formula by min(m(X )).

2 levels kriging: do a normal EGO on the filtered observations
m(F ) (i.e., 2 GP models built)
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Evolutionary algorithms for uncertain responses

It has been known for some time that population based stochastic
optimizers can locate the region of the optimum of noisy functions.

Principle of a CMA-ES algorithm [Hansen and Ostermeier, 2001]:

(from wikipedia I guess)
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The two ingredients are large enough populations and muta-
tions [Beyer and Sendhoff, 2007],[Hansen et al., 2008]. But this goes
against cost (number of function calls).

Versions of these algorithms that perform well on noisy functions
have cost control mechanisms added:

summary of results on the 2012 noisy

testbed of COCO

A (1,4)-ES with mirrored sampling
and sequential selection
[Brockhoff et al., 2010].

The IPOPsaACM = CMA algorithm
with increasing population (IPOP)
and a surrogate
[Loshchilov et al., 2012].
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x t+1 from kriging in the augmented space

An example of what can be done in optimization under uncertainty
with a GP built in the augmented (X ,A)-space of (x , u) variables.

Objective

min
x∈X

Ef (x ,U)

Cf. [Janusevskis and Le Riche, 2012]
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f (x , u) is approximated by Y t
ω(x , u)

Y t
ω(x , u) the GP conditionned by the DoE at time t,

[(x1, u1), f ((x1, u1)), . . . , (x t , ut), f ((x t , ut))]

EU f (x ,U) is approximated by Z t
ω(x) := EUY

t
ω(x ,U)

Z t
ω(x) the integrated process.

integrate on u
=⇒

mZ (x) = EωEUYω(x ,U)

EU f (x ,U)
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The integrated process

Z t
ω(x) := EUY

t
ω(x ,U) =

∫
A
Y t
ω(x , u)pU(u)du

is a linear transformation of the Gaussian process Y t(, ) ⇒ it is
Gaussian and fully defined by its mean and covariance

mZ (x) =

∫
A
m(x , u)pU(u)du

cZ (x , x ′) =

∫
A

∫
A
c((x , u), (x ′, u′))pU(u)pU(u′)dudu′

(analytical expressions given in [Janusevskis and Le Riche, 2012] for
U Gaussian, otherwise the integrations needs to be done numerically)
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Z t
ω(x) is just anoter GP so, back to the minimization of the average,

the next x can be found by maximization of the expected
improvement,

xnext = maxx∈XEIZ (x)

where, remember,

EIZ (x) =
√

c(x , x) [w(x)cdfN (w(x)) + pdfN (w(x))]

with w(x) =
zmin −mZ (x)√

(cZ (x , x))
.

But Z (x) is not observed so define zmin := min(mZ (X )).
Start EGO on Z (x) . . .
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xnext

xnext

EIZ

mZ +
√
vZ

mZ

mZ −
√
vZ

Ef

zmin

x ok. What about u, which we need to call the simulator?
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Remember optimizers with uncertainty:

1 Create an initial Design of Experiments (DoE),(
x i , ui , f or g(x i , ui)

)
and use it to initialize the GP(s) (in X or

in augmented X ,A).

Then, there are 2 steps

2 Use the GP(s) to choose the next x t+1

3 Choose the next ut+1 knowing x t+1

4 Evaluate f (x t+1, ut+1) and g(x t+1, ut+1) (i.e., s(x t+1, ut+1)),
update the GP(s), stop or return to 2.
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Choosing u knowing xnext

Brute force MC: calculate all [f and g ](xnext, ui) needed by the
risk estimator. Ex: �̂f = 1/N

∑N
i=1 f (xnext, ui), ui ∼ pU().

Costs N .

MC-kriging: replace calls to f or g by calls to the metamodel
(GP mean). Ex: �̂f = 1/N

∑N
i=1 m(xnext, ui), ui ∼ pU().

Still need to choose ut+1 where to call the true simulator.
Simplest: sample it, ut+1 ∼ pU(). Costs 1. But the augmented
GP is not used in the choice. _̈

We now explain two approaches taking advantage of the GP in
augmented space:

Minimize the average function: minx f (x ,U) continued.

Reliability problem: minx f (x) such that P(g(x ,U) ≤ 0) > α.
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Back to average minimization: u knowing xnext

continued, from [Janusevskis and Le Riche, 2012]

xnext gives a region of interest from an optimization of the expected f
point of view.

One simulation will be run to improve our knowledge of this region of
interest → one choice of (x , u).

Choose (x t+1, ut+1) that provides the most information, i.e., which
minimizes the one-step-ahead variance1 of the integrated process at
xnext:

(x t+1, ut+1) = arg min
(x ,u)∈X×A

V[Z t+1(xnext)]

1See Stepwise Uncertainty Reduction methods (SUR).
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xnext = arg maxx EI
t
Z (x)x t+1 = arg min(x ,u) V[Z t+1(xnext)]

EU
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minx Ef (x ,U) with EGO in augmented space

Putting it together:

1 Create an initial Design of Experiments (DoE),
(
x i , ui , f (x i , ui)

)
While budget no exhausted or other stopping criterion

Update the conditional GP Y t(x , u) from last DoE. The
updated Z t(x) stems from it.

2 Maximize EI of Z t(x) → xnext

2’ & 3 Minimize V[Z t+1(xnext)] → x t+1&ut+1

Calculate f (x t+1, ut+1), update DoE, t ← t + 1

End while

3 (nonlinear, multimodal) sub-optimizations involved but they do not
call the expensive f . Use a global optimizer (e.g., CMA-ES or
restarted BFGS).
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Example: 2D Camelback function, iteration 6

mY (x , u)

Ef (x ,U), mZ (x)

VZ (x), EIZ (x)

R. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 53 / 61



Example: 2D Camelback function, iteration 14

mY (x , u)

Ef (x ,U), mZ (x)

VZ (x), EIZ (x)
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Example: 2D Camelback function, iteration 50

mY (x , u)

Ef (x ,U), mZ (x)

VZ (x), EIZ (x)
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Example: 6D Michalewicz function,
convergence averaged over 10 runs

designed

with EI-VAR

EI-VAR, MC-kriging, and brute force MC for N =3 (diamonds),5
(squares),10 (stars) samples

⇒ working in the augmented space is worth the effortR. Le Riche (CNRS) Optimization under uncertainties Sept. 2019 56 / 61



RBDO in the augmented space

From [Moustapha et al., 2016]
Problem to solve:

min
x∈X

f (x) such that Qα(g(x ,U)) ≤ 0 (⇔ P(g(x ,U) ≤ 0) ≥ α)

Method:

x t+1 given by a 1+1-CMA-ES optimization algorithm

ut+1 comes from a deviation number that is small when the GP
is near but inaccurate at the quantile level,

ut+1 = arg min
u∈A

q̂α(x t+1)−m(x t+1, u)

v(x t+1, u)

where q̂α(x) = m(x , ubNα:Nc)

Calculate f (x t+1), g(x t+1, ut+1), update and loop as usual.
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