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Context

Kriging is most often used in the context of expensive (numerical) experiments (simulators, e.g. PDE solvers):

The experiment can be seen as a function of the input parameters

y = f (x)
where f is a costly to evaluate function.

In the following, we will assume that

x ∈ X : There are d input variables. Usually (but not necessarily) X is R d . y ∈ R: The output is a scalar. But extensions to GP regression with multiple outputs exist.

The fact that f is costly to evaluate changes a lot of things... 1. Representing the function is not possible... The fact that f is costly to evaluate changes a lot of things...

2. Uncertainty propagation is not possible... The fact that f is costly to evaluate changes a lot of things...

3.

Optimisation is also tricky...

x > > f + + + + + +
4. Computing integrals is not possible... 5. Sensitivity analysis is not possible...

Statistical modelling

We know an initial Design of Experiments (DoE) of n points (x i , y i ), y i = f (x i ). What can be said about possible y at any x using probabilities? ⇒ kriging for regression (conditional GP) [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF][START_REF] Matheron | Principles of geostatistics[END_REF] = a family of surrogates (metamodels) with embedded uncertainty.

x i y i

General bibliography: [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF], Durrande and Le Riche, 2017[START_REF] Le Riche | Introduction to Kriging[END_REF] Random Process (1/2)

Random variable Y random event ω ∈ Ω (e.g., throw a dice) =⇒ get an instance y . Ex:

if dice ≤ 3 , y = 1 if 4 ≥ dice ≤ 5 , y = 2 if dice = 6 , y = 3 Random process Y (x)
A set of RV's indexed by x random event ω ∈ Ω (e.g., weather) =⇒ get a function y (x). Ex:

Le Riche & Durrande GP regression Sept. 2019 Gaussian Process (1/2) Assume Y () is a GP, Y (x) ∼ N (µ(x), k(x, x)) ⇔ ∀X =   x 1 . . . x n   ∈ X n×d , Y (X ) =   Y (x 1 ) . . . Y (x n )   ∼ N (µ(X ), K )
where

K ij = Cov(Y (x i ), Y (x j )) = k(x i , x j ) depends only on the x's y 1 y 2 y 3 Y 1 Y 2 Y 3 y (x) : µ(x i ) K 12 K 23 K 13 Le Riche & Durrande GP regression Sept. 2019
Gaussian Process (2/2)

The distribution of a GP is fully characterised by: its mean function µ(.) defined over X its covariance function (or kernel) k(., .) defined over X × X :

k(x, x ) = Cov(Y (x), Y (x )) ⇒ Example path simulation: Say k(x, x ) = σ 2 exp -(x -x ) 2 /θ 2
and in pseudo-R, build a fine grid X, choose mean function mu(), build the covariance matrix, K[i,j]=k(X[i],X[j]), eigenanalysis, Keig = eigen(K), and sample,

y = mu[X] + Keig$vectors %*% diag(sqrt(Keig$values)) %*% matrix(rnorm(n))
⇒ See also Shiny App: https://github.com/NicolasDurrande/shinyApps

Valid kernels

A kernel satisfies the following properties:

It is symmetric: k(x, x ) = k(x , x) It is positive semi-definite (psd): ∀n ∈ N, ∀x i ∈ D, ∀α ∈ R n , n i=1 n j=1 α i α j k(x i , x j ) ≥ 0
Furthermore any symmetric psd function can be seen as the covariance of a Gaussian process. This equivalence is known as the Loeve theorem.

Popular kernels in 1D

There are a lot of functions that have already been proven psd:

constant k(x, x ) = σ 2 white noise k(x, x ) = σ 2 δ x,x (Kronecker delta function) Brownian k(x, x ) = σ 2 min(x, x ) power-exponential k(x, x ) = σ 2 exp (-|x -x | p /θ) , 0 < p ≤ 2 Matérn 3/2 k(x, x ) = σ 2 (1 + |x -x |) exp (-|x -x |/θ) Matérn 5/2 k(x, x ) = σ 2 1 + |x -x |/θ + 1/3|x -x | 2 /θ 2 × exp (-|x -x |/θ) squared exponential k(x, x ) = σ 2 exp -(x -x ) 2 /θ 2 linear k(x, x ) = σ 2 xx . . .
The parameter σ 2 is called the variance and θ the length-scale.

General factorized form: k(x, x ) = σ 2 r (x, x ), r (, ) the correlation function.

Regularity and covariance function

The regularity and frequency content of the y (x) are controlled by the kernel (and its length-scale) For stationary processes (depend on τ = xx only), the trajectories are p times differentiable (in the mean square sense) if k(τ ) is 2p times differentiable at τ = 0 ⇒ the property of k(τ ) at τ = 0 define the regularity of the process. Examples:

trajectories with squared exponential kernels are infinitely differentiable = very (unrealistically?) smooth. trajectories with Matérn 5/2 and 3/2 kernels are twice and once differentiable. trajectories with power-exponential are not differentiable excepted when p = 2.

Popular multi-dimensional kernels (1/2)

constant k(x, x ) = σ 2 white noise k(x, x ) = σ 2 δ x,x exponential k(x, x ) = σ 2 exp (-||x -x || θ ) Matérn 3/2 k(x, x ) = σ 2 1 + √ 3||x -x || θ exp - √ 3||x -x || θ Matérn 5/2 k(x, x ) = σ 2 1 + √ 5||x -x || θ + 5 3 ||x -x || 2 θ × exp - √ 5||x -x || θ sq. exp. k(x, x ) = σ 2 exp - 1 2 ||x -x || 2 θ where ||x -x || θ = d i=1 (x i -x i ) 2 θ 2 i 1/2 .
A common general recipee: a product of univariate kernels,

k(x, x ) = σ 2 d i=1 r i (x i , x i )
which has d + 1 parameters.

(more on kernel design later)
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Gaussian process regression

Assume we have observed a function f () over a set of points X = (x 1 , . . . , x n ):

0 5 10 15 x -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 f
The vector of observations is

F = f (X ) (ie F i = f (x i ) ). Le Riche & Durrande GP regression Sept. 2019
Since f () in unknown, we make the general assumption that it is the sample path of a Gaussian process Y ∼ N (µ(), k(, )):

0 5 10 15 x -4 -3 -2 -1 0 1 2 3 4 Y (here µ(x) = 0) Le Riche & Durrande GP regression Sept. 2019
If we remove all the samples that do not interpolate the observations we obtain: Kriging equations (1/2)

The conditional distribution can be obtained analytically:

By definition, (Y (x), Y (X )) is multivariate normal. Formulas on the conditioning of Gaussian vectors give the distribution of

Y (x)|Y (X ) = F . It is N (m(.), c(., . 
)) with :

m(x) = E[Y (x)|Y (X )=F ] = µ(x) + k(x, X )k(X , X ) -1 (F -µ(X )) c(x, x ) = Cov[Y (x), Y (x )|Y (X )=F ] = k(x, x ) -k(x, X )k(X , X ) -1 k(X , x ) Le Riche & Durrande GP regression Sept. 2019 28 / 74
Kriging equations (2/2)

The distribution of Y (x)|Y (X ) = F is N (m(.), c(., .)) with:

m(x) = E[Y (x)|Y (X )=F ] = µ(x) + k(x, X )k(X , X ) -1 (F -µ(X )) c(x, x ) = Cov[Y (x), Y (x )|Y (X )=F ] = k(x, x ) -k(x, X )k(X , X ) -1 k(X , x ) k(X , X ) = [k(x i , x j )] : covariance matrix, Gram matrix in SVM. k(x, X ) = [k(x, x 1 ), . . . , k(x, x n )] : covariance vector, only dependance on x beside µ(x).
It is a Gaussian distribution: gives confidence intervals, can be sampled, this is actually how the previous slides were generated. Bayesian:

Y (x)|Y (X ) = F is the posterior distribution of Y (x) once Y (X ) = F is observed.
A few remarkable properties of GPR models They (can) interpolate the data-points The prediction variance does not depend on the observations The mean predictor does not depend on the variance parameter They (usually) come back to the a priori trend µ(x) when we are far away from the observations.

(proofs left as exercise)
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Changing the kernel has a huge impact on the model:

Gaussian kernel: Exponential kernel:
This is because changing the kernel means changing the prior on f

Gaussian kernel:

Exponential kernel:

There is no kernel that is intrinsically better... it depends!

Gaussian kernel: Exponential kernel:

The kernel has to be chosen according to the prior belief on the behaviour of the function to study: is it continuous, differentiable, how many times? is it stationary ? is it monotonous, bounded? Cf. [START_REF] López-Lopera | Finite-dimensional gaussian approximation with linear inequality constraints[END_REF] ... (more on this in the kernel design section later) Default: constant trend µ (empirical mean or µ from max likelihood [START_REF] Roustant | [END_REF]) and Matérn 5/2 kernel.

Examples of models with observation noise for n(x, x ) = τ 2 δ x,x :

0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 x Z(x)|Z(X) + N (X) = F 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 x Z(x)|Z(X) + N (X) = F 0.0 0.2 0.4 0.6 0.8 1.0 -1 0 1 2 3 4 x Z(x)|Z(X) + N (X) = F
The values of τ 2 are respectively 0.001, 0.01 and 0.1.

Kriging with noise kernel (nugget) does not interpolate the data.

A small τ 2 (e.g., 10 -10 ) often used to make the covariance matrix invertible (more on regularization of GPs in [Le Riche et al., 2017]).

Parameter estimation

We have seen previously that the choice of the kernel and its parameters (σ 2 , the θ's, the trend and other parameters) have a great influence on the model.

In order to choose a prior that is suited to the data at hand, we can: minimise the model error maximize the model likelihood We now detail the second approach.

Definition: The likelihood of a distribution with a density p U given observations u 1 , . . . , u p is:

L = p i=1 p U (u i )
The likelihood measures the adequacy between observations and a distribution.

In the GPR context, we often have only one observation of the vector F . The likelihood is then:

L = p Y (X ) (F ) = 1 (2π) n/2 det(k(X , X )) 1/2 × exp - 1 2 (F -µ(X )) k(X , X ) -1 (F -µ(X )) .
It is thus possible to maximise L -or log(L) -with respect to the kernel and model parameters in order to find a well suited prior.

The likelihood in a multi-modal function in θ's and must be optimized with global optimization algorithms.

(more details on likelihood such as concentration in, e.g.

[Le Riche, 2014])

We have seen that given some observations F = f (X ), it is very easy to build lots of models, either by changing the kernel parameters or the kernel itself.

The question is now how to measure the quality of a model to build the best one at the end. Principle: introduce new data and to compare them to the model prediction.

0.0 0.2 0.4 0.6 0.8 1.0

-1 0 1 2 x Z(x)|Z(X) = F Le Riche & Durrande GP regression Sept. 2019
Let X t be the test set and F t = f (X t ) be the associated observations.

The accuracy of the mean can be measured by computing:

Mean Square Error MSE = mean((F t -m(X t )) 2 ) A "normalized" criterion Q 2 = 1 - (F t -m(X t )) 2 (F t -mean(F t )) 2
On the above example we get MSE = 0.038 and Q 2 = 0.95. The predicted distribution can be tested by normalizing the residuals.

According to the model,

F t ∼ N (m(X t ), c(X t , X t )). c(X t , X t ) -1/2 (F t -m(X t
)) should thus be independents N (0, 1):

standardised residuals Density -3 -2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 Normal Q-Q Plot Theoretical Quantiles Sample Quantiles Le Riche & Durrande GP regression Sept. 2019
When no test set is available, another option is to consider cross validation methods such as leave-one-out.

The steps are:

1. build a model based on all observations except one 2. compute the model error at this point This procedure can be repeated for all the design points in order to get a vector of error. Model to be tested:

0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F Le Riche & Durrande GP regression Sept. 2019 43 / 74
Step 1:

0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F Le Riche & Durrande GP regression Sept. 2019 44 / 74
Step 2:

0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F Le Riche & Durrande GP regression Sept. 2019 45 / 74
Step 3:

0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 x Z(x)|Z(X) = F Le Riche & Durrande GP regression Sept. 2019
We finally obtain: MSE = 0.24 and Q 2 = 0.34.

We can also look at the residual distribution. For leave-one-out, there is no joint distribution for the residuals so they have to be standardized independently.

standardised residuals Density -2 -1 0 1 2 3 0.0 0.1 0.2 0.3 0.4 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -2 -1 0 1 2 Normal Q-Q Plot Theoretical Quantiles Sample Quantiles Le Riche & Durrande GP regression Sept. 2019
Sample code in R (with 6D Hartman function) library(DiceKriging) library(DiceDesign) X <-lhsDesign(n=80,... dimension=6)$design X <-data.frame(X) y <-apply(X, 1, hartman6) mlog <-km(design = X, response = -log(-y)) plot(mlog) Trajectories of Y () and Y 1 () can be obtained from each other: Symmetric kernel: to have Y

Y (x) | Y (X ) = F sampled through Y 1 () with h(x)Y 1 (x) | Y 1 (X ) = F /h(X ) (component-
x 1 x 2 = Y x 2 x 1 , use k x 1 x 2 , x 1 x 2 = k x 1 x 2 , x 1 x 2 + k x 2 x 1 , x 1 x 2

Example

Symmetrical kriging, mean and std. deviation.

Note how the variance is null symmetrically to observations. from [Ginsbourger, 2009] The statistical point of view

Kriging is often introduced as best linear interpolator: linear:

Y (x) = n i=1 λ i (x)Y (x i ) = λ λ λ(x) Y (X ) unbiased: E Y (x) = λ λ λ(x) EY (X ) = EY (x) = µ(x) best: λ λ λ(x) = arg min λ λ λ∈R n E Y (x) -Y (x) 2
This constrained optimization problem is solved in λ λ λ(x) and the kriging equations are recovered from

m(x) = E( Y (x) | Y (X ) = F ) and c(x, x ) = E ( Y (x) -Y (x))( Y (x ) -Y (x ))
but the link with the GP interpretation is typically not discussed,

E(Y (x) | Y (X ) = F ) ? = E( Y (x) | Y (X ) = F ) and E((Y (x) -µ(x)) 2 | Y (X ) = F ) ? = E( Y (x) -Y (x)) 2 .
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⇒ Another way to make kernels (Mercer): choose the φ i (.)'s,

k(x, x ) = N i=1 λ i φ i (x)φ i (x )
Degenerated k(., .) if N < +∞ (the covariance matrix becomes non-invertible beyond N observations)

Proof: k(x, .) ∈ L 2 (X ), k(x, .) = i k(x, .), φ i (.) L 2 φ i (.) = i X k(x, t)φ i (t)dtφ i (.) = i λ i φ i (x)φ i (.)
Alternative definition of the RKHS:

H = {f (.) ∈ L 2 (X ) : f (.) = ∞ i=1 c i φ i (.) and ∞ i=1 c 2 i λ i < +∞}
i.e., impose a sufficiently fast decrease in eigencomponents, a kind of regularization.

Intuition behind the alternative definition of the RKHS, H: 1. construct an orthonormal basis of H

The φ i (.)'s are bi-orthogonal w.r.t. ., . L 2 and ., . H but need to be normalized in H: we use the integral equation of slide 61, which gives an intuition that the φ i ()'s belong to H (think of the integral as a sum). Then,

φ i , φ j H = 1 λ i λ j X k(., t)φ i (t)dt, X k(., t )φ j (t )dt = 1 λ i λ j X X φ i (t)φ j (t )k(t, t )dtdt = 1 λ i λ j X φ i (t) X k(t, t )φ j (t )dt dt = λ j λ i λ j φ i , φ j L 2 = λ j λ i λ j δ ij ⇒ φ i () = λ i φ i () is an orthonormal basis of H 2. f is in the RKHS if its coefficients are a converging series, f () = i c i φ i () = i c i √ λ i φ i () f () H = i c 2 i λ i < +∞ Le Riche & Durrande GP regression Sept. 2019

GPR and complexity control

If complexity is measured as the norm of the function, the Representer Theorem [START_REF] Schölkopf | A generalized representer theorem[END_REF] says that m() is the least complex interpolator:

m(.) = arg min h∈H h 2 H such that h(x i ) = f (x i ) , i = 1, . . . , n Proof: h = h k + h where h k = n i=1 c i k(x i , .
) and h ⊥ h k . Then, f (x i ) = k(x i , .), h k + h = k(x i , .), n j=1 c j k(x j , .) + 0

h ⊥h k = n j=1 c j k(x j , x i ) = k(x i , X )c, c the vector of n c i 's. The problem becomes, min c∈R n ,h ⊥span{k(x i ,.)} c k(X , X )c such that k(X , X )c = F whose solution is h = 0, c = k(X , X ) -1 F , i.e.,

m(x) = h k (x) = k(x, X )k(X , X ) -1 F
A regularization can also be seen in the likelihood in Slide 38 with det(k(X , X )) which must be as small as possible (⇒ large θ's). Other names, (almost) same equations m(x) = k(x, X )k(X , X ) -1 F is ubiquitous Bayesian linear regression: the posterior distribution is identical to the GPR equations under conditions on the kernel, cf.

[Le Riche, 2014] slide 35 and [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF], slide 20 of [Rosić, 2019]. Kalman filter, see slide 21 of [Rosić, 2019]. LS-SVR: same functional form of predictor (sum of kernels centered), but explicit regularization control (C , whereas GPR is implicit in likelihood), no uncertainty. RBF (Radial Basis Functions) [START_REF] Broomhead | Radial basis functions, multi-variable functional interpolation and adaptive networks[END_REF]: same prediction, no uncertainty (hence no likelihood).

  It can summarized by a mean function and 95% confidence intervals.

  x ) = h(x)h(x )k 1 (x, x ) is a valid kernel. Can be seen as k 1 (, )× composition of function and linear kernel. Better, see it as the covariance of Y (x) = h(x)Y 1 (x).

  wise division) Boundary conditions: say you want to impose that all trajectories go through Y (x) = 0 for all (infinite number) x's such that a(x) = 0. Use h(x) = d(a(x))
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Repeat the random event (say 3 times): 3 y (x)'s. They are different, yet bear strong similarities.

Kriging of noisy data

An important special case, noisy data F = f (X ) + ε. Model F with Y (x) + N(x) where N(x) ∼ N (0, n(., .)) independent of Y (x). Then,

The expressions of GPR with noise become (just apply Gaussian vector conditioning with the above) Kernel design: making new from old

Many operations can be applied to psd functions while retaining this property Kernels can be: Summed

Multiplied

On the same space k(x, x

Composed with a function

to create new (non stationary) kernels, increase their dimension. All these transformations can be combined. Examples ...

Sum of kernels over the same space

Example (The Mauna Loa observatory dataset)

This famous dataset compiles the monthly CO 2 concentration in Hawaii since 1958. 

Sum of kernels over the same space

We first consider a squared-exponential kernel with a small and a large length-scale: 1950 1960 1970 1980 1990 2000 Sum of kernels over the same space

What happens if we sum both kernels? Sum of kernels over the same space

We can try the following kernel:

The first term is a product of linear kernels. The periodic kernel is Composition with a function

Let k 1 be a kernel over X 1 × X 1 and h be an arbitrary function

This can be seen as a (non-linear) rescaling of the input space.

A way to make non-stationary kernels. The functional point of view (thanks Xavier Bay)

The kernel k(., .) defines a space of functions, a RKHS, H k := span{k(x, .), x ∈ X } with an inner product a ., . H such that there is a linear evaluation functional f (.), k(x, .) H = f (x).

a The inner product between 2 functions is:

), f (.), g (.) H = i,j α i β j k(x i , x j ), which implies the evaluation functional.

Associated to the psd k(., .) are eigenvalues and eigenfunctions

The φ i (.)'s form an orthonormal basis of H w.r.t. the usual scalar product. All this is a generalization of the eigendecomposition of symmetric positive definite matrices to infinite dimensions.

Trajectories can be generated with (Karhunen-Loève),

⇒ in general the trajectories are not in the RKHS:

But the GP mean is in the RKHS. [START_REF] Garland | Aerospace System Analysis and Optimization in uncertainty, chapter Cokriging for multifidelity analysis and optimization[END_REF], [START_REF] Fricker | Multivariate gaussian process emulators with nonseparable covariance structures[END_REF], with gradient as 2nd output [START_REF] Laurent | An overview of gradient-enhanced metamodels with applications[END_REF]. Discrete x variables: Cf. [START_REF] Roustant | Group kernels for gaussian process metamodels with categorical inputs[END_REF], mixed variables and optimization [START_REF] Pelamatti | Efficient global optimization of constrained mixed variable problems[END_REF].

Kriging issues

Too large n: k(X , X ) is n × n and takes O(n 3 ) operations for its inversion ⇒ not directly applicable beyond n = 1000. Solutions: inducing points [START_REF] Hensman | Gaussian processes for big data[END_REF], nested kriging [START_REF] Rullière | Nested kriging predictions for datasets with a large number of observations[END_REF]