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Goal of the class, acknowledgements

This 1h30 course is an overview of kriging = conditional
Gaussian process (GP), GP regression (GPR)

with openings towards research items.

Material partly recycled from two previous classes, one given
with Nicolas Durrande [Durrande and Le Riche, 2017] and the
previous edition of this class [Le Riche, 2014].

A few new slides on RKHS coming from discussions with Xavier
Bay.
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Context

Kriging is most often used in the context of expensive
(numerical) experiments (simulators, e.g. PDE solvers):

The experiment can be seen as a function of the input
parameters

y = f (x)

where f is a costly to evaluate function.

In the following, we will assume that

x ∈ X : There are d input variables. Usually (but not
necessarily) X is Rd .
y ∈ R: The output is a scalar. But extensions to GP regression
with multiple outputs exist.
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The fact that f is costly to evaluate changes a lot of things...

1. Representing the function is not possible...

x>

>f
>=

x>

>f
+ +

+

+ +

+
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The fact that f is costly to evaluate changes a lot of things...

2. Uncertainty propagation is not possible...

x>

>f

X

f(X) >=
x>

>f

X

f(X) + +
+

+ +

+??
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The fact that f is costly to evaluate changes a lot of things...

3. Optimisation is also tricky...

x>

>f
+ +

+

+ +

+

4. Computing integrals is not possible...
5. Sensitivity analysis is not possible...
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Statistical modelling

We know an initial Design of
Experiments (DoE) of n points
(x i , yi), yi = f (x i).
What can be said about possible
y at any x using probabilities?
⇒ kriging for regres-
sion (conditional GP)
[Krige, 1951, Matheron, 1963] =
a family of surrogates (metamod-
els) with embedded uncertainty.

x i

yi

General bibliography: [Rasmussen and Williams, 2006,
Durrande and Le Riche, 2017, Le Riche, 2014]
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Random Process (1/2)

Random variable Y

random event ω ∈ Ω
(e.g., throw a dice)

=⇒

get an instance y . Ex:

if dice ≤ 3 , y = 1

if 4 ≥ dice ≤ 5 , y = 2

if dice = 6 , y = 3
Random process Y (x)

A set of RV’s indexed by x
random event ω ∈ Ω
(e.g., weather)

=⇒

get a function y(x). Ex:
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Random Process (2/2)

Repeat the random event (say 3 times):

3 y(x)’s. They are different, yet bear strong similarities.
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Gaussian Process (1/2)

Assume Y () is a GP, Y (x) ∼ N (µ(x), k(x , x)) ⇔

∀X =

x1

. . .
xn

 ∈ X n×d , Y (X ) =

Y (x1)
. . .

Y (xn)

 ∼ N (µ(X ),K )

where Kij = Cov(Y (x i),Y (x j)) = k(x i , x j) depends only on the x ’s

y1

y2

y3

Y1 Y2 Y3

y(x)

: µ(x i )
K12 K23

K13
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Gaussian Process (2/2)

The distribution of a GP is fully characterised by:

its mean function µ(.) defined over X
its covariance function (or kernel) k(., .) defined over X × X :
k(x , x ′) = Cov(Y (x),Y (x ′))

⇒ Example path simulation: Say k(x , x ′) = σ2 exp
(
−(x − x ′)2/θ2

)
and in pseudo-R, build a fine grid X, choose mean function mu(),
build the covariance matrix, K[i,j]=k(X[i],X[j]),
eigenanalysis, Keig = eigen(K), and sample,
y = mu[X] + Keig$vectors %*% diag(sqrt(Keig$values))

%*% matrix(rnorm(n))

⇒ See also Shiny App:
https://github.com/NicolasDurrande/shinyApps
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Valid kernels

A kernel satisfies the following properties:

It is symmetric: k(x , x ′) = k(x ′, x)

It is positive semi-definite (psd):

∀n ∈ N,∀xi ∈ D,∀α ∈ Rn,
n∑

i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0

Furthermore any symmetric psd function can be seen as the
covariance of a Gaussian process. This equivalence is known as the
Loeve theorem.

Le Riche & Durrande GP regression Sept. 2019 14 / 73



Popular kernels in 1D

There are a lot of functions that have already been proven psd:

constant k(x , x ′) = σ2

white noise k(x , x ′) = σ2δx,x′ (Kronecker delta function)
Brownian k(x , x ′) = σ2 min(x , x ′)

power-exponential k(x , x ′) = σ2 exp (−|x − x ′|p/θ) , 0 < p ≤ 2
Matérn 3/2 k(x , x ′) = σ2 (1 + |x − x ′|) exp (−|x − x ′|/θ)
Matérn 5/2 k(x , x ′) = σ2

(
1 + |x − x ′|/θ + 1/3|x − x ′|2/θ2

)
×

exp (−|x − x ′|/θ)
squared exponential k(x , x ′) = σ2 exp

(
−(x − x ′)2/θ2

)
linear k(x , x ′) = σ2xx ′

...

The parameter σ2 is called the variance and θ the length-scale.
General factorized form: k(x , x ′) = σ2r(x , x ′), r(, ) the correlation
function.
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Effect of θ, squared exponential kernel

k(|x − x ′|) trajectories y(x)
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Trajectories with squared exponential kernel

and the Shiny App @ https://github.com/NicolasDurrande/shinyApps
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Trajectories with the Brownian kernel
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Trajectories with the Matérn 3/2 kernel
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Trajectories with the exponential kernel
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Regularity and covariance function

The regularity and frequency content of the y(x) are controlled
by the kernel (and its length-scale)

For stationary processes (depend on τ = x − x ′ only), the
trajectories are p times differentiable (in the mean square sense)
if k(τ) is 2p times differentiable at τ = 0 ⇒ the property of
k(τ) at τ = 0 define the regularity of the process.

Examples:

trajectories with squared exponential kernels are infinitely
differentiable = very (unrealistically?) smooth.
trajectories with Matérn 5/2 and 3/2 kernels are twice and once
differentiable.
trajectories with power-exponential are not differentiable
excepted when p = 2.
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Popular multi-dimensional kernels (1/2)

constant k(x , x ′) = σ2

white noise k(x , x ′) = σ2δx ,x ′

exponential k(x , x ′) = σ2 exp (−||x − x ′||θ)
Matérn 3/2 k(x , x ′) = σ2

(
1 +
√

3||x − x ′||θ
)

exp
(
−
√

3||x − x ′||θ
)

Matérn 5/2 k(x , x ′) = σ2

(
1 +
√

5||x − x ′||θ +
5

3
||x − x ′||2θ

)
×

exp
(
−
√

5||x − x ′||θ
)

sq. exp. k(x , x ′) = σ2 exp

(
−1

2
||x − x ′||2θ

)

where ||x − x ′||θ =
(∑d

i=1
(xi−x ′i )2

θ2
i

)1/2

.
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Popular multi-dimensional kernels (2/2)

A common general recipee: a product of univariate kernels,

k(x , x ′) = σ2
d∏

i=1

ri(xi , x
′
i )

which has d + 1 parameters.

(more on kernel design later)
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Gaussian process regression

Assume we have observed a function f () over a set of points
X = (x1, . . . , xn):

0 5 10 15
x
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1.5

2.0

2.5

f

The vector of observations is F = f (X ) (ie Fi = f (x i) ).
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Since f () in unknown, we make the general assumption that it is the
sample path of a Gaussian process Y ∼ N (µ(), k(, )):

0 5 10 15
x

−4

−3

−2

−1

0

1

2

3

4
Y

(here µ(x) = 0)
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If we remove all the samples that do not interpolate the observations
we obtain:
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It can summarized by a mean function and 95% confidence intervals.
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Kriging equations (1/2)

The conditional distribution can be obtained analytically:

By definition, (Y (x),Y (X )) is multivariate normal. Formulas on the
conditioning of Gaussian vectors give the distribution of
Y (x)|Y (X ) = F . It is N (m(.), c(., .)) with :

m(x) = E[Y (x)|Y (X )=F ]

= µ(x) + k(x ,X )k(X ,X )−1(F − µ(X ))

c(x , x ′) = Cov[Y (x),Y (x ′)|Y (X )=F ]

= k(x , x ′)− k(x ,X )k(X ,X )−1k(X , x ′)
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Kriging equations (2/2)

The distribution of Y (x)|Y (X ) = F is N (m(.), c(., .)) with:

m(x) = E[Y (x)|Y (X )=F ]

= µ(x) + k(x ,X )k(X ,X )−1(F − µ(X ))

c(x , x ′) = Cov[Y (x),Y (x ′)|Y (X )=F ]

= k(x , x ′)− k(x ,X )k(X ,X )−1k(X , x ′)

k(X ,X ) = [k(x i , x j)] : covariance matrix, Gram matrix in SVM.

k(x ,X ) = [k(x , x1), . . . , k(x , xn)] : covariance vector, only
dependance on x beside µ(x).

It is a Gaussian distribution: gives confidence intervals, can be
sampled, this is actually how the previous slides were generated.

Bayesian: Y (x)|Y (X ) = F is the posterior distribution of Y (x)
once Y (X ) = F is observed.
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A few remarkable properties of GPR models

They (can) interpolate the data-points

The prediction variance does not depend on the observations

The mean predictor does not depend on the variance parameter

They (usually) come back to the a priori trend µ(x) when we are
far away from the observations.

(proofs left as exercise)
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Changing the kernel has a huge impact on the model:

Gaussian kernel: Exponential kernel:
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This is because changing the kernel means changing the prior on f

Gaussian kernel: Exponential kernel:
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There is no kernel that is intrinsically better... it depends!

Gaussian kernel: Exponential kernel:

The kernel has to be chosen according to the prior belief on the
behaviour of the function to study:

is it continuous, differentiable, how many times?

is it stationary ?

is it monotonous, bounded? Cf. [López-Lopera et al., 2018]

... (more on this in the kernel design section later)

Default: constant trend µ (empirical mean or µ̂ from max
likelihood [Roustant et al., 2012]) and Matérn 5/2 kernel.
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Kriging of noisy data

An important special case, noisy data F = f (X ) + ε.
Model F with Y (x) + N(x) where N(x) ∼ N (0, n(., .)) independent
of Y (x). Then,

Cov(Y (x i) + N(x i),Y (x j) + N(x j)) = k(x i , x j) + n(x i , x j)

Cov(Y (x),Y (x i) + N(x i)) = k(x , x i)

The expressions of GPR with noise become (just apply Gaussian
vector conditioning with the above)

m(x) = E[Z (x)|Z (X ) + N(X )=F ]

= µ(x) + k(x ,X )(k(X ,X ) + n(X ,X ))−1(F − µ(X ))

c(x , x ′) = Cov[Z (x),Z (x ′)|Z (X ) + N(X )=F ]

= k(x , x ′)− k(x ,X )(k(X ,X ) + n(X ,X ))−1k(X , x ′)
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Examples of models with observation noise for n(x , x ′) = τ 2δx ,x ′ :
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=
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The values of τ 2 are respectively 0.001, 0.01 and 0.1.

Kriging with noise kernel (nugget) does not interpolate the data.

A small τ 2 (e.g., 10−10) often used to make the covariance matrix
invertible (more on regularization of GPs in [Le Riche et al., 2017]).
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Parameter estimation

We have seen previously that the choice of the kernel and its
parameters (σ2, the θ’s, the trend and other parameters) have a
great influence on the model.

In order to choose a prior that is suited to the data at hand, we can:

minimise the model error

maximize the model likelihood

We now detail the second approach.
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Definition: The likelihood of a distribution with a density pU given
observations u1, . . . , up is:

L =

p∏
i=1

pU(ui)

The likelihood measures the adequacy between observations and a
distribution.
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In the GPR context, we often have only one observation of the
vector F . The likelihood is then:

L = pY (X )(F ) =
1

(2π)n/2det(k(X ,X ))1/2
×

exp

(
−1

2
(F − µ(X ))>k(X ,X )−1(F − µ(X ))

)
.

It is thus possible to maximise L – or log(L) – with respect to the
kernel and model parameters in order to find a well suited prior.
The likelihood in a multi-modal function in θ’s and must be
optimized with global optimization algorithms.

(more details on likelihood such as concentration in, e.g.
[Le Riche, 2014])
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We have seen that given some observations F = f (X ), it is very easy
to build lots of models, either by changing the kernel parameters or
the kernel itself.

The question is now how to measure the quality of a model to build
the best one at the end.
Principle: introduce new data and to compare them to the model
prediction.

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

x

Z
(x
)|Z

(X
)
=

F

Since GPR models provide a mean and a covariance structure for the
error they both have to be assessed.
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Let Xt be the test set and Ft = f (Xt) be the associated observations.

The accuracy of the mean can be measured by computing:

Mean Square Error MSE = mean((Ft −m(Xt))2)

A “normalized” criterion Q2 = 1−
∑

(Ft −m(Xt))2∑
(Ft −mean(Ft))2

On the above example we get MSE = 0.038 and Q2 = 0.95.
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The predicted distribution can be tested by normalizing the residuals.

According to the model, Ft ∼ N (m(Xt), c(Xt ,Xt)).

c(Xt ,Xt)
−1/2(Ft −m(Xt)) should thus be independents N (0, 1):
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When no test set is available, another option is to consider cross
validation methods such as leave-one-out.

The steps are:

1. build a model based on all observations except one

2. compute the model error at this point

This procedure can be repeated for all the design points in order to
get a vector of error.

Le Riche & Durrande GP regression Sept. 2019 42 / 73



Model to be tested:
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Step 1:
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Step 2:
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Step 3:
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We finally obtain:

MSE = 0.24 and Q2 = 0.34.

We can also look at the residual distribution. For leave-one-out, there
is no joint distribution for the residuals so they have to be
standardized independently.

standardised residuals
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Sample code in R

(with 6D Hartman function)

library(DiceKriging)

library(DiceDesign)

X <- lhsDesign(n=80,...

dimension=6)$design

X <- data.frame(X)

y <- apply(X, 1, hartman6)

mlog <- km(design = X,

response = -log(-y))

plot(mlog)
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Kernel design: making new from old

Many operations can be applied to psd functions while retaining this
property

Kernels can be:

Summed

On the same space k(x , x ′) = k1(x , x ′) + k2(x , x ′)
On the tensor space k(x , x ′) = k1(x1, x

′
1) + k2(x2, x

′
2)

Multiplied

On the same space k(x , x ′) = k1(x , x ′)× k2(x , x ′)
On the tensor space k(x , x ′) = k1(x1, x

′
1)× k2(x2, x

′
2)

Composed with a function

k(x , x ′) = k1(h(x), h(x ′))

to create new (non stationary) kernels, increase their dimension. All
these transformations can be combined. Examples ...
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Sum of kernels over the same space

Example (The Mauna Loa observatory dataset)

This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.
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Let’s try to predict the concentration for the next 20 years.
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Sum of kernels over the same space

We first consider a squared-exponential kernel with a small and a
large length-scale:

kse(x , x ′) = σ2 exp

(
−(x − x ′)2

θ2

)
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The results are terrible!
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Sum of kernels over the same space

What happens if we sum both kernels?

k(x , x ′) = kse1(x , x ′) + kse2(x , x ′)
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The model is drastically improved
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Sum of kernels over the same space

We can try the following kernel:

k(x , x ′) = σ2
0x

2x ′2 + kse1(x , x ′) + kse2(x , x ′) + kper(x , x
′)

The first term is a
product of linear kernels.
The periodic ker-
nel is kper(x , x

′) =

−σ2 exp
(
− sin2(π|x−x ′|/p)

θ

)
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Once again, the model is significantly improved.
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Composition with a function

Let k1 be a kernel over X1 ×X1 and h be an arbitrary function
X → X1, then

k(x , x ′) = k1(h(x), h(x ′))

is a kernel over X × X .
proof ∑∑

aiajk(xi , xj) =
∑∑

aiajk1(h(xi )︸ ︷︷ ︸
yi

, h(xj)︸ ︷︷ ︸
yj

) ≥ 0 �

Remarks:

k corresponds to the covariance of Z (x) = Z1(h(x))

This can be seen as a (non-linear) rescaling of the input space.
A way to make non-stationary kernels.
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Example

We consider h(x) = 1
x

and a Matérn 3/2 kernel
k1(x , y) = (1 + |x − y |)e−|x−y |.

We obtain:

Kernel

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sample paths

0.0 0.2 0.4 0.6 0.8 1.03

2

1

0

1

2

3
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k(x , x ′) = h(x)h(x ′)k1(x , x ′) is a valid kernel.
Can be seen as k1(, )× composition of function and linear kernel.
Better, see it as the covariance of Y (x) = h(x)Y1(x).

Trajectories of Y () and Y1() can be obtained from each other:
Y (x) | Y (X ) = F sampled through Y1() with
h(x)Y1(x) | Y1(X ) = F/h(X ) (component-wise division)

Boundary conditions: say you want to impose that all
trajectories go through Y (x) = 0 for all (infinite number) x ’s
such that a(x) = 0. Use h(x) = d(a(x))

d()

from Durrande

& Gauthier

ENBIS09
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Symmetric kernel: to have Y

(
x1

x2

)
= Y

(
x2

x1

)
, use

k

((
x1

x2

)
,

(
x ′1
x ′2

))
= k ′

((
x1

x2

)
,

(
x ′1
x ′2

))
+ k ′

((
x2

x1

)
,

(
x ′1
x ′2

))
Example
Symmetrical kriging, mean and std. deviation.

Note how the variance is null symmetrically to observations.
from [Ginsbourger, 2009]
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The statistical point of view

Kriging is often introduced as best linear interpolator:

linear: Ŷ (x) =
∑n

i=1 λi(x)Y (x i) = λλλ(x)>Y (X )

unbiased: EŶ (x) = λλλ(x)>EY (X ) = EY (x) = µ(x)

best: λλλ(x) = arg minλλλ∈Rn E‖Ŷ (x)− Y (x)‖2

This constrained optimization problem is solved in λλλ(x) and the
kriging equations are recovered from

m(x) = E(Ŷ (x) | Y (X ) = F )

and c(x , x ′) = E
(

(Ŷ (x)− Y (x))(Ŷ (x ′)− Y (x ′))
)

but the link with the GP interpretation is typically not discussed,

E(Y (x) | Y (X ) = F )
?
= E(Ŷ (x) | Y (X ) = F )

and E((Y (x)− µ(x))2 | Y (X ) = F )
?
= E(Ŷ (x)− Y (x))2.
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The functional point of view (thanks Xavier Bay)

The kernel k(., .) defines a space of functions, a RKHS,
Hk := span{k(x , .), x ∈ X} with an inner producta 〈., .〉H such that
there is a linear evaluation functional 〈f (.), k(x , .)〉H = f (x).

aThe inner product between 2 functions is: f (.) =
∑M

i=1 αik(xi , .),

g(.) =
∑N

j=1 βjk(x ′j , .), 〈f (.), g(.)〉H =
∑

i,j αiβjk(xi , x
′
j ), which implies

the evaluation functional.

Associated to the psd k(., .) are eigenvalues and eigenfunctions∫
X
k(., t)φi(t)dt = λiφi(.) , λ1 ≥ λ2 ≥ . . . ≥ 0

The φi(.)’s form an orthonormal basis of H w.r.t. the usual scalar
product. All this is a generalization of the eigendecomposition of
symmetric positive definite matrices to infinite dimensions.
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⇒ Another way to make kernels (Mercer): choose the φi(.)’s,

k(x , x ′) =
N∑
i=1

λiφi(x)φi(x
′)

Degenerated k(., .) if N < +∞ (the covariance matrix becomes
non-invertible beyond N observations)
Proof: k(x , .) ∈ L2(X ), k(x , .) =

∑
i 〈k(x , .), φi (.)〉L2φi (.)

=
∑

i

∫
X k(x , t)φi (t)dtφi (.) =

∑
i λiφi (x)φi (.) �

Alternative definition of the RKHS:
H = {f (.) ∈ L2(X ) : f (.) =

∑∞
i=1 ciφi(.) and

∑∞
i=1

c2
i

λi
< +∞}

i.e., impose a sufficiently fast decrease in eigencomponents, a kind of
regularization.
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Intuition behind the alternative definition of the RKHS, H:
1. construct an orthonormal basis of H
The φi (.)’s are bi-orthogonal w.r.t. 〈., .〉L2 and 〈., .〉H but need to be normalized in H: we use
the integral equation of slide 61, which gives an intuition that the φi ()’s belong to H (think of
the integral as a sum). Then,

〈φi , φj 〉H =
1

λiλj
〈
∫
X

k(., t)φi (t)dt,

∫
X

k(., t′)φj (t
′)dt′〉

=
1

λiλj

∫
X

∫
X
φi (t)φj (t

′)k(t, t′)dtdt′ =
1

λiλj

∫
X
φi (t)

[∫
X

k(t, t′)φj (t
′)dt′

]
dt

=
λj

λiλj
〈φi , φj 〉L2 =

λj

λiλj
δij ⇒ φ̃i () =

√
λiφi () is an orthonormal basis of H

2. f is in the RKHS if its coefficients are a converging series,

f () =
∑
i

ciφi () =
∑
i

ci√
λi
φ̃i ()

‖f ()‖H =
∑
i

c2
i

λi
< +∞ �
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Trajectories can be generated with (Karhunen-Loève),

Y (x) =
N∑
i=1

√
λiξiφi(x) , ξi ∼ N (0, 1) i.i.d

⇒ in general the trajectories are not in the RKHS:

N finite, Y (x) ∈ H, N infinite, Y (x) /∈ H.

Proof:
∑N

i=1
(
√
λiξi )

2

λi
=
∑N

i=1 ξ
2
i

N↗−→ N �

But the GP mean is in the RKHS.
Proof: m(x) = k(x ,X )k(X ,X )−1F =

∑n
i=1 βik(x , x i ) �
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GPR and complexity control

If complexity is measured as the norm of the function, the
Representer Theorem [Schölkopf et al., 2001] says that m() is the
least complex interpolator:

m(.) =

{
arg minh∈H‖h‖2

H
such that h(x i) = f (x i) , i = 1, . . . , n

Proof: h = hk + h′ where hk =
∑n

i=1 cik(x i , .) and h′ ⊥ hk . Then,

f (x i ) = 〈k(x i , .), hk + h′〉 = 〈k(x i , .),
∑n

j=1 cjk(x j , .)〉+ 0︸︷︷︸
h′⊥hk

=
∑n

j=1 cjk(x j , x i ) = k(x i ,X )c,

c the vector of n ci ’s. The problem becomes, minc∈Rn,h′⊥span{k(x i ,.)} c
>k(X ,X )c such that

k(X ,X )c = F whose solution is h′ = 0, c = k(X ,X )−1F , i.e.,

m(x) = hk (x) = k(x ,X )k(X ,X )−1F �

A regularization can also be seen in the likelihood in Slide 38 with
det(k(X ,X )) which must be as small as possible (⇒ large θ’s).
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Other GPR variants

Universal kriging: account for trend parameters in the GPR
equations. Cf. [Le Riche, 2014].

Multiple outputs: cokriging. Cf.
[Garland et al., 2019],[Fricker et al., 2013], with gradient as 2nd
output [Laurent et al., 2019].

Discrete x variables: Cf. [Roustant et al., 2019], mixed variables
and optimization [Pelamatti et al., 2019].
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Other names, (almost) same equations

m(x) = k(x ,X )k(X ,X )−1F is ubiquitous

Bayesian linear regression: the posterior distribution is identical
to the GPR equations under conditions on the kernel, cf.
[Le Riche, 2014] slide 35 and [Rasmussen and Williams, 2006],
slide 20 of [Rosić, 2019].

Kalman filter, see slide 21 of [Rosić, 2019].

LS-SVR: same functional form of predictor (sum of kernels
centered), but explicit regularization control (C , whereas GPR is
implicit in likelihood), no uncertainty.

RBF (Radial Basis Functions) [Broomhead and Lowe, 1988]:
same prediction, no uncertainty (hence no likelihood).
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Kriging issues

Too large n: k(X ,X ) is n× n and takes O(n3) operations for its
inversion ⇒ not directly applicable beyond n = 1000. Solutions:
inducing points [Hensman et al., 2013], nested kriging
[Rullière et al., 2018].

k(X ,X ) is ill-conditioned: regularize it, 3 variants in
[Le Riche et al., 2017] (nugget, pseudo-inverse and
distribution-wise GP).

Maximizing the likelihood (for infering the GP parameters) or
minimizing the cross-validation error are multi-modal problems
in O(d) dimensions: use global optimization algorithms.
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