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Mechanical design of structures
- Optimization of structures under fatigue

life criterion -

Christian Fourcade

abstract

These lectures are devoted to the presentation of a new computational procedure
for fatigue analysis of structures. This method, which is based on the theory of hys-
teresis operators, consists to reduce computation of the damage D caused by a time
varying stress t ∈ [0,T ] 7→Σe (t ) to the energy dissipated in the hysteresis loops of the
image Hµ(Σe ) of Σe by an appropriately calibrated Preisach operator Hµ.

We then see that this formalism allows to reduce the structure optimization problem,
which consists to seek design parameters u minimizing the damage in some given parts
of a structure, to the minimization of the mapping

u 7→D(u) =
T∫

0

∣∣∣H ′
µ(Σe , t )

∣∣∣d t

where Σe (xu) is a numerical mapping governed by a system of second order differential
equations

Mu ẍ +Wu ẋ +Ku x = F (t )

describing the dynamical behavior of the considered structure.

Furthermore, we provide and validate a series of algorithms allowing to solve the opti-
mization problem by a steepest descent method tailored to manage large dynamical
problems derived from finite element models. At last, the theoretical results obtained
in this course are illustrated with the help of numerous examples, intended for support-
ing the relevancy of the approach and providing implementation templates in design
engineering software.

Keywords: Optimal design, Structure analysis, Beam theory, Fatigue analysis, Hysteresis,
Dynamical systems.



INTRODUCTION

Version française.

LE dimensionnement à la fatigue est une question récurrente qui est posée dans
les processus de conception des structures soumises à des chargements variables

dans le temps. Il consiste par exemple à déterminer les paramètres géométriques tels
que “galbes, épaisseurs, répartitions de masses, points d’entrées des efforts, etc.”, qui
permettent de garantir une durée de vie satisfaisante à la structure lorsque celle-ci
est sollicitée par un chargement répété suffisamment longtemps, qui est une donnée
d’entrée du problème d’ingénierie, appelée profil de mission. Pour répondre à cette
question, on utilise souvent le retour d’expérience acquis sur des projets antérieurs
pour simplifier la spécification technique de durée de vie en la déployant, par exem-
ple, en objectifs de raideurs (locales et globales) ou de fréquences propres. Ceux-ci
sont ensuite complétés par des cahiers des charges géométriques tels que rayons de
raccordements, épaisseurs minimales de tôles, etc., afin de prendre en compte dans le
dimensionnement d’un savoir faire d’ingénierie. L’approche est souvent enrichie par
un calcul de durée de vie qui permet d’affiner la détection des zones de faiblesses et de
vérifier, sur le cas d’espèce, l’adéquation entre l’objectif initial et les objectifs déployés.
Cette méthode de conception, qui semble naturelle et facile à mettre en œuvre du point
de vue de la simulation numérique, présente toutefois les inconvénients de conduire à
des structures sur-dimensionnées, par exemple en masse, et de ne concerner que des
concepts déjà bien connus. Dans un paysage où l’optimisation fait de plus en plus partie
intégrante de la panoplie des outils numériques d’aide conception mis à la disposition
des ingénieurs pour concevoir, dans des délais de plus en plus restreints, des structures
qui sont requises être à la fois plus légères et plus résistantes, il semblait opportun de
développer une méthode d’optimisation de structure sur critère de fatigue. Cela permet
en effet à l’ingénieur d’exploiter au mieux, par une approche purement simulation,
le potentiel d’un espace de conception, fixé par la définition du produit, et donc de
limiter le nombre des itérations calculs-essais (parfois tardives) nécessaires à la mise
point. Dans ce contexte, l’objet de ce cours est de présenter les principes fondamentaux
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d’une méthode d’optimisation de structure sous critère d’endommagement. Dans la
mesure où nous avons choisi de disposer cette méthode aux algorithmes de plus forte
descente1, la question principale consiste à définir une procédure de calcul de la dérivée
de l’endommagement par rapport aux variables de conception. Plus précisément, en
supposant que les matrices de masse Mu , de raideur Ku et d’amortissement Wu de
la structure dépendent de façon régulière des paramètres de conception, que nous
notons génériquement u ∈Rm , l’endommagement de certaines zones de la structure
est un nombre D(Σe ) ≤ 1 qui est calculé en post-traitant en fatigue le résultat d’un calcul
dynamique de structure défini par l’équation d’état

Mu ẍ +Wu ẋ +Ku x = F (t )

où t ∈ [0,T ] 7→ F (t) est un terme de chargement qui est défini par le profil de mis-
sion. Le post-traitement en fatigue aux standards de l’industrie consiste à calculer
l’endommagement de certaines zones “à risque” de la structure en trois étapes, qui
consistent à

• décomposer le cycle de chargement2 Σe (u) en cycles élémentaires par la méth-
ode du “rain-flow counting”,

• évaluer à l’aide des courbes de Wöhler du matériau l’endommagement engen-
dré par chaque cycle élémentaire,

• additionner les endommagements élémentaires en appliquant la règle de
cumul de fatigue de Palmgren-Miner, pour obtenir l’endommagement total
engendré par le cycle de chargement considéré.

Nous verrons que cette procédure (qui est implémentée dans les codes de calcul de
fatigue) ne permet pas d’exploiter le calcul des variations pour exprimer la dérivée de
l’endommagement par rapport aux variables de conception d’une structure et qu’il
nous faut reformuler le calcul de dommage en termes d’opérations fonctionnelles
portant sur des signaux définis en temps continus (ici les fonctions a variations bornées)
pour l’exprimer comme la variation totale de l’image du cycle de chargement par un
opérateur d’hysteresis approprié. Cela pose le cadre formel qui permet

1o/ d’établir que sous certaines conditions de régularité de la solution de l’équation
d’état, le dommage est une fonction dérivable des variables de conception

2o/ et de fournir, via l’intégration d’une équation ajointe, un moyen de calcul de cette
dérivée.

Ce cours est rédigé de la façon suivante, en quatre chapitres:

1o/ On rappelle dans le premier chapitre les éléments classiques de calcul de dommage
et on formalise de façon précise les principes du calcul d’endommagement tel
qu’ils sont présentés dans les traités classiques d’analyse de la fatigue.

1Qui consistent à explorer l’espace de conception en se dirigeant à l’opposé de la dérivée du critère

de dimensionnement par rapport aux variables de conception.
2Qui est un signal temporel obtenu à partir d’un invariant des contraintes dans la zone de structure

considérée.
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2o/ Sur la base des résultats introduits dans le premier chapitre, on reformule dans le
second chapitre le calcul d’endommagement pour l’adapter aux signaux définis en
temps continus. On montre en particulier qu’il est possible de calibrer la mesure µ
d’un opérateur de Preisach3 Hµ pour exprimer l’endommagement D par l’intégrale

D =
∫ T

0

∣∣∣H ′
µ(Σe , t )

∣∣∣d t

où Σe est une fonction numérique qui dépend des variables d’état xu et ẋu .
3o/ Cela nous permet, dans le quatrième chapitre, d’expliciter une équation adjointe

pour calculer la dérivée de l’endommagement, considéré comme une fonction des
variables de conception u. Ce chapitre est précédé d’un “kit de survie en optimi-
sation” qui a pour vocation à rappeler au non spécialiste quelques principes des
algorithmes d’optimisation disponibles aujourd’hui sur le marché. Nous verrons
que ces algorithmes sont relativement complexes mais que, faisant confiance à
leurs robustesses numérique, l’utilisateur “standard” a pour tâche principale de
leur fournir une procédure de calcul du critère et sa dérivée ; la vitesse de conver-
gence étant bien entendu proportionnelle à la précision du calcul de dérivée, qu’il
convient donc de vérifier avec la plus grande rigueur.

4o/ Comme l’équation adjointe obtenue dans le quatrième chapitre est une équation
différentielle posée en temps rétrograde et excitée par les variables d’états xu et ẋu

son intégration numérique est, dans le cas général, une opération très coûteuse
en mémoire. Nous nous proposons donc, dans le troisième chapitre, d’exploiter la
caractère linéaire à la fois de l’équation d’état et de l’équation adjointe pour définir
un processus de réduction de modèle qui permet de réduire de façon significative
le volume des données nécessaire à l’intégration simultanée de ces équations.

Ce cours étant situé à la frontière entre la mécanique, les mathématiques et l’infor-
matique, j’ai souhaité formuler les principaux résultats “théoriques” en termes
d’algorithmes, eux mêmes traduits en programmes “MATLAB” pour permettre à la
lectrice ou au lecteur de vérifier par la pratique les résultats énoncés dans les Proposi-
tions et Théorèmes qui synthétisent les principales étapes du cours. Dans la mesure
nous n’aborderons ni les méthodes de paramétrages géométriques d’une structure ni le
calcul des dérivées des matrices élémentaires par rapport aux variables de conception,
les résultats présentés ici doivent être considérés comme les principes fondamentaux
d’un programme d’optimisation de structure sous critère de fatigue. Nous verrons
dans une prochaine étape comment implémenter les algorithmes proposés ici dans les
logiciels de calcul de structure. Nous verrons que cela nécessite une reconception de
ces logiciels afin de les prédisposer aux calculs des gradients et de les interfacer avec les
logiciels de CAO4 pour obtenir un outil d’aide à la décision pleinement efficace.

3Il s’agit d’un opérateur à mémoire interne, qui permet d’identifier et de compter les cycles de

chargement élémentaires présents dans le signal Σe .
4Les méthodes iso-géométriques proposées par P. de NAZELLE [31] et S. JULISSON [18] fournissent

à cet égard quelques éléments de réponse à cette question dans le cadre de l’optimisation de forme des

structures surfaciques.
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English version.

FATIGUE dimensioning is a recurrent question posed in the design processes of struc-
tures submitted to time variable loadings. It consists, for instance, to determine

the geometrical parameters such as "curvatures, thicknesses, mass distributions, entry
points of forces, etc.", allowing to guarantee a given service life for the structure when
this one is submitted to a long repeated loading (which is an input data of the engi-
neering problem, reffered to as mission profile). To answer this question, experience
return aquired on previous projects is often used to deploy the technical specification of
service life into simpler requirements on stiffness (local and global) or eigenfrequencies.
These simplified targets are furthermore supplemented by geometrical specifications
such as connecting radii, minimum thicknesses of sheets, etc., in order to account for
empiric engineering know-how. Nowaday the approach is enriched by a lifetime or
damage computation allowing to refine the detection of the weaknesses zones and
to verify on the particular case adequacy between initial deployed objectives. This
designing method, which seems quite natural and easy to implement from the point
of view of numerical simulations has, however,the drawbacks of leading to oversized
structures, for example in weight, and only concerns concepts already well known. In
a CAE landscape where optimization is becoming more and more an integral part of
the panoply of numerical tools helping the engineers to design, in more and more
limited time, structures which are required both lighter and resistant, it seemed timely
to develop a method of structural optimization under fatigue damage criteria. This
allows engineers to make the best use, through a purely simulation approach, of the
potential of a design space (induced by the product definition) and thus to limit the
number of "tests/computations" iterations, often belately performed in the project
planning. In this context, purpose of this course is to present the basic principles of a
structural optimization method under fatigue damage criterion. Since we have chosen
to tailor the method for gradient based optimization algorithms5, the main question
is to define a procedure to compute the derivative of the damage with respect to the
design variables. More precisely, assuming that the mass Mu , the damping Wu , and
the stiffness Ku matrices of the structure depend smoothly on the design parameters,
generically denoted by u ∈ Rm , the fatigue damage in some (inserting) areas of the
structure is a number D(Σe ) ≤ 1 which is calculated by post-processing in fatigue the
results of a dynamical simulation defined by the state equation

Mu ẍ +Wu ẋ +Ku x = F (t )

where t ∈ [0,T ] 7→ F (t ) is a loading term which is defined by the mission profile. Industry-
standard fatigue post-processing consists to calculate fatigue damage in some "risky
zones " of structure within three steps , which consist to

• split up the loading cycle6 Σe (u) into elementary cycles by “rain-flow counting”
method,

5Which consists to explore the design space by moving in the opposite direction to the derivative of

criterion with respect to the design variables.
6Which is a temporal signal obtained from an invariant of the stress tensor computed in the considerd

area of the structure.
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• evaluate with the help of Wöhler’s curves of the material the damage caused
by each elementary cycle,

• add the elementary damages by applying the Palmgren-Miner fatigue accumu-
lation rule, to obtain the total damage.

We will see that this procedure (which is implemented in the fatigue software) doesn’t
allow to use the "calculus of variations" to compute the derivative of the damage with
respect to the design variables and that we must reformulate the damage computation
process in terms of functional operations applied to time continuous signals (here
the functions with bounded variations) to write it down as the total variation of the
image of the loading cycle by an appropriate hysteresis operator. This set up the formal
framework which permits to

1o/ establish that, under some regularity hypothesis about the solution of the state
equation, the damage is a differentiable function of the design variables,

2o/ and to provide, via the integration of an adjoint equation, the means to calculate
this derivative.

Theses notes are written as follows, in four chapters:

1o/ In the first chapter we remind and formalise precisely the elements of damage
calculus such as they are presented in the classical treatises of fatigue analysis.

2o/ On the basis of the results introduced in the first chapter, we reformulate, in the
second chapter, the damage computation process to adapt it to time continuous
signals. We particularly show that we can calibrate the measure µ of a Preisach
operator7 Hµ to write down the damage D as the integral

D =
∫ T

0

∣∣∣H ′
µ(Σe , t )

∣∣∣d t

where Σe is a numerical mapping depending on the sate variables xu and ẋu .
3o/ This allows us, in the fourth chapter, to write down an adjoint equation to calculate

the derivative of the damage, considered as a function of the design variables u.
This chapter is preceded by an "optimization survival kit" aiming to remind the non-
specialist some principles of optimization algorithms available today on the market.
We will see that these algorithms are relatively complex but that, being confident
on their numerical robustness, the main task of the lambda user is to provide them
with a procedure for the computation of the criterion and its derivative; the speed
of convergence being of course proportional to the precision of the calculated
derivative, which must therefore be verified with the greatest rigor.

4o/ As the adjoint equation obtained in the fourth chapter is a differential equation
posed backward in time and excited by the state variables xu and ẋu its numerical
integration is usually a very expensive operation in terms of memory storage. We
therefore propose, in the third chapter, to exploit the linear character of both the
state and the adjoint equation to define a model reduction procedure aming to

7It is an internal memory operator, which identifies and counts the elementary loading cycles present

in the signal Σe .
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significantly reduce the amount of data necessary for the simultaneous integration
of these equations.

This course beeing located on the border between mechanics, mathematics and com-
puter science, I have reformulated the theoretical key findings in terms of algorithms
translated in turn into "MATLAB" programs in order to allow the reader to verify by
practice the results stated in the Propositions and Theorems which summarize the main
steps of the course. As we don’t discuss the geometrical parameterization methods of a
structure or the ways to compute the derivatives of the elementary matrices with respect
to the design variables, the results presented here must be considered as the funda-
mental principles of a structural optimization program under fatigue live criterion. We
will see in a next step how to implement the proposed algorithms in structural analysis
software. We will particularly point out that to obtain an effective decision-making tool,
we will have to predispose the CAE software to gradient calculations and to interface
them with the CAD software8.

8Iso-geometric methods proposed by de NAZELLE [31] and JULISSON [18] provide some parts of

answer to this question in the framework of shape optimization of the surface structures.
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CHAPTER 1

BASIC PRINCIPLES OF FATIGUE

ANALYSIS

THE basic principles of fatigue analysis of a structure are made up of the four following
building blocks:

E1/ Excitation forces, measured or computed from mission-profiles, are given under the
form of temporal signals –two typical examples are depicted in the figures (Fig. 1.2
and (Fig. 1.3)– and are played long enough, roughly speaking 3 or 4 weeks, on a test
bench –see figure (Fig. 1.1)– to achieve 107 loading cycles or to get failure.

E2/ A numerical model of a flexible structure, for instance a fully equipped car-body,
whose mechanical behavior is “more or less linear”; there are never large displace-
ments but non-linear models can be needed to reproduce local plastification due
to the loading levels: compare to this purpose the forces introduced in the car
for “3 bumps crossing” depicted in figure (Fig. 1.2), to those which are plotted in
figure (Fig. 1.3) for the “Cobbled runway” mission profile.

E3/ Experimental data are given under the form of fatigue tests results, which are
carried out on specimens submitted to uni-axial loading: tension/compression,
bending, twisting, etc. such as the Wöhler or S−N curves depicted in figure (Fig. 1.4)
to define the alternating stress σa(N ) leading to failure after N loading cycles, at a
given stress average σm .

E4/ The damage caused on a sample, pre-loaded at a given stress average σm , by n
alternating cycles of amplitudes σa is assumed to be defined as the following
positive number lower than 1:

D(σa ,σm ,n) = n

Nr (σa ,σm)

9



10 1. BASIC PRINCIPLES OF FATIGUE ANALYSIS

Fig. 1.1. Example of test bench for fatigue analysis. The mission pro-

files are measured on an endurance runway (on the left) and repro-

duced on a test bench until failure. The most damaging mission pro-

files are plotted in figures (Fig. 1.2) and (Fig. 1.3)

Fig. 1.2. Example of mission profile “3 bumps crossing”. The spec-

trum of the signal (on right) doesn’t contain high frequencies and the

response of the structure can be assumed to be quasi-static. Load-

ing (on left) can, however, cause permanent plastic deformations at

the connecting points between body and axles to justify non-linear

quasi-static simulations.

where Nr (σa ,σm) is the number of cycles to failure of the pre-loaded sample
submitted to the alternating stress σa — it the reciprocal function of the previously
introduced Wöhler mapping N 7→σa(N ), obtained a average stress σm .

We adopt the convention D(σa ,σm ,n) = 0 if σa doesn’t reach the asymp-
totic value of the S −N curve.

The damage caused by non-symmetric loading containing p sections of al-
ternating amplitude σai at average σmi (for 1 ≤ i ≤ p) is a number, lower than 1,
defined as follows with the help of the Palmgren-Miner’s accumulation law

(1.1) D(σ) =∑
i

D(σai ,σmi ,ni )

(
=

p∑
i=1

ni

Nr (σai ,σmi )

)



1. BASIC PRINCIPLES OF FATIGUE ANALYSIS 11

Fig. 1.3. Example of mission profile “Cobbled runway”. While re-

maining at a fairly low level, the excitation spectrum (on the right)

can be energetic at high frequencies (frequency range 10 − 40H z)

which may justify of linear dynamic simulations to reproduce the

over-stresses resulting from excitability of the body natural modes

such as global torsion or bending modes.

where, see figure (Fig. 1.5), ni is the number of alternating cycles of amplitudes σai

at averages σmi and of number of cycles to failure Nr (σai ,σmi ) occurring in the
loading signal1.

We say that a loading cycle leads to failure when the so calculated dam-
age D is greater than 1.

The rest of this Chapter, organized as follows

Contents

1.1. Basic principles 13
Wöhler’s curves 15

Average effect 18

Damage and fatigue accumulation rule 19

Cycles counting 20

1.2. Formalization of the damage calculus 21
1.3. Outline of the further results and scope of work 26
1.4. Exercises and complements 28
Solutions and homework 29

aims at formalizing and justifying (in Definition 1.1 page 25) the damage computa-
tion procedure introduced in the steps E3)-E4) and summarized on the diagram
in figure (Fig. 1.6). We would point out that Definition 1.1 is the starting point of
the developments of Chapter 2 aiming at establishing the mathematical properties
of the damage calculation process, which are used in the Chapter 4 for structural
optimization purposes.

1The difficulty is to identify in an arbitrary signal the alternating cycles and their averages; the

rain-flow method, introduced page 20, is a way to do the task.
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Computation of stresses from  
measured strains

Identification of wöhler's curves by 
running  the test until failure

Fig. 1.4. Experimental devices to identify Wöhler abacuses. A Wöh-

ler mapping is a family of experimental curves allowing to deduce,

from a given alternating load, the number of loading cycles a sam-

ple can support until failure. The sample is pre-loaded in tension or

compression in order to achieve a given mean stress σm , it is then

submitted to a sinusoidal stress of half-amplitude σa until failure. The

obtained number Nr of cycles defines a point on the so called Wöhler’s

curve (plotted in semi-ln scale) on left. By varying σm in the previous

tests, we obtain an abacus (on the right) allowing to define the num-

ber Nr (σa ,σm) of alternating cycles the sample can support before

failure. This relationship is assumed to depend only on the constitutive

material.
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Fig. 1.5. Identification of the number of cycles to failure via Wöh-
ler’s curves. After having identified in the signal in figure (Fig.a) the

alternating cycles and their averages, the damage defined by the for-

mula (1.1) is the sum D =
3∑

i=1

ni
Nr (σai ,σmi ) : the signal plotted on this

figure is made up of ni alternating cyclesσai at averageσmi . Note that

the order of appearance of the loading sequences has no impact on

the total damage.

1.1. Basic principles

This Section is subdivided into five sub-sections, which are intending for

1o/ introducing the approach of fatigue analysis based on the Wöhler’s mappings to
compute the number of cycles to failure of a structure according to the applied
solicitations. We particularly point out the limitations of this approach to predict
lifetime of “ weakly loaded ” structures where, see figure (Fig. 1.7), the asymptote of a
Wöhler’s curve is quite difficult to identify, as well analytically as experimentally;

2o/ detailing the damage computation method for complex loadings;
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Stresses in their multiaxial form
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Fig. 1.6. Fatigue analysis as post-processing of a structure simula-
tion. It is carried out within three steps:

F1) the first (in red) aims to encode the signal in elementary cycles;

F2) the next step (in yellow) consists to compute the impact of each

elementary cycle on the structure’s lifetime;

F3) to deduce, in the “green step” the value of the damage D with the

help of a fatigue accumulation law.

3o/ and at last, formalizing the “damage computation procedure” when the cycle count-
ing is performed by the rain-flow counting algorithm and the damage accumulation
is calculated with the help of the Palmgren-Miner’s rule.
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region

A

σd

σa

Infinite fatigue life

D

107105 ln Nr

B

C

Oligocyclic
fatigue

endurance
Limited

Fig. 1.7. Generic form of a Wöhler’s curve. We are mainly interested

by the part BC D of this curve, in other words, we will assume that

the applied loading is low enough to ensure lifetime greater than 105

cycles. In this case, failure is not accompanied with overall plastic

deformation. However, permanent plastic deformation due to the first

loading cycles can occur.

Wöhler’s curves. Several analytical representations of Wöhler’s curves are proposed
in the literature, they reproduce more or less accurately parts BC or C D of a generic
Wöhler’s curve defined in figure (Fig. 1.7), where σd , referred to as fatigue limit, is the
stress level below which specimen’s lifetime remains unmodified2.

Among all the relationships between number of cycles to failure Nr and alternating
stress σa , let’s mention the following which are used daily in engineering:

• Wöhler’s formula (linear in ln Nr )

σa = aw −bw ln(Nr ) or
1

Nr
= exp

(
σa −aw

bw

)
where aw and bw are two positive constants. As

lim
Nr →∞

σa(Nr ) =−∞

this formula only approaches the part BC of the generic Wöhler’s curve;
• Basquin’s formula (linear in ln scales)

ln(σa) = ab −bb ln(Nr ) or σ
1

bb
a = Cb

Nr

In this case limNr →∞σa(Nr ) = 0, but this formula is a straight line in the loga-
rithmic axes and not in the semi-logarithmic scales.

2For material such as aluminum the fatigue limit is σd = 0; this means that any loading, even at very

low level, is damaging.
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• Stromeyer’s formula (Basquin’s formula shifted by σd )

ln(σa −σd ) = as −bs ln(Nr )

(σa −σd )
1

bs = Cs

Nr
extended by 0 for σa <σd

(1.2)

In this case we have limNr →∞σa(Nr ) = σd and this formula can be used to
interpolate sections C D of the Wöhler’s curves;

• Bastenaire’s formula is a four parameters interpolation formula, defined as
follows:

(1.3) Nr +B = Ae−C (σa−σd )

σa −σd

where A, B and C are experimental constants3. This curve has a point of in-
flection and the straight line σa =σd is its asymptote, in the semi-logarithmic
scale; it allows thus, see figure (Fig. 1.8), to interpolate the part BD of a generic
Wöhler’s curve.

These parametric curves can be identified with a few number of tests, they are thus
used to minimize the building-cost of the Wöhler’s curves. The reader interested by this
kind of representation of the Wöhler’s curve may see SURESH [34], but a lot of other
references are available.

REMARK 1.1 (Effect of dispersions) There may be a significant dispersion in obtaining
the Wöhler’s curve of a given material, especially for low loading cycles or, in other
words, for large lifetime tests. For a given stress level, the ratio between the maximal and
the minimal number of cycles to failure can exceed 10; this dispersion can result from
heterogeneity, surface defects associated with machining or stamping or metallurgical
factors etc. So, see figure (Fig. 1.9), we associate a Wöhler’s curve to a probability level of
failure, which is usually defined at probability 50% of failure.

Use of number of cycles to failure given by a Wöhler’s curve in a fatigue simula-
tion only indicates that there is as much chance of getting failure as not.

REMARK 1.2 As the coefficients bs of the Stromeyer or Basquin’s formulas define the
slopes of Wöhler’s curves in logarithmic scales, these formulas allow to piecewise in-
terpolate an experimental Wöhler’s curve: Basquin’s formula permits for instance to
interpolate its steep-sloped parts while Strohmeyer’s formula is intended for interpo-
lating the asymptote. However the Wöhler’s curve in blue in figure (Fig. 1.10) can be
identified with a reasonable accuracy level by a Strohmeyer’s formula with the following
numerical values

(1.4) bs = 0.42 Cs = 2.9E +09 and σd = 220 MPa

3Note that, denoting σ0 the solution of the equation

σ0 = A

B
e−Cσ0

the formula (1.3) makes sense only for σa −σd ≥σ0.
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Fig. 1.8. Comparison between Bastenaire (in red) and Stromeyer (in
blue) parametrizations of a Wöhler’s curve. In both cases we sup-

pose that σd = 120MPa and Nr = 1.E + 05 for σa = 160MPa. The

identification leads the following numerical values: Cs = 1.5E+11, bs =
0.26 and A = 6.8E +06, B = 1.9E +04, C = 0.009. This example shows

that Bastenaire interpolation has a point of inflection and converges

faster to the fatigue limit than the Strohmeyer’s formula, this is due

to the fact that the identification requires an additional point: in this

example, we have introduced the additional point Nr = 1.5E +02 for

σa = 240MPa.

of failure

Probability density function of ln Nr

for a given stress

ln Nr

σa

Wohler’s curve
Probability 50%

Fig. 1.9. Probabilistic version of a Wöhler’s curve. It is carried out on

several samples of the test specimen. To define a probabilistic version

of Wöhler’s curves we have to identify the equiprobability curves which

associate to each number of cycles a probability of failure p, for which

the Wöhler’s curve is the middle curve 50%; it is usually assumed

that the distribution of the logarithm ln Nr of the number of cycles to

failure satisfies a normal distribution for a given stress σa .
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Fig. 1.10. Example of tension-compression Wöhler curves (Arcelor-
Mittal). These curves are measured at mean stress σm = 0, for three

different materials. This figure shows poorness of the tests performed

to characterize the material fatigue behavior: We will see in the follow-

ing that lifetime simulations carried out on a complex structure with

this kind testing results don’t lead to relevant results.

Average effect. Usually Wöhler’s curves are obtained from fatigue tests carried out
on samples which are submitted to symmetric alternating loads, but when these tests
are performed at non-zero stress average σm the specimen’s lifetime is significantly
modified, especially when σm is large compared with σa : a tensile mean stress decreases
the lifetime, while mean compressive stress increases it. To avoid carrying out fatigue
tests at non-zero mean stresses, we define a corrective formula of specimen’s lifetime
according to the applied mean stress. Basically, the method consists to estimate a
symmetric alternating stress σ′

a which generates the same number of cycles to failure
as the one which would be caused by an alternating stress σa at average σm 6= 0. This
“equivalent” stress σ′

a is usually assumed to be of the form

σ′
a = σa

f (σm)

where f is a positive numerical mapping such that

lim
σm→0

f (σm) = 1 and lim
σm→Σ0

f (σm) = 0

Note that the first condition is obvious, while the second one means that there is a
tensile mean stress Σ0 which causes immediate failure.

The following corrective functions are commonly used:

• Goodman’s formula:

(1.5) f1(σm) = 1− σm

Rm

where Rm is the tensile strength limit.
• Soderberg:

(1.6) f2(σm) = 1− σm

Re
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A

Σ0 = Re

Goodman’s straight line

Gerber’s straight line

Gerber’s parabola

Σ0 = Rm σm

P

σ′a

σ1
a

σ1
m

Fig. 1.11. Haigh’s diagram to account for mean stress effect on fa-
tigue lifetime. If σm > 0 (resp. σm < 0), it is a tensile stress (resp. a

compressive stress). Let a number N be given and σ′
a be the alternat-

ing stress such that N = Nr (σ′
a ,0) obtained from the Wöhler’s curve

at zero mean stress. If Σ0 is a given stress which causes “immediate

failure”, then the couples P = (σ1
a ,σ1

m) are assumed to generate the

same number (namely N ) of cycles to failure for each point P in one

of the curves plotted in the above diagram.

where Re is the elastic limit.
• Gerber:

f3(σm) = 1−
(
σm

Rm

)2

Note that Gerber’s formula doesn’t reproduce lifetime increasing for negative
mean stress σm .

and are build with the help of the Haig’s diagrams defined in figure (Fig. 1.11).

Damage and fatigue accumulation rule. We want define a relationship between
the “lifetime fraction” of a specimen and the amplitude of the alternating load applied
on it. To this end, we introduce a variable D, ranging between 0 and 1, referred to as
damage and defined as follows:

i ) the damage generated at the nth alternating cycle of amplitude σa is

D(σa) = n

N (σa)
(this number is lower than 1)

where is N (σa) is the number of cycles to failure associated with σa ;
i i ) Palmgren-Miner’s rule assumes that the damage caused by different cycles of alter-

nating loads is accumulated in an additive way: this means that the damage D(σ)
caused by an arbitrary loading σ, which contains the alternating levels

(
σai

)p
i=1 is

defined as

D(σ) =
p∑

i=1

ni

N (σai )

where
• ni is the number of alternating cycles of magnitude σai occuring in the sig-

nal σ;
• and N (σai ) is the number of cycles to failure corresponding to σai ;
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i i i ) we say that the loading cycle σ leads to failure when the so calculated damage D(σ)
reaches 1.

REMARK 1.3 This law reflects the fact that stresses lower than the fatigue limit are not
damaging for the sample (we set 1

N (σai ) = 0 for σai ≤σd ) and that damage estimation

depends only on the wöhler’s curves for the loading conditions.

Let’s conclude this sub-section by the following Remark, which points out a more
“physical” approach of fatigue damage analysis; its implementation in the simulation
loops requires however more advanced material characterizations and leads to solve
non-linear mechanical problems.

REMARK 1.4 (Approach based on the physics of materials) CHABOCHE and
LEMAITRE [22] consider the damage D as a state variable describing the evolu-
tion of micro-defects: it is zero in the initial state of a virgin material and reaches Dc ≈ 1
at failure. Introducing the concept of effective stress σ̃= σ

1−D as the stress which must
be applied to a virgin the material to achieve the same strain ε as in the damaged one4,
they propose a law of damage accumulation, defined according to σa and σm by the
differential equation5

dD =
(
1− (1−D)β+1

)α[
σa

M0(1−bσm) (1−D)

]β
dn

where β, M0 and b are material constants and α is a parameter which depends on the
loading. In this context, evolution of damage depends not only on the stress applied
to the specimen, but also on its damaged state; as such, this law reflects the loading
history. This damaging law, which is perfectly justified from the point of view of fracture
mechanics and thermodynamics, is however more complicated to set up than the
Palmgren-Miner’s law because, by relaxing the material according to its damage, it is
coupled with the structure equations and leads to a nonlinear system of equations.
TIKRI et al. [36] use this law to identify the parameters of a Bastenaire’s curve.

Cycles counting. In order to apply the Palmgren-Miner’s rule to compute the total
damage caused by an arbitrary loading, it remains to define a counting method of the
alternating cycles, of magnitude σa at average σm , occurring in the loading signal. In
other words : we have to discretize the loading sequence into elementary cycles, evaluate
the damage caused by each of these cycles and at last, with the help of an accumulation
law, add the elementary damages to compute the total damage D.

Several methods have been developed to identify and count the elementary cycles,
let’s mention for instance the followings, which are compared in LALANNE [21] or
ROSHANFAR [33]:

1) Peak count method

4In case of elastic material, this is equivalent to introduce the effective Young’s modulus Ẽ which is

intended for describing the elastic behavior of a structure having reached the damage level D; it is given

by Ẽ = E (1−D), where E is the Young modulus of the virgin material.
5Where n which is the number of cycles, plays role of time.
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stress

D

σ1 σ2 σ3

tim
e

C C ′

A
A′

B

Fig. 1.12. Basic principle of the Rain-flow counting algorithm. The

principle consists to follow the path of a red drop which, due to its

weight, runs along the path
_

A B , falls from the point B to the point C ′

(of abscissa σ2) and follows the path
_

C ′D, where it ends its journey.

Starting from the point B , a blue drop follows the path
_

B C and ends

its journey at the point C of abscissa σ1. This method allows to iden-

tify the oscillation A D, the local extrema B and C in the signal and

thus to identify the alternating cycle A′B C C ′ of magnitude σ2−σ1
2 at

average σ2+σ1
2 .

2) Level restricted peak count method
3) Mean crossing peak count method
4) Range pair count method
5) Level crossing method
6) Peak valley pair
7) Rain-flow method

It is commonly accepted that among all the counting methods enumerated above, only
the rain-flow counting method permits to identify and count both the alternating and
the mean stresses.

1.2. Formalization of the damage calculus

The rain-flow counting algorithm was introduced by ENDO [26]. From a signal-
processing standpoint, the algorithm aims at encoding the loading signal by the se-
quence of its local extrema; it is often introduced in the literature devoted to fatigue
analysis by the qualitative diagrams depicted in the figures (Fig. 1.12) and (Fig. 1.13).

The rain-flow algorithm aims at counting and classifying the local extrema of a
sampled signal v = (v(ti ))N

i=0. It will be formalized with the help of an algorithm
which consists to simplify the signal in removing its monotone sections and
counting the remaining oscillations by deleting them recursively.

Representing the “rain-flow” encoding of a signal under the form of a matrix
[
Ri j

]
, called

rain-flow matrix, whose entry Ri j is the number of alternating cycles of magnitudes σai
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Determination of alternating and mean stresses

– 3 alternate cycles at amplitude σa1
– 2 alternate cycles at amplitude σa2
– all the averages are different.

σa1

σm1
σm2

t

σ

Original signal Filtred signal

σa1

σa2

σa1

σa2

σm3

Filtering of local extrema

Remaining peaks

Rain-flow counting on the filtered signal

– 1.5 alternate cycles at amplitude σa3
– the average is σm6

σm6

σa3

Fig.bFig.a

Fig. 1.13. Application of the rain-flow counting to a complex signal.
The principle consists to recursively filter the original signal to iden-

tify, with the help of the heuristic described in figure (Fig. 1.12), the

alternating cycles in increasing order of magnitude. The process ends

in counting the number of cycles of a residual signal which is shown

in the figure Fig.b. A formal characterization of the residual signal is

given in formula (1.9). This figure illustrates informally the fact that

the operation of cycles counting by the rain-flow algorithm is a dis-

sipative process, which depends only on the change of the direction

of variation of the input signal. We show (see footnote 10 page 27)

that this property of the counting function allows to represent this

operation by a hysteresis.

at averages σm j , damage computation consists to calculate the sum

(1.7) D(σ) =∑
i j

Ri j

Nr
(
σai ,σm j

)
where, see the mapping plotted in figure (Fig. 1.5) page 13, Nr

(
σai ,σm j

)
is the number

of cycles to failure of a material which is submitted to the alternating stress σai at
average σm j .
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From a formal point of view, the rain-flow algorithm implements the following simplifi-
cation rules:

R1/ signal simplification by removing the middle point when three consecutive
points are monotonically listed, ie. the point vi of a signal v = (v0, v1, · · · , vN ) is
eliminated if it lies in the interval6 [vi−1, vi+1];

R2/ the previous step leads to extract the the local extrema from the original signal;
and it remains, see figures (Fig. 1.13) and (Fig. 1.14), to identify both their
amplitudes and averages. To do this, we introduce the following simplification
rules:

• Let be given four consecutive points (vk )i+1
k=i−2, we say that (vi−1, vi ) is a

pair of Madelung, see figure (Fig. 1.14), if the interval [vi−1, vi ] is contained
in [vi−2, vi+1]. In this case, the processed portion of the signal is said to
contain an oscillation of amplitude |vi−1−vi |

2 at average vi−1+vi
2 .

• The number ai mp (v)[vi−1, vi ] of Madelung’s pairs is incremented by 1 and
the signal is simplified by deleting the pair (vi−1, vi ).

At the end of this process, we obtain an irreducible residual signal vR and a integer
valued function ai mp (v)[ρ1,ρ2], defined on R2, storing the number of Madelung’s pairs

of magnitude σa = |ρ1−ρ2|
2 at average σm = ρ1+ρ2

2 found in the sampled signal v .

As we want to not distinguish the pair (ρ1,ρ2) from the pair (ρ2,ρ1) in a counting
function, we introduce the new counting function7

(1.8) (ρ1,ρ2) := ρ 7→ a(v)[ρ] = ai mp (v)[ρ1,ρ2]+ai mp (v)[ρ2,ρ1]

which is now defined on the half-plane P of equation ρ2 −ρ1 ≥ 0, referred to as Preisach
plane.

BROKATE [7] has proved, by induction on the number of samples of the signal v , the
following consistency result for the rain-flow algorithm.

PROPOSITION 1.1 (Consistency result for the rain-flow algorithm) Let a sampled signal v
be given, there is an unique residual signal vR which ends the rain-flow algorithm,
regardless of the order in which the simplification sequences are applied. The counting
function (1.8) (of the Madelung’s pairs) doesn’t depend on the order of the simplification
sequences applied to v to compute it.

We define in the following Remark the modifications which are to be made in the
previous procedure to count the extrema of a residual signal.

6For convenience, we do not distinguish between the intervals

[a,b] = {x ∈R ; a ≤ x ≤ b} and [b, a] = {x ∈R ; b ≤ x ≤ a} ;

this means that, when talking about an interval [a,b], we don’t necessarily assume that a ≤ b.
7On the example in figure Fig. 1.14 the pairs (v2, v3) and (v8, v9) are counted simultaneously.
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v2

ρ1

Madelung pair

Residual signal

Monotony

v3 v8

v9
ρ2

v1

Fig. 1.14. Illustration of the simplification processes applied in the
rain-flow algorithm. The blue samples are removed by an argument

of monotony while red samples (which are Madelun’s pairs) allow to

count the oscillations of magnitude ρ2−ρ1
2 at average ρ2+ρ1

2 which are

present in the signal. The residual signal, in dashed line, will in turn

be post-processed by duplication of the signal, see figure (Fig. 1.15).

REMARK 1.5 (Characterization of an irreducible signal) Let v = (vi )N
i=1 a sampled signal

be given; setting di = vi+1 − vi , this signal v is irreducible if and only if it satisfies

di−1 di < 0 for each 1 ≤ i ≤ N and there is an index J

such that |d0| < |d1| < · · · < |d J | ≤ |d J+1| > · · · > |dN |(1.9)

The generic shape of a residual signal is plotted in figure (Fig. 1.15).

PROOF OF REMARK 1.5. This Remark is a consequence of the following results:

• a signal doesn’t contain monotonic sections if an only if the first inequality
of (1.9) holds;

• a pair (vi , vi+1) is Madelung if and only if

(1.10) 0 < |di | ≤ min{|di−1| , |di+1|}
(have a look on the picture in figure (Fig. 1.14) to get convinced).

Let v be a signal satisfying the second condition of (1.9); the inequality (1.10) shows that
the sequences (v0, · · · , v J+1) and (v J+1, · · · , vn) do not contain Madelung’s pair; since
the pair (v J , v J+1) can’t be Madelung, the signal v in its whole does not contain any
Madelung’s pair and is irreducible.

Conversely, if v doesn’t contain any Madelung’s pair, then denoting by J the smallest of
the indices j such that ∣∣d j

∣∣> ∣∣d j+1
∣∣> ·· · > |dN−1|

and applying the characterization (1.10) of the Madelung’s pairs (for i = J −1, · · · ,1), we
see that we must have

|d0| < |d1| < · · · < |d J |
and the second condition of (1.9) is satisfied. �
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v J

v J+1

Fig. 1.15. Generic shape of a residual signal obtained at the end of
the rain-flow-algorithm. The number of cycles of the residual signal

is computed with the help of the rain-flow algorithm by processing

the signal obtained by concatenating the points of the solid line to

those of the dotted line curve. And this is precisely the purpose of the

counting function aper .

PROPOSITION 1.2 (Counting function adapted to process the residual signal) In order to
count the number of oscillations of the residual signal obtained at the end of the rain-flow
algorithm, it is sufficient to apply rules R1/ and R2/ of the rain-flow algorithm to the
concatenated signal [v, v] with the following counting function:

(1.11) aper (v) = a([v, v])−a(v)

PROOF. We see, from the picture in figure (Fig. 1.15), that to count the oscillations
of the residual signal it is sufficient to compute a(v)+a([vR , vR ]). Using the following
formula8:

a([u, v, w]) = a(v)+a([u, vR , w])

with u = v and w =; on the first hand, and with u =; and w = vR on the other hand;
we obtain the formulas

a([v, v]) = a([v, v,;]) = a(v)+a([v, vR ,;]) = a(v)+a([v, vR ])

a([v, vR ]) = a([;, v, vR ]) = a(v)+a([;, vR , vR ]) = a(v)+a([vR , vR ])

which proof (1.11). �

The previous results justify the following fundamental definition, which formalizes dam-
age computation by rain-flow counting algorithm and Palmgren-Miner’s accumulation
law.

DEFINITION 1.1 (Formal definition of damage) If the fatigue accumulation law is the
Palmgren-Miner’s rule the damage caused by a sampled loading v is defined by the
following double sum

(1.12) D(v) = ∑
ρ2−ρ1≥0

aper (v)[ρ1,ρ2)]

Nr (ρ1,ρ2)

where :

8Which can be verified by starting the rain flow algorithm on the signal v and in applying the Proposi-

tion 1.1.



26 1. BASIC PRINCIPLES OF FATIGUE ANALYSIS

Structure simulation

u(t ), σ(t )

Compution of damage

f (t )

[M ]ü + [K ]u + [W ]u̇ = f (t )

D(σ)

Loading forces

Optimisation parameters:

Shape, mass distribution,

material parameters etc.

Identification

Optimization loop

Fig. 1.16. Principles of structure optimization a under fatigue life
criterion. Structure simulations allow to define the displacements u(t )

and the stresses σ(t) according to the applied forces f (t). Damage

is then computed, see figure (Fig. 1.6) and Definition 1.1, from the

computed stresses σ(t ). Optimize consists, knowing the loading F , to

compute the entries of [M ], [K ] and [W ] which make the damage D

lower than a given value (resp. which minimize for instance the mass

of the structure under the constraint D ≤ D0).

i ) for any sampled signal v , the mapping ρ ∈P 7→ aper (v)[ρ] is defined, according
to the number of Madelung pairs of amplitude ρ1−ρ2

2 at average ρ1+ρ2

2 identified in
the concatenated signal [v, v] and in the signal v , by the formula (1.11);

i i ) and Nr (ρ) is the number of cycles to failure of the material for an alternating stress
of amplitude σa = ρ2−ρ1

2 at average σm = ρ2+ρ1

2 .

As the mapping ρ 7→ aper (v)[ρ] is non zero on a finite number of points, the sum (1.12)
is actually carried out on a finite number of terms9.

Within this framework, the rain-flow matrix (1.7) page 22 is a discretized representation
of the counting function

(
ρ1,ρ2

) ∈P 7→ aper (v)[ρ] once a discretization(
iδρ1, jδρ2

)
(i , j )∈Z×Z

of the half-plane P has been defined. In other words, the entries of rain-flow matrix [R]
are defined as

Ri j = aper (v)
[(

iδρ1, jδρ2
)]

1.3. Outline of the further results and scope of work

On the basis of the classical formalism introduced in Definition 1.1, the next aims at
generalizing the damage calculation procedure to time continuous signals. This is the
cornerstone allowing us to apply the methods of the calculus of variations to formalize
and solve the optimization problem introduced in figure (Fig.1.16). We will establish,

9The sums and more generally the integrals are written on an infinite domains for convenience. There

is no, in the matters dealt with here, any underlying convergence problem neither for the integrals nor for

the sums.
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see figure (Fig. 1.17), that the appropriate framework is that of the hysteresis modeling,
which permits to

• reduce the computation of the damage caused on a structure by a time-
continuous loading t 7→ v(t) to the energy dissipated in the hysteresis loops
of the image of v by a Preisach operator10 (Definitions 2.3 page 42 and 2.1
page 39) appropriately calibrated (Theorem 2.1 page 43) with the help of the
analytical forms of the Wöhler’s curves introduced in Section 1.1;

• and to formalize as follows (Theorem 2.3 page 72 and Remarks 2.8 page 75)
the optimization problem depicted in figure (Fig. 1.16):

Minimize D(u) =
T∫

0

j (Xu)d t

under the constraint
d Xu

d t
= f (Xu ,u, t ) for t ∈ [0,T ]

(1.13)

We explain in Chapter 4 how to solve this problem by gradient based methods
for which the descent directions are computed via the integration of an adjoint
equation (see Proposition 4.10 page 165).

The numerical methods traditionally used to deal with the problem (1.13) are expensive
to set up (see algorithm 4.7 page 173) and are inefficient to process FEM models. To
circumvent this difficulty, we introduce in Section 3.1 page 96, a forced response method
for the integration of second order linear systems, which permits

• to perform the integration of the state and adjoint equations on the same
sampling as the loads;

• and, via a reduction of model, to significantly reduce the amount of data which
are to be stored to solve the adjoint equation. We can indeed check that in case
of fatigue analysis of a structure, where excitations occur at low frequencies and
on a fairly long time, less than 10% of the equations describing the dynamical
behavior of the structure are actually needed to compute the criterion and its
gradient.

This integration method differs from the conventional ones implemented in the finite
elements software insofar as it reproduces the transients states of the dynamical system.
We will see that this property is particularly welcomed for the integration of the adjoint
equation which, in the case of fatigue analysis, looks like a second-order system for
which the right-hand member is a discontinuous function of time.

The theoretical results are illustrated with the help of numerous examples and algo-
rithms (see Section 3.2 page 105 and Annexes B page 209) whose purposes are to support
the relevance of the approach and serve as templates for its implementation in structure
software.

10Basically, it is (see BERTOTTI- MAYERGOYZ [27], KRASNOSEL’SKII - POKORVSKII [19] and VIS-

INTIN [40]) the mathematical way to characterize a signal processing operation which is covariant by time

rescaling and therefore independent of the velocity, as it is the case for the cycle-counting operation.



28 1. BASIC PRINCIPLES OF FATIGUE ANALYSIS

to
co

n
ti

n
u

o
u

s
ti

m
e

Damage theory

for continuous signals
Step

2

Classical theory

of damage

Theory tailored to optimization

and control purposes

St
ep

1

C
alcu

lu
s

o
fvariatio

n
s

P
reisach

o
p

erato
rs

G
eo

m
etric

p
ro

p
erties

o
fR

ai
n

-fl
ow

co
u

n
ti

n
g

in
te

rp
re

te
d

as
an

o
p

er
at

io
n

w
it

h
h

ys
te

re
si

s

Pa
ss

fr
o

m
sa

m
p

le
d

Theorie of Preisach
operators

Fig. 1.17. Overview on the mathematical problem. As it only makes

sense for sampled signals, the formula (1.12) doesn’t permit to exploit

the flexibility of “the calculus of variations” to write down and solve the

optimization problem explained in the figure (Fig. 1.16). We will there-

fore extend the definition of damage calculation to continuous-time

signals; the exercise will be processed within two steps: the first aims

at showing that rain-flow counting process and accumulated damage

computation can be performed with the help of relay and Preisach

hysteresis operators, and the second uses the geometric properties of

these operators to make explicit the integrand j in formula (1.13).

1.4. Exercises and complements

EXERCICE 1.1 For an aluminum alloy, fatigue tests have given the results shown in
table Tab 1.1; two specimens were used for each stress level,

• Plot the S −N curve,
• What is the fatigue limit σd ?
• Identify Stromeyer and Bastenaire’s coefficients for these S −N curves
• Suppose that the specimen is cyclicly loaded between 50 and 350 MPa, com-

pute its number of cycles to failure if Re = 450MPa and Rm = 570MPa
• Plot the S −N surfaces as functions of σa and σm .

σa 400 350 300 250

Nr 1.5E +04;2.0E +04 4.E +04;5.0E +04 2.1E +05;2.0E +05 9.0E +05;1.0E +06

σa 220 180 170 160

Nr 5.0E +06;6.0E +06 5.1E +07;5.0E +07 1.1E +08;1.0E +08 7.0E +08; N F

Tab. 1.1. Experimental data obtained from fatigue tests carried out
at mean stress σm = 0.

EXERCICE 1.2 • Program in “Matlab” the rain-flow counting algorithm
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σ
a
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M

Pa

Stromeyer’s curve indentified at σm = 0

Number of cycles to failure in ln scale

150
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300

400

350

104 105 106 108 109
107

Fig. 1.18. Identification of Stromeyer coefficients obtained from the
experimental data given in table Tab 1.1.

• Test it on signals of the form 200MPa ∗ (sin(t ).∗ sin(ω∗ t ) ), where t is the
table t = [0 : δT : T ]

• Write a program to compute and plot the rain-flow matrix,
• Make a program to compute the damage.

Solutions and homework.

Solution of exercise 1.1. The Wöhler’s curve is plotted in the figure Fig. 1.18, in
semi-ln scales.

1/ Note that this curve has no inflection point,
2/ it can be interpolated by a Stromeyer’s formula with coefficients

as = 7.70 bs = 0.227 σd = 150 MPa Cs = 1.5∗1015.

These coefficients were obtained with the help of the python version of the
Levenberg-Marquart’s algorithm defined in LOURAKIS [25]. A simplified version of
this identification program is given in the algorithm 1.1

3/ This curve can’t be interpolated by a Bastenaire formula!

The Bastenaire formula is usually identified with the help of an identification algorithm
such as the algorithm 1.1. See Section 4.1 page 140 for a better understanding of the
optimization algorithms.

Wöhler’s surface as a function of the variables σa and σm is plotted in figure (Fig. 1.19).

Homeworks.
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Fig. 1.19. Wöhler’s surface.

Algorithm 1.1: Basic algorithm for the identification of a parametric Wöhler’s
curve by a steepest descent method.

Inputs :

• Experimental Wöhler curve data
(
Nri

)N
i=1

(
σai

)N
i=1

• Parametric law

(1.14) Nr (σa) = A
eC (σd−σa )

σa −σd
−B

Outputs :

• Coefficients
(

Aopt ,B opt ,C opt ,σopt
d

)
• such that Nri ≈ Nr (σai ) for all 1 ≤ i ≤ N , ie. minimizing the criterion

(1.15) J (A,B ,C ,σd ) =
N∑

i=1

(
Nri −Nr (σai

)2

begin

• Let the initial values
(

A0,B 0,C 0,σ0
d

)
be given

• while ‖∇J‖ > ε do(
Ak ,B k ,C k ,σk

d

)
←(Ak−1,B k−1,C k−1,σk−1

d )

− c∇J (Ak−1,B k−1,C k−1,σk−1
d )

end
• Set (

Aopt ,B opt ,C opt ,σopt
d

)
=

(
Ak ,B k ,C k ,σk

d

)
end

• Explain with a picture the algorithm 1.1.
• Propose additional data allowing to identify a Bastenaire’s curve.
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• Modify the optimization algorithm in order to be able to identify the following
curves:

– Weibull: ln(Nr +B) = a −b σa−σd
σu−σd

– Stüssi: ln(Nr ) = a −b σa−σd
σu−σd

where σu is a parameter defined in the figure Fig. 1.20.

Fig. 1.20. Physical interpretation of the parameter σu in Weibull
and Stüs-Philips formulas.

Solution of exercise 1.2. Rain-flow algorithm

• Counting function

function [y,rho_1,rho_2,Ind]=madelung(y,Nb_samp)
%
% Purpose: identify and remove the first Madelung pair in
% a sampled signal y.
%

if Nb_samp>=4
i=1;
while (abs(y(i+1)-y(i+2))-min(abs(y(i)-y(i+1)),...

abs(y(i+2)-y(i+3)))>=1.e-04)...
&& (i<Nb_samp-3)

i=i+1;
end
% The index i is such that y(i +1) , y(i +2) is
% the first Madelung pair in y

if i==Nb_samp-3
% Case where there is no Madelung pair in y (ie. y is residual)

Ind=0;% There is no Madelung pair
rho_1=NaN;
rho_2=NaN;

else
rho_1=y(i+1);
rho_2=y(i+2);
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% The Madelung pair (ρ1 , ρ2) is removed from y

for j=i+1:Nb_samp-2
y(j)=y(j+2);

endfor
Ind=1;% a Madelung pair has been found

endif;
else

Ind=0;
rho_1=NaN;
rho_2=NaN;

endif
endfunction

• Main program

time =0:0.01:120;% Time smapling

x_0=sin ( time )+ sin ( time ) . * sin (4* time )+ sin ( 0 . 5 * time ) . * sin (6* time ) ;

% x_0=sin ( time ) ;

% x_0 =[0 ,1 , −1 ,1.5 , −2 ,2.5 , −1.5 ,1 , −0.5 ,0]

% time = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ]

1) Apply the simplification rule R1)
% Remove monotonous sections in x

%
x=x_0;
Nb_samp=size(x,2);% Number of samples
for i=1:Nb_samp-2
if(x(i)-x(i+1))*(x(i+1)-x(i+2))>=0 % Apply rule R1) of the

x(i+1)=x(i); % rain-flow algirthm
endif;

endfor
%
% Remove the duplicated entries in x to make y

j=1;
y(1)=x(1);
time2(1)=time(1);
for i=1:Nb_samp-1

if abs(x(i)-x(i+1))>0
j=j+1;
y(j)=x(i+1);
time2(j)=time(i+1);

endif;
endfor;

2) Plot the obtained result
txt1=[’Original signal (’,num2str(size(x,2)),’ samples)’];
txt2=[’Simplified signal (’,num2str(size(y,2)),’ samples)’];
figure(1);
subplot(211)
plot(time,x_0)
title(txt1); xlabel(’time’); ylabel(’x(t)’);
subplot(212)
plot(time2,y)
title(txt2);xlabel(’time’); ylabel(’y(t)’);
Nb_samp_s=size(y,2) % Note that Nb_samp_s <<< Nb_samp!
see figure Fig. 1.21.
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Fig. 1.21. Simplification of the original signal in removing the
monotone sequences.

3) Apply rule R2) to identify the Madelung’s pairs in y
Ind=1;
i=1;
while Ind>0

[y,rho_1,rho_2,Ind]=madelung(y,Nb_samp_s);
if Ind>0 % If a Madelung pair has been found in y

tab_1(i)=rho_1;% store the pair in tables tab_1 and tab_2
tab_2(i)=rho_2;% to compute the rain-flow matrix
i=i+1;
Nb_samp_s=Nb_samp_s-2;%and reduce the number of samples used

endif %for the next research
endwhile
% As the research stops when the number of Madelung pair is 0

% y(1:Nb_samp_s) is the residual signal vR

% Plot it for checking!
figure(2);
subplot(211)
plot(x_0)
title(’Original signal’);
subplot(212)
plot(y(1:Nb_samp_s))
title(’Residual signal obtained at the end of rain-flow algorithm’);
see figure Fig. 1.22.

4) Compute the rain-flow matrix in the axes (ρ1,ρ2)11

if Nb_samp_s==size(y,2)

11The rain-flow matrix is often defined in the axes (σa ,σm ) in the literature.
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Fig. 1.22. Example of residual signal obtained at the end of the rain-
flow algorithm.

Nb_madelung_pair=0;% In this case, there is nothing to compute
else

Nb_madelung_pair=size(tab_1,2);
N=40;% Number of samples along the ρ1 axis
% The Preisach plane is restricted to
% the rectangle min(x) ≤ ρ1, ρ2 ≤ max(x)

delta_rho=(max(x_0)-min(x_0))/N;
%
for i=1:N+1

for j=1:N+1
tab(i,j)=0.0;

endfor
endfor
for i=1:Nb_madelung_pair

rho_1=tab_1(i);
rho_2=tab_2(i);
i_1=floor((rho_1-min(x_0))/delta_rho)+1;
j_1=floor((rho_2-min(x_0))/delta_rho)+1;
tab(i_1,j_1)=tab(i_1,j_1)+1;

endfor
%
rho=min(x_0):delta_rho:max(x_0);
% Compute aper (ρ1,ρ2) and plot it (rain-flow matrix)
for i=1:N+1

for j=1:i
tab2(i,j)=tab(i,j)+tab(j,i);

endfor
for j=i+1:N+1

tab2(i,j)=NaN;
endfor

endfor
%
figure(3);
surf(rho,rho,tab2)
xlabel(’rho_1’); ylabel(’rho_2’); zlabel(’Number of cycles’);

endif
5) Now compute the total damage with help of the formula (1.12), where

aper is tabulated in the table t ab2.
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Fig. 1.23. Rain-flow matrix obtained in applying the rain-flow algo-
rithm on the signal shown in figure Fig. 1.21.

Homeworks.

• Complete the program to compute the total damage.
• Run the program with x0 = sin(t i me); did you expect that? Modify the input

data to obtain better results and justify the modifications.





CHAPTER 2

DAMAGE CALCULUS FOR

TIME-CONTINUOUS SIGNALS

PURPOSE of this Chapter is to extend to time-continuous signals the formula (1.12)
introduced in Definition 1.1 which defines the damage generated by sampled

loading. This will make us able to use the classical methods of the calculus of varia-
tions to write down and solve in Chapter 4 the optimization problem introduced in
figure (Fig. 1.16) page 26.

This Chapter is organized as follows:

Contents

2.1. Reformulation of the damage computation process 38
Cycle counting by relay operator 39

Damage computation via a Preisach operator 42

2.2. Generalization to continuous signals 46
2.3. Geometric representation of the Preisach operator 53
Generalization to Lipschitz continuous signals 59

Numerical treatment of the variational inequality 65

2.4. Damage accumulation for Lipschitz continuous loadings 68
2.5. Exercises and complements 76
Solution of the exercises & homework 77

Starting from the results obtained by BROKATE, DREBLER and KREJCI [7] we show
in Section 2.1 (Theorem 2.1 page 43) that we can calibrate the density µ of a Preisach
operator Wµ acting on the space of finite sequences to compute the damage D(v) as the
total variation VT

(
Wµ(v)

)
of the image Wµ(v) of the sequence v by the operator Wµ.

37
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We make in Section 2.2 the passage from discrete to continuous time and we justify the
new definition

(2.1) D(v) =
T∫

0

∣∣∣W ′
µ(v, t )

∣∣∣d t

of the damage caused by a continuous loading t ∈ [0,T ] 7→ v(t ).

The geometric representation of a Preisach operator introduced in Section 2.3 (Theo-
rem 2.2 page 66) will permit in Section 2.4 to

1o/ explicit
• in Theorem 2.3 page 72, the integrand

∣∣Wµ(v, t )′
∣∣ in the formulation (2.1) of the

damage;
• and, in Remarks 2.8 page 75, the computation of the derivatives of

∣∣Wµ(v, t )′
∣∣

with respect to the variables v(t ) and v̇(t ), which are assumed to be indepen-
dent variables;

2o/ check that, although the Preisach operator is not differentiable, in the sense of Frechet
for instance, its outputs Wµ(v, t ) are almost every where differentiable with respect to
the inputs v(t ).

We proof in Chapter 4 (Proposition 4.10 page 165) that this notion of “weak differentia-
bility” of the Preisach operator is sufficient to define a descent direction for the structure
optimization problem.

2.1. Reformulation of the damage computation process

In this Section we formulate the damage computation process v 7→D(v) in terms of
functional operations applied on the signal v . At the end of this Section, we will have
defined two equivalent ways to compute the damage caused by a sampled loading v :

• the first one is the standard method (formula (1.12) page 25) based on the
rain-flow counting algorithm and the Palmgren-Miner’s rule;

• while the second, introduced in this Section (formula (2.12) page 43) leads us
to understand the total damage as the energy dissipated in the hysteresis loops
of the image Wµ(v) of v by a Preisach operator Wµ appropriately calibrated.

Besides the fact that the latter formulation of the damage computation method fits with
the functional framework allowing to handle the optimization problem depicted in the
figure (Fig. 1.16) with the help of the classical methods of the calculus of variations, it
seems to better correspond to the intuition of the failure mechanisms of a material than
the first one, which rather appears as a heuristic.

This Section is organized into two sub-sections aiming to

1o/ show, in the first subsection, that cycle identification and cycle counting can be
performed with the help of relays hysteresis, see Definition 2.1;
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2o/ calibrate the coefficients of a Preisach operator (see Definition 2.3 and Theorem 2.1
page 43) to perform the weighted cycle counting and the time integration required
for the computation of the total damage.

Cycle counting by relay operator. If ρ1 > ρ2 are two given real numbers, a relay
operator of thresholds ρ1 and ρ2 defined bellow, is a mathematical device tailored to
identify the oscillations of a sampled signal v crossing the interval [ρ1,ρ2].

DEFINITION 2.1 (Relay operator) Let ρ1 > ρ2 be two real numbers, we call relay operator
of thresholds ρ1 and ρ2 the mapping hρ : Rn → {0, 1}n+1 defined by

[
hρ(v)

]
i := zi =


1 if vi ≥ ρ2

0 if vi ≤ ρ1

zi−1 if ρ1 < vi < ρ2

for 1 ≤ i ≤ n

z0 = w−1

(2.2)

where ρ is an abbreviation which refers to the couple (ρ1,ρ2) ∈ P and n is a given
integer number.

To remove the ambiguity in formula (2.2) we impose, arbitrarily for the time being,
the initial state w−1 ∈ {0,1} of

[
hρ(v)

]
−1. When will we have to specify this initializing

state of the relay operator we will use the complete notation hρ(v, w−1) instead of the
simplified one hρ(v).

A Relay operator is an elementary hysteresis operator, called hysteron, which
changes of state when the signal v crosses the interval [ρ1,ρ2]:

• it switches from 0 to 1 (resp. from 1 to 0) when the signal crosses the
interval [ρ1,ρ2] in the increasing (resp. in the decreasing) direction,

• while it remains unmodified in the others cases.

An illustration is provided in figure (Fig. 2.2) page 41.

Now we proof that counting the number of changes of state of the relay hρ is the same as
counting the number of oscillations of the signal which cross the thresholds ρ1 and ρ2

and we connect this operation with the cycle-counting function ρ 7→ aper (v)[ρ1,ρ2] in-
troduced in Chapter 1 page 25 to formalize the rain-flow counting algorithm.

Let a sampled signal v be given, if (ρ′
1,ρ′

2) is a Madelung’s pair such that [ρ1,ρ2] ⊂ [ρ′
1,ρ′

2]
then, see figure (Fig. 2.1), the simplified signal v ′ obtained in removing the pair (ρ′

1,ρ′
2)

in v satisfies the equation1

VT
(
hρ(v ′)

)=VT
(
hρ(v)

)−2

1The following Definition of the total variation of a finite sequence is extended to the continuous

functions (Definition 2.6 page 51) where it is connected with the notion of derivative when the function v

is sufficiently regular.
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ρ′
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ρ′
2

ρ1

ρ2

v

v ′

hρ(v)

hρ(v ′)

VT
(
hρ(v)

)= 3

VT
(
hρ(v ′)

)= 1

v1

v2

v3

v4

Fig. 2.1. Relay filtering for counting the Madelung’s pairs of a sam-
pled signal. Detect and remove an oscillation that crosses the thresh-

olds ρ1 and ρ2 in the signal v reduces of 2 the total variation of the

sequence
(
[hρ(v)]i

)N
i=0. In this figure, the signal v ′ in blue is obtained

from v (in red) in deleting the points v2 and v3. Thus the total variation

of the sequence hρ(v), which is 3, is decremented by 2 in “removing”

the Madelung’s pair (v2, v3) in v .

continuing the simplification process until removing all the Madelung’s pairs in the
signal v we see that

(2.4) VT
(
hρ(v)

)= 2
∑

ρ′
1≤ρ1<ρ2≤ρ′

2

a(v)[ρ′
1,ρ′

2]+VT
(
hρ(vR )

)

We are going to proof that if the initial state
[
hρ(v)

]
−1 is defined so that

(2.5)
[
hρ(v)

]
−1 =

[
hρ(v)

]
0 =

[
hρ(v)

]
N

the contribution of the residual signal to the total variation (2.4) is canceled and we
obtain the simpler formula

(2.6) VT
(
hρ(v)

)= 2
∑

ρ′
1≤ρ1<ρ2≤ρ′

2

aper (v)[ρ′
1,ρ′

2]

DEFINITION 2.2 (Total variation of a finite sequence) The total variation of a finite se-

quence v = (
vi

)N
i=0 is the positive number

(2.3) VT (v) =
N−1∑
i=0

∣∣vi+1 − vi
∣∣



2.1. REFORMULATION OF THE DAMAGE COMPUTATION PROCESS 41
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hρ(v)

3

2

1

0 0

11

signal v

Fig. 2.2. Outputs of the relay operator applied on a sampled signal.
The output of the relay switches when the signal crosses the zone 2.

For instance, it switches from 0 to 1 when the signal passes from the

zone 1 to the zone 3. If the signal remains confined in the zone 2,

the relay stays stuck. The other interest of this figure is to show that

when the signal v crosses [ρ1,ρ2], the total variation of t 7→ hρ(v)(t)

is incremented by 1. For example on this picture, the total variation

of hρ(v) is 4 and there are two alternating cycles of magnitude greater

than ρ2−ρ1
2 .

PROOF OF (2.6) UNDER THE HYPOTHESIS (2.5). By definition (1.11) page 25 of the
counting function aper , we have

VT
(
hρ([v, v])

)= 2
∑

ρ′
1≤ρ1<ρ2≤ρ′

2

(aper (v)+a(v) )[ρ′
1,ρ′

2]+VT
(
hρ([v, v]R )

)
As [v, v]R = vR , we can subtract (2.4) from the previous formula to obtain

VT
(
hρ([v, v])

)−VT
(
hρ(v)

)= 2
∑

ρ′
1≤ρ1<ρ2≤ρ′

2

aper (v)[ρ′
1,ρ′

2]

To complete the proof, we just have to notice that the initialization (2.5) of the relay
operator entails VT

(
hρ([v, v])

)= 2VT
(
hρ(v)

)
. �

A way to satisfy the condition (2.5) consists to suppose that v0 = vN and to initialize the
relay at w per

−1 = hρ(v, w−1)N , where w−1 is an arbitrary initial state. This leads to the
following definition:

hper
ρ (v, w−1) = hρ(v, w per

−1 ) where w per
−1

is the last value of the sequence hρ(v, w−1)
(2.7)
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of a “periodic relay” operator2, which is tuned to satisfy3

(2.9) VT
(
hper
ρ (v)

)= 2
∑

ρ′
1≤ρ1<ρ2≤ρ′

2

aper (v)[ρ′
1,ρ′

2]

regardless its initialization but under the condition v0 = vN .

Damage computation via a Preisach operator. In this subsection we calibrate a
Preisach operator (see BERTOTTI [2], MAYERGOYZ [27], BROKATE [7], KREJCI [20]
or VISINTIN [40]) to simultaneously perform the cycle counting operations and the
weighted summations required by the computation of the total damage.

DEFINITION 2.3 (Preisach operator) Let be given a numerical mapping ρ 7→µ(ρ) defined
on the half-plane P of equation ρ2−ρ1 > 0. We call Presach operator the operator which
associates to a finite sequence v = (vi )N

i=0 the sequence Hµ(v) defined as

(2.10)
[
Hµ(v)

]
i =

∫
P

[
hρ(v)

]
i µ(ρ)dρ for any index i

where hρ is the relay operator defined in (2.2).

We denote, on the other hand, by Wµ(v) the Preisach operator associated with the defini-
tion (2.7) of the “periodic relay operator”.

The Preisach operator v 7→Hµ(v) defined above is a hysteresis operator which
is made up of parallel connection of hysterons switches hρ , (ρ ∈P ) with
the weights µ(ρ). Purpose of Theorem 2.1 is to define the distribution of
weights ρ ∈P 7→µ(ρ) ∈R allowing to compute the damage generated by a
signal v as the total variation of the sequence Hµ(v).

REMARKS 2.1 1o/ A Preisach operator is often defined as follows in the literature

Hµ(v) =
∫
P

hρ(v)d µ(ρ)

where hρ is the relay operator of thresholds ρ = (ρ1,ρ2) ∈P and µ is a measure, called
Preisach measure, defined on the half-plane P . The formula (2.10) corresponds to the
case where the Preisach measure is a density measure with respect to the Lebesgue
measure dρ1dρ2 on the plane.

2Which, in other words, satisfies

(2.8) hρ([v, v], w−1) =
[

hρ(v, w−1),h
per
ρ (v, w−1)

]
.

This means that the operator h
per
ρ maps the sequence v of length n to the last section of length n in the

sequence hρ([v, v], w−1), whose is length 2n.
3This expression of the total variation of the discrete relay operator allows, in the proof of Theorem 2.1,

to tune the parameter µ of a Preisach operator v 7→Hµ(v), acting on the finite sequences, to compute the

damage caused by a sampled signal v as the total variation of the sequence
([

Hµ(v)
]

i

)N
i=0.
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hρN
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µ1

µ2

µN

ΣInput Ouput

Fig. 2.3. Representation of a Preisach operator for a discrete mea-
sure. In this case, the Preisach operator can be understood as an

electronic device which is made up of switches connected in parallel

with the weights µi .

2o/ When the measure µ is a discrete measure
(
µ(ρi )

)
i∈N on P , the Preisach operator

is the input-output system, plotted in figure (Fig. 2.3), which is made up of threshold
switches connected in parallel with the weights µ(ρi ), where ρi

2 is the opening threshold
and ρi

1 is the closing threshold of the i -th switch.

We are now in position to proof the following Theorem, which provides a new way to
compute the damage caused by a sampled loading v ; we will see in Proposition 2.1
page 51 how to generalize this procedure to time-continuous signals.

THEOREM 2.1 (Calibration of a Preisach operator adapted to damage computation) The
damage D(v) caused by a sampled loading v = (vi )N

i=0, defined in (1.12) can be computed
with the help of a Preisach operator (2.10) of density

(2.11) µ(ρ) =−1

2
∂12

(
1

Nr (ρ)

)
by the formula

(2.12) D(v) =VT (Wµ(v))

where Nr (ρ) is the number of cycles to failure for an alternating loading σa = ρ2−ρ1

2 ≥ 0,

at average σm = ρ2+ρ1

2 .

PROOF. The proof makes use of piecewize monotony of the relay and the Preisach
operators:

DEFINITION 2.4 (Piecewize monotone operator) An operator S : v 7→S (v) acting on
the space of finite sequences is said to be piecewize monotone if it satisfies the following
condition4

(2.13) ([S (v)]i − [S (v)]i−1) . (vi − vi−1) ≥ 0 for any i ≥ 2

4Meaning that the operator S preserves the direction of variation of the input signal. A definition of

the concept of monotone operator valid in general normed vector spaces is introduced in footnote no 23

page 62.
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1o/ One can check on the diagram in figure (Fig. 2.4) that the relay operator v 7→ hper
ρ (v)

is monotone while the proof of the piecewize monotony of the Preisach operator, which
makes use of the geometric properties, is given in the Remark 2.7 page 71.

2o/ These monotony properties allow to write down the absolute values

|[Wµ(v)
]

i −
[
Wµ(v)

]
i−1 | and

∣∣[hper
ρ (v)]i − [hper

ρ (v)]i−1
∣∣

as ∣∣[Wµ(v)
]

i −
[
Wµ(v)

]
i−1

∣∣= ([
Wµ(v)

]
i −

[
Wµ(v)

]
i−1

)
. sign(vi − vi−1)∣∣[hper

ρ (v)]i − [hper
ρ (v)]i−1

∣∣= (
[hper
ρ (v)]i − [hper

ρ (v)]i−1
)

. sign(vi − vi−1)

and by definition of the Preisach operator, this leads to5∣∣[Wµ(v)
]

i −
[
Wµ(v)

]
i−1

∣∣= ∫
P

∣∣[hper
ρ (v)]i − [hper

ρ (v)]i−1
∣∣ µ(ρ)dρ 1 ≤ i ≤ N

Adding all these equations, we obtain the following expression

VT (Wµ(v) ) =
∫
P

VT (hper
ρ (v))µ(ρ)dρ

for total variation VT (Wµ(v) ).

3o/ By virtue of (2.9), the total variation VT (Wµ(v) ) can then be computed according to
the Madelung’s pairs of the signal v as

VT (Wµ(v) ) = 2

∞∫
−∞

 ρ2∫
−∞

∑
ρ′

1≤ρ1<ρ2≤ρ′
2

aper (v)[ρ′
1,ρ′

2]µ(ρ1,ρ2)dρ1

dρ2

= 2
∑
ρ′

2∈R

∑
ρ′

1<ρ′
2

aper (v)[ρ′
1,ρ′

2]

ρ′
2∫

ρ′
1

 ρ2∫
ρ′

1

µ(ρ1,ρ2)dρ1

dρ2

(2.14)

Using on one hand the definition of the density µ (which is the twice derivative ∂12 of
the mapping ρ 7→∆(ρ) := −1

2 Nr (ρ) ) and, on the other hand, the following relationships6

∂1∆(δ,δ) = ∂2∆(δ,δ) =∆(δ,δ) = 0 for all δ ∈R
we have

ρ2∫
ρ′

1

∂12∆(ρ)dρ1 = ∂2∆(ρ2,ρ2)−∂2∆(ρ′
1,ρ2)

=−∂2∆(ρ′
1,ρ2)

and at last
ρ′

2∫
ρ′

1

 ρ2∫
ρ′

1

µ(ρ1,ρ2)dρ1

dρ2 =−
ρ′

2∫
ρ′

1

∂2∆(ρ′
1,ρ2)dρ2 =−∆(ρ′

1,ρ′
2)

= 1

2 Nr (ρ′
1,ρ′

2)

5Notice that piecewize monotony allows to permute integral and absolute value signs, which is

generally a prohibited operation.
6Which reflects the fact that a specimen loaded by a constant stress has an infinite lifetime.
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Cases which depend on the history

Cases that do not depend on the history

ρ1

ρ2

vi

vi

[
hρ(v)

]
i−p = 1

[
hρ(v)

]
i−p = 0

[
hρ(v)

]
i−p = 1

[
hρ(v)

]
i−p = 0

vi vi−1

ρ1

ρ2

([
hρ(v)

]
i −

[
hρ(v)

]
i−1

)
. (vi − vi−1) > 0

[
hρ(v)

]
i−1 = 0

[
hρ(v)

]
i = 0

[
hρ(v)

]
i = 1

([
hρ(v)

]
i −

[
hρ(v)

]
i−1

)= 0

ρ1

ρ2

vi−1 vi

vi−1

vi

vi

vi−1

ρ1

ρ2

vi

vi

vi−1
vi−1

vivi−1 [
hρ(v)

]
i−1 = 1

Fig. 2.4. Proof of the monotony of relay operators. We must check

that
(
[hρ(v)]i − [hρ(v)]i−1

)
. (vi − vi−1) ≥ 0; the 12 scenarios plotted in

the figure above should be considered. We plots in the column on left

the scenarios that lead to
(
[hρ(v)]i − [hρ(v)]i−1

)
. (vi − vi−1) > 0 and in

the column on right those which lead to [hρ(v)]i − [hρ(v)]i−1 = 0.

Given what has been said before, the formula (2.12) is obtained in identifying term by
term the formulas (2.14) and (1.12) page 25. �

REMARKS 2.2 1o/ Representation (2.12) of damage requires the computation of the second
order derivative (2.11) of the inverse of the number of cycles to failure identified from
experimental data on Wöhler’s curves. If such a calculation does not ask any question
for the parts BC of the curves in figure (Fig. 1.7) page 15, this is not the case for their
asymptotic parts C D , where these derivatives may have non-physical singularities when
the alternating stress σa approaches the fatigue limit σd ; Examples 2.1 illustrate this
situation.

2o/ Restricting, if needed, P to a bounded part of the half-plane ρ2 ≥ ρ1, we will assume
in the following that µ ∈ L1(P ): this is a condition on the rate of pointwise divergence
of

∣∣µ∣∣ when σa = ρ2−ρ1

2 converges to the fatigue limit σd .

EXAMPLES 2.1 1o/ When the Wöhler’s curve is defined by a Stromeyer’s formula (1.2)
page 16, the density µ(ρ1,ρ2) is

(2.15) µs(ρ1,ρ2) =
 (1−bs )δ

1
bs

−2

8b2
s Cs

if δ≥ 0

0 else
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where
σa = ρ2 −ρ1

2
and δ=σa −σd

This function is positive if bs < 1, while it is singular on the straight line of equa-
tion ρ2 −ρ1 = 2σd when bs > 1

2 . We see from the Remark 1.2-1/ that this singularity is
not physical and means only that the interpolation formula used to define µ misrepre-
sents the asymptotic behavior of the Wöhler’s curve7.

2o/ Similar computations carried out on the Bastenaire’s formula (1.3) give

(2.16) µb(ρ1,ρ2) =
{ e2Cδ(δ2 ABC 2+2δABC+2AB)+eCδ(δ(AC )2+2A2C)

8(A−δBeCδ)3 if δ≥ 0

0 else

3o/ When the Wöhler’s curve is modified by the Goodman (1.5) or by the Soderberg (1.6)
formula, to account for mean stress effect, the inverse of the number of cycles to failure
can be written as follows8 if σm < Rm

(2.17) (ρ1,ρ2) 7→
{

f0

(
Rmσa

Rm−σm
−σd

)
if Rmσa

Rm−σm
≥σd

0 else

where, setting σa = ρ2−ρ2

2 and σm = ρ2+ρ2

2 , the mapping f0 is defined by f0(x) = x
1

bs

Cs
for

a Stromeyer’s formula and by f0(x) = x
Ae−C x−B x for the Bastenaire’s one. The density µ is

then defined by

(2.18)

2R2
m(Rm −ρ1)(Rm −ρ2)

(2Rm −ρ1 −ρ2)4 f ′′
0 (...)

− Rm(ρ2 −ρ1)

(2Rm −ρ1 −ρ2)3 f ′
0 (...)

 if Rmσa
Rm−σm

≥σd

0 else

which makes sense for σa +σm ≤ Rm , an example is plotted in figure (Fig. 2.6).

2.2. Generalization to continuous signals

In this Section we will extend the results of Theorem 2.1 to continuous signals. More
specifically, we introduce the mathematical framework allowing to generalize the defi-
nition of damage D(v) as the integral (2.28) page 51 for a loading t 7→ v(t) defined in
continuous time. Two steps of generalization are required to this end.

1o/ The first step consists to generalize to the continuous case the concept of the relay
operator introduced in the formula (2.2) page 39: this is the purpose of the following
Definition.

7For these analytical formulas it is suggested to choose bs ≈ 1
4 in code_Aster.

8If σm ≥ Rm failure occurs soon as the first loading cycle and the number of cycles to failure is zero.
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Fig. 2.5. Examples of Preisach densities µ for the Bastenaire (red
curve) and Stromeyer (blue curve) formulas. This is an illustration

of the formulas (2.15) and (2.16) with the coefficients identified in the

figure (Fig. 1.8) page 17. This picture shows moreover that when the

alternating stress σa goes to the fatigue limit σd , the density µ associ-

ated with the Stromeyer’s formula converges more slowly to 0 than the

measure associated with the Bastenaire’s formula.
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Fig. 2.6. Iso-values of the Preisach densities µ for Stromeyer formu-
las. We represent on the diagram (Fig.a) the iso-values of a Stromeyer’s

measure µ which does not account for mean stress effect; in this

case the measure µ weights identically the two half-planes of equa-

tions σm > 0 and σm < 0 and, see figure (Fig. 2.5), is completely de-

fined by its values on the line σm = 0. On the diagram (Fig.b) the

Stromeyer’s measure depends on the mean stress, in this case the

half-plane σm > 0 is much more weighted than the half-plane σm < 0.
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ρ1

ρ2

1

t

hρ(v,ξ)

v(t )

X t

ξ

Fig. 2.7. Definition of the relay filtering for continuous signals. The

set X t is intended for identifying the times where the relay switches;

similarly to the discrete relay, this operation allows to identify the

oscillations of v which cross in the interval [ρ1,ρ2].

DEFINITION 2.5 (Relay operator for continuous signals) Let v be a continuous numerical
mapping defined [0,T ], and ρ2 > ρ1 two thresholds be given; for each t ∈]0,T ], let’s
introduce the set

X t =
{
τ ∈ [0, t ] ; v(τ) = ρ1 or v(τ) = ρ2

}
and define the relay operator (v,ξ) ∈C 0[0,T ]× {0,1} 7→ hρ(v,ξ) ∈ {0,1,ξ} as follows:

(2.19) hρ(v,ξ)(t ) =


z0 if X t =;
0 if X t 6= ; and v(max X t ) = ρ1

1 if X t 6= ; and v(max X t ) = ρ2

where

(2.20) z0 =


1 if v(0) ≥ ρ2

0 if v(0) ≤ ρ1

ξ if ρ1 < v(0) < ρ2

One can check that this version of relay operator satisfies the following properties:

i ) the mapping t 7→ z(t ) = hρ(v,ξ)(t ) is well defined on [0,T ]. Indeed:
• assume for instance that v(0) < ρ1, then we have z0 = 0 and z(t ) remains 0 as

long as v(t ) doesn’t cross the threshold ρ2, where it switches to 1 and stays at
this value until v(t ) crosses the threshold ρ1 etc.

• the internal variable ξ ∈ {0,1} is intended, see figure (Fig. 2.7), for unambigu-
ously define the state of the relay when ρ1 < v(0) < ρ2;

i i ) if λ1 ≤ v(t ) ≤λ2 for t ∈ [t1, t2] then t ∈ [t1, t2] 7→ hρ(v,ξ)(t ) is constant if either one
of the following three conditions holds:

(a) ρ1 >λ2

(b) ρ1 <λ1 and ρ2 >λ2

(c) ρ2 <λ1
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λ2

λ1

ρ1

ρ2

zone c)

zone b) zone a)

R1(λ1,λ2)

R
2 (λ

1 ,λ
2 )

v(t )

Fig. 2.8. Partition of the Preisach plane in zones where the relay
operators are constant. If λ1 ≤ v(t) ≤ λ2 for t ∈ [t1, t2] then the

mappings t 7→ hρ(v,ξ)(t) are constant if ρ is in one of the hatched

zones, while they vary between 0 and 1 when ρ lies in one of the

strips Ri (λ1,λ2) for i = 1,2.

v

hρ(v)

1

ρ1 ρ2

Fig. 2.9. Hysteresis diagram for the relay operator. When v(t) goes

increasingly from v(t0) < ρ1 to v(t1) > ρ2, the relay hρ(v) switches

between 0 and 1, along the blue arrows; next when v comes back

decreasingly from v(t1) to v(t0), the state of hρ(v) passes from 1 to 0

following the red arrows.

This allows to split up the Preisach plane P into the four zones described in
figure (Fig. 2.8);

i i i ) the operator v 7→ hρ(v,ξ), which may be plotted in Lissajous’ diagram in fig-
ure (Fig. 2.9) form a hysteresis loop.
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2o/ The second step consists to extend as follows the definition of the Preisach operator:

(2.21) Hµ(v) =
∫
P

hρ(v,ξρ)µ(ρ)dρ

where ρ 7→ ξρ ∈ {0,1} is defined by9

(2.23) ξρ =
{

0 if ρ1 +ρ2 > 0

1 if ρ1 +ρ2 < 0

REMARKS 2.3 1o/ When v is a continuous piecewise affine function, defined with
the help of a sampled sequence (v(ti ))N

i=0, the definition (2.21) of a Preisach opera-
tor coincides with that which is given in Definition 2.3 in the meaning that the se-

quences
(
Hµ(v)(ti )

)N
i=0 and (2.10) page 42 are the same if the discrete relay opera-

tors (2.2) are initialized as follows:

[hρ(v)]−1 =
{

1 if ρ1 +ρ2 > 0
0 if ρ1 +ρ2 < 0

2o/ The continuous analogous of the “periodic” Preisach operator Wµ introduced
page 42 can be defined as follows:

• let’s associate to a given mapping v defined on [0,T ] the mapping v per defined
on [0,2T ] as

(2.24) v per (t ) =
{

v(t ) if t ∈ [0,T ]
v(t −T ) if t ∈ [T,2T ]

• then call Wµ the operator which associates to v the following mapping:

(2.25) t ∈ [0,T ] 7→Wµ(v)(t ) :=Hµ(v per )(T + t )

one can check that v 7→Wµ(v) maps the periodic functions onto periodic fonc-
tions of same period10.

The regularity result sated in Proposition 2.1 allows to generalize the definition (2.12) of
the damage caused by a smooth enough loading signal t ∈ [0,T ] 7→ v(t) by one of the

9A more general definition consists to introduce an initializing function ρ ∈P 7→ ξ(ρ) = ξρ ∈ {0,1} of

the relay operators and to define the Preisach operator as the mapping

(2.22) (ξ, v) 7→Hµ(v,ξ) =
∫
P

h(v,ξρ)µ(ρ)dρ

This definition makes sense only if v and ξ are in appropriate functional vector spaces. Theorem 2.1 says,

among other things, that within the framework of fatigue analysis, this sophistication level is not necessary

as long as we restrict ourselves to process signals satisfying v(0) = v(T ); in the following, we will even

assume v(0) = v(T ) = 0. To connect together the definitions (2.21), (2.22) and (2.25) of a Preisach operator,

one can show that a specific initialization ξv (which depends on v) of the relay operators may be defined

so that

Hµ(v,ξv ) =Wµ(v)

The definition (2.21) with the initialization (2.23) of the relays is a convenient manner of speaking because,

see Theorem 2.2 page 66, it simplifies the geometric representation of the Preisach operator.
10We see in Exercise 2.3 page 76 that due to the initialization phase, this is not the case for the

operator v 7→Hµ(v).
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following formulas11

(2.28) D(v) =
T∫

0

∣∣∣(Wµ(v)
)′ (t )

∣∣∣ d t =
2T∫

T

∣∣∣(Hµ(v per )
)′ (t )

∣∣∣ d t

In the following we will use interchangeably of one or the other of these two formulas to
compute the damage generated by a loading t ∈ [0,T ] 7→ v(t ); being understood that if
we choose the last one, we will implicitly assume that the argument v of Hµ is defined
on [0,2T ] and satisfies v(t ) = v(T + t ) for t ∈ [0,T ].

A straightforward extension of the Proposition 2.1 below shows that the Preisach opera-
tor Wµ is a non-linear operator which maps the space of continuous Lipschitz functions
into itself. The example depicted in figure (Fig. 2.19) page 71 shows that we can’t ex-
pect more regular outputs even if the inputs are very smooth. Note moreover that this
Proposition is essential to insure well-definiteness of the adjoint equation introduced
in Proposition 4.10 page 165.

PROPOSITION 2.1 (Regularity results for the Preisach outputs) If the density µ is defined
by the formula (2.11) of Theorem 2.1 page 43 then, restricting if needed the integration
domain to a bounded part of the Preisach plane, the Preisach operator Hµ maps the
Sobolev space W 1,1([0,T ],R) onto itself.12.

PROOF. (can be omitted at first reading) To proof this Proposition we will

i ) first show that the image Hµ(v) of a continuous mapping v by the Preisach opera-
tor is continuous,

i i ) and if v is furthermore assumed to be differentiable almost every where on [0,T ]
and if its derivative v̇ is in L1([0,T ],R), it is the same for d

d t Hµ(v).

11The total variation, defined on the finite sequences by the formula (2.3), can be extended as follows

for time-continuous signals defined on [0,T ]:

DEFINITION 2.6 (Total variation of a mapping taking its values in a normed space) Let v : t ∈ [0,T ] → X

be a mapping defined on [0,T ] and taking its values in a normed vector space X then, we call total variation

of v the following number (finite or not)

(2.26) VT (v) = sup

{
N−1∑
k=1

‖v(tk )− v(tk+1)‖
}

where the sup is taken over all the finite sequences
(
tk

)N
k=1 which start at 0 and end at T . We say that the

function v is with bounded variation when the number VT (v) is finite.

When X is a reflexive normed space, each element v ∈ W 1,1([0,T ], X ) has a representative ṽ of

bounded variation, and:

(2.27) VT (ṽ) =
T∫

0

∥∥∥∥ d v

d t

∥∥∥∥d t

12VISINTIN [40], theorem 3.10 page 117, shows that this result is true in W 1,p for 1 ≤ p <+∞, but

this level of generality is not necessary because in the context of fatigue analysis we are only interested in

the “total variation of the outputs of a Preisach” operator and not in the behavior of a Preisach operator.
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We see form the diagram in figure (2.8) that if we set

ζ(λ2 −λ1) = max
i=1,2

∫
Ri (λ1,λ2)

µ(ρ)dρ

the oscillation13 ω
[t1,t2]

(Hµ(v)) is bounded above by ζ( ω
[t1,t2]

(v)) for [t1, t2] ⊂ [0,T ].

As ζ(0) = 0, we see that if v is continuous at a time t1 for instance, the oscillation of Hµ(v)
at t1 is zero and thus that t 7→Hµ(v)(t ) is continuous at t1. This shows that the image
by the Preisach operator of a continuous function is continuous14.

Using the definition (2.11) of µ we have for instance

meas[R1(λ1,λ2)] =−1

2

λ2p
2∫

λ1p
2

 ρ2∫
−ρmax

1

∂12∆(ρ1,ρ2)dρ1

dρ2

= 1

2

λ2p
2∫

λ1p
2

∂2∆(−ρmax
1 ,ρ2)dρ2

= 1

2

(
∆(−ρmax

1 ,
λ2p

2
)−∆(−ρmax

1 ,
λ1p

2
)

)
As we can assume ∆ continuously differentiable with the respect of ρ2; the fact of being
restricted to a bounded part of the Preisach plane allows to conclude that there is a
positive constant C1 such that

meas[R1(λ1,λ2)] ≤C1(λ2 −λ1)

A similar computation shows that we can define a positive constant C2 such
that meas[R2(λ1,λ2)] ≤C2(λ2 −λ1) and therefore that

ζ(λ2 −λ1) ≤C (λ2 −λ1)

We have proved the inequality:

ω
[t1,t2]

(Hµ(v)) ≤C ω
[t1,t2]

(v) for all [t1, t2] ⊂ [0,T ]

When v is piecewize affine, this inequality shows that∣∣∣∣ d

d t
Hµ(v)

∣∣∣∣≤C |v̇ | almost everywhere in [0,T ]

and by density, of the continuous piecewize affine functions in the space W 1,1,
that d

d t Hµ(v) ∈ L1([0,T ],R) when v ∈W 1,1([0,T ],R). �

13The oscillation of a numerical function defined on interval I is the positive number

ω
I

( f ) = sup
x∈I

| f (x)|− inf
x∈I

| f (x)|

let x0 be given, the oscillation of f at x0 is the limit

ω
x0

( f ) = lim
h→0

ω
[x0−h,x0+h]

( f )

and f is continuous at x0 if and only if ω
x0

( f ) = 0.

14To proof this property of the Preisach operator we have used the fact that the straight lines are null

sets for the measure µ(ρ)dρ.
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To conveniently use formula (2.28), it remains to set up a computational method
for Wµ(v)(t ). This leads us to introduce the geometric representation (2.51)
page 66 of the Preisach operator.

2.3. Geometric representation of the Preisach operator

Let a numerical mapping v defined on [0,T ] be given; at each time t ∈ [0,T ], the Preisach
plane P is divided into the two complementary zones:

C0(v, t ) = {
ρ ; hρ(v,ξ)(t ) = 0

}
and C1(v, t ) = {

ρ ; hρ(v,ξ)(t ) = 1
}

and the output Hµ(v,ξ)(t ) of the Preisach operator Hµ is defined by

Hµ(v, t ) =
∫

C1(v,t )
µ(ρ)dρ

In order to compute of this integral, want to characterize the boundary B(v, t ) between C0

and C1. More specifically, we are intending to proof that

1o/ the initialization (2.23) of the relays hρ(v,ξ) allows to define the boundary B(v, t)
as the stair steps diagram plotted in figure (Fig. 2.11) ;

2o/ the boundary B(v, t ) ⊂P is the graph of a numerical mapping defined by a recur-
rence equation when v is piecewise affine and, by a differential inequality in the
general case.

To this end, we introduce the concept of RMS(v, t̃ ) sequence (Reduced Memory Sequence)
associated with v at a given time t̃ ∈ [0,T ]. This notion permits indeed to identify “the
corners of the boundary B(v, t )”, and we will see moreover that

• the RMS(v, t̃ ) sequence stores the useful information contained in the history
of input signal v to calculate Hµ(v)(t̃ );

• if u and v are two numerical mappings such that RMS(u, t̃) = RMS(v, t̃)
then Hµ(u, t̃ ) =Hµ(v, t̃ ).

DEFINITION 2.7 (Of a RMS sequence.) Let a numerical mapping v defined
on [0,T ] and t̃ ∈ [0,T ] be given. The RMS(v, t̃) sequence associated with v is a
sequence (v(ti ))i∈N of local extrema of v which is defined stepwise as follows:

Let
M = max

t∈[0,t̃ ]
|v(t )| and t̄ = max

{
t ∈ [0, t̃ ] ; |v(t )| = M

}
then, excluding the trivial case M = 0, the two following hypotheses are processed
independently:

1o/ If v(t̄ ) > 0, we start the recurrence in setting

t1 = t̄ , η1 = M and α1 = min
t1≤t≤t̃

v(t )
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As |α1| < |η1|, we can define t2 = max
{

t ∈ [t1, t̃ ] ; v(t ) =α1
}

and continue as follows:
i ) the procedure stops if t2 = t̃ ; else, define the maximum

η2 = max
t2≤t≤t̃

v(t ) < η1 and set t3 = max
{

t ∈ [t2, t̃ ] ; v(t ) = η2
}

i i ) the procedure ends if t3 = t̃ ; else define the manimum

α2 = min
t3≤t≤t̃

v(t ) >α1 and set t4 = max
{

t ∈ [t3, t̃ ] ; v(t ) = η2
}

i i i ) the procedure continues from step i ) after substitution of t4 to t2.
2o/ if v(t̄ ) < 0, define first t0 = t̄ and α0 =−M then set

η1 = max
t0≤t≤t̃

v(t ) and t1 = max
{

t ∈ [t0, t̃ ] ; v(t ) = η1
}

i ) the procedure completes if t1 = t̃ ; else define the minimum

α1 = min
t1≤t≤t̃

v(t ) >α0 and set t2 = max
{

t ∈ [t1, t̃ ] ; v(t ) =α1
}

i i ) the procedure completes if t2 = t̃ ; else define the maximum

η2 = max
t2≤t≤t̃

v(t ) < η1 and set t3 = max
{

t ∈ [t2, t̃ ] ; v(t ) = η2
}

i i i ) the procedure continues from step i ) after substitution of t3 to t1.

We will denote RMS(v, t̃ ) this sequence.

REMARKS 2.4 1o/ The RMS sequence
(
v(t j )

)
j∈N defined above is, see figure (Fig. 2.10),

a sequence of extrema of v such that
(
v(t2i )

)
i (resp. such that

(
v(t2i+1 )

)
i ) is an increasing

sequence of minima (resp. decreasing sequence of maxima) satisfying the inequalities

α1 < ·· · <αi = v(t2i ) < ·· · < v(t̃ ) <
< ·· · < ηi = v(t2i−1) < ·· · < η1

(2.29) [
αi+1,ηi+1

]⊂ [
αi ,ηi

]
for all i(2.30)

2o/ If the sequence
(
t j

)
j is endless then, setting t∗ = sup j∈N t j , the mapping v is con-

stant on the interval [t∗, t̃ ] and limi→∞ηi = limi→∞αi = v(t∗) = v(t̃ ).

Now assume that t ∈ [0,T ] is given, the mapping ρ ∈P 7→ hρ(v,ξ)(t) ∈ {0,1} is defined
as follows, with the help of the RMS(v, t ) sequence:

(2.31) hρ(v,ξ)(t ) =


0 for αi−1 < ρ1 ∀ρ2 > ηi+1

1 for ρ2 < ηi+1 ∀ρ1 <αi

stays at its initialization ξ if ρ2 > η1 and ρ1 <α0

PROOF OF FORMULA (2.31). Let an index i ≥ 0 be given, we set, see figure (Fig. 2.11):

P 1
i = {

ρ ∈P ; ρ1 <αi+1 and ρ2 < ηi+1
}

and P 0
i = {

ρ ∈P ; ρ1 >αi and ρ2 > ηi+1
}

then by definition of the RMS(v, t ) sequence,



2.3. GEOMETRIC REPRESENTATION OF THE PREISACH OPERATOR 55

t̃t5t1 t2

α2

α1

v(t̃ )

η3

η2

η1

Fig. 2.10. Definition of a RMS sequence. It is a sequence made up of

local extrema η1,α1, · · · ,ηn ,αn · · · , listed so that the sequence
(
ηi

)
i is

a decreasing sequence of maxima and (αi )i is an increasing sequence

of minima.

• v reaches the minimum αi = v(t2i ) and the maximum ηi+1 = v(t2i+1)
while v(t̃) ∈]αi ,ηi+1[ for t2i+1 < t̃ ≤ t . Thus if ρ ∈ P 1

i , the state of the re-
lays hρ(v,ξ)(t̃ ) remains blocked at hρ(v,ξ)(t2i+1), which is 1, see the rectangle
in blue in figure (Fig. 2.11);

• in the same manner the relays hρ(v,ξ)(t̃) remain blocked at hρ(v,ξ)(t2i ) = 0
when ρ ∈P 0

i , rectangle in red in the figure.

All of this allows to unambiguously define the mapping ρ 7→ hρ(v,ξ)(t) for ρ in the
reunion

⋃
i≥0

(
P 1

i ∪P 0
i

)
. As α0 and η1 are respectively the absolute minimum and

the absolute maximum of v on the interval [0, t ], the relays hρ(v,ξ)(.) stay at their
initialization states when ρ1 <α0 and ρ2 > η1. �

Having initialized each relay operator hρ(v,ξ) by the formula (2.23) page 50,

The Preisach plane P is split up into two complementary zones

C0(v, t ) = {
ρ ; hρ(v)(t ) = 0

}
and C1(v, t ) = {

ρ ; hρ(v)(t ) = 1
}

and the boundary B(v, t ) between C0 and C1 is depicted by the “stairs diagram”
or “ turning points” in figure (Fig. 2.11), with potentially an infinite number of
stairs near the diagonal ρ1 = ρ2, if the sequence RMS(v, t ) is endless.

We prefer, see figure (Fig. 2.12), plot the diagram in figure (Fig. 2.11) in the physical axis

σa = ρ2 −ρ1

2
≥ 0 and σm = ρ2 +ρ1

2
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ηi+1

ηi

αi αi+1

1

0

σ
m =

ρ
1 +
ρ
2 =

0 σ a
= ρ

2
−ρ

1
= 0

ρ1

1

0

ρ2

P 1
i

P 1
i

P 0
i

Fig. 2.11. Boundary between the states 0 and 1 of the relay outputs
in the Preisach plane. In the plane (ρ1,ρ2),the boundary between

the zone where the relay operator is 1 and the one where it is 0 is a

broken line which consists of segments parallel to the axes, defined

by the points of the RMS(v, t) sequence. It may converge to the first

diagonal of the Preisach plane with an infinite number of stair treads,

for “pathological” signals having an infinite number of oscillations in

a finite time interval: this is the case for v(t ) = (t − t0)2 sin 1
t−t0

if t 6= t0

and v(t0) = 0. It encounters the second diagonal of the plane at the

initialization values of the relay operators.

The following Proposition, which is implicitly used by BROKATE [7] and proofed prac-
tically in the same manner by KRASNOSEL’SKII [19], allows to describe the bound-
ary B(v, t) as the graph of a function defined by the recurrence equation (2.33), when
the processed signal t 7→ v(t ) is piecewise affine.

PROPOSITION 2.2 Let v be a continuous piecewise affine function defined on [0,T ]
and t̃ ∈ [0,T ] be given, then:

• there is an increasing sequence
(
t j

)N
j=0 such that t̃ = tN and v(t ) is monotonous

between v(ti ) and v(ti+1);
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σm
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η2−α1
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aig
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e of slo
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E (v, t̃ )

t1 t2

η1

η2
η3

v(t̃ )

α1

Fig.a Fig.b

α2

t5 t̃ t̂

Fig. 2.12. Turning points in the physical axis (σa , σm). For conve-

nience reading reasons, we will prefer draw the boundary B(v, t) in

the
(ρ1−ρ2

2 , ρ1+ρ2
2

)
coordinates rather than in the initial one. The graph

in bold in the figure Fig.b represents the memory of the relay operator

(or of the Preisach operator) it changes over the time: for instance,

at time t̂ , it is depicted by the dotted line in bold, as at this time, the

function reaches a global minimum, all the previous turning points

are erased from the operator’s memory. Within the framework of fa-

tigue analysis, this means that the counting operation has found all the

“sub-cycles”of a cycle and that it starts a new main cycle.

• introducing the piecewise affine function defined at each sample ti by the recur-
rence equation15

Eσa (v, ti ) = min
[
v(ti )+σa ,max

(
v(ti )−σa ,Eσa (v, ti−1)

) ]
Eσa (v,0) = 0

(2.33)

the boundary B(v, tN ) at time tN = t̃ may be characterized as the graph16 of the
mapping σa 7→ Eσa (v, tN ).

PROOF. In this particular case the RMS(v, t̃) sequence is a finite sequence which
satisfies

α1 <α2 < ·· · <α j < ·· · < v(t̃ ) < ·· · < η j < ·· · < η2 < η1

and such that ηi+1 −αi+1 < ηi −αi for any i . To proof the Proposition, we have to proof
that

15This equation is the compact form of the formula

(2.32) Eσa (v, ti ) =


Eσa (v, ti−1) if Eσa (v, ti−1) ∈ [v(ti )−σa , v(ti )+σa ]

v(ti )−σa if Eσa (v, ti−1) < v(ti )−σa

v(ti )+σa if Eσa (v, ti−1) > v(ti )+σa

which is the projection of Eσa (v, ti−1) onto the interval [v(ti )−σa , v(ti )+σa ].
16ie. The subset

{(
σa ,Eσa (v, tN )

)
; σa > 0

}
of the half plane σa ≥ 0.



58 2. DAMAGE CALCULUS FOR TIME-CONTINUOUS SIGNALS

i ) the “turning points” are caught by the recurrence equation (2.33) or, in other words
that

E ηi −αi
2

(v, tN ) = ηi +αi

2
and E ηi+1−αi

2
(v, tN ) = ηi+1 +αi

2
for any i

i i ) and that the mapping σa 7→ Eσa (v, tN ) is affine between two consecutive “turning
points”.

The property i ) demonstrated in this first step of the proof is a consequence of the defini-
tion of the RMS(v, t ) sequence and of the hypothesis v is piecewize affine. Under these
assumptions, we can indeed find a point tk (resp. a point th ≥ tk ) of the subdivision
such that v(tk ) = ηi (resp. such that v(th) =αi ).

1o/ Assume that σa = ηi−αi

2 , then we have

(2.34) Eσa (v, tk ) = min

(
3ηi −αi

2
, max

(ηi +αi

2
, Eσa (v, tk−1)

))
we intend to proof that Eσa (v, tk−1) ≤ ηi+αi

2 and that the mapping t 7→ Eσa (v, t ) stays
constant for t ≥ tk .

The hypothesis Eσa (v, tk−1) > v(tk )+σa , which entails v(tk−1) > ηi , contradicts the fact
that ηi is a local maximum of v at tk , and can’t occur. It remains thus to discuss the two
following cases to compute Eσa (v, tN ):

a) if Eσa (v, tk−1) < v(tk )−σa then Eσa (v, t ) takes the value

v(tk )−σa = ηi +αi

2
for t = tk and remains constant for t ≥ tk . This is proved by contradiction: If it were
not the case, we could define t̄ > tk such that Eσa (v, tk ) should be either greater
than v(t̄ )+σa or lower than v(t̄ )−σa ;

• the first case would imply, by (2.32), that v(tk )−2σa > v(t̄), or v(t̄) < αi and
would contradict the fact that αi is the smallest of the local minima of v which
are reached after tk ;

• in the same way, the second case would imply the existence of a local maximum
of v greater than v(tk ) reached after tk .

b) if v(tk )+σa ≥ Eσa (v, tk−1) ≥ v(tk )−σa , the sequence
(
Eσa (v, t j )

)th

t j=tk
is stationary

until meting a minimum v(ti ) of v such that

Eσa (v, t j ) > v(ti )+σa

where it switches to v(ti )+σa . As by definition of a RMS sequence, these minima
are greater than v(th), the last value reached by Eσa (v, t j ) is v(th)+σa ,which is

precisely αi+ηi

2 . Then the same stationarity argument as the one previously invoked

allows to conclude Eσa (v, tN ) = ηi+αi

2 .

2o/ When σa = ηi+1−αi

2 we have

Eσa (v, th) = min

(
ηi+1 +αi

2
, max

(
3αi −ηi+1

2
, Eσa (v, th−1)

))
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and we show that Eσa (v, tN ) = ηi+1+αi

2 in the same way as before17.

Proof of i i ), let σa > 0 be given, denote by

Eσa =
{

t ∈ [0, t̃ ] ; Eσa (v, t ) = v(t )±σa
}

where t̄ = maxEσa when this set is not empty

If the set Eσa is empty then v(t) − σa < Eσa (v, t) < v(t) + σa for any t in [0, t̃ ].
The recurrence equation (2.33) shows that these inequalities entail that the se-
quence

(
Eσa (v, ti )

)N
i=1 is identically 0 and we have v(t )−σa < 0 < v(t )+σa for t ∈ [0, t̃ ],

which implies σa > maxt∈[0,t̃ ] |v(t )|.

When σa ≤ maxt∈[0,t̃ ] |v(t)|, the set Eσa is non-empty, t̄ is well defined, the map-
ping t 7→ Eσa (v, t ) is stationary for t ≥ t̄ and satisfies the inequalities

v(t )−σa ≤ Eσa (v, t̄ ) ≤ v(t )+σa for all t ≥ t̄

• if Eσa (v, t̄ ) = v(t̄ )−σa the we have

v(t )−σa ≤ v(t̄ )−σa ≤ v(t )+σa for all t ≥ t̄

the definition of t̄ and the first inequality shows that v(t̄) is a maximum ηi

in the RMS(v, t̃) sequence while the second one shows that we necessarily
have σa ≥ v(t̄ )−v(t )

2 for all t ∈ [t̄ , t̃ ], and this means that σa ≥ ηi−αi

2 ;
• we show in the same way that Eσa (v, t̄) = v(t̄)+σa entails that v(t̄) is a mini-

mum αi in the RMS(v, t̃ ) sequence and that σa ≥ ηi−1−αi

2 .

This shows that the mapping σa 7→ Eσa (v, t̃) is decreasing, of slope −1
2 when σa is

located on the right of ηi−αi

2 , while it is increasing, of slope 1
2 for σa is on the right

of ηi−1−αi

2 . �

We are now in position to generalize the results obtained so far to Lipschitz continuous
signals v ∈W 1,1 ([0,T ],R). To this end, the recurrence equation (2.33) must be replaced
by the differential inequality (2.39), parameterized in σa ≥ 0.

Generalization to Lipschitz continuous signals. To define this extension, we no-
tice that the mapping t 7→ Eσa (v, t ) introduced in the Proposition 2.2, which make sense
for for t 7→ v(t ) piecewize affine satisfies the following inequalities:

v(t )−σa ≤ Eσa (v, t ) ≤ v(t )+σa for any t

and Ėσa (v, t ) = 0 if Eσa (v, t ) ∈]v(t )−σa , v(t )+σa[
(2.35)

17Now it is the hypothesis Eσa (v, th−1) < v(th )−σa which need not be examined : indeed, it implies

that u(th−1) < v(th ) and contradicts the fact that αi is a local minimum of v . Then a reasoning by

contradiction shows that the case Eσa (v, th−1) > v(th )+σa leads to

Eσa (v, t j ) = v(th )+σa = ηi+1 +αi

2
for j ≥ h

At last, when

v(th )+σa ≥ Eσa (v, th−1)[σa ] ≥ v(th )−σa

the sequence
(
Eσa (v, t j )

)
j≥h−1

remains constant until that v reaches a maximum v(ti ) satisfy-

ing v(ti )−σa > Eσa (v, t j ), where it switches to v(ti )−σa . As ηi+1 is the largest of these maxima, we

have Eσa (v, tN ) = ηi+1+αi
2 .
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Carriage

Control rod

−σa

σa

Eσa (v, t )

Fig. 2.13. Mechanical representation of the play operator. We can

“see the solution Eσa (v, t ) of the equation (2.39)” as the displacement

of the center of the carriage when this one is pushed on its sides by a

control rod; for instance, when the rod reaches the right hand edge of

the carriage, it pushes the carriage toward the right if v(t ) is increasing

but has no effect if v(t ) is decreasing. Moreover, the rod has no effect

on the carriage when it is located between the two edges etc.

Then, if I[−σa ,σa ] is the characteristic function 18 of the interval [−σa ,σa], defined by

(2.36) I[−σa ,σa ] =
{

0 if x ∈ [−σa ,σa]
+∞ else

the inequalities (2.35) can be rewritten as the following variational inequality19

Ė (t ) (x − (E (t )− v(t ))) ≥ I[−σa ,σa ] (E (t )− v(t ))− I[−σa ,σa ](x)

for all x ∈ [−σa ,σa]
(2.37)

where, to simplify the notations, the dependency of Eσa (v, t ) in σa and v is omitted.

PROOF. As the implication (2.35) ⇒ (2.37) is straightforward , we have to proof
that (2.37) entails (2.35). Let t be given, as the product Ė (t ) (x − (E (t )− v(t ))) is a finite
number, we have I[−σa ,σa ] (E (t )− v(t )) <+∞, or in other words:

E (t )− v(t ) ∈ [−σa ,σa]

Then, if −σa < E (t )− v(t ) <σa , the relation

Ė (t ) (x − (E (t )− v(t ))) ≥ 0 ∀ x ∈ [−σa ,σa]

implies Ė (t ) = 0.

If E (t )−v(t ) =σa (resp. if E (t )−v(t ) =−σa) then x−(E (t )− v(t )) is negative (resp. is pos-
itive) for all x ∈ [−σa ,σa] and the condition (2.37) entails Ė (t ) negative (resp. positive).
Thus the condition (2.37) makes E (t ) pointing toward the interior of [v(t )−σa , v(t )+σa]
but doesn’t define the velocity Ė (t ). This result is somehow “moral” because the picture
in figure (Fig. 2.13) shows that this velocity must depend on the direction of variation
of v(t ). �

18Which is convex and lower semi-continuous (ie. such that the inverse image of an interval [a,+∞[

is closed).
19Which make sense for any sufficiently regular numerical mapping t 7→ v(t ).
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If v ∈R 7→ Aσa (v) = ∂I[−σa ,σa ](v) ∈ 2R is the sub-differential20 at v of the characteristic
function of the interval [−σa ,σa], the variational inequality (2.37) can be written as the
differential inequality

(2.39)
Ė (t ) ∈−Aσa (E (t )− v(t )) for t ∈ [0,T ]

with the initial condition E (0) = 0

and we have the following results:

1o/ A straightforward computation shows that Aσa is defined by

(2.40) Aσa v =
de f

∂ I[−σa ,σa ](v) =


; if |v | >σa

R− if v =−σa

0 si v ∈]−σa ,σa[
R+ if v =σa

when σa 6= 0, and as follows if σa = 0

(2.41) A0v =
de f

∂ I0(v) =
{

; if v 6= 0
R if v = 0

2o/ Noticing that the mapping u ∈ [−σa ,σa] 7→ u +h Aσa u ∈R is onto and that its right
inverse is21

y 7→


σa if y ≥σa

y if y ∈ [−σa ,σa]
−σa if y ≤−σa

the equation

Eh(t +h)−Eh(t )

h
+ Aσa (Eh(t +h)− v(t +h)) 3 0

which is obtained in discretizing the equation (2.39) by the backward Euler method
can be solved as follows

(2.42) Eh(t +h) =


v(t +h)+σa if Eh(t ) ≥σa + vt+h

Eh(t ) if Eh(t ) ∈]v(t +h)−σa , v(t +h)+σa[
v(t +h)−σa if E (t ) ≤ v(t +h)−σa

and leads to interpolate the solution of the equation (2.39) by a recurrence equation
identical to (2.33). The equation (2.39) is thus a natural extension to the continuous
time case of the recurrence equation (2.33).

20The sub-differential ∂ f (x0) at x0 of a convex numerical mapping f , defined on a normed space E ,

is the convex hull of the affine minorant of f at x0. Thus a linear functional ξ ∈ E∗ is in the sub-

differential ∂ f (x0) if and only if

(2.38) f (x)− f (x0) ≥< ξ , x −x0 > for any x

where < ., . > denote the duality bracket between E and E∗, which associates to a pair (ξ, x) ∈ E∗ ×
E the value of ξ on the vector x. The convex mapping f is differentiable at x0 if and only if its sub-

differentail ∂ f (x0) reduces to a point which is then the derivative of f at x0. While the definition given here

is very general, it is sufficient for the moment to think E as the vector space of the real numbers, identified to

its dual, and to understand the duality bracket as the ordinary product on R.
21This mapping is the resolvant of the operator Aσa , in this case, it does not depend on h because,

by definition, Aσa (u) takes arbitrary positive (resp. negative) value when u is σa (resp. −σa ). BREZIS [5]

denote Jh the resolvant of Aσa and calls Yosida regularization of Aσa the mapping 1
h

(
I − Jh

)
plotted in

dotted line in the diagram on left in the figure (Fig. 2.14).
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Now we proof that the condition v ∈W 1,1([0,T ],R) is a sufficient condition which ensures
an existence and a regularity result for the equation (2.39)22.

If we set
G (t ) = E (t )− v(t )

the equation (2.39) is equivalent to

(2.43)

{
Ġ + Aσa (G ) 3−v̇

G (0) = v0

and we are intending to prove an existence result for this differential equation when
the right hand member t 7→ v̇(t ) is in the space L1([0,T ],R). This is the purpose of the
following Proposition.

PROPOSITION 2.3 Let be given v ∈ W 1,1([0,T ],R) and v0 in the domain of Aσ, ie.
such that Aσa (v0) 6= ;, then the equation (2.43) has an unique solution which is
in W 1,1([0,T ],R).

PROOF. This Proposition is special case of a result demonstrated by BREZIS [5]
(proposition 3.8 page 82) which aims at establishing existence and uniqueness results
for a differential equation of form

(2.44)
du

d t
+ A u 3 f u(0) = u0

defined on a Hilbert space H , where:

• the mapping u ∈ H 7→ A u ∈ 2H is a maximal monotone operator23

• and f ∈ L1 ([0,T ], H)24.

The proof given by BREZIS is carried out within two steps:

1o/ The first step consists (see [5] theorem 3.4 page 65) to show that the equation (2.44)
has a weak solution in the sense of the Definition 2.8;

2o/ and the second one aims at showing (see proposition 3.8 page 82) that if H is a
finite dimensional space, the weak solution obtained in the first step is actually a
strong solution.

22This will show that the algorithm (2.42) has a chance to converge to a result which makes sense

when the time step size h goes to 0.
23Let H be a Hilbert space, for scalar product < . ; . >. A mapping A : u ∈ H 7→ Au ∈ 2H is said to be

monotone if

〈y1 − y2 ; u1 −u2〉 ≥ 0 for all y1 ∈ A u1 and y2 ∈ A u2

As the set of monotone operators is ordered by the inclusion, we say that A is maximal monotone if it is

maximal with respect to this ordering (that is: if for every monotone operator B on H , the relation B ⊃ A

entails B = A. When u 7→ ϕ(u) is a convex numerical mapping defined on H , the mapping u ∈ H 7→
∂ϕ(u) ∈ 2H is monotone; it is maximal monotone if ϕ is proper (not identically equal to +∞) and lower

semi-continuous. This is the case for the characteristic function of a closed convex subset of H .
24Space of the H-valued functions t 7→ f (t) defined on [0,T ], such that the norm t 7→ ‖ f (t)‖H is

integrable and satisfies
T∫
0
‖ f (t )‖H <+∞.



2.3. GEOMETRIC REPRESENTATION OF THE PREISACH OPERATOR 63

DEFINITIONS 2.8 (Strong and weak solutions for the equation (2.44)) Let f ∈ L1 ([0,T ], H)
be given, we call strong solution for the equation u̇ + A u 3 f any mapping u in the
space C 0 ([0,T ], H) witch is moreover absolutely continuous25 on any compact subset
of ]0,T [ and satisfies the differential inclusion

du

d t
(t )+ A u(t ) 3 f (t ) almost every where on [0,T ]

We say that u ∈C 0 ([0,T ], H) is a weak solution for the equation u̇ + A u 3 f if their are
two sequences

(
fn

)
n ⊂ L1 ([0,T ], H) and (un)n ⊂C 0 ([0,T ], H) such that:

i ) the sequence fn converges to f in L1 ([0,T ], H),
i i ) for all n, the mapping un is a strong solution for the equation u̇n + A un 3 fn ,

i i i ) and the sequence (un)n converges uniformly to u on [0,T ].

�

REMARKS 2.5 1o/ Existence of a weak solution for the equation (2.43) is a straightfor-
ward consequence of the Proposition 2.2 (ie. which can be obtained without invoking
the theorem 3.4 of BREZIS). Indeed, if v is in the space W 1,1 ([0,T ],R) there is a se-
quence

(
gn

)
n of step functions which converges to v̇ in L1 ([0,T ],R) and we can define

the sequence (vn)n of piecewise affine functions such that v̇n = gn . From Proposition 2.2
and discussion of the first part of this Section, the following sequence:

Gn(t ) = Eσa (vn , t )− vn(t )

is a sequence of strong solutions of (2.43) such that Gn(0) = vn(0) = v0. Inequality (2.47)
shows that

|Gn(t )−Gm(t )| ≤
t∫

0

∣∣gn(s)− gm(s)
∣∣d s for all t ∈ [0,T ]

thus the sequence (Gn)n converges uniformly to a continuous function G , which is then,
by definition, a weak solution of (2.43).

If (Gn)n and (G̃n)n are two sequences of strong solutions of (2.43) with the right hand
members gn and g̃n respectively, they define the weak solutions G and G̃ , the inequal-
ity (2.47) shows that:

(2.45)
∣∣Gn(t )− G̃ (t )

∣∣≤ ∣∣Gn(0)− G̃ (0)
∣∣+ t∫

0

∣∣gn(s)− g̃n(s)
∣∣d s

Since, by hypothesis, the initial conditions Gn(0) and G̃ (0) (resp. the sequences gn

and g̃n) converge (resp. converge in L1 ([0,T ],R)) to the same limit we have (in passing
to the limit in the inequality (2.45)) limn→∞

∥∥Gn − G̃
∥∥

C 0([0,T ],R) = 0, and this entails

that G = G̃ .

25Such a function is differentiable almost every where on ]0,T [ and satisfies

u(t̃ )−u(δ) =
t̃∫
δ

G ′(t )d t for all δ, t̃ ∈]0,T [
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2o/ The arguments used above to define the weak solution for the equation (2.43) is a
consistency result for the algorithm (2.33) because they allow to proof that the opera-
tor v 7→ Eσa (v), defined in Proposition 2.2 for v piecewise affine can be extended to the
functions v ∈W 1,1([0,T ],R) in passing to the uniform limit and setting

Eσa (v) = v +G (v̇) where G (v̇) is the solution of the equation (2.43)

when v ∈W 1,1 ([0,T ],R).

3o/ VISINTIN [40] extends the definition of the operator v 7→ Eσa (v) by a conti-
nuity argument together with the density of the piecewize affine function in the
space W 1,p ([0,T ],R). Doing so, he obtains an operator which takes its values
in C 0([0,T ],R). This condition is not sufficient to ensure that the graph of the function

σa ∈R+ 7→ Eσa (v, t ) ∈R
represents the boundary B(v, t ) defined page 53.

LEMMA 2.1 Let f and g in L1 ([0,T ],R) be given, denoting by u and v two strong solutions
of the equations

(2.46)
du

d t
+ Aσa (u) 3 f and

d v

d t
+ Aσa (v) 3 g

then we have:

(2.47) |u(t )− v(t )| ≤ |u(s)− v(s)|+
t∫

s

∣∣ f (x)− g (x)
∣∣d x for all 0 ≤ s ≤ t ≤ T

PROOF. Subtracting the equations (2.46) member to member and multiplying the
obtained result by (u − v), we have

d(u − v)2

d t
+ (Aσa (u)− Aσa (v))(u − v) 3 ( f − g )(u − v)

As Aσa (u) is the sub-differential at u of a convex function, the characterization given
in the footnote no 20 page 61 shows that (Aσa (u)− Aσa (v))(u − v) ≥ 0 and the above
equation may be rewritten as

d(u − v)2

d t
(t ) ≤ ( f (t )− g (t ))(u(t )− v(t )) ≤ ∣∣ f (t )− g (t )

∣∣ |u(t )− v(t )|
for all t ∈ [0,T ]. Integrating this inequality between s and t and using the fact that the
mapping x 7→ (u(x)− v(x))2 is absolutely continuous, we have

(u(t )− v(t ))2 − (u(s)− v(s))2 ≤
t∫

s

∣∣ f (x)− g (x)
∣∣ |u(x)− v(x)|d x for 0 ≤ s ≤ t ≤ T

To infer (2.47) from this last inequality, it remains to apply lemma A.5 of BREZIS [5]
page 157, reproduced below for reading convenience. �

LEMMA 2.2 Let m ∈ L1([0,T ],R) such that m ≥ 0 p.p. on ]0,T [ and a a positive constant
be given. Let ϕ be a continuous numerical mapping defined on [0,T ] such that:

1

2
ϕ2(t ) ≤ 1

2
a2 +

t∫
0

m(s)ϕ(s)d s for all t ∈ [0,T ]
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then we have: ∣∣ϕ(t )
∣∣≤ a +

t∫
0

m(s)d s for all t ∈ [0,T ]

Numerical treatment of the variational inequality. Another way to solve numeri-
cally the differential equation (2.39) or (2.43) is to replace the graph Aσa by its Yosida
regularization (see footnote 21 page 61) and to integrate the obtained differential equa-
tion by an implicit method in time, which is unconditionally stable.

In the one-dimensional case, this amounts to replace the vertical bold lines in fig-
ure (Fig. 2.14) by the dotted ones26. In other words, we must solve the following differ-
ential equation.

Ė (t )+Fk (E (t )− v(t )) = 0 on [0,T ]

with the initial condition E (0) = 0
(2.48)

Where, denoting k the slope of the dashed line27, the mapping x 7→ Fk (x) is defined by

Fk (x) =


k(x +σa) if x ≤−σa

0 if −σa ≤ x ≤σa

k(x −σa) if x ≥σa

And the implicit Euler method leads to solve the following equation:

(2.49) E (t +h) =−h Fk (E (t +h)− v(t +h))+E (t )

where h is the discretization step size of the approximation equation (2.48). Equa-
tion (2.49) can be solved as follows:

• setting

y1 = E (t )+hk (v(t +h)+σa)

1+hk
y2 = E (t )−hk (σa − v(t +h))

1+hk
• the output E (t +h) is defined by

(2.50)
E (t +h) = y2 if y2 ≤ v(t +h)−σa

E (t +h) = y1 if y1 ≥ v(t +h)+σa

E (t +h) = E (v, t ) if v(t +h)−σa < y2 ≤ y1 <σa + v(t +h)

REMARKS 2.6 1o/ The algorithm (2.50) and the recurrence equation (2.32) are two
discretization methods for the continuous equation (2.39). The recurrence equa-
tion (2.32) is obtained in explicitly solving the variational inequality (2.37) while the
algorithm (2.50) consists to solve a regularized version of (2.37) in which we have sub-
stituted the functional Jk depicted in figure (Fig. 2.14) (which is differentiable) to the
characteristic function of the convex [−σa ,σa]. Ability to explicitly solve (2.37) is specific
to the dimension 1 and in the general case, the numerical treatments of (2.37) are carried
out after regularization.

26Using the analogy introduced in figure (Fig. 2.13), this is the same as linking rod and center of the

carriage by a soft spring while the rod does not reach the edges and by a very stiff spring to simulate the

contact between rod and carriage.
27Which is intended for going to +∞.
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σa

R−

R+

Regularized operator

−σa

+∞Characteristic functions

Jk

σa−σa

Fig.bFig.a

Fig. 2.14. Mathematical definitions of the play operator. It is the set-

valued graph Aσa plotted in bold lines on the diagram Fig.a, which can

be regularized by the function in dotted lines. These operators are the

sub-differential of the mappings plotted on the diagram in Fig.b; the

mapping ϕk , which regularizes the characteristic function I[−σa ,σa ]

being differentiable, its sub-differential is an single-valued mapping.

2o/ As the mapping x 7→ Fk (x) is not differentiable, the solution of the differential
equation (2.48) doesn’t have the required regularity properties to efficiently use an
integration scheme of order higher than 1.

3o/ We can make the algorithm (2.50) dimensionless with respect to the time step size h
by setting k = 1

h . We then obtain an algorithm which only depends on the discretization
step size of the signal v on [0,T ] and converges to the solution of the continuous model
when the number of samples increases.

The above results justify the following geometric representation of the Preisach operator.

THEOREM 2.2 Denoting by σa 7→ Eσa (v, t ) the mapping defined by the recurrence equa-
tion (2.33) of the Proposition 2.2 or as the solution of the differential inequality (2.39),
whose the graph is the boundary B(v, t ) between the zones of the Preisach plane where the
relays are 1 and that where they are 0, defined page 53, the outputs of Preisach operator
are defined for each t ∈ [0,T ] by following double integral

(2.51) Hµ(v, t ) = 2

+∞∫
0

 Eσa (v,t )∫
−∞

µ(σm −σa ,σm +σa)dσm

 dσa

where µ is the Preisach measure28 defined by the formula (2.11) page 43

28In the context of fatigue analysis, the support of the measure µ can be supposed to be compact,

and the bounds ±∞ are only intending for simplifying the notations. We will explain in Chapter 3 a way to

define this support.
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Fig. 2.15. Representation of t 7→ E (v, t ,σa) (bold lines) for some val-
ues of σa . The curve in blue is the input signal; the filtering effect

increases with σa . Further note that regularization of equation (2.39)

rounds the outputs, which are theoretically rectangular.
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t = 2.5

t = 2.4

t = 2.7

Fig. 2.16. Representation of σa 7→ E (v, t ,σa) at t given. Compari-

son between the figures Fig.a and Fig.b shows that all or part of the

memory of the Preisach operator is erased when the signal reaches

an extremum. We will see that this phenomenon causes the non-

differentiability of the outputs of the Preisach operator with respect to

the inputs.
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Fig. 2.17. Hysteresis loops of the outputs of a Preisach operator. The

computation doesn’t account for mean stress effect, this explains why

the hysteresis loops are geometrically similar to each other. A hystere-

sis loop closes once a cycle has been browsed.

The algorithm (2.50) is used to compute the “turning points” (see figure (Fig. 2.16)) of
the signal defined in figure (Fig. 2.15) and deduce, by integration in the Preisach plane,
the outputs of the Preisach operator (see Theorem 2.2), which are plotted in function of
the input signal as the Lissajous’ diagram plotted in figure (Fig. 2.17).

As they require the computation of the twice integral (2.51), the values of t 7→H (v, t )
are extremely expensive to sample; it is therefore unreasonable to approach the total
variation of H (v) by the formula (2.26) page 51 and this justifies the developments
carried out in the next Section.

2.4. Damage accumulation for Lipschitz continuous loadings

We have proved in Section 2.2 that for a smooth enough loading t 7→ v(t ), the damage
might be computed as the total variation of the image of v by the periodic Preisach
operator, or in other words, by one of the equivalent formulas:

D(v) =
2T∫

T

∣∣∣∣d Hµ(v per )

d t

∣∣∣∣ d t =
T∫

0

∣∣∣∣d Wµ(v)

d t

∣∣∣∣ d t

For the homogeneity of the presentation, we will use the first formula. To simplify the
notations we will moreover replace v per by v and assume, if necessary, that this mapping
is defined on [0,2T ] and satisfies

(2.52) v(t ) = v(t +T ) for any t ∈ [0,T ]

Let a time t̃ be given, the question is to define a procedure to compute the

derivative
d Hµ(v)

d t (t̃ ).
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Using the representation (2.51) of the Preisach operator, we see that this reduces to the
computation of the limit

(2.53) lim
h→0

1

h

+∞∫
0

 Eσa (v,t̃+h)∫
Eσa (v,t̃ )

µ(σm −σa ,σm +σa)dσm

 dσa

where Eσa (v, t̃) is the solution at t = t̃ of the variational inequality (2.37) or (2.39),
parameterized in σa ≥ 0.

1o/ Assume that v̇(t̃) 6= 0, then setting v(t̃) := v , we have to calculate the variation of
surface below the curve σa 7→ Eσa (v, t̃ ) for perturbations δv := h v̇(t̃ ) of v ; and this leads
to calculate the derivative with respect to v of the surfaces ai (v) of the hatched triangles
plotted in figure (Fig. 2.18).

1o .a/ If v̇(t̃ ) ≥ 0, the surface a1(v) is defined by

a1(v) = 2

σ̃a (v)∫
0

 v−σa∫
αn+σa

µ(σm −σa ,σm +σa)dσm

dσa

thus, using the Leibniz formula29, we have:

d a1

d v
= 2

σ̃a (v)∫
0

∂

∂v

 v−σa∫
αn+σa

µ(σm −σa ,σm +σa)dσm

dσa(2.54a)

+2
∂σ̃a(v)

∂v

v−σ̃a∫
αn+σ̃a

µ(σm − σ̃a ,σm + σ̃a)dσm(2.54b)

The relationship αn + σ̃a = v − σ̃a shows that (2.54b) is zero. To compute (2.54a), we
note that

∂

∂v

 v−σa∫
αn+σa

µ(σm −σa ,σm +σa)dσm

(2.55a)

=
v−σa∫

αn+σa

∂

∂v
µ(σm −σa ,σm +σa)dσm(2.55b)

+∂ (v −σa)

∂v
µ(v −2σa , v)(2.55c)

As µ doesn’t depend on v the term (2.55b) is zero, thus (2.55a) reduces to (2.55c), which
is actually µ(v −2σa , v). Reporting this value in equation (2.54a) we conclude that

(2.56)
d a1

d v
= 2

σ̃a (v)∫
0

µ(v −2σa , v)dσa

29Let f (x, t ) be a function such that both f (x, t ) and its partial derivative ∂x f (x, t ) are continuous in t

and x. Suppose on the other hand that a(x) and b(x) are continuous and have continuous derivatives,

then:
d

d x

[∫ b(x)

a(x)
f (x, t )d t

]
=

∫ b(x)

a(x)
∂x f (x, t )d t + f (x,b(x))b′(x)− f (x, a(x))a′(x)



70 2. DAMAGE CALCULUS FOR TIME-CONTINUOUS SIGNALS

σm

σaσ̃a

Case v̇ > 0 Case v̇ < 0

σ′
a

αn

vv

Eσa (v, t )
a2(v)

ηn−1ηn−1

a1(v)

αn

Fig.a Fig.b

v +δ

v +δ

Fig. 2.18. Evolution of the graph
(
σa ,Eσa (v, t̃ )

)
for a perturba-

tion h v̇(t̃) of E0(v, t̃). With the notations of the Definition 2.7, v is

bounded by the local extrema αn and ηn−1 of the RMS sequence.

When v̇(t̃ ) > 0, the variations of boundary follow straight lines parallel

to the second diagonal and the variation δWµ(v) can be evaluated

in computing the variation δa1(v) of the surface of the hashed trian-

gle in figure Fig.a. In the same way (see figure Fig.b), when v̇(t̃) < 0,

variations of boundary are parallel to the first diagonal and δWµ(v)

is −δa2(v).

1o .b/ When v̇(t̃ ) ≤ 0, we show in the same way that

(2.57)
d a2

d v
= 2

σ′
a (v)∫

0

µ(v, v +2σa)dσa

where σ′
a(v) is defined by ηn−1 −σ′

a(v) = v +σ′
a(v).

These two formulas show that

(2.58)
dHµ(v)

d t
(t̃ ) =


2 v̇(t̃ )

σ0(v)∫
0

µ(v −2σa , v)dσa si v̇(t̃ ) ≥ 0

2 v̇(t̃ )
σ0(v)∫

0
µ(v, v +2σa)dσa si v̇(t̃ ) ≤ 0

where σ0(v) is the abscissa of the first extremum of the mapping σa 7→ Eσa (v, t̃ ): It is a
minimum when v̇ ≥ 0 and a maximum when v̇ ≤ 0.

2o/ When v̇(t̃ ) = 0, one of the two terms αn or ηn−1 of the RMS(v, t̃ ) sequence is v and
we have

σ′
a(v) = 0 when v is a maximum

σ̃a(v) = 0 when v is a minimum

Form the formulas (2.56) and (2.57), this means that the derivatives
∂Hµ(v,t̃ )
∂v(t̃ ) is not

defined when v(t̃) is a local extremum of t 7→ v(t); this situation is illustrated in the
figure (Fig. 2.19).
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limh→0−
d a1
d v1

σa αn

v1

v(t̃ )

σ̄a(v1)

ηn−1

v(t̃ ) limh→0+
d a2
d v2

= 0

Graph of Eσa (v, t̃ +h)
for h > 0

Graph of Eσa (v, t̃ +h)
for h < 0

σ′
a(v2)

v2

t̃

σa

Fig.a Fig.cFig.b

Fig. 2.19. Evolution of the graph of σa 7→ Eσa (v, t ) when t varies in a
neighborhood of a point t̃ where v(t̃) is a maximum. When t con-

verges to t̃ by lower values (figure Fig.b), the graph
(
σa ,Eσa (v, t )

)
(in figure Fig.a) converges to the graph

(
σa ,Eσa (v, t̃ )

)
along the blue

broken lines and the derivative of the blue area a1(v1) in the fig-

ure Fig.a converges, according to (2.56), to 2
σ̄a∫
0
µ

(
v(t̃ )−2σa , v(t̃ )

)
dσa

with σ̄a = v(t̃ )−αn
2 . When t converges to t̃ by upper values (cf. fig-

ure Fig.b), as v(t̃ ) is a maximum, it is also a point of the kind ηn of the

sequence RMS(v, t̃ +h) and σ′
a(v2) goes to 0 with h; formula (2.57)

shows that the same is true for the derivative of the area a2(v2) in

red (in the figure Fig.c). These results show that if v(t̃ ) is a maximum

(resp. a minimum) of v , than the right and the left derivatives of the

mapping t 7→ w(v(t ), v̇(t ) ) do not agree at t̃ .

When µ is defined by the formula (2.11) page 43, the derivative (2.58) may be written
down as

(2.59)
d Hµ(v)

d t
(t̃ ) =

{
1
2∂2∆ (v −2σ0(v), v) v̇(t̃ ) if v̇(t̃ ) > 0

−1
2∂1∆ (v, v +2σ0(v) )) v̇(t̃ ) if v̇(t̃ ) < 0

REMARK 2.7 End of proof of Theorem 2.1; to complete the proof of this Theorem, it
remains to show that the Preisach operator defined by the formula (2.10) page 42, is
a piecewize monotone operator when µ is defined in terms of inverse of the num-
ber of cycles to failure ∆ by the formula (2.11) and satisfies the following additional
conditions30:

(2.60) ∂1∆(ρ1,ρ2) ≤ 0 and ∂2∆(ρ1,ρ2) ≥ 0 for any ρ = (ρ1,ρ2) ∈P

Let (vi )N
i=0 a sampled signal be given, as it can be written as the sampling of a piecewise

affine function v , the formula (2.59) shows that for each index i , there is a positive
constant σi such that[

Wµ(v)
]

i −
[
Wµ(v)

]
i−1 =

{
1
2 ∂2∆ (vi −2σi , vi ) (vi − vi−1) if vi > vi−1

−1
2 ∂1∆ (vi , vi +2σi )) (vi − vi−1) if vi < vi−1

30Which mean t hat the number of cycles to failure of the material increases when the mean stress

increases while it decreases when alternating stress increases.
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Taking account of assumption (2.60), we have([
Wµ(v)

]
i −

[
Wµ(v)

]
i−1

)
(vi − vi−1) ≥ 0

which means that the discrete version of Preisach is a piecewize monotone operator in
the meaning of the Definition 2.4 page 43.

The results obtained in this Section are summarized in the following Theorem:

THEOREM 2.3 Assume that t ∈ [0,2T ] 7→ v(t) belongs to W 1,1 ([0,2T ],R) and satis-
fies (2.52) the damage caused by the loading t ∈ [0,T ] 7→ v(t) reduces to the following
integral:

(2.61) D(v) =
2T∫

T

w(v(t ),σ0(t ), v̇(t )) |v̇(t )|d t

where

• σ0(t ) is the abscissa of the first extremum of the mappingσa 7→ Eσa (v, t ) defined
by the variational inequality (2.39), parametrized by σa ;

• the function (v1, v2, v3) ∈R3 7→ w(v1, v2, v3) ∈R is defined by31:

(2.62) w(v1, v2, v3) =


1
2 ∂2∆ (v1 −2v2, v1) if v3 > 0

−1
2 ∂1∆ (v1, v1 +2v2 ) if v3 < 0

0 if v3 = 0

where (see Theorem 2.1 page 43) the mapping (ρ1,ρ2) ∈P 7→∆(ρ1,ρ2) ∈R is the
inverse of the number of cycles to failure defined by the Wöhler’s curve, for an
alternating load σa = ρ2−ρ1

2 ≥ 0, at average σm = ρ2+ρ1

2 :

In practice, computation of damage by formula (2.61) is carried out within three steps:

1o/ the first one “is a cycles identification process” which consists,see figure (Fig. 2.20),
to define the mapping t 7→σ0(t) in identifying the abscissa the first extremum of
the function σa 7→ Eσa (t , v), obtained in solving the differential inequality (2.39) for
different values of σa ; an algorithm is provided in Section 3.3, page 115;

2o/ compute then the function (2.62) in setting

v1 = v(t ), v2 =σ0(t ) and v3 = v̇(t )

to define the contribution to the total damage of each part of the cycles identified in
the previous step; an example is depicted in figures (Fig. 2.21-a) and (Fig. 2.21-b);

3o/ the thirth step consists to carry out the time integration of the obtained results to
compute the total damage.

31In view of what is stated above, it would be more consistent to define w as a set-valued mapping

in saying that w(v1, v2,0) is the interval [v2,0] or [0, v2] according to the sign of v2. The choice (2.62),

that doesn’t change the computation of damage, has the advantage to simplify the computation of the

partial derivatives of (v1, v2, v3) 7→ j (v1, v2, v3) = w(v1, v2, v3)|v3| but does not change the fact that j is

not differentiable in the plane v3 = 0 when v2 6= 0.
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Fig. 2.20. Computation of t 7→ σ0(t), when the signal v(t) is a sim-
ple function. Figure (Fig.a) represents on the same picture the sig-

nal v(t ) = 1.5∗cos(2 t ) (for t in [0,4π]), in blue and the signal σ0(t ) in

red;σ0 has a discontinuity when v(t ) changes its direction of variation;

this is illustrated in figure (Fig.b) on right, when one represents in the

form of a Lissajous diagram σ0(t ) as a function of v(t ). This figure also

shows that apart from discontinuity points, the derivative of σ0 with

respect to v is ± 1
2 , according to the direction of variation of v . Figures

(Fig.c) to (Fig.f) (which are not plotted in square scales) provide an

illustration of the theoretical results depicted in figure (Fig. 2.18), they

have been obtained numerically with the help of the integration al-

gorithm of the equation (2.39) defined by the formula (2.50) page 65.

In this simple case, there are at most two truning points; one of them

is surrounded by a red circle in the figures (Fig.d) and (Fig.f), has the

abscissa σ̃0 = 1.5, which corresponds to the absolute value of the ex-

trema of v . Figures (Fig.c) and (Fig.e) show that limt→ π
2
− σ0(t) = σ̃0

while limt→ π
2
+ σ0(t) = 0, which is in agreement with the theoretical

results shown in the figure (Fig. 2.19)
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Fig. 2.21. Computation of t 7→ w(v(t),σ0(t), v̇(t)) in case of the
Strohmeyer’s formula, with and without mean stress effect, when
v(t ) is a pure sine. Note that insofar as each cycle is decomposed into

sub-elements where the signal v is monotone, we account the parts of

the cycle which are in tension (ie. v̇ ≥ 0) in a different way than these

which are in compression; this case is plotted on the curves in blue.

EXAMPLES 2.2 1o/ When ρ 7→∆(ρ) is defined by a Stromeyer formula without account-
ing for mean stress effect (formula (1.2), page 16) the formula (2.62) simplifies and does
not depend on v1; it can be written down as

w(v2, v3) =
{

1
4bsCs

[max{(v2 −σd ),0}]
1

bs
−1 if v3 6= 0

0 else

and the Theorem 2.3 allows to compute the damage as

(2.63) D(v) = 1

4bsCs

2T∫
T

[max{(σ0(t )−σd ),0} ]
1

bs
−1 |v̇(t )|d t

A numerical application is proposed on the signal t ∈ [0,16π] 7→ 1.5∗ sin(2 t) with the
following numerical data bs = 0.42, Cs = 359, σd = 0.15, which is equivalent to
process a loading of 16 alternate cycles of amplitude σ= 1.5∗800MPa with the data
identified in the Wöhler curves of figure (Fig 1.10) page 18. The damage obtained by
the method described above is D = 0.0901 while the exact result, which is given by the
formula

D = 16

Nr (σ)
= 4(σ−σd )

1
bs

Cs

is D = 0.0910 ; this gives a relative error of −1% compared with the theoretical results.

2o/ If we take into account the mean stress effect in the Strohmeyer formula, the
function w defined in (2.62) depends on the variables v1, v2 and v3; using for example
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the corrective formula of Goodman (1.5) page 18, the function w is defined by

(2.64) w(v1, v2, v3) =



(Rm +2 v2 − v1)

4Csbs v2 (Rm + v2 − v1)[
max

(
Rm v2

Rm + v2 − v1
−σd ,0

)] 1
bs

if v3 > 0

(v1 −Rm)

4Csbs v2 (v2 + v1 −Rm)[
max

(
Rm v2

Rm − v2 − v1
−σd ,0

)] 1
bs

if v3 < 0

A numerical simulation is carried out with the data given in the first example, comple-
mented by Rm = 10.0; the computation of the damage depends now on the direction
of variation of v(t), this situation is illustrated by the lines in blue in figure (Fig. 2.21).
However, as the signal v remains symmetric with respect to 0 the cumulative damage
computed over several periods must remain identical to that of a calculation carried out
without taking into account the average stress. In this case the numerical simulation
leads to D = 0.0922; which gives a relative error of +1.3% compared to the theoretical
value.

The following Remarks are used in Section 4.3 page 176 to compute the right hand
member of the adjoint state to the structure optimization problem.

REMARKS 2.8 1o/ The derivatives of the mapping

(v1, v2, v3) ∈R3 7→ j (v1, v2, v3) = w(v1, v2, v3)|v3| ∈R
are given by the formulas

(2.65)
∂ j

∂v1
= v3

2


∂12∆(v1 −2v2, v1)+∂22∆(v1 −2v2, v1) if v3 > 0
∂11∆(v1, v1 +2v2)+∂12∆(v1, v1 +2v2) if v3 < 0

0 if v3 = 0

(2.66)
∂ j

∂v2
= v3


−∂12∆(v1 −2v2, v1) if v3 > 0
∂12∆(v1, v1 +2v2) if v3 < 0

0 si v3 = 0

(2.67)
∂ j

∂v3
= 1

2


∂2∆(v1 −2v2, v1) if v3 > 0
∂1∆(v1, v1 +2v2) if v3 < 0

0 si v3 = 0

2o/ Let t given, the partial derivatives of the mapping

(v(t ), v̇(t )) 7→ j (v(t ),σ0(t ), v̇(t ))

with respect to the independent variables v(t ) and v̇(t ) are defined respectively by

∂ j

∂v1
(v(t ),σ0(t ), v̇(t ))+ ∂ j

∂v2
(v(t ),σ0(t ), v̇(t ))

∂σ0(t )

∂v(t )

and
∂ j

∂v3
(v(t ),σ0(t ), v̇(t ))
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with, taking into account the results shown on the diagrams of the figure (Fig. 2.18)

∂σ0(t )

∂v(t )
= 1

2
si g n(v̇(t ))

The formulas (2.65) et (2.66) show that setting v = v(t ) et v̇ = v̇(t ) we have

(2.68)
∂ j

∂v
(v,σ0, v̇) = v̇

2


∂22∆(v −2σ0, v)−∂12∆(v −2σ0, v) if v̇ > 0
∂11∆(v, v +2σ0)−∂12∆(v, v +2σ0) if v̇ < 0

0 if v̇ = 0

While (2.67) leads to

(2.69)
∂ j

∂v̇
(v,σ0, v̇) = 1

2


∂2∆(v −2σ0, v) if v̇ > 0
∂1∆(v, v +2σ0) if v̇ < 0

0 if v̇ = 0

EXAMPLE 2.3 When ρ 7→ ∆(ρ) is defined with the help of the Strohmeyer’s formula,
without accounting for mean stress effect, the formulas (2.68) and (2.69) depend only
on σ0 and v̇ , they have the following extremely simple forms:

∂ j
∂v (v,σ0, v̇) = 1−bs

4b2
s Cs

v̇ [max{(σ0 −σd ),0}]
1

bs
−2

∂ j
∂v̇ (v,σ0, v̇) = 1

4bsCs
si g n(v̇) [max{(σ0 −σd ),0}]

1
bs
−1

2.5. Exercises and complements

EXERCICE 2.1 1o/ Make a program to set up the “input-output” diagram given in fig-
ure (Fig. 2.3) where (ρi

1,ρi
2) is a given finite sequence such thatρi

2 ≥ ρi
1. Setµi = (ρi

1−ρi
2)2

and µi = sin(ρi
2 −ρi

1) for instance.

2o/ Plot the outputs S as a function of the inputs E and explain the obtained results.

EXERCICE 2.2 (Simple verification of the formula (1.11)) 1o/ Let a monotone se-
quence v = (vi )n

i=1 be given, compute the total variation VT (v) of v (apply formula (2.3))

2o/ Compute the total variation VT (v) of a continuous piecewise affine function v with
the help of the formula (2.3) and proof that

VT (v) =
∫ T

0

∣∣v ′(t )
∣∣d t

Is the mapping t 7→ v(t ) everywhere differentiable?

3o/ Compute the total variation of the function t ∈ [0,2π] 7→ sin(t) ∈ [−1,1] and verify
the “magic formula”

VT (sin) =
∫ 2π

0
|cos(t )|d t =

∫ 2π

0
|sin′(t )|d t

EXERCICE 2.3 1o) Compute the set X t introduced in Definition 2.5 for:

(ρ1,ρ2) =


(−0.5,0.5)

(−1,1)
(1.001,1.1)
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if v is the mapping
t ∈ [0,2π] 7→ sin(t )

2o) In each previous case, plot the function t 7→ hρ(v,ξ)(t ) for ξ= 0 and ξ= 1

EXERCICE 2.4 1o/ Compute the RMS sequence of the function t ∈ [0,2π] 7→ sin(t)
for t ∈ [0,2π]

2o/ Try to do the same for the mapping

(2.70) t ∈ [−π,π] 7→
{

t 2 sin
(1

t

)
if t 6= 0

0 if t = 0

Is this mapping in the Sobolev space W 1,1([−π,π],R)?

EXERCICE 2.5 1o/ Write an algorithm to compute the function t 7→ Eσa (v, t )

2o/ Let v be the sequence
(
sin( 2kπ

N )
)N

k=0
, plot the graph of the mappingσa 7→ Eσa (v, 2k0π

N )

(where 0 ≤ k0 ≤ N is a given integer) and identify the RMS sequence on this graph.

3o/ Test the algorithm on the mapping (2.70); what happens when you increase N ?

EXERCICE 2.6 1o/ Proof the formulas (2.40) and (2.41) page 61

2o/ Proof that the operator

(2.71) x 7→ sign(x) =


1 if x > 0

[−1,1] if x = 0
−1 if x < 0

is the sub-differential of the mapping x 7→ |x|.

3o/ Make a program to solve the differential equation

mẍ +k x + c sign(ẋ) 3 f (t )

and verify numerically that the mapping f 7→ x is a hysteretic damping.

4o/ What is the mechanical interpretion of the multivalued character of the sign func-
tion?

Solution of the exercises & homework.

Solution of exercise 2.1. You can easily write the program (see listing bellow), basi-
cally you have to

• write a function to implement the relays operators hρ(v,ξ) defined in Defini-
tion 2.1

• initialize the relays as you like
• and compute the sum according to the formula shown in figure (Fig. 2.3)

page 43.
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Fig. 2.22. Input signal. The signal sampled on 1257 samples

You can use the following program, but be careful when you use the “copy-paste” func-
tion of your computer.

Prorgram : implementation of “input-output” diagram given in figure (Fig. 2.3).

• The relay operator

function z=h_rho(rho_1,rho_2,v,xi)
% Compute the output of the relay operator hρ(v ,ξ)

% for a given initial state ξ

if v<=rho_1
z=0;

else if v>=rho_2
z=1;

else
% At first call ξ, is the initialization
% after it, is the previous value of the realy.

z=xi;
endif

endif
endfunction

• Main program
– Sampling of the input signal:

% The sampled input signal
time=0:0.01:4*pi;
signal=4*sin(time).*(cos(2*time)+cos(4*time));
%
figure(1);
plot(time,signal)
title(’Input signal’); xlabel(’time’);ylabel(’v(t)’);
which is plotted in figure (Fig. 2.22) and obviously satisfies v(0) = v(4π) =
0.

– Initialization of the computation
% The computation is performed on a bounded part of the Preisach plane.
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rho_max=max(signal)*1.20;
rho_min=min(signal)*1.20;
% N_r ho2 hysterons will be used to compute the outputs of the Preisach operator
% they are equally distributed in the Preisach plane
N_rho=20;
% N_rho=50;
sample_rho=(rho_max-rho_min)/(N_rho+1);
Rho=rho_min:sample_rho:rho_max;% Sampling

– Initialization of relays and computation of the measure µi .
R_m=8.5;% For instance
for i=1:size(Rho,2)

rho_2=Rho(i);
for j=1:size(Rho,2)

rho_1=Rho(j);
if rho_1>rho_2

Relay(i,j)=NaN;
mu_p(i,j)=NaN;

else if (rho_1+rho_2)>0
% Relay(i,j)=0; % Standard initialization

Relay(i,j)=round(rand());% Random initialization
mu_p(i,j)=sample_rho**2*(rho_2-rho_1)**2/(1 -(rho_1+rho_2)/R_m);
% mu_p(i,j)=sample_rho**2*(rho_2-rho_1)**2;
% mu_p(i,j)=sample_rho**2*sin(rho_2-rho_1);

else
% Relay(i,j)=1;% Standard initialisation

Relay(i,j)=round(rand());% Random intitialization
mu_p(i,j)=sample_rho**2*(rho_2-rho_1)**2/(1-(rho_1+rho_2)/R_m);
% mu_p(i,j)=sample_rho**2*(rho_2-rho_1)**2;
% mu_p(i,j)=sample_rho**2*sin(rho_2-rho_1);

endif
endif

endfor
endfor
%
% Plot the initial states of the Relays see figure (Fig.2.23)
figure(2);
surf(Rho,Rho,Relay)
view(0,90);
title(’Initial states of the relays’);
xlabel(’rho_1’);ylabel(’rho_2’);zlabel(’h(rho_1,rho_1)’);
% Plot the weights µi , which depend on ρ1 and ρ2

% see figure (Fig. 2.24)
figure(3);
surf(Rho,Rho,mu_p)
view(0,90);
title(’Weights according to rho_1 and rho_2’);
xlabel(’rho_1’);ylabel(’rho_2’);zlabel(’mu(rho_1,rho_1)’);

– Compute the output of the Preisach operator
for k=1:size(signal,2)

z=0;
for i=1:size(Rho,2)

rho_2=Rho(i);
for j=1:size(Rho,2)

rho_1=Rho(j);
if rho_1>rho_2
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break
else

mu=mu_p(i,j);
xi=Relay(i,j);
z=z+h_rho(rho_1,rho_2,signal(k),xi)*mu;
Relay(i,j)=h_rho(rho_1,rho_2,signal(k),xi);

endif
endfor

endfor
h_mu(k)=z;

endfor
%
% Plot the output under the form of a Lissajous diagram see
% figures (Fig. 2.25) and (Fig. 2.26).
figure(4);
plot(signal,h_mu)
title(’Hysteresis loops of the Preisach operator’);
xlabel(’Input signal v’);ylabel(’Output h_mu(v)’);
%
% Plot the initialization of the relays to compute the output of Wµ

figure(5);
surf(Rho,Rho,Relay)
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view(0,90);
title(’Relays initialization tuned for the computation of W_mu’);
xlabel(’rho_1’);ylabel(’rho_2’);
% Compute the output of Wµ

for k=1:size(signal,2)
z=0;
for i=1:size(Rho,2)

rho_2=Rho(i);
for j=1:size(Rho,2)

rho_1=Rho(j);
if rho_1>rho_2

break
else

mu=mu_p(i,j);
xi=Relay(i,j);
z=z+h_rho(rho_1,rho_2,signal(k),xi)*mu;
Relay(i,j)=h_rho(rho_1,rho_2,signal(k),xi);

endif
endfor

endfor
W_mu(k)=z;

endfor
% Plot the output
figure(6);
plot(signal,W_mu)
title(’Hysteresis loops of W_mu’);
xlabel(’Input signal v’);ylabel(’Output h_mu(v)’);
% Note that the Wµ maps the periodic signals into periodic signals
figure(7);
hold on;
plot(time,W_mu)
rescal=50.;% scaling factor used for post-processing purpose, see figure (Fig. 2.28)
plot(time,rescal*signal)
xlabel(’time’);ylabel(’v(t)’);
%
% Compute the total variation of Wµ(v)

%
V_T=0;
for i=1:size(W_mu,2)-1

V_T=V_T+abs(W_mu(i+1)-W_mu(i));
end
%
% Print the total variation
V_T
%
% Note that the computations are very expensive, a way to simplify is to use
% the geometric representation of the Preisach operator.

Solution of exercise 2.2. 1o/ Suppose for instance that v = (vi )N
i=1 is an increasing

sequence then vi ≤ vi+1 and

VT (v) =
N−1∑
i=1

|vi+1 − vi | =
N−1∑
i=1

vi+1 − vi = vN − v1
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in the left hand diagram the relays randomly initialized. We see that

after an initialization phase, the outputs of the Preisach operator are a

periodic; this is explained in figure (Fig. 2.27).
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Hysteresis loops associated
to Madelung pairs of non zero

Fig. 2.26. Outputs of the Preisach plotted under the form of a Lis-
sajous diagram. In this case, the distribution of weights µi is not

symmetrical with respect to the straight line ρ1+ρ2 = 0 and the contri-

bution to the total variation of Wµ(v) of the hysteresis loops associated

to the Madelumg’s pairs depends on their mean values.

2o/ Plot the function t ∈ [0,2π] 7→ sin t and you see that, if you compute the total
variation with the help of the previous formula you get VT (sin) = 4. On the other hand,
the derivative of sin is cos and we have:∫ 2π

0
|cos t |d t =

∫ π
2

0
cos td t −

∫ 3π
2

π
2

cos td t +
∫ 2π

3π
2

cos td t = 4

3o/ If t ∈ [0,T ] 7→ v(t) is piecewise affine you can define a finite increasing se-
quence (tk )N

k=1 starting at t1 = 0, ending at tN = T and such that the mapping

vi : t ∈ [ti , ti+1] 7→ v(t )

is affine and thus monotone. Using on the one hand the first part of the exercise, we
have

VT (vi ) = |v(ti+1)− v(ti )|
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Fig. 2.27. State of the relays at the end of the first loop. The two

initializations of the relays plotted in the figure (Fig. 2.25) lead to the

same result at the end of the first computation loop, these sates of the

relays are used to compute the outputs of the operator Wµ defined by

formula (2.25) page 50.
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Fig. 2.28. We show on the same picture the output of the Preisach

operator and the input 50∗ v (for scaling reasons).

and, on the other hand, the formula

|v(ti+1)− v(ti )| =
∫ ti+1

ti

|v̇i (t )|d t

we get

(2.72) VT (v) =
N−1∑
i=1

|v(ti+1)− v(ti )| =
N−1∑
i=1

∫ ti+1

ti

|v̇i (t )|d t

As v ′
i (t ) = v ′(t ) on each interval ]ti , ti+1[ we can define the total variation (2.72) by

VT (v) =
∫ T

0
|v̇(t )|d t
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Notice that the derivative v̇(t) is not necessarily defined at time ti but that wasn’t a
matter to compute the integral.

Homework.

• I remember you that a mapping v : [0,T ] →R is said to be Lipschitz continu-
ous if there is a positive constant C such that:

|v(t1)− v(t2)| ≤C |t1 − t2| for t1, t2 ∈ [0,T ]

Show that the total variation of a Lipschitz continuous function is bounded.
• Is the total variation of the mapping

t ∈ [−π,π] 7→
{

t 2 cos
( 1

t 2

)
if t 6= 0

0 else

bounded? Hint. Plot the derivative

Solution of exercise 2.3.

1o/ When ρ1 =−0.5 and ρ2 = 0.5
• Note that that sin(π6 ) = 0.5 and sin( 5π

6 ) = 0.5 thus
– if t < π

6 then X t =;
– if π6 ≤ t < 5π

6 then X t =
{
π
6

}
• Note on the other hand that sin( 7π

6 ) = −0.5 and sin( 11π
6 ) = −0.5, from the

previous results we conclude that
– if 5π

6 ≤ t < 7π
6 then X t =

{
π
6 , 5π

6

}
– if 7π

6 ≤ t < 11π
6 then X t =

{
π
6 , 5π

6 , 7π
6

}
– if 11π

6 ≤ t ≤ 2π then X t =
{
π
6 , 5π

6 , 7π
6 , 11π

6

}
2o/ When ρ1 =−1 and ρ2 = 1

• if t < π
2 then X t =;

• if π2 ≤ t < 3π
2 then X t =

{
π
2

}
• if 3π

2 ≤ t ≤ 2π then X t =
{
π
2 , 3π

2

}
3o/ At last if ρ1 = 1.001 and ρ2 = 1.1 then X t =; for all t ∈ [0,2π]

This allows to compute the mapping t 7→ hρ(v,ξ)(t ) as follows:

• Case 1o/

hρ(v,ξ)(t ) =



ξ if 0 ≤ t < π
6

1 if π6 ≤ t < 5π
6

0 if 5π
6 ≤ t ≤ 2π

• Case 2o/

hρ(v,ξ)(t ) =



ξ if 0 ≤ t < π
2

1 if π2 ≤ t < 3π
2

0 if 3π
2 ≤ t ≤ 2π

• Case 3o/ hρ(v,ξ)(t ) = ξ for all t ∈ [0,2π].
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Fig. 2.29. Computation of the RMS sequence associated with the sin

function.

Solution of exercise 2.4. Go back to the procedure given in Definition 2.7 page 53
and remember that the RMS sequence depends on the time t̃ .

1o/ If 0 ≤ t̃ ≤ π
2 (diagram “Case 1“ in figure Fig. 2.29). As sin is increasing we have

max
t∈[0,t̃ ]

|sin(t )| = sin(t̃ )

so we can set
t1 = t̃ and η1 = sin(t̃ )

The RMS sequence reduces to η1 = sin(t̃ ).
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Fig. 2.30. Graph of the function t 2 sin
( 1

t

)
for t ∈ [−0.1,−0.002].

2o/ If π
2 < t̃ < 3π

2 (diagram “Case 2“ in figure (Fig. 2.29)). The function sin is now
decreasing, as

sin(
π

2
) = 1 = max

t∈[0,t̃ ]
|sin(t )|

we can set
t1 = t̄ = π

2
and η1 = 1

the case 1o/ of the procedure gives

α1 = min
π
2 ≤t≤t̃

sin(t ) = sin(t̃ )

As t2 = t̃ the procedure stops and
{
η1 = 1,α1 = sin t̃

}
is the RMS sequence.

3o/ If 3π
2 < t̃ < 5π

2 (diagram Case 3 in figure (Fig. 2.29)) the function sin is increasing
and we have

1 = max
t∈[0,t̃ ]

|sin(t )|

which is achieved at t̄ = 3π
2 ; as t0 = sin(t̄) = −1 is negative the case 2o/ of the

procedure gives α0 =−1 but as the function sin is increasing we can set

t1 = t̃ and η1 = sin(t̃ )

Thus
{
α0 =−1,η1 = sin(t̃

}
is the RMS sequence...

4o/ When t̃ = 3π
2 only α0 =−1 exists.

Now you are comfortable with the concept of RMS sequence, we can see what happens
for the mapping

t̃ 7→ t̃ 2 sin

(
1

t̃

)
let us plot this function for t̃ ranging between −0.1 and −0.002. You see in fig-
ure (Fig. 2.30) that when t̃ goes to 0 the number of terms of the RMS sequence increases
and goes to ∞. This is due to the fact that the extrema of t̃ 2 sin

(1
t̃

)
monotonically

decrease when t̃ goes to 0, and are kept in the RMS sequence.
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I claim that the mapping t ∈ [−π,π] 7→ f (t) = t 2 sin
(1

t

)
is in W 1,1([−π,π],R)! To proof

this, we have to cheek that ∫ π

−π
| f (t )|d t +

∫ π

−π
| f ′(t )|d t <+∞

• It is quite easy to proof the inequality
∫ π
−π | f (t )|d t <+∞: as | f (t )| ≤ t 2, we have

thus ∫ π

−π

∣∣∣∣t 2 sin

(
1

t

)∣∣∣∣d t ≤ 2π3

3

• On the other hand f ′(t ) = 2t sin
(1

t

)−cos
(1

t

)
and it remains to show that∫ 0

−π

∣∣∣∣cos

(
1

t

)∣∣∣∣d t <+∞

for instance. Making the change of variable u = 1
t , we have to show that∫ − 1

π

−∞

∣∣∣∣cos(u)

u2

∣∣∣∣du <+∞

this inequality being obvious because∣∣∣∣cos(u)

u2

∣∣∣∣≤ 1

u2

This example was intending to show you that functions in W 1,1 may have “pathological”
behaviors. Fortunately, such a scenario does not occur in mechanics!

Homework.

• Give necessary and sufficient conditions on the real numbers α and β insuring
that the mapping

t ∈ [−π,π] 7→
{

tα sin
(

1
tβ

)
if t 6= 0

0 else

is in W 1,1 ([−π,π],R).
• Proof that the closure of vector space of piecewize affine functions defined

on [0,T ] for the norm

v 7→
∫ T

0
|v(t )|+ |v ′(t )|d t

is the Sobolev space W 1,1 ([0,T ],R). Hint: You can easily see that the space of
piecewize affine function is a sub-space of W 1,1 ([0,T ],R), if you can’t do the
rest of the proof, have a look in Rudin [39] or Brezis [6].

• If you have read Rudin [39] you can now proof that a Lipschitz continuous
function on [0,T ] is in W 1,1 ([0,T ],R), what about the converse?

Solution of exercise 2.5. This exercise is the given below implementation of the
formula (2.50) page 65:

• Make a function allowing to compute Eσa (t + h) as function of v(t + h)
and Eσa (t )
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function E_1=E_sigma(E_0,v,sigma_a,delta)
% Implementation of the formula (2.50)

%
% inputs: E_0:=Eσa (t ), v:=v(t +h)

% sigma_a:=σa and delta:=hk where h is the step size of the
% integration method and k is the slope of regularization.
% output : E_0:=Eσa (t +h)

%
y1=(E_0+delta*(v+sigma_a))/(1+delta);
y2=(E_0-delta*(sigma_a-v))/(1+delta);
if y2<=(v-sigma_a)

E_1=y2;
else if y1>=(v+sigma_a)

E_1=y1;
else

E_1=E_0;
endif

endif
endfunction

• We first study the effect of the discretization parameters:
– integration step size h,
– and slope of the regularization k (see definition in figure (Fig. 2.14))

on the time integration of a regularized version of the differential inequal-
ity (2.39) page 61.

N=10*10*10;% Nunber of samples of the input signal
h=2*pi/(N-1);% Step size for the time integration
time=0:h:2*pi;% Integration is carried out between 0 and 2π

v=sin(time);% Sampling of input signal
sigma_a=0.5;
k=5*10%*10;% Slope of the regularization
delta=h*k;
% Integration of the differential inequality (2.39) by an implicit Euler method
% E:= sampling of the solution Eσa (t ) for a given value of σa

E(1)=0;
for j=1:N-1

E(j+1)=E_sigma(E(j),v(j+1),sigma_a,delta);
endfor
% Plot on the same graphic the inputs t 7→ v(t ) and
% the output t 7→ Eσa (v , t )

figure(1);
hold on
plot(time,v); plot(time,E)% An example is given in figure (2.31)
% Plot the hysteresis loop
figure(2);
plot(v,E)% See figure (Fig.2.32)

– Figure (Fig. 2.31) shows that when the step size h goes to 0, the approached
solution (by the implicit Euler method) converges to the exact solution of
the equation (2.39).

– And figure (Fig. 2.32) shows that when k goes to +∞ the solution of equa-
tion (2.48) approaches the solution of the variational inequality (2.39).

• Let t0 be given, can now compute as follows the graph of σa 7→ Eσa (v, t0), we
suppose first that v(t ) = sin t for 0 ≤ t ≤ 2π.

N0=N/4+100;% We will assume π
2 < t0 < 3 π

2
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Fig. 2.31. Resolution of the equation (2.48) by the implicit Euler
method. In this case: σa = 0.5, k = 5; the Euler method is carried

out for several values of h: for the curves in red h = 0.6 seconds; h is

0.06 (resp. 0.006) for the curves in black (resp. in blue).
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Fig. 2.32. Hysteresis loops for several values of the slope k. In this

case the integration is carried out for k = 5.0 (red), k = 50.0 (black)

and k = 500 (blue). The integration step is chosen small enough to

suppose the outputs of Euler’s method converged to the exact solution

of the equation (2.48).

delta_sigma=0.01;
sigma=0:delta_sigma:1.20;
E(1)=0;
for i=1:size(sigma,2)

sigma_a=sigma(i);
% Time integration between 0 and t0

for j=1:N0
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Fig. 2.33. Turning points of the function t ∈ [0, t0] 7→ sin t . In this case

the RMS sequence has two points η1,α1 as explained in exercise 2.4.

E(j+1)=E_sigma(E(j),v(j+1),sigma_a,delta);
end
G(i)=E(N0+1);

end
%
figure(3);% See figures (Fig. 2.33) and (Fig. 2.34)
subplot(121)
plot(time(1:N0+1),v(1:N0+1))% Plot the signal
subplot(122)
plot(sigma,G);% Plot the graph of σa 7→ Eσa (v , t0)

Analogue computations can be carried out for the mapping

t ∈ [0,
π

2
] 7→

(
t − π

4

)2
sin

4

4t −π
and t0 = π

4 ; we know from Exercise 2.4 that in this case the RMS sequence is
endless and figure (Fig. 2.34) shows that the numerical solution of the varia-
tional inequality can’t reproduce this phenomena.

Homework. 1o/ Use the algorithm previously developed to compute the outputs of
the Preisach operator Hµ where µ is defined by Bastenaire and Stromeyer formulas

2o/ Compute the total variation of the function t ∈ [0,2π] 7→Hµ(sin, t ) with the help of
the formula (2.3)

3o/ Use the results of the Theorem 2.3 to do the same computation.

4o/ What do you conclude?

5o/ Test the algorithm on the random function (white noise).

Solution of exercise 2.6. 1o/ Assume to simplify that σa = 1. Let x0 ∈R be given, by
definition (2.38) page 61 of the sub-differential, ξ ∈R lies in ∂I[−1,1](x0) if and only if the
inequality

(2.73) I[−1,1](x)− I[−1,1](x0) ≥ ξ.(x −x0)

holds for any x ∈R.
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Fig. 2.34. Turning points of the function t ∈ [0, π4 ] 7→ (
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In this case the RMS sequence (η1,α1,η2,α2, · · ·) is endless as ex-

plained in exercise 2.4 and the numerical method allows to find 9

turning points only.

a/ For |x0| > 1 we have I[−1,1](x0) =+∞ by definition (2.36) page 60 of a characteristic
function. Using (2.73), we see that ξ must satisfy

−∞≥−ξ.x0

for instance. As this inequality is false for any ξ ∈R, the sub-differential ∂I[−1,1](x0)
is the empty set.

b/ For |x0| ≤ 1, we have I[−1,1](x0) = 0, inequality (2.73) rewrites as

+∞≥ ξ.(x −x0) for |x| > 1
0 ≥ ξ.(x −x0) for |x| ≤ 1

• If |x0| < 1 the second inequality entails ξ= 0 so that ∂I[−1,1](x0) = {0}.
• While if x0 =−1 (resp. x0 = 1) it entails ξ≤ 0 (resp. ξ≥ 0) which leads to

∂I[−1,1](−1) =R− ∂I[−1,1](1) =R+

2o/ Let f be the mapping x 7→ |x|. As f is convex, differentiable for x 6= 0 we have

∂ f (x) = { f ′(x)} =
{

−1 if x < 0
1 if x > 0

and it remains to compute the “generalized derivative ∂ f (0)” of f at x = 0. Using once
more the definition (2.38), we see that it is the set

∂ f (0) = {ξ ∈R ; |x| ≥ ξ.x∀x ∈R}

or in other words the interval [−1,1]. We summarize all of that in saying that if the
function sign is defined by the formula (2.71), the derivative of the “absolute value”
function is the “sign” function.
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f (t )
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Fig. 2.35. Hysteretic damping. We are considering a sliding mass m

which is attached by a spring of stiffness k. We assume moreover that

the contact between the particle and the sliding axis x is defined by a

Coulomb’s law of friction coefficient µ and that mass is submitted to

a pressure p (normal to the sliding axe). The contact generates thus

a constant force Fc =−µp sign(ẋ) opposed to the motion, notice that

this force can be defined by the Rayleigh dissipation function µp|ẋ|.

3o/ Let’s now consider the differential equation

(2.74) mẍ +k x + c sign(ẋ) 3 f (t )

which models the dynamical behavior of a particle submitted to the conditions depicted
in figure (Fig.2.35). If we discretize this equation by the Euler implicit method, knowing
the displacement xt and the velocity vt at time t , we have to solve the variational
inequality

(2.75) (m +h2k)vt+h + ch sign(vt+h) 3 h f (t +h)−hkxt +mvt

to define the displacement xt+h := xt +hvt+h at time t +h. Setting

Ft+h := h f (t +h)−hkxt +mvt

it is easy to check that vt+h , defined as follows:

vt+h =


0 if Ft+h ∈ [− ch,ch]

Ft+h+ch
m+h2k if Ft+h ≤−ch

Ft+h−ch
m+h2k if Ft+h ≥ ch

is solution of (2.75). Now we can run the following program to have a deeper under-
standing of the hysteretic damping.

• Main program

clear all
k=100.0;
m=0.1;
c=80.0; % Damping coefficient
% c=c/10;
T=10.;
h=0.0001; % The time step is small enough to assume the Euler method converged
time=[0:h:T];
f=500*sin(2*time); % Excitation force
f=0*f;
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% x(1)=0;
x(1)=10.0; %Initial condition (displacement)
v(1)=0.0; %Initial condition (velocity)
%
% Numerical integration of equation (2.74)

%
for i=2:size(time,2)
F=h*f(i)+m*v(i-1)-h*k*x(i-1);
if abs(F)<=c*h
v(i)=0.0;
x(i)=x(i-1);

elseif F<=-c*h
v(i)=(F+c*h)/(m+h^2*k);
x(i)=x(i-1)+h*v(i);

else
v(i)=(F-c*h)/(m+h^2*k);
x(i)=x(i-1)+h*v(i);

endif
endfor

• Numerical simulations:
1o/ We first study the equation (2.74) with an identically zero right hand

member but with the initial conditions x0 = 10 and ẋ(0) = 0. The results
are plotted and analyzed in figure (Fig. 2.36).

2o/ Now we can compute the solution of (2.74) submitted to a harmonic
excitation f (t) = sinωt (in this case ω = 2) with the initial conditions
x(0) = ẋ(0) = 0. We see in figure (Fig. 2.37) that the mapping f 7→ x
presents a hysteresis loop.
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Fig. 2.36. First simulation. Displacements in function of time are

plotted in figure Fig.a). We see that particle stops after a finite number

of oscillations, namely 3 at a position which may be non zero and that

the amplitude of the oscillations decreases linearly. This phenomena

is explained in figure Fig.b) by integrating the equation (2.74) in the

phase plane: Assuming for instance the velocity negative, the motion

equation rewrites mẍ +k x − c = 0. Multiplying this equation by ẋ, we

see that the particle goes form a black bullet to a red one along a curve

of equation my2 +kx2 − cx =Const (which is an ellipse centered on

the point ( c
2k ,0)). In the same manner, when the velocity is positive,

the particle goes form a red bullet to black one along an ellipse cen-

tered on (− c
2k ,0). Arguing so, we verify that the motion stops when the

particle reaches the interval [− c
2k , c

2k ] of the axis y = 0.
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Fig. 2.37. Hysteresis loop for the Coulomb’s damping. The reader

should compare this result with the one that would have been obtained

with linear dissipation (ie. if the Rayleigh dissipation is quadratic

function of velocity).



CHAPTER 3

IMPLEMENTATION IN STRUCTURE

ANALYSIS

THE principle consists to apply a system of forces F (t ) defined on a time interval [0,T ]
(referred to as time horizon T ) on a linear model of structure and to calculate the

stresses σαβ(t ) at some interesting points. These stresses, which are tensor data, must
be reduced to a scalar signal t 7→ Σe (t) (referred to as equivalent stress1) to which we
apply the rain-flow counting algorithm and the Palmgren-Miner’s rule.

In other words, we have to set up the following numerical process:

A) solve a second-order differential system, set up in Rn to fix the ideas

(3.1) [M ]
..
x + [W ]

.
x + [K ] x = F (t )

to compute the displacements x(t ) of the structure;
B) compute the equivalent stress Σe (t ), which is actually a function Σe (x(.));
C ) and, according to the results obtained in Chapter 2, the damage is obtained in

calculating the integral

(3.2) D =
2T∫

T

w
(
Σe (t ),Σ0(t ), Σ̇e (t )

)∣∣Σ̇e (t )
∣∣ d t

where
• w is defined by the formula (2.62) page 72, according to the inverse of the

number of cycles to failure identified with the help of the Wöhler’s abacus;
• and, to simplify the notations, we do not distinguish between the signal Σe and

its “periodic” counterpart Σper
e defined on [0,2T ] by the formula (2.24) page 50.

1Obtained in computing for instance a deviatoric invariant.
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This chapter, organized as follows:

Contents

3.1. Integration of the state equation 96
Uni-dimensional case 98

Convolution formula 102

Diagonalization process 104

Integration algorithm 105

3.2. Implementation on an example 105
Continuous model 105

FEM approximation 108

Numerical computations and mechanical analysis 110

Comparison with the transient methods 113

3.3. Application to damage computation 115
Practical application 117

3.4. Exercises and complements 119
Solutions & homeworks 119

aims at defining and illustrating with the help of simple examples the algorithms which
are to be set up for carrying out the steps A) to C) of the damage computation process.
We will see in Chapter 4 a way to adapt these algorithms to compute the descent direction
of the structure optimization problem introduced in figure (Fig. 1.16) page 26.

3.1. Integration of the state equation

Let’s first rewrite the state equations (3.1) as the first-order system (ie. set y = ẋ)

d

d t

{
x
y

}
=− [A]

{
x
y

}
+G(t )

where [A] is the matrix

[
0 −I

[M ]−1 [K ] [M ]−1 [W ]

]

and G(t ) the vector

{
0

[M ]−1 F (t )

}(3.3)

Several methods may be used to solve this system of differential equations:

1o/ Setting X =
{

x
y

}
, the transient integration methods consist to approximate the

time derivative of the left hand member of (3.3) by the finite difference2

d X

d t
(ti +h) ≈ X (ti +h)−X (ti )

h
and its right hand member by

− [A] X (ti +h)+G(ti +h) or by − [A] X (ti )+G(ti )

2Called Euler numerical scheme; other discretization methods, such as Newmark methods, implicit

or explicit, may be considered but basically they lead to the same conclusions.
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according to the numerical scheme (implicit or explicit) used to calcu-
late X (ti+1) := X (ti +h) by one of the following recurrence equations:

(3.4a) X (ti+1) = X (ti )+ (Id +h[A])−1 G(ti +h) or by

(3.4b) X (ti+1) = X (ti )−h ([A]X (ti )−G(ti ))

• the recurrence (3.4b) is stable if the time step size h := hexp is small enough: its
order of magnitude must be the inverse of the highest natural frequency of the
system (3.1)3; as for fatigue analysis, the time horizon is about 100 seconds, this
leads to perform between 1.0E 9 and 1.0E 10 integration steps to compute the
criterion;

• while the recurrence (3.4a) is unconditionally stable, but as it produces a nu-
merical dissipation proportional to the step size, suitable results are obtained
for a step size hi mp ≈ 100hexp ;

2o/ An alternative to the above mentioned transient methods consists to exploit the
analytic solution (3.5) of a linear system of differential equations to compute the
solution of the system (3.3); this method will be referred to as “short time” forced
response method.

We will see in this Section that this method allows

• to significantly reduce the dimension of the state equation by retain-
ing only the relevant eigenmodes with respect to the excitations;

• and to perform the time integration on the same time step size as the
sampling of the measured input signals (ie. without any re-sampling
of the excitations).

As it is linear, the state equation can be solved with the help of the analytic formula

(3.5) X (t ) = e−[A]t X0 +
t∫

0

[
e−[A](t−s)]G(s)d s

The objective is to detail a numerical method to compute the integral (3.5); this task is
achieved within three steps:

1o/ The first one is intended for explaining the computations which are to be carried
out to solve a second order differential equation submitted to arbitrary excitations.

2o/ We then show that if the damping matrix satisfies the Basile’s hypothesis, the sys-
tem (3.1) decouples in a basis, referred to as modal basis.

3o/ At last, we compare the performances of the obtained algorithm to the transient
algorithms for the discretization of a system of differential equations.

3For standard FEM model, this leads to choose a time step-size hexp ≈ 1.0E−7s.
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Uni-dimensional case. In this first step we are focusing on the second order equa-
tion, written in its canonical form

ξ̈+ω2ξ+ c ξ̇= f (t ) for t ∈ [0,T ]

ξ(0) = ξ0 and ξ̇(0) = ξ̇0
(3.6)

Setting Ξ=
{
ξ

ξ̇

}
, this equation is equivalent to the first order system

dΞ

d t
=

[
0 1

−ω2 −c

]
Ξ+

{
0

f (t )

}
Ξ(0) =Ξ0

(3.7)

which can be solved with the help of formula (3.5). The eigenvalues of the matrix

[A] =
[

0 1
−ω2 −c

]
are

(3.8) λ1 =−1

2

(
c +

√
c2 −4ω2

)
and λ2 =−1

2

(
c −

√
c2 −4ω2

)
Introducing the change of bases of matrices4

[P1] =
[

1 1
λ1 λ2

]
and [P2] = 1

λ2 −λ1

[
λ2 −1
−λ1 1

]
the exponential e[A]t is factored as

(3.9) e[A]t = [P1]

[
eλ1t 0

0 eλ2t

]
[P2]

Formulas (3.9) and (3.5) allow then to perform the time integration of (3.6); all compu-
tations carried out we obtain

(3.10)

ξ(t ) = eλ2t −eλ1t

λ2 −λ1
ξ̇0 + λ2eλ1t −λ1eλ2t

λ2 −λ1
ξ0

+ 1

λ2 −λ1

t∫
0

(
eλ2(t−s) −eλ1(t−s)

)
f (s)d s

ξ̇(t ) = λ2eλ1t −λ1eλ2t

λ2 −λ1
ξ̇0 +

λ1λ2
(
eλ1t −eλ2t

)
λ2 −λ1

ξ0

+ 1

λ2 −λ1

t∫
0

(
λ2eλ2(t−s) −λ1eλ1(t−s)

)
f (s)d s

Sub-critical damping. When c2 −4ω2 < 0 the damping is said to be sub-critical; λ1

and λ2 are complex conjugate numbers; setting

δ= 1

2

√
4ω2 − c2

4The matrix [P1] is obtained in writing in columns the eigenvectors of [A] and [P2] is the inverse

of [P1].
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the formulas (3.10) simplify as:

(3.11)

ξ(t ) = e−
c
2 t sinδt

δ
ξ̇0 + e−

c
2 t (c sinδt +2δcosδt )

2δ
ξ0

+ 1

δ

t∫
0

e−
c
2 (t−s) sin(δ(t − s) ) f (s)d s

ξ̇(t ) =e−
c
2 t (2δcosδt − c sinδt )

2δ
ξ̇0 −

(
2ω2 − c2

)
e−

c
2 t sinδt

2δ
ξ0

+ 1

2δ

t∫
0

e−
c
2 (t−s) (2δcos(δ(t − s) )− c sin(δ(t − s) )) f (s)d s

REMARKS 3.1 1o/ If c = 0 and f (t ) = cosω0t , the formula (3.11) may be rewritten as

ξ(t ) = sinωt

ω
ξ̇0 +cosωt ξ0 +

{
1

ω2−ω2
0

(cosω0t −cosωt ) if ω0 6=ω
t

2ω sinωt if ω0 =ω
We see that:

• the response contains the angular velocity ω0 of the excitation and the angular
velocity ω of the harmonic oscillator, we see on the other hand that the effect
of the initial conditions is permanent;

• when the angular velocity of the excitation coincides with the angular velocity
of the oscillator, the solution ξ(t ), which is bounded on any time horizon [0,T ],
diverges when T goes to +∞; the divergence ratio being linear with respect
to T ;

• the response of the oscillator turns its phase when ω0 crosses the angular
velocity of the undamped equation.

2o/ Assume that c > 0 and that the damping remains sub-critical then, always for an
excitation of the form f (t ) = cosω0t , the convolution product ξc in formula (3.11) is

ξc (t ) = 1

(ω2 −ω2
0)2 + c2ω2

0

(
cω0 sinω0t + (

ω2 −ω2
0

)
cosω0t

)
+ e−

c
2 t

(ω2 −ω2
0)2 + c2ω2

0

((
ω2

0 −ω2)cosδt − c
(
ω2

0 +ω2
)

p
4ω2 − c2

sinδt

)
This formula shows that ξ(t) has the following asymptotic behavior when t goes to
infinity:

(3.12) ξc (t ) ≈ ξp (t ) = cos(ω0t −ϕ)

ω2

√(
1− (ω0

ω

)2
)2 + ( cω0

ω2

)2

where ϕ is the phase angle defined by

tanϕ= cω0

ω2 −ω2
0

We see that

• the impact of the initial conditions decreases exponentially with the time and
the response of the oscillator converges to a steady state;
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Fig. 3.1. Evolution of the phase angleϕ vs the damping parameter c .

This picture shows phase shifting of the response of the oscillator at

resonance crossing. The reversal is all the more sudden as the damping

is small.

• the response of the oscillator is (see figure (Fig. 3.1)) out of phase with respect
to the excitation and there is a phase reversal when the angular velocity crosses
a resonance;

• the amplitude of the response reaches its maximum when the angular velocity
of the excitation is ω0 =

p
4ω2 − c2;

• introducing the coefficient of dynamic amplification

(3.13) a(ω0) = 1√(
1− (ω0

ω

)2
)2 + ( cω0

ω2

)2

we have a(ω0) ≥ 1 for ω0 ≤ω while a(ω0) ≤ 1 for ω0 Àω; this means that the
amplitude of the response of the oscillator is greater than (resp. is lower than)
the amplitude of its quasi-static response before (resp. after) the resonance.
We show in figure (Fig. 3.2) the evolution of this coefficient with respect to
damping coefficient c.

Super-critical damping. When c2 −4ω2 > 0 the damping is said to be super-critical;
the eignvalues λ1 and λ2 are both real and negative, to obtain the literal expression of
the solution of (3.6), it suffices to replace the trigonometric functions in formulas (3.11)
by their hyperbolic counterparts, after having set δ= 1

2

p
c2 −4ω2. Then, always for an

excitation of the form f (t ) = cosω0t , the convolution product ξc is

ξc (t ) = ξp (t )+ 1

λ2 −λ1

(
λ2eλ2t

ω2
0 +λ2

2

− λ1eλ1t

ω2
0 +λ2

1

)
and we see that the effect of the initial conditions decreases to 0 without oscillation.
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Thus, in contrast with what happens for the sub-critical damping, the convergence
of ξc (t ) to the stationary state ξp (t ) occurs without oscillating, but the convergence can
be very slow.

Critical damping. The damping is said to be critical if c2 −4ω2 = 0. In this case we
have λ1 = λ2 =− c

2 and the matrix [A] can’t be diagonalized. It can however be made
triangular of the form

[Ã] =
[

− c
2 1+ c2

4
0 − c

2

]
in the basis [P ] = 1√

1+ c2

4

[
1 c

2
− c

2 1

]

As the matrix [Ã] is the sum of a diagonal matrix and a nilpotent one, the exponen-
tial e[Ã]t reduces to the matrices product

e[Ã]t =
[

e−
c
2 t 0

0 e−
c
2 t

] [
1

(
1+ c2

4

)
t

0 1

]
= e−

c
2 t

[
1

(
1+ c2

4

)
t

0 1

]

then applying the formula e[A]t = [P ]e[Ã]t [P ]t we get

e[A]t = e−
c
2 t

[
ct+2

2 t

− c2t
4 − ct−2

2

]
and the solution ξ(t ) of the differential equation (3.6) is defined by5

(3.14) ξ(t ) = e−
c
2 t

(
t ξ̇0 + ct +2

2
ξ0

)
+

t∫
0

e−
c
2 (t−s)(t − s) f (s)d s

This formula shows that effect of the initial conditions decreases along the time. On the
other hand, when the excitation is of the form f (t ) = cosω0t we see that the convolution
product converges to the steady-state ξp (t ) without any oscillation and this, faster than
in case of super-critical damping.

5If c = 0 then ξ(t) is the solution of the equation ξ̈(t) = f (t) satisfying the conditions ξ(0) = ξ0

and ξ̇(0) = ξ̇0.
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Convolution formula. When the excitation is arbitrary and given under the form

of a sampled signal
(

f (tk )
)Nsamp

k=0 defined on a time horizon T , the principle consists
to replace the sampled signal by the following stair-stepped one, which is piecewise
continuous:

fcont (t ) =
Nsamp−1∑

k=0
f (tk )1[tk tk+1]

The integral x(t ) =
t∫

0
g (t − s) fcont (s)d s in then sampled at time tk by the sum

(3.15) x(tk ) =
k∑

j=0
f (t j )

t j+1∫
t j

g (tk − s)d s

If we approximate the integral by
t j+1∫
t j

g (tk − s)d s ≈ (t j+1 − t j )g (tk − t j )

and assume that t j+1 − t j = δech is constant, we have g (tk − t j ) = g
(
(k − j )δech

)
which

is just the (k − j )th term of a sampling of the convolution kernel, sampled at the fre-
quency 1

δech
. One can thus approximate the sum (3.15) by the following discrete convo-

lution product:

(3.16) x(tk ) ≈ δech

k∑
j=0

f (t j )g (tk− j )

REMARKS 3.2 1o/ Lot of fast convolution algorithms are available, see HENRI [15], they
allow to process extremely long signals so, they are well suited for the integration of the
state equation on a large time horizon. The most basic of them exploits the fact that the
“Fast Fourier Transform” converts convolution products into ordinary products, but in
the complex field, and the formula (3.16) may be computed via the following sequence:

• make a F F T of the signals
(

f (tk )
)Nsamp−1

k=0 and
(
g (tk )

)Nsamp−1
k=0 ;

• calculate term by term the product of the fast Fourier transforms;
• recenter the result by framing it with 0, to avoid circular convolution, and

apply an inverse F F T to the obtained signal; the sequence made of the Nsamp

first samples is then the expected sampling (x(tk ) )
Nsamp−1
k=0 of the convolution

product.

2o/ As the signal g (t) is of the form e−ct sinωt , we can reduce the length of the sig-
nal

(
g (tk )

)
k by restricting it to “the characteristic time” tN for which the amplitude

of the sinusoid is sufficiently attenuated. The sampling frequency of g must however
remain the same as that of f .

3o/ When the angular velocity ω of the kernel g is greater than the largest of the angular
velocities found in the excitation signal f , we can apply the formula (3.12) and assume

that x(t ) ≈ f (t )
ω2 , without computing any convolution product; in practice, we can even

assume that this term is negligible compared to the terms of lower angular velocities.
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Diagonalization process. When the damping matrix [W ] is proportional to the
stiffness matrix [K ] or when it can be diagonalized in the modal basis of the undamped
system6, one can define a basis [Q] which decouples the oscillators of the equations (3.1).

This basis can be defined as follows7:

1o/ The mass matrix [M ] being symmetric, it can be diagonalized in an orthonor-
mal basis [Q̃] so that [M ] can be written as [M ] = [Q̃]pmi iy [Q̃]t . As the mass
matrix is positive definite, the entries mi i are positives and we can define a
square root8 [M ]−

1
2 = [Q̃]p 1p

mi i y
[Q̃]t , which satisfies [M ]−

1
2 [M ]−

1
2 = [M ]−1. Mul-

tiplying (3.1) by this square root matrix, we obtain the system of equations

[M ]
1
2 ẍ + [M ]−

1
2 [K ]x + [M ]−

1
2 [W ]ẋ = [M ]−

1
2 F (t )

2o/ Setting x̃ = [M ]
1
2 x in the previous system, this one can be written

(3.17) ¨̃x + [M ]−
1
2 [K ][M ]−

1
2 x̃ + [M ]−

1
2 [W ][M ]−

1
2 ˙̃x = [M ]−

1
2 F (t )

Since the matrices [M ]−
1
2 [K ][M ]−

1
2 and [M ]−

1
2 [W ][M ]−

1
2 are symmetric, there is

an orthonormal base [Q̂] which diagonalizes both of them under the forms pk̂i iy

and pŵi iy . At last, setting x̂ = [Q̂]t x̃ and multiplying the equation (3.17) by [Q̂]t , we
get the uncoupled (or diagonal) system of equations

(3.18) ¨̂xi i + k̂kk x̂i i + ŵkk ˙̂xi i = F̂i (t )

3o/ To diagonalise (3.1), we have at last performed the change of bases

x̂ = [Q̂]t [M ]
1
2 x

which is not orthogonal. Note that
• the matrix pk̂i iy is made up of the natural frequencies of the undamped system

and the basis [M ]−
1
2 [Q̂] is the basis of the associted eigen-modes;

• it is the vector [M ]−
1
2 F (t ) which is projected on the modal basis, and not the

vector F (t )!

REMARKS 3.3 1o/ When the stiffness matrix [K ] est is semi-definite, some of the en-
tries k̂kk are zero and the integration formula used to compute the solution of (3.17)
corresponds to the critical damping (resp. super-critical damping) case, according to
the value, zero or positive, of the corresponding damping coefficient ŵkk . For instance,

formula (3.14) shows that t 7→ x̂kk (t) satisfies the differential equation d 2 x̂kk

d t 2 (t) = f̂k (t)
if ŵkk = 0.

6This assumption is satisfied when the damping is proportional to the stiffness, mass or to the critical

damping per mode.
7There are more efficient methods to compute the eigen-values and the eigen-modes of the general-

ized eigen-value problem (λM +K )X = 0, but they use methods of numerical analysis of matrices which

are beyond the scope of this course.
8If we define the square root of a matrix [M ] as a matrix

p
[M ] such that

p
[M ]

p
[M ] = [M ], a given

semi-definite positive matrix [M ] has several square roots, but only one of them is semi-definite positive

and is called principal square root. For instance the matrices[
sinθ ±cosθ

±cosθ −sinθ

]
and

[
−sinθ ±cosθ

±cosθ sinθ

]
for θ ∈ [0,2π]

are symmetric square roots of the identity matrix, but none of them is definite positive.
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2o/ The modal basis which diagonalizes the system of equations (3.1) is orthonormal for
the scalar product

(x, x ′) 7→ 〈x, x ′〉[M ] := 〈x, [M ]x ′〉

3o/ The forced response method proposed here9 differs from those which are traditionally
implemented in the FEM software insofar as it permits to reproduce the transient states
of the dynamic system. For instance, the coefficients of dynamic amplification are used
here only to eliminate from the integration process the oscillators whose the impact
on the final result may be considered as negligible. The price to pay for this level of
generality is to replace the standard products “of complex numbers” by convolution
products, which are more expensive to compute; but the example given in Section 3.2
shows that they must be carried out on a very limited number of oscillators10.

Integration algorithm. The integration method for the state equation described
previously is summarized under the form the algorithm given in figure (Fig. 3.5) and
may be implemented in any FEM software.

3.2. Implementation on an example

To illustrate the implementation of the algorithm introduced in figure (Fig. 3.5) we
study the example described in figure (Fig. 3.6), which deals with a beam submitted to
torsional loads. More specifically, the purpose of the Section is to explain the articulation
of the computations allowing to preform the fatigue analysis of a structure which is
carried out in the Section 3.3. The step to step programming of this example is given in
Annex B.1 page 209.

Continuous model. The state equation governing the shear behavior of a beam of
variable cross section is

I (s)
∂2θ

∂t 2 −µ ∂

∂s

(
J (s)

∂θ

∂s

)
= m(s, t ) (Equilibrium equation)

∂θ

∂s
(Si ) = mi (t )

µ J
for i = 0,1 (Torques at the ends of the beam)

θ(0, s) = ∂θ

∂t
(0, s) = 0 for s ∈ [S0,S1] (Initial conditions)

(3.19)

where:

• θ(s) is the rotation angle of the cross section Σs , of abscissa s, around the
neutral line;

• µ is the second Lamé coefficient of the constitutive the material;
• I (s) and J (s) are respectively the inertia and the modulus of rigidity in torsion

of the cross section Σs ;

9Which could be qualified of “short time integration method”.
10The integration of the state equation is thus performed on a reduced model; we will see in the

Chapter 4 that the same is true for the adjoint equation.
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Use of these data to perform
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Computation of the product x = Q̂ t x̂

Fig. 3.5. Integration algorithm for the state equation. The main dif-

ficulty of this algorithm is the choice of the modal truncation; we use

the Nyquist-Shannon theorem to eliminate in the modal basis the

eigenmodes whose frequencies are higher than Fech
2 . On the other

hand, to reduce the computational cost, we can truncate the convo-

lution kernels at N ′
samp samples, where N ′

samp is defined according

to the heuristic given in the Remark 3.2-2o/. Note further that the

integration is carried out under the hypothesis x(0) = ẋ(0) = 0.
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d2 = 0.4d1

Linear decrease of the cross section

s

Added punctual inertia

Unit length inertia: I (s) = ml d 2

8

Torsional stiffness modulus J (s) = πd 4

32

Fig.a

Fig.b

520mm

160mm

d1

BA C ED

Total inertia I = 225g m2

I /2

I /4

The symmetry of the mechanical system is preserved

Fig. 3.6. Description of the mechanical device. It is a beam of vari-

able cross-section, whose geometric parameters are shown on the

figure Fig.a). It is discretized into 26 elements, and submitted at its

ends to two opposite torques about the neutral line. We add moreover

the 4 punctual inertia shown on the figure Fig.b).

• m(s, t) (resp. mi (t)) is a distributed torque (resp. punctual torque on the
ending cross-sections) around the neutral line of the beam.

REMARK 3.4 Within the framework of curvilinear modelling of a three-dimensional
body, the cohesion forces are described by distributor tensor fields, whose elements of
reduction ~T (s) and ~M(s) satisfy the equilibrium equations

d~T

d s
(s)+~f (s) = 0 and

d ~M

d s
(s)+~e1 ∧~T (s)+ ~m(s) = 0

where~e1 is the tangent vector to the neutral line and ~f (resp. ~m) is the resultant (resp.
the resultant moment) on the neutral line of the tri-dimensional forces applied to the
beam.

It can be shown that under these conditions, only the components σ12 and σ13 of
the stress tensor [σ] are nonzero in the cross-sections and if they are circular11, these

11It can be shown that in the case of an arbitrary cross-section, the stresses are defined with the help

of a stress distribution function ψ by the formulas

σ12 = M1

J
∂3ψ and σ13 =−M1

J
∂2ψ

where J = 2
∫
Σ
ψ and ψ is defined by the partial differential equation:

4ψ=−2 in the cross-section Σ

ψ= 0 on the boundary ∂Σ

In this case, the location the maximum stresses must be defined numerically!
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x3

x2

σ12

σ13

Fig. 3.7. Stresses in the cross sections of the beam. When the cross

section of the beam is circular, the stresses are maximal in norm on

the boundary of the cross sections; but this is generally false for other

shapes of the cross section (think for instance to a L shaped cross

section).

stresses are, see figure (Fig. 3.7), maximal on the boundary and connected to the strain
torsor dθs

d s by the relationships

σ12 =−x3µ
dθ

d s
and σ13 = x2µ

dθ

d s
Under these conditions, computation of damage can be performed by processing the
variable

(3.20) Rµ
dθ

d s
where R is the radius of the cross-section.

which is representative of the maximal shear stresses in the cross-sections.

FEM approximation. By discretizing the equation (3.19) with the help of linear
finite elements, we obtain a state equationof the form (3.1) where [M ] and [K ] are
tridiagonal matrices build as follows:

1o/ multiplying the first equation of (3.19) by a test function ψ and integrating the
result by part on [S0,S1], we see that the equation (3.19) is equivalent to

S1∫
S0

I
∂2θ

∂t 2 (t , s)ψ(s)d s −
S1∫

S0

µJ
∂θ

∂s

∂ψ

∂s
d s −

S1∫
S0

m(t , s)ψ(s)d s

=µJ

(
∂θ

∂s
(S0)ψ(S0)− ∂θ

∂s
(S1)ψ(S1)

)
= m0(t )ψ(S0)−m1(t )ψ(S1)

(3.21)

the last equality in this equation reduces to 0 when the beam is not loaded on the
ending cross-sections and we obtain the classical variational formulation of the
beam equation;

2o/ the discretization of this equation is then performed in introducing a subdivi-
sion (si )N

i=0 of the interval [S0,S1] and assuming that θ and ψ are piecewise affine
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functions defined by their values12 θ(si ) = θi and ψi (si ) =ψi at the points si , that
is:

(3.22) θ(s) = 1

si+1 − si
(θi (si+1 − s)+θi+1(s − si )) for s ∈ [si , si+1]

this gives
si+1∫
si

µJ (s)
dθ

d s

dψ

d s
d s =µ (ψi+1 −ψi )(θi+1 −θi )

(si+1 − si )2

si+1∫
si

J (s)d s

which is written in matrix form as

(3.23) (ψi ,ψi+1)
µ

δ2
i

si+1∫
si

J (s)d s

[
1 −1
−1 1

]{
θi

θi+1

}

where δi = si+1 − si . In the same way, the integral
si+1∫
si

I (s) d 2θ
d t 2 (s)ψ(s)d s is

(3.24) (ψi ,ψi+1)
1

δ2
i

si+1∫
si

[
I (s)(si+1 − s)2 I (s)(si+1 − s)(s − si )

s ym I (s)(s − si )2

]
d s

{
θ̈i

θ̈i+1

}

at last, the torque m(t , s) is discretized as

(3.25) (ψi ,ψi+1)δi

si+1∫
si

{
m(s, t )(si+1 − s)
m(s, t )(s − si+1)

}
d s

assuming that m(s, t ) is m(t )
δi

on the element [si , si+1], the previous formula reduces
to

(ψi ,ψi+1)
m(t )

2

{
1
1

}
in the case of a circular beam, whose diameter varies linearly in function of s we
have J (s) = π

32δ4
i

(di (si+1 − s)+di+1(s − si ))4 and

si+1∫
si

J (s)d s = π

160

(
d 4

i+1 +di d 3
i+1 +d 2

i d 2
i+1 +d 3

i di+1 +d 4
i

)
δi

we can check in the same way that
si+1∫
si

I (s)(si+1 − s)2d s = ρπδ3
i

3360

(
d 4

i+1 +3di d 3
i+1 +6d 2

i d 2
i+1 +10d 3

i di+1 +15d 4
i

)
si+1∫
si

I (s)(si+1 − s)(s − si )d s = ρπδ3
i

6720

(
5d 4

i+1 +8di d 3
i+1 +9d 2

i d 2
i+1 +8d 3

i di+1 +5d 4
i

)
3o/ denoting [k i ] (resp. [mi ]) the elementary stiffness matrix (of the i th element) de-

fined in (3.23) (resp. the elementary mass matrix defined in (3.24)) and denotingΨ

12Which implicitly depends upon the time; this means that the solution of (3.21) has separated

variables.
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Unit Numerical value

Young’s modulus d aN /mm2 0.16500E +05

Poisson ratio without 0.3

Mass density kg ∗10−4/mm3 0.79E −09

Diameter d1 mm 4.05E +01

Tab. 3.1. Numerical data used for the simulations. The units may

appear strange at first glance, but they allow to express the lengths in

mm and forces in (d aN ) or in kg .

(resp. Θ) the vector obtained in listing columnwise the test functions ψi (resp. the
unknown θi ) we can rewrite the equation (3.21) in the form:

Ψt [M ]Θ̈+Ψt [K ]Θ=Ψt F (t ) or any test functionΨ

with the initial conditionΘ(0) = Θ̇(0) = 0

where [M ] and [K ] are built with thee help of the assembly process described below

[K ] =



k1
11 k1

12 0

k1
21 k1

22 +k2
11 k2

12 0

0 k2
21 k2

22 +k3
11 k3

12 0

...
. . .

. . .
. . .

. . .

0 . . . 0 kn
12 kn

22


4o/ formula (3.22) allows to calculate the derivative dθ

d s as

dθ

d s
= θi+1 −θi

δsi

which is actually the derivative on the right of dθi
d s ;

5o/ at last, the stress Σe is computed in the middle of the element of nodes p −1 and p
by a formula of the form

(3.26) Σe (p, t ) = (Vp ;Θ(t ))

where Vp is the vector

(3.27) Vp = µ(Rp−1 +Rp )

2δsp

(0, · · · ,0,︸ ︷︷ ︸
p−1

−1,1,0, · · · ,0)

and Rp is the radius of the beam at the node p.

Numerical computations and mechanical analysis. Applications given in this ex-
ample are carried out on the basis of the numerical data specified in table (Tab. 3.1) and
we assume that the beam to be discretized in 26 elements of identical lengths.

Quasi-static loading. In this case the beam is loaded on the endings elements by
two opposite torques at 200

δs d N ∗m per mm given in the figure (Fig 3.9-a). The stresses,
which are maximal in the segment BD, are plotted in the figure (Fig 3.9-b) for two
numerical values of the diameters of the cross sections. Note that:
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Fig. 3.8. Eigenmodes of the beam in configurations “ with and with-
out additional inertia”. The three eigenmodes plotted in this figure

are global modes of the beam; the mode at 712 H z (without additional

inertia) and at 32 H z (on the equipped beam) is a global mode (the

phases of the torsional vibrations at the points A and E are opposite

and these points are antinodes) this mode is particularly well excited

by the quasi-static loading plotted in the figure (Fig. 3.9). The modes

shown in red (at 6kH z in Fig.a, at 135 H z in Fig.b) and in blue (at

10kH z in Fig.a, at 144 H z in Fig.b) are deformation modes of the

notch; in the absence of additional inertia, they are quite difficult to

excite (the vibration nodes of these mode are located near A and E)

by the torques at the ends of the beam while they become when the

beam gets equipped with the additional inertias.

• the natural frequencies of a torsion beam depend only on the material coef-
ficients (second coefficient of Lamé, mass density) and on the length of the
beam. The figure (Fig. 3.8) shows that the interest of the additional inertia is to
change the natural frequencies and the mode shapes of the beam, in order to
enrich the spectrum of the structure at low frequencies;

• although reduction of diameter doesn’t change the natural frequencies of
the beam, the integration method allows to reproduce the effect of stiffness
change;

• and the effects of discontinuous loads are well reproduced; this aspect of the
method is welcomed to integrate in the Section 4.3 the adjoint state of the
structure optimization problem.
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Fig. 3.9. Simulation of the beam without additional inertia (damp-
ing 20% of the critical damping) Figure Fig.a) shows the torques ap-

plied on the beam and Figure Fig.b) shows the results of the simula-

tion (stresses at point C ) for two given diameters; in this case, the first

natural frequency is 712 H z, the convolutions are performed on 512

samples and computed on the first two oscillators associated with the

rigid body and the first eigenmode of the beam; taking into account

the chosen sampling frequency (5.12kH z), the response of the other

egeinmodes is quasi-static and the table 3.2 shows that their contribu-

tion to global the response of the structure, which may be computed

by the formula (3.13), is negligible.

N o mode Frequency H z
Generalized stiff-

ness ( r d2/s2)
Damping

1 0 0 0

2 712 2.01E +07 4.5E +02

3 6.7E +03 1.8E +09 4.2E +03

4 10.7E +03 4.5E +09 6.7E +03

5 11.9E +03 5.6E +09 7.45E +03

Tab. 3.2. Characteristics of the 5 first modes of the beam without
additional inertia (damping: 20% of the critical damping) This table

shows for instance that to obtain an accurate response of the third

mode, the loads must be sampled at 14kH z and that before its reso-

nance, the amplitude of the response of this mode is 90 times lower

than that of the mode N o2.

Dynamical loading. In this case we apply the torques given in figure (Fig 3.10) which
are obtained from those shown in figure (Fig 3.9.a) by superposition of a pulsed torque
at 140 H z, sampled at 1024 H z. The stresses are computed at the middle of the beam
(node N o14) and at the node N o18 of the meshing of plotted in figure (Fig. 3.8). The
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N o mode Frequency Stiffness Damping

1 0 0 0

2 32 4.17E +04 10.21E +00

3 135.3 7.22E +06 4.25E +01

4 144.5 8.24E +06 4.53E +01

5 8.91E +03 3.14E +09 2.80E +03

Tab. 3.3. Characteristics of the 5 first modes of the equipped beam
(5% of the critical damping) This table shows that to obtain an accurate

response of the modes 3 and 4 the loads must be sampled at 300 H z and to

observe the response of the mode N o 1 we have to perform the simulation

during at last 0.6 seconds.
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Fig. 3.10. Dynamic loading of the beam. As in the case shown on the

figure (Fig 3.9.a) the beam is loaded at points A and E by two opposite

torques; the magnitude of the pulsed torque at 140 H z is about 40% of

the quasi-static loading.

computations are performed with four oscillators at frequencies 0, 32, 135.3 et 144.5 H z
because, see table (Tab.3.3), the contributions of the other egein-modes to the overall
response of the beam are negligible.

Comparison with the transient methods. The comparisons between the methods
of integration are performed on the basis of the computations performed within the
framework of the previous example, the beam being submitted at its ends by the torques
depicted in figure (Fig 3.9-a). The state equation is solved with the help of the forced
response method and by the implicit finite difference method (3.4a). Staying at iso-
damping, 5% of the critical damping per mode13, the results of these comparisons are
summarized in figures (Fig. 3.12) which show that

13According to the Remark 3.1 page 101 critical damping is defined on the basis of the square roots of

the eigenvalues λi of the matrix [K̃ ] = [M ]−
1
2 [K ][M ]−

1
2 , to define the damping matrix [W ] corresponding

to a fraction c of the critical damping per mode we have to set

[W ] = c[M ]
1
2 [Q]p

√
λi y[Q]t [M ]

1
2
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Fig. 3.11. Computation of the stresses for quasi-static and dynamic
loading. The beam, equipped with its additional inertias, is loaded on

its ends by the torques shown on the figure (Fig 3.10). Computations

are performed with 5% of the critical damping per mode. We see that

the quasi-static component of the loads excites the mode at 32 H z and

generates a high level of stress in C ; this is, on the first hand, due to the

fact that the mode N o2, in black on the figure (Fig 3.8), is particularly

excited by opposite loads at the ends A and E of the beam and, on the

second hand, because C is the point where the strain of the mode N o2

is maximum. The dynamic part of the loads are quite legible on the

stresses computed in B because this point is the point where the strain

of the mode N o4, in blue on the figure (Fig 3.8), is maximum. Notice

at last that the mode N o3, in red, can’t be excited by solicitations at

the ends of the beam.

the two methods lead to similar results but the implicit finite differ-
ence method produces an extra-damping proportional to the step
size of the time discretization. As such, it requires a finer sampling of
the excitations to converge to the same result as the forced response
method.

where [Q] is the modal basis of [K̃ ]. In other words, [W ] is the matrix

(3.28) [W ] = c[M ]
1
2

√
[M ]−

1
2 [K ][M ]−

1
2 [M ]

1
2

which is semi-definite positive.
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Forced response Finite diffrences

A
d

va
n

ta
ge

s

– Converge without introducing numerical

damping with low sampling of the excitations;

this allows the integration of the structural

equations on long time horizon.

– Not expensive in terms of state variables

because the computations are carried out on

reduced models with less than 10% of the initial

variables.

– In the context of structural optimization,

the integration cost of the adjoint equation is

identical to that of the state equation.

– Easy to set up from a digital point of view.

– Unconditionally stable in case of implicit

scheme

– Easily adapts to the treatment of nonlinear

problems, especially for the explicit versions.

D
ra

w
ba

ck
s

– Requires manipulations of complex matrix;

examples: SVD, eigenmodes extraction, etc.

– Do not generalize to the treatment of all

nonlinear equations.

– Differentiation of the state equation difficult

in the framework of optimization.

– Difficulty to control the numerical damping.

– The integration of the adjoint equation re-

quires a very large volume of data and makes

the method inefficient for large systems.

Tab. 3.4. Comparison between finite difference and forced response
methods for the numerical integration of structural dynamical sys-
tems.

Table (Tab. 3.4) summarizes the advantages and drawbacks of the integration methods
to numerically process a problem of vibrations of structures.

3.3. Application to damage computation

Once the state equation solved, the stresses t ∈ [0,T ] 7→ Σe (t) computed and sampled
by the methods outlined in the previous Section, it remains to define a calculation
method of the damage in some parts of the structure. The Theorem 2.1 page 43
shows that this can be carried out in computing the total variation D(Σe ) of the func-
tion14 t ∈ [0,T ] 7→Hµ(Σper

e )(t +T ) where µ is defined, from the Wöhler’s curves of the
material, by the formula (2.11) page 43.

Then the Theorem 2.3 page 72 defines, under some regularities conditions on the
mapping t 7→Σ

per
e (t ), a way to compute this total variation.

Purpose of this Section is to explain with the help of an algorithm the computations that
must be carried out to calculate the integral (2.61).

14We recall that if v is a numerical mapping defined on [0,T ], then v per is defined on [0,2T ] by

v per (t ) =
{

v(t ) if 0 ≤ t ≤ T

v(t −T ) if T ≤ t ≤ 2T

this definition makes sense if v(0) = v(T ) = 0 for instance; as we are talking about a function v which is the

solution of a differential equation, this reduces to assume that the excitations of the dynamic system are

zero on a sub-interval [T0,T ] of [0,T ] and that the damping is sufficient to have limt→T v(t ) <σd .



116 3. IMPLEMENTATION IN STRUCTURE ANALYSIS

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

−0.4

−0.2

0.2

0.4

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

−0.6

−0.4

−0.2

0.2

0.4

0.6

time in s

Forced response

Implicit Euler 

R
o

ta
ti

o
n

 o
f 

n
o
d
e 

1
8

R
o
ta

ti
o
n
 o

f 
n
o
d
e 

1
8

Forced response and Euler methods

Computations on 65536 samples

Computations on 1024 samples

Fig. 3.12. Comparison between the finite difference method and the
forced response method for the integration of the beam equation.
We show in these figures the rotations of the beam computed at B (see

figure (Fig. 3.6)) for different time discretizations of the state equation.

The blue curves show the computation results for the forced response

method while the reds one are the results obtained by the implicit

Euler method. We see that 1024 samples are sufficient to obtain the

convergence with the forced response method while 64 times more are

necessary to achieve convergence for the Euler method. The Euler and

the forced response methods converge to the same solution: figure on

the right, where the red and blue curves are superimposed.

1o/ The first step consists to identify the “turning-point” of the mapping t 7→Σ
per
e (t );

to this end, we have to compute the graph{(
σa , Eσa (Σper

e )(tk )
)
σa ≥ 0

}
where Eσa (Σper

e )(tk ) is the solution of the equation (2.39) computed at each sam-
pling time tk of the sampled solution Σper

e (tk ) and Σ̇per
e (tk ) of the state equation.

This can be carried out in giving a subdivision
(
σai

)m
i=1 of the interval [0,σmax ] and

in using the fact that the sampled solution of (2.39) is defined by the recurrence
equation (2.50) page 65, this amounts (see the algorithm 3.1) to fill in the matrix [E ]
defined as follows15

Ei j = Eσai
(Σper

e )(t j ) for 1 ≤ j ≤ 2k and 1 ≤ i ≤ m

2o/ The second step, which is intended for sampling the function t 7→Σ0(t ), consists to
identify as explained in the algorithm 3.2 the first extremum of each column E j of
the matrix [E ].

15The algorithm only stores the column E j of [E ].
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3o/ The last step consists to compute the integral (2.61) by a trapeze formula16, and
this done by updating the value D(Σe , ti ) of the damage in writing that

D(Σe , ti ) =D(Σe , ti−1)

+δt w
(
Σe (ti ),Σ0(T + ti ), Σ̇e (ti )

)∣∣Σ̇e (ti ))
∣∣ for 1 ≤ i ≤ k

(3.29)

where
• w is the mapping defined by the formula (2.62) page 72
• and δt is the sampling time of the state equation.

Algorithm 3.3 summarizes the computations which are to be carried out to calculate the
damage D(v) caused by a signal t ∈ [0,T ] 7→ v(t ) with the help of the theoretical results
given in the Theorem 2.3.

Algorithm 3.1: Partial integration of equation (2.39) with the help of the recur-
rence (2.50) page 65.

input :
• Table

(
σai

)m
i=1 containing the sampling points of Eσa (v, t ).

• Sampling of σa 7→ Eσa (v, tk ) in the column E1, of size m ;

• Value v(tk+1) of v(t ) at the sampling time point t = tk+1 ;

• Step size δt of the sampling of v(t ).

output : Column E1 updated E1 ←
(
Eσai

(v, tk+1)
)m

i=1

begin
for i = 1 to m do

y1 := E1(i )+kδt (v(tk+1)+σai )
1+kδt

and y2 := E1(i )−kδt (σai −v(tk+1)
1+kδt

;

if y2 − v(tk+1) ≤−σai then
E1(i ) ← y2

else

if y1 − v(tk+1) ≥σai then
E1(i ) ← y1

end

end

end

end

Practical application. Starting from the example given in Section 3.2 we show how
to set up the previously explained algorithms to calculate the damage caused at some
critical points of the beam when this one is loaded at the ends by the opposite torques
depicted in figure (Fig. 3.10).

1o/ It is assumed that the Wöhler’s curve is defined by a Stromeyer17 formula with the
numerical coefficients:

bs = 0.42 Cs = 3.6E +09, with the fatigue limit σd = 80 MPa

16Which consists to write that
T∫
0

g (t ) ≈ δt

[
1
2 g (x1)+

n−1∑
k=2

g (tk )+ 1
2 g (xn )

]
, where δt = T

n .

17Without accounting for mean stress effect.
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Algorithm 3.2: Computation of Σ0(tk ). Identification of the first extremum of
the table E1 and sampling of Σ0(t ).

input :
• Table

(
σai

)m
i=1 containing the sampling points of Eσa (v, t ) ;

• Sampling of the mapping σa 7→ Eσa (v, tk ) in the table E1 of size m ;

output : Function t 7→Σ0(t ) sampled at time tk .

begin
for i = 1 to m −2 do

p := (E1(i )−E1(i +1)) (E1(i +1)−E1(i +2));

if p ≤ 0 then
Break : exit of the loop

end

end

Σ0(tk ) ←σai+1

end

Algorithm 3.3: Computation of the damage caused by a sampled sig-
nal (v(ti ))n

i=1, defined on a time interval [0,T ].

input :
• Sampling

(
v(ti )

)n
i=1 of v and

(
v̇(ti )

)n
i=1 of v̇ ;

• Sampling
(
σa j

)m

j=1
he sampling points of the function σa 7→ Eσa (v)(ti ) ;

• Material coefficients of the Wöhler’s curves (see the Examples 2.2 page 74).

output : Damage D(v) caused by the loading t ∈ [0,T ] 7→ v(t ).

begin
Initialize the variable E1 at 0 ;

for i = 1 to n do
• Update P1 ← Eσa (v)(ti ) by the algorithm 3.1

• Compute σ0 by the algorithm 3.2

end

Initialize the damage D(v)0 at 0

for i = 1 to n do

• Update E1 ← Eσa (v)(ti ), which is now Eσa (v per )(T + ti )

• Compute σ0, which is σ0(T + ti )

• Set v1 := v(ti ), v2 :=σ0, v3 := v̇(ti ) and compute the integrand w(ti ) = w(v1, v2, v3)|v̇(ti )| by

the formula (2.62) page 72

if i 6= n then
Update D(v)i ←D(v)i−1 +δt w(ti )

else

D(v)n ←D(v)n−1 + δt
2 w(tn )

end

end

end

2o/ The damage generated on the elements of the beam is computed in applying the
algorithm 3.3 on the signals t 7→ Σe (p, t) and t 7→ Σ̇e (p, t) defined by the formu-
las (3.26); the mapping σa 7→ Eσa (Σe , tk ) is sampled on the 100 points

(
σai

)100
i=1

equally distributed between 0 and 1.1maxk |Σe (tk )|. A practical implementation
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is given in the Steps 6) and 7) of the program whose listing is given in Annex B.1
page 209.

3o/ The numerical applications depicted in figures (Fig. 3.13), (Fig. 3.14) and in fig-
ure (Fig. 3.15) show that

• when the angular velocity of the pulsed torque approaches that of an eigen-
frequency of the structure, the damage is maximal at the vibrating loops of
this mode (here zones 2 of the beam) and that the modifications affecting the
dynamical behavior of the structure are the most relevant: decrease by 10%
the additional inertias is less impacting than increasing by the same amount
the diameter of the notch ;

• if the response of the beam is obtained by quasi-static computation (this is the
case for the simulations shown on the figure (Fig. 3.15)) the damage is maximal
in the zone 3 and the damage levels achieved in zone 2, see figure (Fig. 3.13),
are not obtained.

3.4. Exercises and complements

EXERCICE 3.1 (Classical results on numerical schemes for the integration of an ODE)

1o/ Assume that t 7→ x(t ) is a solution of the differential equation ẋ = f (t , x); let xti be
the output of the Euler algorithm, compute the difference x(ti )−xti as a function
of x(ti−1) − xti−1 and deduce an estimation of ‖x(ti ) − xti ‖ as a function of the
discretization step size h.

2o/ Define and compare the stability properties of the explicit and implicit Euler algo-
rithms.

EXERCICE 3.2 Proof the formula (3.5) page 97.

EXERCICE 3.3 (Existence result for the wave equation (3.19) page 105) Use the method
of separation of variables to proof an existence result for the equation (3.19). You can
first study the following PDE:

∂2u

∂t 2 − c
∂2u

∂x2 = m(t , x) for x ∈ [0,1]

u(t ,0) = u(t ,1) = 0

u(0, x) = f (x)
∂u

∂t
(0, x) = g (x)

(3.30)

where c is a positive constant.

EXERCICE 3.4 Use the function “eig” of Matlab to compute the eigen-modes in the
algorithm defined in figure 3.5 page 106 and explain the obtained results.

EXERCICE 3.5 Make an iterative algorithm to compute the square root of a symmetric
definite positive matrix.

EXERCICE 3.6 Proof the mechanical results given in the footnote 11 page 107.

Solutions & homeworks.
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Fig. 3.13. Computation of the damage along the beam. This figure

shows the damage generated on the beam by the torques given in

figure (Fig. 3.10). We see that there are tree interesting zones: the

zone 1 where the stress level does not exceed the fatigue limit σd and

which is not damaged; the zone 2 where, see the figure (Fig. 3.11), the

stress level generated by the pulsed term at 140 H z, which solicits the

natural mode N o3 of the figure (Fig. 3.8),is sufficient to significantly

cause damage and the zone 3, where the quasi-static part of the exci-

tations causes the damage. Comparing the curves in blue and in red,

for example, one sees on the other hand that the damage in the zone 2

depends primarily on the fatigue limit σd because it allows to count

in the accumulated damage all or part of high frequency stress cycles.

In zone 3 the stress level is high enough to be always above the fatigue

limit σd .

Solution of exercise 3.1. We first study the case of the explicit Euler method, which
consists to discretize the differential equation

(3.31) ẋ = f (t , x) on [0,T ]

by the numerical scheme

(3.32) xti = xti−1 +h f (xti−1 , ti−1)
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Fig. 3.14. Impact of design modifications on the damage. We show

on figure Fig.a, the impact of design modifications affecting the stiff-

ness of the beam (diameter of the notch) in this case the modifications

impact the damage in the zones 2 and 3 of the beam; the figure Fig.b

shows modifications affecting the dynamic behavior of the beam; in

this case, the damage in the zone 2 is mainly impacted.

where, (ti )N
i=0 is a sampling sequence contained in [0,T ], such that ti+1 − ti = h

for 0 ≤ i ≤ N −1. In this case, the equation (3.32) can be rewritten as

xti −x(ti ) =(
xti−1 −x(ti−1)

)+ (x(ti−1)−x(ti ))+h f (xti−1 , ti−1)

=(
xti−1 −x(ti−1)

)+ (x(ti−1)−x(ti )+hẋ(ti−1))

−h f (x(ti−1), ti−1)+h f (xti−1 , ti−1)

Assume that t ∈ [0,T ] 7→ x(t) is a solution of the equation (3.31) which is twice differ-
entiable, the Taylor-Lagrange formula shows that there is a positive constant M such
that

‖x(ti−1)−x(ti )+hẋ(ti−1)‖ ≤ Mh2

On the other hand, if f (., t) is assumed to be uniformly Lipschitz18 with respect to t ,
there is a constant C such that∥∥ f (xti−1 , ti−1)− f (x(ti−1), ti−1)

∥∥≤C
∥∥xti−1 −x(ti−1)

∥∥
18There is a constant C > 0 such that

‖ f (x, t )− f (y, t )‖ ≤C‖x − y‖ for any t
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Fig. 3.15. Quasi-static simulations. In this case, only the modifica-

tions that affect the stiffness of the beam have an effect on the damage,

and this justifies to compute the damage with the help of dynamic

simulations.

Combining these inequalities, we obtain

(3.33)
∥∥xti −x(ti )

∥∥≤ (1+C h)
∥∥xti−1 −x(ti−1)

∥∥+Mh2

Setting

δi =
∥∥xti −x(ti )

∥∥
(1+C h)i

the inequality (3.33) can be written as

δi −δi−1 ≤ Mh2

(1+C h)i

summing these inequalities up to n, we get:

δn ≤ δ0 +
n−1∑
k=1

Mh2

(1+C h)k
= δ0 + Mh2

(1+C h)

(
1− 1

(1+C h)n

1− 1
1+C h

)
≤ δ0 + M

C
h

and

(3.34)
∥∥xti −x(ti )

∥∥≤ (1+C h)i
(
δ0 + M

C
h

)
Let a number N of samples be given and assume that h = T

N , then we have:

(1+C h)i ≤ (1+C h)
T
h ≤ e

T
h C h = eC T for any i ≤ N

Combining this inequality with (3.34) we obtain the following error estimation for the
explicit Euler scheme

(3.35)
∥∥xti −x(ti )

∥∥≤ eC T
∥∥xt0 −x(t0)

∥∥+ MeC T

C
h
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Fig. 3.16. Computation’s accuracy according to the sampling. This

figure shows that computation of damage carried out with 8192 sam-

ples on 4 seconds can be regarded as converged (this corresponds to

a sampling step size d t = 5E−04 s) but the computations performed

on 2048 or 4096 samples can already be considered as satisfactory.

Note that 512 samples on 4 seconds are not sufficient to reproduce

the frequency 140 H z of the excitation. The fact that a sub-sampling

overestimates the damage is due to the fact that the numerical inte-

gration (3.29), by the trapezes method, converges by higher values to

the exact integral (2.63) page 74.

A similar inequality can be established for the implicit Euler method.

To conclude, we compare the behaviors of the implicit and explicit schemes for the
numerical resolution of the following differential equation

(3.36) ẋ = ax x(0) = x0

Let T > 0 and a number of samples N be given; define the time step size h = T
N , the

explicit and the implicit Euler’s methods lead to interpolate the solution x(tn) of (3.36)
at time tn = nT

N by the recurrence equations:

xexp
tn+1

=
(
1+ T

N
a

)
xexp

tn−1
and xi mp

tn+1
= 1

1− T
N a

xi mp
tn−1

with the initial conditions xexp
0 = xi mp

0 = x0

(3.37)

so that

xexp
T =

(
1+ T

N
a

)N

x0 and xi mp
T =

(
1

1− T
N a

)N

x0
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Fig. 3.17. Comparisons between implicit and explicit schemes. In

this case we assume that a =−1 and we compare the outputs of the

algorithms (3.37) (plotted in dashed line for the explicit method and

in blue for the implicit one) to the exact solution of (3.36), plotted

in red. We can see that for T
N > a, the outputs of explicit method

oscillate about the exact solution of (3.36), so that the explicit scheme

is considered as an unstable integration scheme for the large values

the step size h = T
N . Notice that if a > 0 the implicit Euler method

should be considered as unstable for the large values of the step size h.

Stability of a numerical scheme always refers to the expected behavior

of the equation we wish interpolate.

and we can easily check that

lim
N→∞

xexp
T = lim

N→∞
xi mp

T = eaT x0

is the exact solution of (3.36) at time T . We show in figure (Fig. 3.17) that the approxi-
mate solution obtained by the explicit scheme can oscillate about the exact solution
and cannot be used as a numerical approximation for the solution of the differential
equation (3.36).

Homeworks.

1o/ Do the same stability analysis for the equation

ẍ +kx = sinωt x(0) = 0

and explain the footnote 3 page 97.
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2o/ Compute the order of convergence of the following modified Euler method

xti = xti−1 +
h

2

(
f (xti−1 , ti−1)+ f (xti , ti )

)
3o/ In the case of the implicit Euler method, the difficulty is to solve the non linear

equation

(3.38) xti −h f (xti , ti−1) = xti−1

to compute xti as a function of xti−1 . Show that if h is small enough and if f (., t)
is Lipschitz continuous, then the equation (3.38) has one and only one solution
which can be obtained with the help of a fixed point algorithm.

Solution of exercise 3.2. The exponential of a matrix [A] is defined as the sum of the
series

(3.39) e[A]t = lim
N→∞

N∑
k=0

[A]k t k

k !

which is normally convergent (and thus absolutely convergent) for any square matrix [A]
and t ∈R. The derivative of the mapping t 7→ e[A]t can be defined, at last formally, by

(3.40)
d

d t
e[A]t = ∑

k≥0
k

[A]k t k−1

k !
= ∑

k≥1

[A]k t k−1

(k −1)!
= [A]e[A]t

Setting X1(t ) = ∫ t
0 e[A](t−s) f (s)d s, we can compute ∆h = X1(t+h)−X1(t )

h as follows:

∆h = 1

h

∫ t

0

(
e[A](t+h−s) −e[A](t−s)

)
f (s)d s + 1

h

∫ t+h

t
e[A](t+h−s) f (s)d s

The formula (3.40) shows that the first term of right hand member of the previous
equation converges to

[A]
∫ t

0
e[A](t−s) f (s)d s

when h goes to 0. By the mean value theorem, one can find th ∈ [t , t +h[ such that∫ t+h

t
e[A](t+h−s) f (s)d s = he[A](t+h−t0) f (th)

Combining these results we see that

d X1

d t
(t ) = lim

h→0
∆h = [A]X0(t )+ f (t )

satisfies X1(0) = 0; to take into account the initial condition X (0) = X0 it remains to set

X (t ) = e[A]t X0 +X1(t )

which, due to linearity, satisfies d X
d t = [A]X + f .

Homeworks.

1o/ Proof an uniqueness result for the equation d X
d t = [A]X + f (t ); Lemma 4.4 page 167

generalizes this result to non-linear differential equations.
2o/ Exponential of matrices is defined in the same manner as the exponential for real

or a complex numbers but proof that:
i ) the relationship e[A]+[B ] = e[A].e[B ] is generally false.
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• compute the exponentials of the matrices

[A] =

 0 0 −ω1

0 0 0
ω1 0 0

 [B ] =

 0 0 0
0 0 −ω2

0 ω2 0

 and [C ] = [A]+ [B ]

where ω1 and ω2 are two real numbers; give a geometric interpretation
of the obtained result19;

• proof however that if [A][B ] = [B ][A] then e[A]+[B ] = e[A].e[B ].
i i ) Is the mapping [A] 7→ e[A] invertible in the space Mn(R) of the real square

matrices of order n? If it is the case, make an algorithm to compute the
logarithm of a square matrix. Same questions in the space Mn(C).

Solution of exercise 3.3. Assume that the undeformed configuration of the beam is
the interval [0,1], we will solve the partial differential equation

I (s)
∂2θ

∂t 2 −µ ∂

∂s

(
J (s)

∂θ

∂s

)
= m(t , s)(3.41-a)

∂θ

∂s
(t ,0) = m1(t )

∂θ

∂s
(t ,1) = m2(t )(3.41-b)

∂θ

∂t
(0, s) = θ(0, s) = 0 for s ∈ [0,1] (initial conditions)(3.41-c)

as follows, within the three steps:

1°/ Apply the method of separation of variables to the homogeneous equation

I (s)
∂2θ

∂t 2 −µ ∂

∂s

(
J (s)

∂θ

∂s

)
= 0

∂θ

∂s
(0) = ∂θ

∂s
(1) = 0

(3.42)

consists to seek solutions of (3.42) under the following particular form:

θ(s, t ) = u(s) f (t )

Using this formula in (3.42), we get the equations

u(s) f ′′(t ) = µ

I (s)

d

d s

(
J (s)u′(s)

)
f (t ) and u′(0) = u′(1) = 0

which show that (3.42) splits into the ordinary differential equation (3.43-a) and the
boundary value problem (3.43-b)

f ′′(t ) =λ f (t )(3.43-a) {
d

d s

(
J (s)u′(s)

)=λ I (s)
µ u(s)

u′(0) = u′(1) = 0
(3.43-b)

where λ is a real number.

• Solve (3.43-b) amounts to find a mapping

s ∈ [0,1] 7→ u(s) ∈R such that u′(0) = u′(1) = 0

19Hint: proof that the exponentials of the matrices [A] and [B ] are rotations in the group SO(3), which

is not a commutative group.
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satisfying the variational equation∫ 1

0

d

d s

(
J (s)u′(s)

)
v ′(s)d s −λ

∫ 1

0

I (s)

µ
u(s)v(s)d s = 0

for any mapping v defined on [0,1]
(3.44)

If we are looking for solutions u in the space20 H 1([0,1]), an integration by
parts shows that solve (3.44) with the boundary conditions u′(0) = u′(1) = 0 is
equivalent to

find u ∈ H 1([0,1]) such that∫ 1

0
J (s)u′(s)v ′(s)d s +λ

∫ 1

0

I (s)

µ
u(s)v(s)d s = 0 for all v ∈ H 1([0,1])

(3.45)

As J and I are positive, continuous functions of s ∈ [0,1] this problem makes
sense and we can easily show21 that it has only the solution u = 0 for λ> 0; the
other solutions are defined via the following Lemma22, which will be proofed
later on.

LEMMA 3.1 There are a decreasing sequence (λn)n such that limn λn =−∞
and a Hilbert basis

(
ϕn

)
n of L2([0,1]), endowed with the scalar product

(u, v) 7→< u, v >= 1

µ

∫ 1

0
I (s)u(s)v(s)d s

such that the equation (3.45) has
– only the solution u = 0 for λ ∈ Ù (λn)n

– and the non-zero solution u =ϕn for λ=λn .

• Deferring λ := λn in (3.43-a) and setting νn =
√

−λn we see that the generic
form of f (t ) is

an cosνn t +bn sinνn t if νn 6= 0

a0 +b0t if ν0 = 0

20It is the space of square-integrable mapping having square-integrable derivative; endowed with the

scalar product

(u, v) 7→
∫ 1

0
u(s)v(s)d s +

∫ 1

0
u′(s)v ′(s)d s,

the space H1([0,1]) is a Hilbert space.
21It is indeed the Euler-Lagrange equation associated with the minimization problem (see Section 4.1

page 140)

(3.46) J (u) = inf
v∈H 1([0,1])

J (v),

where v ∈ H1([0,1]) 7→J (v) ∈R is the convex mapping

J (v) =
∫ 1

0
J (s)(v ′(s))2d s +λ

∫ 1

0

I (s)

µ
(v(s))2d s,

which is positive if v 6= 0. As this functional is corecive for λ > 0 (ie. there is a positive constant c such

that J (v) ≥ c‖v‖2
1) the only solution of the minimization problem (3.46) is u = 0.

22Which can be easily checked for the equation (3.30).
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which allows to define θ(t , s) (at least formally) by the following series23

θ(t , s) =∑
n

(an cosνn t +bn sinνn t )ϕn(s)

where the constants an and bn must be defined according to the initial condi-
tions. For instance if we assume θ(0, s) = θ0(s) and dθ

d t (0, s) = 0, then

an = 1

µ

∫ 1

0
I (s)θ0(s)ϕn(s)d s and bn = 0

2°/ If we want solve the system (3.41) with the additional hypothesis m1 = m2 = 0, let’s
rewrite the equation (3.41-a) as

∂2θ

∂t 2 − µ

I (s)

∂

∂s

(
J (s)

∂θ

∂s

)
= m(t , s)

I (s)

and seek a solution under the form

θ(t , s) =∑
n

gn(t )ϕn(s)

then computing scalar product < θ(t , .),ϕm > of s 7→ θ(t , s) with a basis function ϕm

in L2([0,1]) defined in Lemma 3.1, we must have∑
n

[
d 2gn

d t 2 (t )
∫ 1

0

I (s)

µ
ϕn(s)ϕm(s)d s − gn(t )

∫ 1

0

d

d s

(
J (s)ϕ′

n(s)
)
ϕm(s)

]
= 1

µ

∫ 1

0
m(t , s)ϕm(s)d s

Now use the fact that ϕn is the solution of the variational equation (3.45) for λ=λn to
rewrite the previous equation under the form∑

n
(

d 2gn

d t 2 (t )−λn gn(t ))δmn = 1

µ

∫ 1

0
m(t , s)ϕm(s)d s

which means that for each m the mapping t 7→ gm(t) is solution of the second order
differential equation

d 2gm

d t 2 (t )−λm gm(t ) = 1

µ

∫ 1

0
m(t , s)ϕm(s)d s

with the initial conditions gm(0) = d gm

d t (0) = 0.

3°/ To solve (3.41) in its general form, it remains to make the change of variables

θ̃(t , s) = θ(t , s)− s2

2
m2(t )+ (s −1)2

2
m1(t )

which satisfies d θ̃
d s (t ,0) = d θ̃

d s (t ,1) = 0.

4°/ There are several ways to proof the results stated in Lemma 3.1:

• the first one consists to notice that this Lemma is (see ZETTI [43]) just a
reformulation of the Sturm–Liouville theory concerning existence results for
second order differential equations submitted to end-points conditions;

23There is no warranty that this series converges, but in the classical of applications only a finite

number of its terms are non-zero.
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• but we can also use the regularizing effect of an elliptic PDE to diagonalize
the space equation in a suitable Hilbert space, and as such this method can
be generalized to other situations such as plates, shells etc. Its implementa-
tion is however technical because it makes use of Sobolev spaces embedding
theorems (see BREZIS [6]) and spectral theory of compact operators24,see
DUNFORD & SCHWARTZ [12] & [13].

PROOF OF LEMMA 3.1. Let V (resp. F ) be the space of the mappings u ∈ H 1([0,1])
(resp. f ∈ L2([0,1])) having zero mean values. We will proof that for any f ∈ F , the
equation

d

d s

[
J (s)

du

d s

]
= f

du

d s
(0) = du

d s
(1) = 0

(3.47)

has one and only one solution u f in V and that the operator f ∈ F 7→W ( f ) = u f ∈V is a
self-adjoint continuous operator. As the embedding H 1([0,1]) ⊂ L2([0,1]) is compact25,
the operator W can be seen as a compact operator acting on F so that we can use the
standard results of the spectral theory of compact operators to proof that

• the spectrum26 of W is discrete, with the only possible accumulation point 0
and made up of eigenvalues of finite multiplicities µi ;

• moreover, the associated eigenvectors ϕi are an orthonormal basis of F .

As this means that the differential equation

(3.48)
d

d s

[
J (s)

du

d s

]
= 1

µ
u

has only the solution u = 0 for µ 6= µi and the non-zero solution u =ϕi for µ= µi , we
have proofed the Lemma with the additional condition

∫ 1
0 u(s)d s = 0. Introduce for

convenience the continuous linear functional defined on L2([0,1]) by

l (u) =
∫ 1

0
u(s)d s

as (ker l )⊥ is the one-dimensional subspace of L2([0,1]) spanned by the constant map-
pings, which are solutions of the equation (3.48) for 1

µ = 0, we can complete the or-

thonormal sequence
(
ϕi

)
i defined previously into a Hilbert basis of L2([0,1]) which

satisfies the properties stated in the Lemma.

24Which basically map bounded sequences into a convergent sequences.
25From any bounded sequence (un )n for the norm ‖.‖H 1 we can extract a sub-sequence (um )m which

converges for the norm ‖.‖L2 .
26The spectrum of a continuous linear operator T acting on a normed space H is the set

σ(T ) = {
µ ∈R /µI −T is not invertible

}
Notice that if H is not a finite dimensional space, the condition µ ∈σ(T ) doesn’t entail the existence of an

non-zero vector v ∈ H such that µv = T v , see for instance the right shift operator

(x1, x2, · · · , xn , · · · ) 7→ (0, x1, x2, · · · , xn , · · · )
acting on the space l 2 of the sequences

(
xk

)
k such that

∑
k

x2
k <+∞.
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To complete the proof, it remains to show that the equation (3.47) has only one solution
in V if the right hand member f is in F ; to this end, we want show that the functional

(u, v) ∈V ×V 7→
∫ 1

0
J (s)u′(s)v ′(s)d s −

∫ 1

0
f (s)v(s)d s

satisfies the hypothesis of the Lax-Milgram Lemma27, or in other words that there is a
constant c > 0 such that

(3.49)
∫ 1

0
J (s)

(
u′(s)

)2 d s ≥ c‖u‖2
H 1

If (3.49) were false, we could find a sequence (un)n contained in the unit sphere of V
such that

(3.50)
∫ 1

0
J (s)

(
u′

n(s)
)2 d s ≤ 1

n

As the unit sphere of V is weakly compact28, we can assume that there is a sub-
sequence (um)m which is weakly convergent. Setting u the weak limit, if we can proof
that (3.50) entails u′ = 0, we get a contradiction because we will have found u ∈V which
is at the same time zero and in the unit sphere.

Computing the derivative u′ of u in the sense of distributions, the following equations
must be satisfied for any ϕ ∈C∞([0,1]) such that ϕ(0) =ϕ(1) = 0.∫ 1

0
u′(s)ϕ(s)d s =−

∫ 1

0
u(s)ϕ′(s)d s

=− lim
m

∫ 1

0
um(s)ϕ′(s)d s

= lim
m

∫ 1

0
u′

m(s)ϕ(s)d s

Using the inequality (3.50) we see that, setting c0 =
√

infs J (s), we have∣∣∣∣∫ 1

0
u′

m(s)ϕ(s)d s

∣∣∣∣≤ ‖u′
m‖L2‖ϕ‖L2 ≤ 1

c0
p

n
‖ϕ‖L2

and we conclude that u′ = 0 in the sense of distributions. �

Homeworks.

1/ Poof in the same manner an existence result for the damped equation

(3.41-a′) I (s)
∂2θ

∂t 2 +C (s)
∂θ

∂t
−µ ∂

∂s

(
J (s)

∂θ

∂s

)
= m(t , s)

where s 7→C (s) > 0 is a given damping coefficient.
2/ How to adapt the previous mathematical machinery to proof an existence result for

the bending beam equation?

27 Let (u, v) ∈ H ×H 7→ B(u, v) ∈ R a continuous symmetric bilinear form defined on a Hilbert space

H and v ∈ H 7→ l (v) ∈R a continuous linear form be given. If B is coercice in the sense that there is a

constant c > 0 such that B(v, v) ≥ c‖v‖2 for all v ∈ H then, the variational equation

B(u, v) = l (v) ∀v ∈ H

has one and only one solution u ∈ H.
28Because V is a reflexive Hilbert space: it is a closed subspace of H1([0,1]), which is reflexive.
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Solution of exercise 3.4. Use for instance the mass and the stiffness matrices defined
in step 2) of the algorithm given page 209. You will see that the algorithm explained in
figure (Fig. 3.5) and the function “eig” of Matlab lead to the same results. Actually the
function “ei g ([M ], [K ]) “ compute the generalized eigenvalues (resp. eigenvectors) of
the pencil ([M ], [K ]) ie. the vectors v and the complex numbers λ such that:

λ[M ]v − [K ]v = 0 v 6= 0

This is performed in the following way :

1o/ Assume that [M ] can be written in the form

(3.51) [M ] = [L][L]t where [L] is a lower triangular matrix

2o/ then the generalized eigenvalue problem can be written as the symmetric eigen-
value problem

(3.52) λy − [L]−1[K ][L]−t y = 0 where y := [L]t x

and solved, for instance, by the Givens-Householder method, which is well suited
to the research of selected eigenvalues of a symmetric matrices, for example all the
eigenvalues which are in a given interval29.

The form (3.51) of the matrix [M ] is called Cholesky factorization of [M ]; we can actually
proof the following result:

THEOREM 3.1 Let [A] ∈Mn(R) be symmetric definite positive then there is a lower trian-
gular matrix [L] such that:

(3.53) [A] = [L][L]t

Moreover, this factorization is unique if the diagonal coefficients li i of [L] are assumed to
be positive.

PROOF. As the matrix [A] is symmetric definite positive, the mapping

(3.54) (x, y) 7→ y t [A]x :=< x, y >A

is a scalar product on Rn , we will denote ‖.‖A its associated Euclidean norm. We can
use the Gram–Schmidt process to othonormalize the canonical basis (e) := (ei )n

i=1 of Rn

in the sense of the scalar product (3.54) ; ie. to define a basis ( f ) := (
fi

)n
i such that

< fi , f j >A= δi j

As the basis ( f ) is defined step by step as follows:

g1 = e1 f1 = g1

‖g1‖A

g2 = e2−< e2, f1 >A f1 f2 = g2

‖g2‖A
...

...

gi = ei −
i−1∑
k=1

< ei , fk >A fk fi = gi

‖gi‖A

...
...

29The function “eigs” of Matlab do the job!
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the change of bases matrix [P ] from the basis (e) to ( f ) is upper triangular and satisfies

[P ]t [A][P ] = [I d ]

The matrix [L] := [P ]−t is lower triangular and such that [A] = [L][L]t .

To proof uniqueness of this factorization, assume that [L1] is an other lower triangular
matrix such that [L][L]t = [L1][L1]t = [A]. As the diagonal entries of [L] and [L1] are
assumed to be positive, [L] and [L1] are both invertible and we have(

[L1]−1[L]
)(

[L]t [L1]−t )= (
[L1]−1[L]

)(
[L1]−1[L]

)t = [I d ]

As the matrix [L1]−1[L] is lower triangular30 this equation shows actually
that [L1]−1[L] = [I d ]. �

REMARK 3.5 (Cholesky’s algorithm) Note that, if the matrix [A] is invertible, the diagonal
entries li i of [L] are necessarily positive and we can use the following algorithm to
compute step by step the entries li j of [L]. Let’s set

[L] =


l11

l12 l22

. . .
ln1 ln2 · · · lnn


From the equation [L][L]t = [A] we deduce that

ai j =
min(i , j )∑

k=1
li k l j k

As the matrix [A] is symmetric, we can assume i ≤ j and we have to solve the equations

ai j =
i∑

k=1
li k l j k for 1 ≤ i ≤ j ≤ n

Setting i = 1 we have
l 2

11 = a11 ⇒ l11 =p
a11

l11l21 = a12 ⇒ l21 = a21
l11

...
...

l11ln1 = a1n ⇒ ln1 = an1
l11

which permits to compute the first column of [L]; the other columns are calculated step
by step as follows:

ai i = ∑
k=1

l 2
i k ⇒ li i =

√
ai i −

i−1∑
k=1

l 2
i k

ai (i+1) =
i∑

k=1
li k l(i+1)k ⇒ l(i+1)i =

ai (i+1)−
i−1∑
k=1

li k l(i+1)k

li i

...

ai n =
i∑

k=1
li k lnk ⇒ lni =

ai n−
i−1∑
k=1

li k lnk

li i

30One can easily check that a product of lower triangular matrices remains a lower triangular matrix.
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Homeworks.

1o/ Why can’t we use Cholesky’s algorithm to proof the Theorem 3.1?
2o/ Use the Cholesky algorithm to solve the linear equation [A]X = b, where [A] is

a symmetric definite positive matrix and compute the number of floating point
operations needed to implement the method.

3o/ Reformulate the algorithm given in figure (Fig. 3.5) with a Cholesky factorization of
the mass matrix.

Solution of exercise 3.5. The algorithm consists to use the Newton’s iterative method
to solve equation

(3.55) [X ]2 − [A] = 0

where [A] is a given symmetric definite positive matrix. More generally, let’s consider a
non linear mapping X 7→ F (X ) defined on a normed space V . Basically the Newton’s
method consists to solve the equation F (X ) = 0 with the help of the following iterative
scheme

(3.56) Xk+1 = Xk − (DF (Xk ))−1 .F (Xk ) the starting point X0 being given

where the derivative X ∈ V 7→ DF (X ) ∈ L (V ,V ) of F at X is assumed to be invertible.
Noticing that the derivative of the mapping [X ] 7→ F ([X ]) = [X ]2 which is defined on the
space of square matrices Mn(R) of order n is the linear mapping

[H ] 7→ DF ([X ]).[H ] = [X ][H ]+ [H ][X ]

the implementation of algorithm (3.56) for solving the equation (3.55) consists in the
following steps:

Let a starting point [X0] be given

Solve the equation [Xk ][Hk ]+ [Hk ][Xk ] = [A]− [Xk ]2

Set [Xk+1] := [Xk ]+ [Hk ]

(3.57)

If we assume that [Xk ][Hk ] = [Hk ][Xk ] then the second step of (3.57) reduces to solve
the equation

[Xk ][Hk ] = [Hk ][Xk ] = 1

2

(
[A]− [Xk ]2)

and the square root of [A] can be computed with help of the following (well-known)
iterative scheme

(3.58) [Yk+1] = 1

2

(
[Yk ]+ [Yk ]−1[A]

)
[Zk+1] = 1

2

(
[Zk ]+ [A][Zk ]−1)

HIGHAM [16] has proofed that if [X0] = [Y0] = [Z0] commute with [A] then the itera-
tions (3.58) are well-defined and the sequences (3.58) converge toward the principal
square root of [A]; he has moreover pointed out that this method is numerically unsta-
ble.

Homeworks.

1o/ Proof that the solution of the equation F (X1) = Y1 can be obtained form a solu-
tion X0 of the equation F (X0) = Y0 by integrating the differential equation

(3.59) DF (Xλ).
d Xλ

dλ
= Y1 −Y0
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Neutral line x2

x3

n2

n3

Cross-section

Σ1Σ0

−→
M −−→M

x1

Outward normal

∂Σ

Length L of the beam

x3

x2

Cross-section Σ

Fig. 3.18. Torsional loading for a cylindrical beam. The beam is a

cylinder of basis Σ0 and length L, the centers of gravity of the cross-

sections are located on the neutral line and the product moment of

area I23 = ∫
Σ x2x3 is zero. We assume that the beam is loaded at the

ends Σ0 and Σ1 by a balanced system of distributed forces having a

null resultant and prescribed moments ~M (resp. −~M) on Σ0 (resp. Σ1)

around the x1-axis; moreover, the lateral face is assumed to be not

loaded.

between 0 and 1, with the initial condition Xλ=0 = X0.
• Use the implicit function theorem31 to proof that, at last locally (ie. for λ small

enough) the equation (3.59) has an unique solution λ ∈ [0,ε[ 7→ Xλ;
• use the Euler methods to compute an approximation of X1;
• compare the obtained algorithm to the Newton iterative method;
• what happens if you try to solve the equation x2 = −1 (for x ∈ R) with the

starting point x0 = 1? Explain the obtained result.
2o/ Use the alogorithm (3.57) to show that the iterative method

[P0] = [A] [Q0] = [I ]

[Pk+1] = 1

2

(
[Pk ]+ [Qk ]−1)

[Qk+1] = 1

2

(
[Qk ]+ [Pk ]−1)

 for k = 1,2, · · · ,n, · · ·

converges to
p

[A] and
√

[A]−1 respectively; analyze the stability of this method.

Solution of exercise 3.6. We are going to identify the torsion law of an elastic beam
by explicitly solving the three-dimensional elasticity equations posed on the cylinder
defined in the figure (Fig. 3.18). Assuming that the components of the stress tensor
in the plane containing the cross-sections are zero, this lead us to solve the de Saint
Venant’s problem to calculate the shearing stresses in the three-dimensional body as a
function of the torques applied on the ending cross-sections. Then using Hooke’s law,
we will be able to compute the displacement field in the three-dimensional medium
and compare it to the one which would be obtained in applying the beams theory.

31Given in footnote 23 page 168.
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The de Saint Venant’s problem. As the cross-sections are assumed to be unde-
formable, the stresses in the three-dimensional beam take the particular form

[σ] =

 σ11 σ12 σ13

σ12 0 0
σ13 0 0


They satisfy the equilibrium equations

∂1σ11 +∂2σ12 +∂3σ13 = 0

∂1σ12 = 0

∂1σ13 = 0

(3.60)

and the Baltrami’s equations which, in this particular case, can be written as follows:

4σ12 +∂11σ11 = 0

4σ12 + 1

1+ν∂12σ11 = 0

4σ13 + 1

1+ν∂11σ11 = 0

∂22σ11 −ν4σ11 = 0

∂23σ11 = 0

∂33σ11 −ν4σ11 = 0

(3.61)

The two last equations of (3.60) show that the stresses σ12 and σ13 don’t depend
on x1 and are defined on the cross-sections of the beam. Then the system (3.61) is
a system of linear equations, which links together the second order derivatives of the
stresses σ1i (i = 1,3), whose resolution shows that the second order derivatives of σ11

are 0 and that σ11 is the polynomial

σ11 = a1x1 +a0 + (b1x1 +b0)x2 + (c1x1 + c0)x3

The boundary conditions defined in figure (Fig. 3.18) show that we must have∫
Σ0

σ1 j =
∫
Σ1

σ1 j = 0 for 1 ≤ j ≤ 3∫
Σ0

x2σ13 −x3σ12 =
∫
Σ1

x2σ13 −x3σ12 = M∫
Σ0

x3σ11 =
∫
Σ1

x3σ11 = 0∫
Σ0

x2σ11 =
∫
Σ1

x2σ11 = 0

These boundary condition provide thus six equations which show that the integration
constants a0, a1, b0, b1, c0, c1 are zero and this leads to

(3.62) σ11 = 0

Deferring (3.62) in the first equation of (3.60) we see that the derivatives ∂2σ12 and
∂3σ13 satisfy the equation

∂2σ12 +∂3σ13 = 0



136 3. IMPLEMENTATION IN STRUCTURE ANALYSIS

If we introduce the potential ϕ(x2, x3) defined on the cross-section Σ by

(3.63) σ12 = ∂3ϕ and σ13 =−∂2ϕ

The Baltrami’s equations show that ϕ satisfies the equations

∂34ϕ= 0 and ∂24ϕ= 0

which can be integrated to define ϕ as a solution of the following partial differential
equation set up on Σ

4ϕ= A

where A a constant, which will be defined according to the shape of Σ and M .

As the beam is not loaded on its lateral surface, the normal stresses are zero, thus
denoting by (n2,n3) the components of the outward-pointing normal vector to the
boundary ∂Σ of the cross-section, we must have σ12n2 +σ13n3 = 0 on ∂Σ. Using the
formulas (3.63), this means that

(3.64) ∂3ϕn2 −∂2ϕn3 = 0

or in other words, that the tangential derivative of ϕ along ∂Σ is 0. If ∂Σ is connected,
we can even assume that32

ϕ= 0 on ∂Σ and 2
∫
Σ
ϕ= M

The stress distribution function ψ=−2ϕ
A defined by

(3.65) 4ψ=−2 in Σ and ψ= 0 on ∂Σ

depends only on the shape of the cross-section and is such that:

M =−A
∫
Σ
ψ

Thus, setting

(3.66) J = 2
∫
Σ
ψ

32Equation (3.64) shows that ϕ is constant on the connected components of the boundary ∂Σ. Let’s

introduce the vector field
−→
Y defined on Σ by

−→
Y (x2, x3) =


0

ϕx3

ϕx2


we have div

−→
Y = 2ϕ+∂2ϕx2 +∂3ϕx3 and, by the divergence formula∫

Σ
div

−→
Y = 2

∫
Σ
ϕ−M =

∫
∂Σ

Y2n2 +Y3n3

=
∫
∂Σ
ϕ(x2n2 +x3n3)

this formula shows that we must have

M = 2
∫
Σ
ϕ+∑

k
ϕk

∫
∂Σk

x3d x2 −x2d x3

where
(
∂Σk

)
k are the connected components of ∂Σ and ϕk is the value of ϕ on ∂Σk . If ∂Σ has only one

connected component we can assume that ϕ= 0 on ∂Σ so that M = 2
∫
Σϕ.
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the stresses in the three-dimensional beam don’t depend on x1 and are defined by

(3.67) σ= M

J

 0 ∂3ψ −∂2ψ

∂3ψ 0 0
−∂2ψ 0 0


REMARK 3.6 We can easily check that if the cross-section is elliptical, of equation

x2
2 +hx2

3 ≤ R2

the stress distribution function ψ is defined by

ψ(x2, x3) = −1

1+h

(
x2

2 +hx2
3 −R2)

so that J = πR4p
h(1+h)

.

Computation of the displacements. The Hooke’s law shows that the entries εi j of
linearized strain tensor [ε] are

ε12 = M

2µJ
∂3ψ ε13 =− M

2µJ
∂2ψ(3.68-a)

ε11 = ε22 = ε33 = ε23 = 0(3.68-b)

As εi i = 0 for 1 ≤ i ≤ 3, the displacement
−→
X (x1, x2, x3) of the three-dimensional media is

of the following form:

X1 = f (x2, x3), X2 = g (x1, x3), X3 = h(x1, x2)

The condition ε23 = 0 leads to

∂2h(x1, x2)+∂3g (x1, x3) = 0

differentiating this equation with respect to x2 and x3, we see that the second order
derivatives ∂22h and ∂33g are zero so that we can write h and g as follows:

h(x1, x2) =C1x2h1(x1) g (x1, x3) =C2x3g1(x1)

with

h1 = C2

C1
g1

The expressions (3.68-a) of ε1i (i = 2,3) allow to write down the following equations to
define the mapping f , h1 and to compute the constant C1

(3.69) ∂2 f −C1x3h′
1 =

M

µJ
∂3ψ and ∂3 f +C1x2h′

1 =− M

µJ
∂2ψ

differentiating one of these equations with respect to x1 we verify that the second deriv-
ative of h1 is 0 and we can assume that h1(x1) = x1. Differentiating the first equation
of (3.69) with respect to x3, the second one with respect to x2 and subtracting member
to member the obtained results we get

C1 =− M

2µJ
4ψ= M

µJ

we can then define the components X2 and X3 of the displacement
−→
X by

(3.70) X2 =− M

µJ
x1x3 X3 = M

µJ
x1x2
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and the component X1 as the solution33 of the differential equations

(3.71) ∂2X1 = M

µJ

(
∂3ψ+x3

)
∂3X1 =− M

µJ

(
∂2ψ+x2

)
REMARK 3.7 If the cross-section is elliptic (see Remark 3.6) the system (3.71) has the
analytic solution

X1(x2, x3) = M(1−h)

µJ (1+h)
x2x3

which shows that if h 6= 1 the deformed configuration of a cross-section doesn’t remain
flat.

The solution
(x2, x3) 7→ X1(x2, x3)

of the differential equations (3.71) is called warping mapping: if we introduce the
rotation

θ1(x1) = M

µJ
x1

the displacement
−→
X of the three-dimensional beam is defined by

−→
X = [

θ1
−→e 1 ∧ (x2

−→e 2 +x3
−→e 3)

]+X1(x2, x3)−→e 1

and it is easy to check that the term between brackets is, up to an additive constant, the
solution of the beam equation (3.19) page 105 with the boundary conditions m1 = m2 =
M .

Homeworks.

1o/ Compute in the same way the displacement field in the cylindrical bar submitted
to the following loading conditions:

• Tension / compression: the ends of the bar are submitted to a balanced system
of forces F1 and −F1 along the axis x1;

• Pure bending: the ends of the bar are submitted to a balanced system of
torques M2 and −M2 (resp. M3 and −M3) about the axis x2 (resp. x3);

• Searing forces: the ending cros-sections are submitted to a balanced system of
forces along the axes x2 and x3.

2o/ What happens if you no longer assume that the x2 and x3 axes are the principal
axes of inertia of the cross-sections?

33Which is defined up to an additive constant.



CHAPTER 4

APPLICATION TO OPTIMAL DESIGN

OF STRUCTURES

ASSUME that the mass, the stiffness and the damping matrices of an elastic structure
depend on a design parameter u ∈Uad and let t ∈ [0,T ] 7→ F (t ) a mission profile1,

defined on a time horizon T be given. The damage caused by the loading t 7→ F (t)
on a given zone of the structure can be understood as a function D(u) of the design
parameters u and the question which is addressed to in this Chapter is to set up a
numerical algorithm allowing to identify an optimal design u∗ ∈Uad which minimizes
the mapping u ∈Uad 7→D(u) or the mass under the constraint D(u) ≤ dmax .

After a short review on the gradient based optimization algorithms in Section 4.1, we
will see that the hardest question is to set up a procedure for the computation of the
derivative of the damage with respect to u. To this purpose, we recall in Section 4.2 an
adjoint state method allowing to calculate the gradient of a criterion J (u) written as the
integral

J (u) =
T∫

0

j (Xu(t ))d t controlled by a system of differential equations

d Xu

d t
= f (Xu ,u, t )

(4.1)

depending on the parameters u in an admissible set Uad . Then, on the basis of the re-
sults obtained in the Chapters 2 and 3 we specify in Section 4.3 what is said in Section 4.2
to the parametric optimization of structures under fatigue criterion. We especially show
that the integration of the adjoint equation can be performed with the help of the forced
response method introduced in Chapter 3. We will see that this permits to limit the

1Satisfying the conditions given in the footnote 14 page 115.

139
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volume of the data which are to be stored between the integration steps of the state and
the adjoint equations, making the method ready to process FEM models.

The Chapter is organized as follows:

Contents

4.1. Optimization survival kit 140
Preliminaries 140

Unconstrained minimization problems 146

Optimization with inequalities constraints 152

Conclusions & software survey 163

4.2. Adjoint State equation 165
Algorithmic implementation 172

A first illustration 174

4.3. Application to damage criterion 176
One-dimensional examples 176

Multidimensional case 185

Algorithmic implementation 187

Application to shape optimization of a torsional beam 188

4.4. Exercises and complements 190
Solutions & homeworks 191

4.1. Optimization survival kit

Given a functional (ie. a numerical mapping) J defined on a set U , this Section deals
with the question of identifying an element u∗ ∈U such that

(4.2) J (u∗) = inf
u∈U

J (u)

We are more precisely intending to introduce several gradient based algorithms for the
computation of u∗. As this question goes well beyond the scope of a Section in a course
devoted to structure optimization, we restrict ourselves to provide some indications
on the ways to solve an optimization problem by gradient methods. We hope that they
will convince the reader to spend both time and programming efforts in defining and
implementing the adjoint state to the minimization problem defined in the introduction
to this Chapter.

Preliminaries. We introduce in these preliminaries some conditions relating both
to the function J and the design space U insuring well-posedness of the optimization
problem (4.2). In this spirit, we see that the existence of a minimizer for the func-
tional J is a consequence of the continuity of J and compactness of design space U ,
Propositions 4.1 and 4.2 provide existence results for the minimizers but, since they
are demonstrated by reduction to absurd, they do not give any indication on the way
to calculate these minimizers. More constructive results (which can be translated into
algorithms) can be obtained under more restrictive assumptions about J and U : The
functional J must be at least Lipschitz continuous and convexness hypotheses must
be added on U or J when the design space is not of finite dimension (see for instance
CEA [8]).
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u∗

f (u∗)

Fig. 4.1. Example of lower semi-continuous functional. We see on

this picture that the reciprocal image of the set {y ∈R ; y ≥ f (u∗)−ε}

contains an open interval centered on u∗. It should not be believed

that a mapping which is lower semi-continuous at a point necessarily

has a limit from the left of this point: the reader may check that the

mapping f defined on [−1,1] by f (u) = sin 1
u if u 6= 0 and f (0) =−1 is

lower semi-continuous at 0 while the limit limu→0− f (u) doesn’t exist.

DEFINITION 4.1 (Lower semi-continuous functional) A functional J defined on a topo-
logical space E is, see figure (Fig.4.1), said to be lower semi-continuous2 at u∗ ∈ E if for
any ε> 0, there exists a neighborhood Uu∗ of u∗ such that J (u) ≥ J (u∗)−ε for all u ∈Uu∗ .
The functional J is said to be lower semi-continuous in E if it is lower semi-continuous
at any point u ∈ E .

PROPOSITION 4.1 A lower semi-continuous functional J defined on a compact topological
space U attains its greatest lower bound. In other words there is u∗ ∈U satisfying the
equation (4.2).

PROOF. Let m = inf
u∈U

J(u) ∈ R∪ {−∞} be the greatest lower bound of J over U and

assume for contradiction that J (u) > m for all u ∈U . Then by semi-continuity of J , for
any u ∈U and εu > 0 such that εu < J(u)−m, we can find an open neighborhood Vu

of u over which J is bounded below by mu = J (u)−εu > m.

Varying u ∈U , we define an open covering (Vu)u∈U of U . Using the compactness of U ,
there is a finite sequence (uk )n

k=1 such that

U =
n⋃

k=1
Vuk

As J is bounded below by muk on each Vuk , it is bounded below by m′ = min1≤k≤n muk

on U . The fact that m′ > m contradicts the definition of m. �

2In the same manner, J is said to be upper semi-continuous at u∗ if − f is lower semi-continuous at u∗.

One can check that a functional J is continuous at u∗ if and only if it is lower and upper semi-continuous

at u∗.
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REMARK 4.1 When U is a subset of a finite dimensional vector space E endowed with a
classical norm, the compactness condition on U simply means that U is a closed and
bounded subset of E .

EXAMPLE 4.1 Due to non compactness of ]−1,1[, the mapping u ∈]−1,1[ 7→ u3 doesn’t
reach its greatest lower bound.

We give in the following Proposition a condition allowing to generalize the Proposi-
tion 4.1 to the minimization of a functional J on non compact subsets of a normed
space.

PROPOSITION 4.2 A functional J defined on a normed vector space E is said to be coercive
if there is a constant c > 0 such that

(4.3) lim
‖u‖→∞

J (u)

‖u‖ ≥ c

If we assume that E is a finite dimensional space and J is lower semi-continuous coercive,
then J attains its greatest lower bound on any closed subset U of E.

PROOF. Let u ∈U such that J(u) = a > −∞ be given, if we proof that coerciveness
of J entails that the set Ua = {u ∈ F ; J(u) ≤ a} is a bounded subset of E then, by lower
semi-continuity of J , the set Ua is bounded and closed. As E is assumed to be a finite
dimensional3 space, Ua is compact and J attains its greatest lower bound m on Ua .
But m ≤ a and we have actually proofed that J attains its greatest lower bound on U .
To complete the proof it remains to show that Ua is a bounded subset of E . If Ua were
unbounded we could find a sequence (un)n such that limn→∞ ‖un‖ =+∞ and J (un) ≤ a;
as this inequality entails limn→∞ J (un )

‖un‖ = 0 it would contradict the coerciveness of J . �

Now we see how the convexity conditions permit to proof an uniqueness result and an
existence result when the dimension of the design spaces is not finite4.

DEFINITIONS 4.2 (Convexity) 1o/ A subset U of a vector space is said to be convex if the
conditions u, v ∈U entail λu + (1−λ)v ∈U for any λ ∈ [0,1].

2o/ A numerical mapping J defined on a convex subset U of a vector space E is said to be
convex (see figure (Fig. 4.2)) if

(4.4) J (λu + (1−λ)v) ≤λJ (u)+ (1−λ)J (v) for any λ ∈ [0,1]

The mapping J is said to be strictly convex if the previous inequality is strict for u 6= v
and 0 <λ< 1.

REMARK 4.2 If J is assumed to be strictly convex then it achieves its greatest lower
bound on at most one point u∗ in its domain of definition.

3As bounded subsets of reflexive Banach spaces are weakly pre-compacts, such a result can be

generalized to infinite dimensional spaces under the hypothesis J weakly semi-continuous.
4Such a case occurs when the design space is constituted of the virtual displacements of a mechanical

problem defined by its strain energy.
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u v

straight line of equation λJ (u)+ (1−λ)J (v)

srictly convex function

Fig. 4.2. Graph of a convex function.

Assuming that J is differentiable, we show in the Proposition bellow that a convexity
condition imposed to the domain U or to the mapping J allows to reduce the opti-
mization problem (4.2) to the resolution a variational inequality called Euler inequality
associated with the optimization problem.

PROPOSITION 4.3 1o / If we assume that U is convex and J differentiable then a solu-
tion u∗ ∈U of (4.2) satisfies the following variational inequality

(4.5) J ′(u∗)(u −u∗) ≥ 0 for any u ∈U

2o / If moreover J is convex, the converse is true (ie. if u∗ is solution of the variational
inequality (4.5) then it satisfies (4.2)).

PROOF. 1o/ For any u ∈U we have (by hypothesis)

J (u∗+λ(u −u∗))− J (u∗) ≥ 0 for any 0 <λ< 1

The formula (4.5) is obtained in dividing this inequality by λ> 0 and taking the limit of
the obtained result when λ goes to 0.

2o/ If J is convex, we have

J (u)− J (u∗) ≥ 1

λ
J ((1−λ)u∗+λu) for 0 <λ< 1

passing to the limit when λ goes to 0, the right hand member of this inequality goes to

J ′(u∗)(u −u∗)

and we see that the condition(4.5) entails J (u)− J (u∗) ≥ 0 for any u ∈U . �

REMARKS 4.3 1o/ If a solution u∗ of the variational inequality (4.5) is in the interior of U
then J ′(u∗) ∈ E∗ is identically 0 and we find the classical extremality condition;

2o/ if we assume moreover that J is twice differentiable then the condi-
tion J ′′(u∗)(u,u) ≥C > 0 for any u in the unit ball of E entails that J(u∗) is, see
figure (Fig. 4.3), a local minimum of J .
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u1 u2 u4u3 u

J (u)

BA

Fig. 4.3. Solutions of the variational inequality (4.5). On this picture,

the mapping u 7→ J(u) is non convex, defined on the interval [A,B ].

The points (ui )4
i=1 and B are solutions of (4.5), J reaches a local mini-

mum at u1 and u3; these points can be characterized by the second

statement of the Remark 4.3.

PROOF. The Remark 1o/ is obvious. To proof the second statement, assume
that J ′(u∗) = 0 and that J ′′(u∗)(u,u) ≥C > 0. Using a Taylor expansion of J about u∗ we
have

J (u)− J (u∗) = J ′′(u∗)(u −u∗,u −u∗)+‖u −u∗‖2ε(u −u∗)

≥ ‖u −u∗‖2 (C +ε(u −u∗))

for any u in a neighborhood of u∗. As ε(u) goes to 0 when u goes to u∗, we see
that J (u∗) ≤ J (u) for any u in a ball, of sufficiently small radius, centered on u∗. �

To conclude these preliminaries, we summarize the results given in Propositions 4.1
and 4.2 in the following Proposition which has the merit to be valid in infinite dimen-
sion. Such a result is often used to proof existence results for linear or non-linear PDE.
From a mechanical point of view, J is a total energy defined on the space of the virtual
displacements and the Euler’s inequality (4.4) is the principle of the virtual works.

PROPOSITION 4.4 Let J be a convex, lower semi-continuous functional defined on a closed
convex subset U of a reflexive Banach space E, if we assume moreover that

1o/ U is bounded in E
2o/ or J is coercive when U is not bounded

there is at least an element u∗ ∈U satisfying (4.2); this minimizer being unique if J is
strictly convex.
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SKETCH OF PROOF. If we endow E with theσ(E ,E∗)-weak topology5, and if we notice
that

• strongly closed convex subsets of E are also weakly closed,
• strongly lower semi-continuous convex functions are weakly lower semi-

continuous,

this Proposition is a straightforward generalization of the Propositions 4.1 and 4.2. �

The following Example is a generalization (or a proof) of the Lax-Milgram lemma stated
in footnote 27 page 1306.

EXAMPLE 4.2 Let (u, v) ∈ E ×E 7→ a(u, v) ∈R be a continuous bi-linear form defined a
reflexive Banach space E and f ∈ E∗ be a continuous linear form defined on E . If a is
coercive in the sense that there is a constant c > 0 such that

a(u,u) ≥ c‖u‖2 for any u ∈ E

the mapping

u ∈ E 7→ J (u) = 1

2
a(u,u)− f (u) ∈R

is continuous, strictly convex and coercive. Assuming that U is a closed convex subset
of E , there is an unique element u∗ ∈U such that

(4.6) J (u∗) = inf
u∈U

J (u)

which is characterized by the variational inequality

(4.7)
1

2
[a(u∗,u −u∗)+a(u −u∗,u∗)] ≥ f (u −u∗) ∀u ∈U

PROOF. If we proof that J is strictly convex, this example is a consequence of
the Propositions 4.4 and 4.3. To this end, let (u, v) ∈ E ×E be given; as the relation-
ship a(v −u, v −u) ≥ 0 entails a(u, v)+a(v,u) ≤ a(u,u)+a(v, v) we see that

a(λu + (1−λ)v,λu + (1−λ)v) =λ2a(u,u)+ (1−λ)2a(v, v)

+λ(1−λ) [a(u, v)+a(v,u)]

≤λa(u,u)+ (1−λ)a(v, v)

which shows that J is convex. To proof that J is strictly convex, assume that

J (λu + (1−λ)v) =λJ (u)+ (1−λ)J (v)

then
λ(1−λ) (a(u, v −u)−a(v, v −u)) = 0

If 0 <λ< 1 we must have

0 = a(u, v −u)−a(v, v −u) = a(v −u, v −u)

5Let’s recall that the weak topology on a normed space E is the coarest topology on E making continu-

ous the linear forms which are continuous in the sense of the norm. This topology has the advantage to

maximize the number of compact subsets of E , in counterpart it reduces the number of open sets and

therefore the number of lower semi-continuous mappings. Note on the other hand that the weak topology

is metrizable if and only if E is a finite dimensional vector space.
6Another proof of this lemma which doesn’t refer to the weak topology is given in CIARLET [9].
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and u = v by coerciveness of a. �

Unconstrained minimization problems. Assume that J is a differentiable func-
tional defined on a Hilbert space7 E . Instead of using the Remarks 4.3 to reduce the
resolution (4.2) to that of the equation J ′(u) = 0 (complemented if needed by the Hes-
sian condition of Remark 4.3-2o/) we prefer solve the optimization problem by an
iterative scheme. Basically, starting from a given point u0, we will build stepwise a
sequence8 (uk )k ⊂ E such that

J (uk+1) ≤ J (uk )

and the questions we will have to face are the following:

• proof that the sequence (uk )k converges to a point u∗ ∈ E ,
• and that J (u∗) is at least a local minimum9 of J .

The algorithm consists to write down uk+1 as uk+1 := uk + tk dk where tk is a positive
real number and dk is a direction in E such that

<∇J (uk ),dk >< 0

As under this conditions we have

J (uk + tdk ) < J (uk )

for t sufficiently small, the step size tk can be chosen in order to minimize, at least
locally, the mapping

t ∈R+ 7→ J (uk + tdk ) ∈R
The basic principles of this algorithm are summarized in the algorithm 4.1.

Algorithm 4.1: Basic principles of a descent algorithm

input :Starting point u0 and k = 0

outputs :Minimizer u∗ := uk of J

while ‖∇J (uk )‖ ≥ ε do
1o / Compute a descent direction dk for J at uk .

2o / Choose a step size δk minimizing the mapping

(4.8) ]0,+∞[3 t 7→ J (uk + tdk )

at least in a neighborhood of t = 0;

3o / Set uk+1 ← uk +δk dk and k := k +1

end

We highlight hereafter some algorithms allowing to compute a descent direction and to
perform the unidimensional optimization. The reader is referred to specialized books
such as “ Numerical Optimization” [4] to have an exhaustive view on the topic.

7In this case, the derivative J ′(u) of J , which is in the dual space of E , can be identified with a

vector ∇J (u) ∈ E and the value of J ′(u) on a vector h ∈ E is the scalar product <∇J (u),h >.
8Called minimizing sequence for J .
9We say that u∗ is a local minimum if there is a neighborhood V ⊂U such that J(v) ≥ J(u∗) for any

v ∈ V .
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1o/ Among all the ways to define a direction of descent for the functional J , let’s consider
the following:

• The direction

(4.9) d1 =− ∇J (u)

‖∇J (u)‖
which minimizes the functional

v ∈ E 7→<∇J (u), v >∈R
on the unit ball of E , is a natural descent direction for J at u and the opti-
mization algorithm 4.1, obtained in choosing d1 as descent direction is called
steepest descent algorithm.

• If we assume that J is twice continuously differentiable and that the bi-linear
form

(v, w) ∈ E ×E 7→ D2 J (u)(v, w) ∈R
is coercive, then

– denoting [D2 J (u)]−1 the continuous linear operator defined by the varia-
tional equation10

v = [D2 J (u)]−1h ⇔ D2 J (u) (v, w) =< h, w >∀w ∈ E

– the vector

(4.10) d2 =−[D2 J (u)]−1∇J (u)

is well defined and is a descent direction for J at u. In this case, the
optimization algorithm 4.1 is called Newton’s algorithm.

The mapping

v 7→ Ĵ (v) = J (u)+<∇J (u), v >+1

2
< D2 J (u).v, v >

which is convex quadratic, reaches its minimum at v = d2. As Ĵ is a second
order approximation of J in a neighborhood of u, we can expect that u +d2

is a good approximation of the minimizer u∗ of J . This is illustrated in the
figure (Fig. 4.4).

2o/ The line search step (step 2o/ in algorithm 4.1) searches along the direction dk a new
iterate with a lower value of the functional J . The distance δk to move along dk is
found by approximately minimizing the univariate mapping (4.8); we summarize in
the algorithm 4.2 a backtracking method, which is illustrated in the figure (Fig. 4.5).

Algorithm 4.2: Example of backtracking algorithm for line search
• Given c1 < 0.5 and β ∈]0,1[

• set δ := δmax

• while conditions (4.11) and (4.12) aren’t satisfied do
set δ :=βδ

10In finite dimensional spaces, it is the inverse of the Hessian matrix Hi j = ∂i j J (u), which is assumed

to be definite positive.
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u

Ĵ

u +d2

Ĵ (d2)

J (u∗)

J (u)

Fig. 4.4. Second order approximation of J . The functional J (in bold-

line) and its second order approximation Ĵ , in dashed line. The New-

ton step d2 is the increment which must be added to u to obtain a

minimizer for Ĵ .

J (u)

slope <∇J (u),d >

0 t

slope c1 <∇J (u),d >

Admissible values of δ
Armijo rule

Wolfe condition

Fig. 4.5. Backtracking method for the line search step. The Armijo

condition

(4.11) J (u +δd) ≤ J (u)+δc1 <∇J (u),d >
insures that the steps length δk decreases J sufficiently. It can be

supplemented by the the Wolfe rule

(4.12) <∇J (u +δd),d >≥ c2 <∇J (u),d >
which forces δk to be close to a critical point of the functional (4.8). We

proof in Lemma 4.1 that, for an appropriate choice of the constants c1

and c2, the conditions (4.11) and (4.12) are satisfied on a non-empty

interval.

LEMMA 4.1 If J is assumed to be bounded below and if 0 < c1 < c2 < 1 there is a
non empty interval of step lengths which satisfies the conditions (4.11) and (4.12).

PROOF. Let ϕ be the mapping t 7→ J(uk + tdk ), since ϕ′(0) =< ∇J(uk ),dk >
and ϕ is bounded below, the line J(uk )+ tc1 < ∇J(uk ),dk > must intersect the
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graph of ϕ at least once. Let t1 be the smallest intersecting value, we have

(4.13) J (uk + t1dk ) = J (uk )+ t1c1 <∇J (uk ),dk >
and the sufficient decrease condition (4.11) holds for all steep lengths less than t1.
Applying the mean value theorem, there is t2 ∈]0, t1[ such that

(4.14) J (uk + t1dk ) = J (uk )+ t1 <∇J (uk + t2dk ),dk >
Combining the formulas (4.13) and (4.14) we get

c1 <∇J (uk ),dk >=<∇J (uk + t2dk ),dk >> c2 <∇J (uk ),dk >
if 0 < c2 < c1. By smoothness assumption on J , the inequality (4.12) holds in an
interval centered on t2. �

The following Proposition is a global convergence result for the steepest descent
method.

PROPOSITION 4.5 Assume that E is a finite dimensional vector space and that the set

S = {v ∈ E ; J (v) ≤ J (u0)}

is closed and bounded in E. If we assume moreover that

• J is continuously differentialble on S
• and that the line search is exact

then any cluster point ū of the sequence (uk )k produced by the steepest descent algorithm
is a critical point of J (ie. satisfies ∇J (ū) = 0).

PROOF. As S is a closed and bounded in the finite dimensional vector space E , it is
a compact subset of E and, by the Heine-Borel property, the sequence (uk )k produced
by the descent algorithm 4.1 has at least a cluster point ū ∈ S. We can then define a sub-
sequence

(
u j

)
j of (uk )k which converges to ū. As

(
u j

)
j is a minimizing sub-sequence

of (uk )k , we have moreover

inf
k

J (uk ) = inf
j

J (u j ) = J (ū) := J∗

Assume for contradiction that d̄ :=−∇J (ū) 6= 0, we can find δ> 0 such that

∆J := J∗− J (ū +δd̄) > 0

Setting d j :=∇J (u j ), we have (by continuity of the mapping v 7→ ∇J (u))

lim
j→∞

d j = d̄ and lim
j→∞

u j +δd j = ū +δd̄

so that the inequality

(4.15) J
(
u j +δd j

)≤ J (ū +δd̄)+ ∆J

2
= J∗− ∆J

2
takes place for j sufficiently large. As, on the other hand, the line search is exact we
must have

(4.16) J∗ < J
(
u j +δ j d j

)≤ J
(
u j +δd j

)
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for any j . Combining the inequalities (4.15) and (4.16), we see that the condi-
tion ∇J (ū) 6= 0 entails J∗ < J∗− ∆J

2 and contradicts ∆J > 0. �

REMARK 4.4 If J is assumed to be coercive and strictly convex, the above proof can be
generalized to infinite-dimensional Hilbert spaces and shows actually that the steepest
descent method (with exact line search) converges to the minimizer of J .

To obtain a convergence result for the descent algorithm 4.1, we must have well-chosen
the descent direction dk and the step-size δk in the line search step. The following
Theorem, due to Zoutendijk, highlights the fact that if the line search satisfies the condi-
tions (4.11) and (4.12) and if the descent direction dk is not too close to an orthogonal
direction to the gradient, the algorithm 4.1 converges to a critical point of J .

PROPOSITION 4.6 (Theorem of Zoutendijk) Suppose that

• the functional J is bounded bellow and continuously diffrentiable on an open
set N containing the level set S defined in Proposition 4.5.

• and that the gradient u 7→ ∇J (u) is Lipschitz continuous on N .

Assume moreover that the step-size δk defined in step 2o / of algorithm 4.1 satisfies the con-
ditions (4.11) and (4.12) then, if we define the angle θk between the descent direction dk

and the gradient ∇J (uk ) by

cosθk =− <∇J (uk ),dk >
‖∇J (uk )‖ .‖dk‖

the series

(4.17)
+∞∑
k=0

cos2θk ‖∇J (uk )‖

is convergent.

Before going on to the proof of this Proposition, let’s see how it can be used to establish
a convergence result for the algorithm 4.1. As the series (4.17) is convergent we must
have

(4.18) lim
k→∞

cos2θk ‖∇J (uk )‖ = 0

If the descent direction is chosen in order to bound above |θk | by an angle θ < π
2

then cos2θk is bounded below by some positive constant and the formula (4.18) entails
that limk→∞ ‖∇J (uk )‖ = 0.

For instance:

• we have θk = 0 for the steepest descent method so that the sequence (uk )k pro-
duced by the algorithm 4.1 converges to a critical point of J . Note that the
additional hypothesis, ∇J Lipschitz continuous, leads to a stronger result that
the one which is obtained in Proposition 4.5 where, due to lack of regular-
ity, the minimizing sequence can oscillate between two cluster points of the
minimizing sequence (uk )k .
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• If we assume that the twice derivative of J is coercive then∥∥D2 J (u)
∥∥ .

∥∥[D2 J (u)]−1
∥∥≤ M

for some constant M and cosθk ≥ 1
M in the Newton algorithm, which thus

converges to a local minimizer of J .

PROOF OF PROPOSITION 4.6. From the inequality (4.12) and by definition

uk+1 := uk +δk dk

we have
〈∇J (uk+1)−∇J (uk ),dk〉 ≥ (c2 −1)〈∇J (uk ),dk〉

while the Lipschitz condition ‖∇J (uk+)−∇J (uk )‖ ≤ L ‖uk −uk+1‖ implies

〈∇J (uk+1)−∇J (uk ),dk〉 ≤ δk L ‖dk‖2

Combining these two inequalities we obtain

δk ≥ c2 −1

L

〈∇J (uk ),dk〉
‖dk‖2

Substituting this inequality into the Armijo condition (4.11) we get

J (uk+1) ≤ J (uk )+ c1
c2 −1

L

〈∇J (uk ),dk〉2

‖dk‖2

≤ J (uk )− c cos2θk ‖∇J (uk )‖ where c = c1
1− c2

L
> 0

and

J (u0)− J (uk+1) ≥ c
k∑

j=0
cos2θ j

∥∥∇J (u j )
∥∥

Since J is bounded below, J(u0)− J(uk+1) must be lower than some positive constant
for any k and this means the series (4.17) is convergent. �

We conclude this paragraph in explaining how to modify the descent algorithm 4.1 to
solve the constrained optimization problem

J (u∗) = inf
u∈U

J (u)

where U is a closed convex subset of a Hilbert space E .

As for any v ∈ E there is an unique element PU (v) ∈U such that11

‖PU (v)− v‖ ≤ ‖u − v‖ for all u ∈U

we can then modify the algorithm 4.1 by setting

u ← PU (u +δd)

11Noticing that the mapping u ∈U 7→ ‖u − v‖2 is strongly convex and coercive, this result is a conse-

quence of the Proposition 4.4. Using the Proposition 4.3 we can moreover see that PU (v) is characterized

by the variational inequality

< v −PU (v),u −PU (v) >≤ 0 for all u ∈U

A geometrical proof (which doesn’t appeal to the properties of the weak topology) of this result is given in

BREZIS [6] or CIARLET [9].
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in the step 3o/ if u 6= PU (u+δd). Indeed, if the minimum of J is reached on the boundary
of U , the gradient ∇J (u∗) can be non zero.

EXAMPLE 4.3 Assume that E =Rn and that U is the box

U =
n∏

i=1
[ai ,bi ]

the projection operator PU is the operator which associates to x = (x1, · · · , xn) ∈Rn the
point PU (x) = (PU (x)1, · · · ,PU (x)n) ∈U defined component by component as follows:

PU (x)i = max{bi ,min(xi , ai )}

Algorithm 4.3: Descent algorithm for constrained optimization problem.

input :Starting points u := u0 ∈U
outputs :Minimizer u∗ := u ∈U of J
while ‖∇J (uk )‖ 6= 0 do

1o / Compute a descent direction dk for J at uk .

2o / Line search choose a step size δk which minimizes the mapping t 7→ J (uk + tdk ), at least in a

neighborhood of t = 0;

3o / if uk −PU (uk +δk dk ) 6= 0 then
• set uk+1 ← PU (uk +δk dk )

• set k := k +1
else
exit while loop

end

end

Optimization with inequalities constraints. Let
(
gi

)n
i=1 be n numerical mappings

defined on a Hilbert space E . This paragraph deals with the optimization problem (4.2)
when U is of the special form

(4.19) U = {
v ∈ E such that gi (v) ≤ 0 for 1 ≤ i ≤ n

}
and has a non-empty interior. This problem is much more complicated than its uncon-
strained counterpart and we merely give some indications on the classic ways to solve
it, referring to specialized texts such as CIARLET [9] or CEA [8] for a complete proof of
the stated results12.

Assume that u∗ is a local minimizer of J over U and that we can find a direction d 6= 0
in E such that

Uδ = {u∗+ td ∈U for t ∈ [0,δ[}

is non empty for some positive constant δ. The restriction of J to Uδ is then an univariate
mapping Ĵ which is defined on [0,δ[ and achieves a local minimum at t = 0, so that Ĵ ′(0)
can’t be negative. Since Ĵ ′(0) =<∇J (u∗),d > we must have

<∇J (u∗),d >≥ 0

12The literature is actually abundant and the objectives of this sub-section are to provide the reader

with a first glance on the saillant results on the topic.
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Introducing the set of feasible directions FU (v) as in Definition 4.3 we can generalize
the variational inequality (4.5) to “the not necessarily convex sets” as follows:

If u∗ ∈U is a local munimum of J over U then

(4.20) < J (u∗),d >≥ 0 for any d ∈ FU (u∗)

DEFINITION 4.3 (Feasible directions) Let U be a subset of E , we say that a direction
d ∈ E is, see figure (Fig. 4.6), a feasible direction at v ∈U if there is δ> 0 such that

v + td ∈U for all t ∈]0,δ[

And we will denote by FU (v) the subset of E made up of the directions which are feasible
at v .

v1
v2

v2 +FU (v2)

Boundary of U
v1 +FU (v1)

v3

v3 +TU (v3)

Fig. 4.6. Cone of feasible directions. We see on this picture that if v is

in the interior of U any direction of E is a feasible direction. When v

is on the boundary of U the cones of the feasible directions at the

points v1 and v2 are surrounded by red lines. For v = v3 the cone of

feasible directions reduces to 0 and we represent on this picture the

tangent cone to U such as defined in figure (Fig. 4.7).

We can check that:

• The set FU (v) is a cone in E , it need not be closed or convex;
• if U is convex then FU (v) consists of the vectors of the form α(v −u) for v ∈U

for α> 0;
• but the condition (4.20) can be vacuous because there may be no feasible

directions other than 0.

To circumvent the drawbacks of the feasible cone, we introduce in Definition 4.4 the
notion of tangent cone, which is basically made up of all the feasible directions and their
limits; we will obtain in this manner a closed cone for which the property (4.20) remains
valid.

DEFINITION 4.4 (Tangent cone) We say that a vector d ∈ E is tangent to U at v ∈U if, see
figure (Fig. 4.7), there is a sequence (dn)n converging to d and a decreasing sequence of
positive real numbers (εn)n which converges to 0, such that

(4.21) v +εndn ∈U for any n
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TU (v)
U

εn

v

dn

dn+1

dn+2
vn

vn+1

vn+2

Fig. 4.7. Tangent cone to U at v . In this case, U is the bold-line curve

so that the cone of feasible directions reduces to 0. In this spirit, the no-

tion of cone tangent enriches, as it is explained in the Proposition 4.7,

the cone feasible directions. Note moreover that we can characterize a

tangent direction d ∈ TU (v) as follows: there is a sequence (vn)n ⊂U

with limn vn = v and sequence (αn)n of positive numbers such that

limnαn = 0 and limn
vn−v
αn

= d .

The cone TU (v) made up of all the tangents to U at v and is called tangent cone to U at v.

PROPOSITION 4.7 (Characterizations of the tangent cone) Let U be a non empty subset
of E and v ∈U be given then:

1o / A non zero vector d ∈ E is in the tangent cone TU (v) to U at v if and only if there is a
sequence (vn)n ⊂U such that

vn 6= v for all n and lim
n

vn = v

lim
n→∞

vn − v

‖vn − v‖ = d

‖d‖
(4.22)

2o / The tangent cone TU (v) to U at v is closed and we have cl (FU (v)) ⊂ TU (v).
3o / If U is convex then TU (v) is convex and cl (FU (v)) = TU (v).

PROOF. Claim 1o/ Let d 6= 0 be in Tv (U ) , according to the Definition 4.4 there are
two sequences (dn)n ⊂ E and (εn)n satisfying limn→∞ dn = d and limn→∞ εn = 0 and
such that v +εndn ∈U for any n. Setting vn = v +εndn we have

lim
n→∞vn = v and lim

n→∞
vn − v

‖vn − v‖ = lim
n→∞

dn

‖dn‖
= d

‖d‖

Conversely, assume that there is a sequence (vn)n ⊂U satisfying the conditions (4.22).
Setting εn = ‖vn − v‖ and dn = vn−v

εn
we have limn→∞ dn = d

‖d‖ and

v +εndn = vn ∈U for any n

Claim 2o/ Let (dn)n be a sequence in TU (v) which converges to d in E , we proof that d
is actually in TU (v). Using claim 1o/, for each n there is a sequence

(
vk

n

)
k such that

vk
n = v + dn

‖dn‖
∥∥∥vk

n − v
∥∥∥+∥∥∥vk

n − v
∥∥∥δk

n
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with limk δ
k
n = 0. Let (εn)n be a sequence converging to 0, we can find an increasing

mapping n 7→ k(n) such that
∥∥∥δk(n)

n

∥∥∥≤ εn and writing vk(n)
n as follows

vk(n)
n = v + d

‖d‖
∥∥∥vk(n)

n − v
∥∥∥+∥∥∥vk(n)

n − v
∥∥∥δ′n

with δ′n =
(
δk(n)

n −
(

dn

‖dn‖
− d

‖d‖
))

we see that limn δ
′
n = 0 so that the sequence

(
vk(n)

n

)
n

satisfies the conditions (4.22)

and d is in the cone TU (v). The inclusion cl (FU (v)) ⊂ TU (v) is now a straightforward
consequence of the inclusion FU (v) ⊂ TU (v).

Claim 3o/ If U is assumed to be convex then all the feasible directions at v ∈ U are
of the form a(v −u), where u ∈U and a > 0. This proof that FU (v) is convex and, by
definition (4.21), that TU (v) ⊂ cl (FU (v)). �

The following Lemma generalizes to non-convex domains the results stated in Proposi-
tion 4.3; in this case the minimizer is however local.

LEMMA 4.2 Assume that J is continuously differentiable at v ∈U and define the set

D(u) = {d ∈ E ; 〈∇J (u),d〉 ≥ 0}

The local minimizers of J are characterized as follows:

1o / If u∗ ∈U is local minimizer for J over U then Tu∗(U ) ⊂ D(u∗), ie. 〈∇J (u∗),d〉 ≥ 0 for
any d ∈ Tu∗(U ).

2o / When J is convex, assume conversely that TU (u) ⊂ D(u) and there is ε> 0 such that

d = u − v ∈C (u) ∀v ∈U ∩B(u,ε)

where B(u,ε) = {v ∈ E ; ‖v −u‖ < ε}
(4.23)

then u is a local minimizer for J .

PROOF. Assume that u∗ is a local minimizer of J over U , let d ∈ TU (u∗) be given and
let (uk )k be a sequence in U satisfying the conditions (4.22); using a Taylor expansion J
about u∗ we have

0 ≤ J (uk )− J (u∗) =<∇J (u∗),uk −u∗ >+ε(uk −u∗)

where lim
k→∞

ε(uk −u∗)

‖uk −u∗‖
= 0

for k large enough. Dividing this inequality by ‖uk −u∗‖ 6= 0 we get

0 ≤ 〈∇J (u∗),
uk −u∗
‖uk −u∗‖

〉+ ε(uk −u∗)

‖uk −u∗‖
and by definition of the sequence uk this proof that <∇J (u∗),d >≥ 0.

Since in claim 2o/ the functional J is assumed to be convex, the inequality (4.82)
page 190 shows that

J (v) ≥ J (u)+<∇J (u),u − v > ∀v ∈ E
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thus the condition (4.23) entails J (v) ≥ J (u) for all v ∈U ∩B(u,ε), and this means that u
is a local minimizer for J . �

We introduce the notion of qualification of constraints which ensure that the tangent
cone TU (v) to U at v is computable when U is defined by the inequalities (4.19). This
will lead us to translate the geometrical optimality conditions stated in the previous
Lemma into analytical equations, referred to as KKT conditions.

DEFINITION 4.5 (Constraints Qualification) Assume that U is of the form (4.19) and
define the index set I (v) of the active constraints at point v ∈U as

I (v) = {
i ∈ {1, · · · ,n} such that gi (v) = 0

}
we say that the constraints

(
gi

)n
i=1 are qualified at v if13

TU (v) = {
d ∈ E ; 〈∇gi (v),d〉 ≤ 0 ∀i ∈ I (v)

}
EXAMPLE 4.4 Let U be the set

U = {
(x1, x2) ∈R2 ; x2 ≥ x3

1 and x2 ≥ 0
}

We can see on a picture that TU (0) = {(x,0) ; x ≥ 0} while, setting

g1(x1, x2) = x3
1 −x2 g2(x1, x2) =−x2

we have
∇g1(0) = (0,−1) ∇g2(0) = (0,1)

and
< d ,∇g1(0) >≤ 0 < d ,∇g2(0) >≤ 0

if and only if d2 = 0 and d1 ∈R. In this case, the constraints are not qualified at x = 0; this
proof that the notion qualification is a property related to the parameterization and not
to the geometry of the domain.

We state in the following Proposition a necessary condition for the existence of a solution
for the constrained optimization problem (4.2) when U if of the form (4.19).

PROPOSITION 4.8 (Karush-Kuhn-Tucker Conditions) Assume that the design space U
is of the form (4.19) and that J and gi are continuously differentiable. Let u∗ be a local
minimizer of J over U , if the constraints are qualified at u∗ there exist n positive real
numbers (λi (u∗))n

i=1 (referred to as Lagrange multipliers) such that

∇J (u∗)+
n∑

i=1
λi (u∗)∇gi (u∗) = 0

λi (u∗)gi (u∗) = 0 for 1 ≤ i ≤ n

(4.24)

SKETCH OF PROOF. Accounting for the Definition 4.5, the Lemma 4.2 shows that
if u∗ is a local minimizer of J over U then, for any d ∈ E , the condition 〈∇gi (u∗),d〉 ≤ 0

13We can check that if d ∈ TU (v) then < ∇gi (v),d >≤ 0 for all i ∈ I (v), but the converse is not

necessarily true.
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for i ∈ I (u∗) entails that 〈∇J (u∗),d〉 ≥ 0 and (4.24) is a consequence of the Lemma 4.314

with b =∇J (u∗) and ai =∇gi (u∗) for i ∈ I (u∗).

LEMMA 4.3 (Farkas Lemma) Let I a finite indexing set, (ai )i∈I ⊂ E and b ∈ E be given.
The inclusion {d ∈ E ; 〈ai ,d〉 ≤ 0 ∀i ∈ I } ⊂ {d ∈ ; < b,d >≥ 0} is satisfied if and only if
there exist λi ≥ 0, i ∈ I such that b =− ∑

i∈I
λi ai .

�

REMARK 4.5 It is difficult to verify in practice the condition of qualification of the
constraints, we thus prefer use the following condition, which is more restrictive. The
constraints gi (u) ≤ 0 are qualified at a point u ∈U if there is a vector δ ∈ E such that

<∇gi (u),δ>= 0 if gi is affine

<∇gi (u),δ>< 0 in the other cases
(4.25)

for any i ∈ I (u).

PROOF. Let d ∈ E such that < ∇gi (u),d >≤ 0 for any i ∈ I (u). We have to proof
that d lies in TU (v). Let be given η> 0 and (εn)n a deceasing sequence of real numbers
which converges toward 0, we will proof that the following sequence

vn = u +εn(d +ηδ)

is actually in U so that the vector d +ηδ belongs to TU (u) for any η> 0. Then using the
fact that TU (u) is closed we conclude that TU (u) 3 d = limη→0+

(
d +ηδ)

.

To complete the proof it remains to show that the conditions (4.25) entail that vn ∈U
for n large enough. The task is achieved in distinguishing the following cases:

1o/ If i ∉ I (u), we have gi (u) < 0 and the continuity of gi at u allows to conclude
that g i (vn) < 0 for n large enough.

2o/ If gi (u) = 0 the conditions (4.25) show that
• If gi is affine

gi (vn) = gi (u)+εn <∇gi (u),d +ηδ>= εn <∇gi (u),d >≤ 0 for all n

• else, using a Taylor expansion of gi about u, we have

gi (vn) = εn <∇gi (u),d +ηδ>+O(εn) ≤ 0 for n large enough

so that vn ∈U for n sufficiently large.

�

In the following we explicitly solve the Kuhn-Tucker equations to find the local minima
of a functional.

14Proofed in CIARLET [9] page 208.
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EXAMPLE 4.5 Find a minimizer of the functional (x, y) 7→ J(x, y) = x2 + y2 under the
constraint x + y ≥ 1. Setting g (x, y) = 1− x − y the KKT conditions (4.24) are written
down as the system of equations

(4.26)
2x =λ
2y =λ
λ(1−x − y) = 0

with the additional condition λ≥ 0. We can easily see that

x = y =λ= 0 and λ= 1 , x = y = 1

2

are solutions of (4.26) but, as x = y = 0 is not a feasible, x = y = 1
2 is the only solution of

the optimization problem.

In the rest of this sub-section we propose three ways to solve the KKT equations; each
of them consist in obtaining the solution of the constrained optimization problem as
the limit of a sequence of solutions of unconstrained optimzation problems.

Lagrange duality method. Assume that U is of the form (4.19) and define the La-
grangian

(4.27) (v,λ) ∈ E ×Rn 7→ L(v,λ) = J (v)+
n∑

i=1
λi gi (v)

We have

sup
λ≥0

L(v,λ) =
{

J (v) if v ∈U
+∞ else

and the optimization problem (4.2) is equivalent to the following problem, referred to
as primal problem.

(4.28) L∗(u∗) = inf
v∈E

L∗(v) where L∗ is the mapping v ∈ E 7→ sup
λ≥0

L(v,λ)

But we can also consider the optimization problem

(4.29) L∗(λ∗) = sup
λ≥0

L∗(λ) where L∗ is the mapping λ ∈Rn
+ 7→ inf

v∈E
L(v,λ)

referred to as dual problem. Noticing that the dual mapping L∗, defined on the convex
set U∗ = {

λ ∈Rn+ ; infv∈ΩL(v,λ) >−∞}
, is concave15, the dual problem can be solved

with the help of the projected gradient algorithm 4.4 referred, in this particular case, to
as Uzawa algorithm for the resolution of the primal problem.

15Indeed, let λ1,λ2 be given in U∗, we have

L(v,µλ1 + (1−µ)λ2) =µL(v,λ1)+ (1−µ)L(v,λ2) for any µ ∈ [0,1]

Taking the infimum over v ∈ E on the both sides of this equation, we obtain

inf
v∈E

L(v,µλ1 + (1−µ)λ2) = inf
v∈E

(
µL(v,λ1)+ (1−µ)L(v,λ2)

)
≥µ inf

v∈E
L(v,λ1)+ (1−µ) inf

v∈E
L(v,λ2)
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Algorithm 4.4: Projected gradient for the maximization of the dual mapping.

input :Starting point u0 ∈ E and λ0 ∈Rn+
outputs :Minimizer u∗ := uk of J

while
∥∥∥λk −λk+1

∥∥∥≥ ε do

1o / find uk minimizing L(v,λk ) overΩ;

2o / for i = 1 : n do

λk+1
i ← max

(
λk

i +ρgi (uk ),0
)
;

end

3o / Set k := k +1

end

This means that will have defined an algorithm for solving the primal problem (4.28) if
we can define some conditions on J and gi insuring that the duality gap

(4.30) inf
v∈E

L∗(v)− sup
λ≥0

L∗(λ)

is zero. For this purpose let’s introduce the following definition

DEFINITION 4.6 (Saddle point of a Lagrangian) A point (u∗,λ∗) ∈ E ×Rn+ is said to be a
saddle point of the Lagrangian L if

(4.31) L(u∗,λ) ≤ L(u∗,λ∗) ≤ L(v,λ∗) ∀v ∈ E ∀λ ∈Rn
+

PROPOSITION 4.9 If a point (u∗,λ∗) is a saddle point of the Lagrangian (4.27) the duality
gap (4.30) is zero. So that u∗ (resp. λ∗) is a solution of the primal problem (rep. of the
dual problem).

PROOF. If (u∗,λ∗) is a saddle point of L then the inequalities (4.31) show that

inf
v∈E

L(v,λ∗) ≥ L(u∗,λ∗) ≥ L(u∗,λ) ∀λ≥ 0

so that
sup
λ≥0

L∗(λ) ≥ sup
λ≥0

L(u∗,λ) ≥ inf
v∈E

L∗(v)

As the converse inequality always holds16, we have actually proofed that the duality
gap (4.30) is zero. �

REMARK 4.6 Assume that J and the mappings
(
gi

)n
i=1 are convex. Let (u∗,λ∗) be a point

in E ×Rn+ satisfying the conditions (4.24) of Proposition 4.8 and assume the constraints
are qualified at u∗ then (u∗,λ∗) is a saddle point of the Lagrangian (4.27).

16Let L : E ×F →R be a numerical mapping defined on a Cartesian product E ×F then, defining the

mapping G(x) = infy∈F L(x, y), we have

G(x) ≤ L(x, y) ∀x∀y

so that supx∈E G(x) ≤ supx∈E L(x, y) for all y ∈ F and at last

sup
x∈E

(
inf
y∈F

L(x, y)

)
≤ inf

y∈F

(
sup
x∈E

L(x, y)

)
This inequality is referred to as the weak min-max inequality.
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PROOF. As the functional J and the constraints gi are assumed to be convex, the
condition

∇J (u∗)+
n∑

i=1
λ∗

i ∇gi (u∗) = 0

entails L(u∗,λ∗) ≤ L(v,λ∗) for all v ∈Ω. As gi (u∗) ≤ 0 for all i , the conditions λ∗
i gi (u∗) =

0 entail

L(u∗,λ) = J (u∗)+
n∑

i=1
λi gi (u∗) ≤ J (u∗) = L(u∗,λ∗) ∀λ≥ 0

so that (u∗,λ∗) is a saddle point of (4.27). �

EXAMPLE 4.6 We consider the minimization of J (v) = 1
2 < [A]v, v >−< b, v > under the

constraints v ∈Rm such that [B ]v − c ≤ 0, where

• [A] is a m ×m symmetric definite positive matrix, b ∈Rm

• [B ] is a m ×n matrix and c is a vector of Rn .

As the functional J is convex coercive, and the set U = {
v ∈Rm ; [B ]v − c ≤ 0

}
is convex,

the optimization problem
J (u∗) = inf

v∈U
J (v)

has an unique solution which is the first argument of a saddle point of the Lagrangian

L(v,λ) = 1

2
< [A]v, v >−< b − [B ]tλ, v >+< c,λ>

Using the algorithm (4.4), such a saddle point (u∗,λ∗) can be obtained as the limit of
the sequences

uk = [A]−1
(
b − [B ]tλk

)
λk+1 = max

[
λk +ρ ([B ]uk − c) ,0

]
where ρ is a given positive constant17. In this case, the opposite of the dual mapping L∗

defined in formula (4.29) is
1

2
〈[B ][A]−1[B ]tλ,λ〉−〈[B ][A]−1b − c,λ〉+ 1

2
〈[A]−1b,b〉

This shows that if [B ] is of rank m the matrix [B ][A]−1[B ]t is definite positive, so that L∗

is strictly concave and the dual problem as only one solution λ∗. Notice that we have
actually solved the system of non-linear equations

[A]u + [B ]tλ= b with [B ]u − c ≤ 0

λi =


0 if

m∑
j=1

Bi j u j < ci

≥ 0 if
m∑

j=1
Bi j u j = ci

Sequential Quadratic Programming Method. The SQP algorithm 4.5 is a second
order method providing a sequence

((
vk ,λk

))
k approximating both the solutions of the

primal and dual problem. We simply indicate that this algorithm is an implementation
of the Newton’s method for the resolution of the Kuhn-Tucker equations (4.24) written

17 It can be shown, see CIARLET[9], that the algorithm 4.4 converges if 0 < ρ < 2σ1(A)
‖B‖2 , where σ1(A) is

the smallest eigenvalue of A.
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Algorithm 4.5: Main steps of the SQP algorithm

input :Starting point u0 ∈ E and λ0 ∈Rn+.

outputs :Minimizer u∗ := uk of J satisfying the constraints gi (u) ≤ 0.

while
∥∥uk −uk+1

∥∥≥ ε do
1o / solve the quadratic sub-problem

(4.32) Ĵ (d∗) = min
d∈Û

Ĵ (d)

where

• Ĵ is the mapping

(4.33) d ∈ E 7→ Ĵ (d) = 〈
[
∇2 J (uk )+λk∇2g (uk )

]
d ,d〉+〈∇J (uk ),d〉

• and Û is defined by

(4.34) Û = {
d ∈ E ; <∇gi (uk ),d >+gi (uk ) ≤ 0 for 1 ≤ i ≤ n

}
2o / set uk+1 := uk +d∗ and λk+1 =λk +λ∗, where λ∗ is the Lagrange multiplier associated with the

constrained optimization problem (4.32).

3o / Set k := k +1

end

in a variational form18. We refer to BONNANS [3], BONNANS Et al. [4], and IZMAILOV
Et al. [17] for the convergence analysis, which is quadratic when the initial point u0 is
located in a neighborhood of a local optimum.

Due to its super-linear convergence, the SQP algorithm is very popular (see for instance
the website http://www.klaus-schittkowski.de/) and the following improvements are
made in its operational versions:

• to avoid computation of second order derivatives in formula (4.33), the
Hessian matrix

[∇2 J (uk )+λk∇2g (uk )
]

is replaced by a symmetric defi-
nite positive matrix [H k ] and the sequence

(
[H k ]

)
k is tuned to converge

to
[∇2 J (u∗)+λ∗∇2g (u∗)

]
;

• step 2o / in algorithm (4.5) is often replaced by a line search phase and uk+1 is
defined by uk+1 := uk +αk d∗ where αk is chosen so that

ψk (uk +αk d∗) <ψk (uk )

where ψk is a suitable merit function allowing to bring ASAP the se-
quence (uk )k in a neighborhood of a local minimizer of J regardless the starting

18Considering the mapping

x = (u,λ) ∈ E ×Rn 7→
(
∇J (u)+

n∑
i=1

λi∇gi (u),−g1(u), · · ·− gn (u)

)
∈ E ×Rn

we can check that the equations (4.24) can be written as < F (x∗), x −x∗ >≥ 0 for all x ∈ E ×Rn+ or as

(4.35) F (x)+∂IE×Rn+ (x) 3 0 where IE×Rn+ is the characteristic function of E ×Rn+
In this context, the algorithm (4.5) consists to solve the variational inequality (4.35) by the following

approximation sequence

F (xk )+DF (xk )(xk+1 −xk )+∂IE×Rn+ (xk+1) 3 0

which is a generalized version the Newton-Raphson algorithm.
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point u0; a popular choice for the merit function is

ψk (u) = J (u)+ωk

n∑
i=1

(
g+

i (u)
)2

where g+
i (u) := max(gi (u),0).

Penalty Method. The penalty method consists to replace the constraint optimiza-
tion problem by a sequence of unconstrained problems whose solutions are expected
to converge to the solution of the original problem. The unconstrained problem is ob-
tained by adding to the objective u 7→ J (u) a penalty function u 7→ψ(u) ∈R+ measuring
the degree of violation of the constraints gi (u) ≤ 0. This leads to solve the constrained
optimization problem by the algorithm 4.6, which can be set up with the help of two
kinds of penalties:

1o/ In the exterior penalty method, the penalty is of the form ψ(u) =∑n
k=1

(
g+

k (u)
)2 and

allows constraints violation;
2o/ we can also introduce the penalty with the help of a barrier function, which is

defined by ψ(u) =∑n
k=1 ln(−gk (u)) and make sense only if u ∈ Int (U ). In this case,

the initial point u0 must satisfy gk (u0) < 0 and the barrier function prohibit the
violation of constraints.

Algorithm 4.6: Penalty method

input :Starting point u0 ∈ E .

outputs :Minimizer u∗ := uk of J satisfying the constraints gi (u) ≤ 0.

Let be given
(
ωk

)
k a monotone sequence of positive numbers, and assume that

• limk→∞ωk =+∞ in case of exterior penalty;

• limk→∞ωk = 0 for the barrier function.

while
∥∥∇Jk (uk )

∥∥≥ ε do
1o / set Jk+1(u) := J (u)+ωk+1ψ(u)

2o / start from the initial condition u = uk to compute an approximate solution uk+1 for the

unconstrained optimization problem

Jk+1(u∗) = inf
u∈E

Jk+1(u)

3o / Set k := k +1

end

We can check that under suitable conditions on the criteria J , the sequence (uk )k

produced by the algorithm 4.6 is bounded and any accumulation point ū of this se-
quence is solution of the constrained optimization problem. Considering if necessary a
sub-sequence (uh)h converging to ū, the limit

lim
h→∞

ωh g+
i (uh) (resp. lim

h→∞
ωh ln(gi (uh)))

exists and is the Lagrange multiplier λi associated with the KKT conditions (4.24).

Form a practical point of view, an exterior penalty function is used to find the minimizers
of J located on the boundary of the domain U while a barrier function is preferred when
the minimizers are in the interior of U .
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Conclusions & software survey. In the previous subsections we have outlined
some existence results for a given optimization problem and we have reviewed some
algorithms allowing to reach the optima. These methods are implemented within
several contexts of the structure analysis:

• From a theoretical point of view, optimization is usually used to discretize PDE
or to proof well-posedness of a mechanical problem. In this case the design
space E is a functional space, often an infinite dimensional vector space19,
constituted of the virtual displacements (resp.virtual velocities) modeling the
cinematic of the considered mechanical system. The criterion J is an energy
and in this case, we essentially seek to establish coerciveness and convexity
of J . We provide in Exercises 4.4 and 4.5 page 190 two illustrative examples
borrowed from the theories of beams and unilateral contact.

• In the engineering field, optimization allows to improve the design of a me-
chanical structure. In this context, see Example 4.7, the designer has to
1o/ parametrize a relevant numerical model of the studied structure (FEM

model parametrized for instance by thicknesses, sections, inertia, masses
etc.);

2o/ define an optimization criterion J (such as mass, stiffness, damage etc.)
to qualify the designing goal;

3o/ identify the areas U where the product or process parameters can be run
safely. This set, referred to as design space, will be assumed to be a multi-
dimensional set defined by box constraints or by inequalities connecting
together the model parameters defined in step 1o/.

Thought in this way, an engineering optimization problem can be written in
the form (4.2) page 140 and numerically solved with the help of the algorithms
introduced in the previous sub-sections. In this case the problem is posed on
a finite dimensional vector space but convexity of J can hardly be expected.
This means that the previously defined optimization methods will provide a
stationary point of the criterion and at the best a local optimum, usually located
on the boundary of the design space.

EXAMPLE 4.7 The designer may consider maximizing the stiffness of the electic post
shown in figure (Fig. 4.8); for this purpose

• he assumes that the structure consists in an assembly of N beams whose
cross-sections parameters di can take values between two bounds ai and bi ,

• and looks for cross-sections diameters di that minimize the compliance20 C

of the post submitted to its one weight and given external forces ~F .

In this case, C depends on the variables di (1 ≤ i ≤ N ) and, considering a FEM model of
the post, it is the scalar product

C (d1, · · · ,dN ) =< u(d1, · · · ,dN ) , f >
19In case of FEM interpolation, the design space E is made up of piecewise polynomial functions and

is a finite dimensional vector space.
20It is a choice to reduce the question of “stiffness increase” to the minimization of a compliance. The

engineer might as well thought to minimize the dynamic compliance in a given frequency range etc.
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where f and u are respectively the nodal forces and the nodal displacements computed
in solving equation

[K (d1, · · · ,dN )]u = f where [K ] is the stiffness matrix of the post

We can check that, so formalized, the optimization problem

C (d∗) = min
ai≤di≤bi

C (d)

can be numerically solved by the descent algorithm 4.3. The derivatives of C with
respect to the design variables d1, · · · ,dN are indeed defined as

∂d j C =< ∂d j f , [K ]−1 f >−< [∂d j K ][K ]−1 f , [K ]−1 f >

Force ~FForce ~F

Beams of cross-section Ai

Clamping conditions

A B

C

D

E

Examples of coss-sections

di

di

Fig. 4.8. Example of beam structure. In this case the electric post is

made up of 90 beam elements, it is loaded by given forces ~F at points

C , D, E , which are accounting for the weight of electrical cables.

Note that a SQP or a penalty algorithm (algorithms 4.5 and 4.6) allows in the same
manner to minimize for instance the weight M of the post under constraint C ≤ ε,
where ε is a given constant. In this case, the design space is the set

U =
N∏

i=1
[ai ,bi ] ∩ {

(d1, · · · ,dN ) ∈RN ; C (d) ≤ ε}
and the designer must first of all verify that this set not empty (it is not a trivial task).

Several optimization software are available, they are adapted to the specificities of the
treated problem and we refer to LEYFFER et al. [23] for the optimization’s software
survey provided in table 4.1. In any cases the user must provide programs allowing
to compute both the criterion, the constraints and their derivatives with respect to
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the design parameters. It should be noticed that contrary to the example given in
Example 4.7, there are situations where these derivatives can’t be defined explicitly. In
these cases computation of derivatives is carried out in solving an additional equation,
referred to as adjoint equation21. The question of structural optimization under fatigue
criterion introduced in Chapter 1 (problem (1.13) page 27) enters into this category of
optimization problem and the rest of this chapter aims at writting down the adjoint
equation and stetting up an algorithm for the resolution of this equation.

4.2. Adjoint State equation

We first define the adjoint equation associated with the criterion

J (u) =
T∫

0

j (Xu(t ))d t where t 7→ Xu(t ) satifies the diffrerential equation:

d Xu

d t
= f (Xu ,u, t ) for t ∈ [0,T ] ; Xu(0) = X0

(4.37)

More precisely, we are intending

1o/ to poof that if f satisfies the conditions of the Lemma 4.4, complemented by the
Remark 4.7 then the mapping

u ∈U 7→ J (u) ∈R
is differentiable;

2o/ and to provide an algorithm to compute its derivative.

This will set up the formal framework allowing to write down in the next Section
the optimization problem posed in figure (Fig. 1.16) page 26.

The results obtained in this Section are summarized in the flowing Proposition:

PROPOSITION 4.10 1o / Let f : (X ,u, t) ∈ Rn ×Rm ×R 7→ f (X ,u, t) ∈ Rn be a mapping
continuously differentiable with respect to the variables X , t and differentiable with

21Assume that we are looking for the computation of the derivatives of the mapping

u 7→ J (u) := j (Xu ), where Xu is solution of an equation F (X ,u) = 0

To fix the ideas, j is assumed to be a functional defined on Rn and F is a mapping defined on Rn ×Rm

taking its values in Rn . Using the chain rule

• we get ∂ui J (u) =<∇ j (Xu ),∂ui X (u) >,

• and we can define the derivative ∂ui X (u) as the solution of the equation

[DX F (X (u),u)]∂ui X (u)+∂ui F (X (u),u) = 0

So that ∂ui J (u) =−< [DX F (X (u),u)]−T ∇ j (Xu ),∂ui F (X (u),u) >. Introducing the adjoint equation

(4.36) [DX F (X (u),u)]Tλ=−∇ j (Xu )

posed on Rn , we can write down the derivative ∂ui J (u) as <λ,∂ui F (X (u),u) > where λ is solution of (4.36).

Practical interest of this way of saying comes from the fact that building and resolution of state and adjoint

equations can be performed in the same computational pass.
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Name Description Interfaces Language

ALGENCAN

Fortran code for general nonlinear programming that

does not use matrix manipulations at all and, so, is

able to solve extremely large problems with mod-

erate computer time. The general algorithm is of

Augmented Lagrangian type and the sub-problems

are solved using GENCAN. GENCAN (included in AL-

GENCAN) is a Fortran code for minimizing a smooth

function with a potentially large number of variables

and box-constraints.

AMPL, C/C++, CUTEr,

Java, MATLAB, Octave,

Python, R

Fortran 77

CVXOPT
Free software package for convex optimization based

on the Python programming language.
Python Python

GALAHAD

Library particularly addressed to quadratic program-

ming problems, containing both interior point and

active set algorithms, as well as tools for preprocess-

ing problems prior to solution. It also contains an

updated version of the venerable nonlinear program-

ming package, LANCELOT.

Library of Fortran 90 pack-

ages for largescale nonlin-

ear optimization.

Fortran 90

IPOPT

Interior Point OPTimizer, pronounced eye-pea-Opt

is a software package for large-scale nonlinear opti-

mization. It is designed to find (local) solutions of

mathematical optimization problems.

AMPL, CUTEr, C, C++, For-

tran 77.
C++

KNITRO
Implements four state-of-the-art interior-point and

active-set methods for solving continuous, nonlinear

optimization problems.

AMPL, AIMMS, GAMS,

MPL, MATLAB, R,C, C++,

Java, Python or Fortran.

C++

NLPQL

Non-Linear Programming by Quadratic Lagrangian,

is a sequential quadratic programming (SQP) method

which solves problems with smooth continuously dif-

ferentiable objective function and constraints. The

algorithm uses a quadratic approximation of the La-

grangian function and a linearization of the con-

straints.

MATLAB,C, C++, Python

or Fortran.
FORTRAN 77

NPSOL

Package for solving constrained optimization prob-

lems (nonlinear programs). It employs a dense SQP

algorithm and is especially effective for nonlinear

problems whose functions and gradients are expen-

sive to evaluate. The functions should be smooth

but need not be convex. An augmented Lagrangian

merit function ensures convergence from an arbi-

trary point.

MATLAB, C or Fortran. FORTRAN 77

SQPlab

The SQPlab (pronounce S-Q-P-lab) software is a mod-

est Matlab implementation of the SQP algorithm

for solving constrained optimization problems. The

functions defining the problem can be nonlinear and

nonconvex, but must be differentiable.

MATLAB. MATLAB

Tab. 4.1. Short description of some non-linear optimization software;

a few of them are freely available on the Internet.
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respect to the variable u in a neighborhood of u0 ∈Rm . Then there is T > 0 such that the
differential equation

(4.38)
d X

d t
= f (X ,u, t ) with the initial condition X (0) = X0

has an unique solution Xu on [0,T [ which is differentiable with respect to u at u0.

2o / Moreover, if X ∈Rn 7→ j (X ) ∈R is differentiable on an open subset O of Rn and if the
set {

t ∈ [0,T [ ; Xϕ(t ) ∈ ÙO}
is a null part of [0,T ] then the mapping

(4.39) u 7→ J (u) =
T∫

0

j (Xu(t ))d t

is differentiable with respect to u at u0 and its gradient ∇J(u0) can be computed as
follows:

i ) denoting by t ∈]0,T ] 7→Λ(t ) ∈Rn the solution of the differential equation, referred
to as adjoint equation

(4.40)

dΛ

d t
+DX f (Xu0 (t ),u0, t )tΛ=−∇ j (Xu0 (t ))

with the ending condition λ(T ) = 0

integrated backward in time,
i i ) the gradient of J at u0 is defined by the formula

(4.41) ∇J (u0) =
T∫

0

Du f (Xu0 (t ),u0, t )tΛ(t )d t

PROOF. We start the proof with the following technical Lemma.

LEMMA 4.4 Assume that the mapping f satisfies the condition 1o / of Proposition 4.10.
Then, for any X0 ∈Rn there is η0 > 0 such that the differential equation

(4.42)
d X

d t
= f (X ,u, t ) X (t0) = X0

has an unique solution t ∈ [t0, t0+η0[ 7→ Xu(t ). This solution is differentiable with respect
to u in any direction Ψ at u0 and its derivative22 ∂u Xu is solution of the differential
equation

d δ

d t
= DX f (Xu0 (t ),u0, t ).δ+Du f (Xu0 (t ),u0, t ).Ψ on [0,η0[

with the initial condition δ(t0) = 0
(4.43)

PROOF OF LEMMA 4.4. Denoting by C 1
0 ([0,T ],Rn) the space of the continuously

differentiable mappings V : [0,1] →Rn such that V (0) = 0, we will see that this result is

22Since it is a directional derivative and not a derivation the notation is abusive.
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a consequence of the implicit function theorem23 applied to the mapping F defined as
follows

(v,η,τ) ∈C 1
0

(
[0,T ],Rn)×R×R 7→ F (V ,η,τ) ∈C 0 (

[0,1],Rn)
F (V ,η,τ) :=V ′−η f (X0 +V ,u0 +τΨ, t0 +η .)

(4.45)

where u0 (resp. Ψ) is an arbitrary point (resp. direction) in Rm .

As we have the following results :

1o/ F is continuously differentiable and satisfies the equation F (0,0,0) = 0;
2o/ its derivative D1F (0,0,0), which is the linear operator

V ∈C 1
0

(
[0,T ],Rn) 7→V ′ ∈C 0([0,1],Rn)

satisfies the following properties:
• D1F (0,0,0) is continuous: it is an immediate consequence of the inequal-

ity
∥∥V ′∥∥

C 0 ≤ ‖V ‖C 1 , which takes place for any V ∈C 1 ([0,T ],Rn);
• D1F (0,0,0) is bijective because for any f ∈ C 0 ([0,T ],Rn), the map-

ping g (t ) = ∫ t
0 f (s)d s is in C 1

0 ([0,T ],Rn) and verifies g ′(t) = f (t) for
any t ∈ [0,1].

the hypotheses of the implicit function theorem 4.1 are satisfied; we can thus define a
neighborhood U0×]−η1,η1[×]τ0,τ0[ of 0 ∈C 1

0 ([0,T ],Rn)×R×R and a mapping

(η,τ) ∈]−η1,η1[×]−τ0,τ0[ 7→V (η,τ) ∈C 1
0

(
[0,T ],Rn)

such that24:

F (V (η,τ),η,τ) = 0 for any (η,τ) ∈]−η1,η1[×]−τ0,τ0[

Let η0 ∈
]
0,η1

[
be given, the mapping

(4.46) t ∈ [t0, t0 +η0] 7→ Xτ(t ) := X0 +V (η0,τ)

(
t − t0

η0

)
∈Rn

satisfies
d Xτ

d t
(t ) = 1

η0
V ′(η0,τ)

(
t − t0

η0

)
= f (Xτ,u0 +τΨ, t )

Xτ(t0) = X0

23The proof of the following theorem can be found in any course of analyze, see for instance

SCHWARTZ [37]. Note that this theorem, while fundamental in analysis, is written in many texts with

useless hypotheses on the spaces Y and Z . It is not necessary to assume that these spaces are Banach!

THEOREM 4.1 (Implicit function theorem) Let X be a Banach space, Y , Z be normed spaces and

let F : X ×Y → Z be differentialble mapping defined in a neighborhood U ×V of a point (x0, y0) ∈ X ×Y ;

assume that

i ) x0 is solution of the equation F (x0, y0) = 0

i i ) and that the derivative D1F (x0, y0) is a bijective continuous linear mapping between X and Z .

Then there are two neighborhoods U0 ⊂U and V0 ⊂ V of x0 and y0 respectively such that for any y ∈ V0 the

equation F (x, y) = 0 has one and only one solution x(y) in U0. The mapping y ∈ V0 7→ x(y) ∈U0 is moreover

differentiable with respect to y ∈U0 and its derivative is defined by

(4.44) Dx(y) =−[D1 f ]−1(x(y), y)◦ [D2 f ](x(y), y) for all y ∈ V0

24Note that this equation takes place in C 0([0,1],Rn ).
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and is solution of the differential equation (4.42) for any parameter u of the form

u = u0 +τΨwhen τ ranges in the interval ]−τ0,τ0[

The mapping τ 7→ V (η0,τ) is moreover differentibale with respect to τ and the for-
mula (4.44) shows that its derivative satisfies the differential equation25

(∂τV )′ = ηDX f (x0 +V (η,τ),u0 +τΨ, t0 +η.).∂τV

+ηDϕ f (x0 +V (η,τ),u0 +τΨ, t0 +η.).Ψ

This proofs that Xτ defined in (4.46) is differentiable with respect to τ and that its
derivative is solution of the differential equation (4.43).

Applying the Taylor formula to the mapping τ ∈]−τ0,τ0[ 7→V (η0,τ) ∈C 1
0 ([0,1],Rn) we

have on the other hand

V (η0,τ) =V (η0,0)+τ (∂τV ) (η0,0)+|τ|ε(τ)

with lim
τ→0

‖ε(τ)‖C 1 = 0
(4.47)

�

REMARKS 4.7 1o/ Other existence results for the differential equation (4.42) might be
obtained under weaker regularity conditions on the mapping X 7→ f (X ,u, t ). But as
we wish the solution Xu(t ) to be diffrentiable with respect to u, we must impose some
regularity conditions on f , and this justifies the use of the implicit fuction theorem to
proof the Lemma 4.4.

2o/ Lemma 4.4, which is a local existence result, allows to show that the equation (4.38)
has a solution on a maximal time interval [0,Tmax [ and that the condition Tmax <+∞
entails limt→Tmax ‖X (t )‖ =+∞. To see this:

i ) use the Lemma 4.4 to extend to [0, T̃ +η0[ a solution of the equation (4.38) which
is defined on a time interval [0, T̃ ];

i i ) call Tmax the upper bound of the positives numbers T̃ for which the previous
operation can be performed; note that the condition limt→Tmax ‖X (t )‖ < +∞
entails Tmax = +∞; indeed, assuming the opposite would mean that the solu-
tion t 7→ X (t ) could be extended beyond Tmax (as asserted in Lemma 4.4) and
would contradict the definition of Tmax .

We will subsequently assume that T < Tmax and that the solution X of (4.42) is defined
on a closed interval [0,T ].

25One can check that the derivative of F with respect to V ∈C 1
0

(
[0,T ],Rn)

is the linear mapping

H ∈C 1
0

(
[0,T ],Rn) 7→ H ′−ηDX f (X0 + v, ...).H ∈C 0 (

[0,T ],Rn)
so that its inverse is the linear mapping which associate to any W ∈ C 0 (

[0,T ],Rn)
the solution H ∈

C 1
0

(
[0,T ],Rn)

of the differential equation

d H

d t
= ηDX f (X0 + v, ...).H +W
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3o/ We can proof in the same way that the derivative in the directionΨ of the solution Xu

of the differential equation (4.38) is defined at a point u0 by26

d δ

d t
= DX f (Xu0 (t ),u0, t ).δ+Du f (Xu0 (t ),u0, t ).Ψ on [0,Tmax [

with the initial condition δ(0) = 0
(4.48)

To complete the proof of Proposition 4.10, we have to compute the limit

(4.49) lim
τ→0

1

τ

∫ T

0

[
j (Xu0+τΨ(t ))− j (Xu0 (t ))

]
d t

where Xu0+τΨ(t) is the solution of the differential equation (4.38) for the particular
values u = u0 +τΨ.

To this end, we will assume that

• the set F of the points X ∈Rn where j is not differentiable is a closed subset
of Rn , then the following formula makes sense for each t such that Xu0 (t ) ∈ ÙF

j (Xu0+τΨ(t ))− j (Xu0 (t )) = 〈∇ j (Xu0 (t )) , Xu0+τΨ(t )−Xu0 (t )〉+
+∥∥Xu0+τΨ(t )−Xu0 (t )

∥∥o
(
Xϕ0+τΨ(t )−Xϕ0 (t )

)
with lim

X→0
o(X ) = 0

(4.50)

• and that for each u ∈U , the set

{t ∈ [0,T ] ; Xu(t ) ∈F }

is a null set. Then the formula (4.50) takes place almost everywhere in [0,T ]
and the integral

δJ (u) =
∫ T

0

[
j (Xu+τΨ(t ))− j (Xu(t ))

]
d t

can be obtained by integrating on [0,T ] the right hand member of the equa-
tion (4.50).

Letδ be the solution of the differential equation (4.48); taking into account the definition
of v introduced in the proof of Lemma 4.4, the formula (4.47) can be rewritten as

Xu0+τΨ(t )−Xu0 (t ) = τδ(t )+|τ|ε(τ, t ) for any t ∈ [0,T ]

with lim
τ→0

ε(τ, t ) = 0 uniformly in t ∈ [0,T ]

The formula (4.50) shows then that

δJ (u0) = τ
∫ T

0
〈∇ j (Xu0 (t )) , δ(t )〉d t +|τ|

∫ T

0
〈∇ j (Xu0 (t )) , ε(τ, t )〉d t

+|τ|
∫ T

0
‖δ(t )+ε(τ, t )‖o (τδ(t )+|τ|ε(τ, t ))d t

26To do this, we must assume in the Lemma 4.4 that the initial condition X0 depends on u and replace

the initial condition δ(t0) = 0 of the equation (4.43) by δ(t0) = Du X0.Ψ.
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As t 7→ ε(τ, t ) converges uniformly to 0, we have27:

lim
τ→0

∣∣∣∣∫ T

0
〈∇ j (Xu0 (t )) , ε(τ, t )〉d t

∣∣∣∣
≤

(∫ T

0

∥∥∇ j (Xu0 (t ))
∥∥d t

)
lim
τ→0

sup
t∈[0,T ]

‖ε(τ, t )‖ = 0

Since the mapping t 7→ δ(t )+ε(τ, t ) is of class C 1 on [0,T ], the previous inequality and
the formula (4.47) show that the limit (4.49) exists; this means that J is differentiable in
the directionΨ at u0 and that its derivative is

(4.51) DΨ J (u0) =
T∫

0

〈∇ j (Xu0 (t )) , δ(t )〉 d t

The objective is now to rewrite this derivative as the following scalar product:

DΨ J (u0) = 〈∇J (u0) ,Ψ〉
To this end, we will assume that f is continuously differentiable with respect of ϕ and
we introduce an adjoint variable28

t ∈ [0,T ] 7→Λ(t ) ∈Rm

Whose definition will be specified as needed. Computing the scalar product of the
equation (4.43) byΛ and integrating the obtained result on [0,T ] we have

(4.52)

T∫
0

〈dδ

d t
,Λ〉 =

T∫
0

〈δ , DX f (Xu0 ,u0, t )tΛ〉+
T∫

0

〈Ψ , Du f (Xu0 ,u0, t )tΛ〉

integrating by parts the left hand side of this equation, we get:

T∫
0

〈dδ

d t
,Λ〉 = 〈dδ

d t
,Λ〉

T

0
−

T∫
0

〈δ ,
dΛ

d t
〉

Now, ifΛ is defined as the solution of the linear differential equation

dΛ

d t
=−DX f (Xu0 (t ),u0, t )tΛ−∇ j (Xu0 (t ))

with the ending conditionΛ(T ) = 0

we deduce from (4.52) that
T∫

0

〈Ψ , Du f (Xu0 ,u0, t )tΛ(t )〉 d t =
T∫

0

〈∇ j (Xu0 (t )) , δ(t )〉 d t

Taking into account of (4.51), this shows that ∇J (u0) can be defined as

∇J (u0) =
T∫

0

Dϕ f (Xu0 (t ),u0, t )tΛ(t )d t

�

27Because the assumptions made about the functions j and Xϕ0 entail that t 7→ ∇ j (Xϕ0 (t )) is bounded

with respect to the norm ‖.‖∞.
28Also called Lagrange multiplier.
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REMARKS 4.8 1o/ When the integrand j (X ,u) of the criterion (4.39) depends explicitly
on the variable u, the gradient of J is defined by

(4.53) ∇J (u0) =
T∫

0

Du j (Xu0 (t ),u0)d t +
T∫

0

Du f (Xu0 (t ),u0, t )tΛ(t )d t

whereΛ is the solution of the adjoint equation (4.40) with the right hand member

(4.54) −DX j (Xu0 (t ),u0)

2o/ The adjoint equation (4.40) is a linear differential equation excited by the
term ∇ j (Xu0 (t )) which is discontinuous on a null subset of [0,T ] but remains bounded
in the ‖ .‖∞ norm, thus the adjoint equation has a solution in W 1,∞ ([0,T ],Rn) and the
integral (4.41), which defines the gradient ∇J (u0), always makes sense.

3o/ There is no evidence that the gradient ∇J (u0) remains bounded when the horizon T
goes to +∞ because even if the solution Xu0 (t) of the state equation is periodic, the
term ∇ j (Xu0 (t)) can excite the poles29 of the linear operator Λ 7→ DX f

(
Xu0 ,u0, t

)
Λ

which can be purely imaginary if the state equation is undamped, this means that the
adjoint equation can be unstable.

4o/ When the state equation derives from a second-order linear system such as (3.3)
page 96, the adjoint equation is

d

d t

{
Λ1

Λ2

}
=

[
0 [K ][M ]−1

−I [W ][M ]−1

]{
Λ1

Λ2

}
−

{
Dx j (xu0 , yu0 )
D y j (xu0 , yu0 )

}
and the change of variables Λi 7→ Λi = [M ]

1
2 [Q]λ̂i (similar to the one introduced in

Section 3.1) diagonalizes this equation under the form

(4.55)
d

d t

{
Λ̂1

Λ̂2

}
=

[
0 pki i y

−I di i
pci i y

]{
Λ̂1

Λ̂2

}
−

{
[Q]t [M ]−

1
2 Dx j (xu0 , yu0 )

[Q]t [M ]−
1
2 D y j (xu0 , yu0 )

}

Algorithmic implementation. We have thus to do the following operations to com-
pute a descent direction of the optimization problem (4.37):

1o/ solve the state equation (4.38) to compute Xu0 (t ) for 0 ≤ t ≤ T and the value J(u0)
of the criterion;

2o/ solve backward in time the adjoint equation (4.40) with the results of the previous
step to calculateΛ(t ) (0 ≤ t ≤ T ); the algorithm 4.7 summarizes the computations
which are to be performed to integrate the state equation and its adjoint by a finite
difference method;

3o/ define the descent direction by computing the integral (4.41) with the help of the
stored data Xu0 (t ) andΛ(t ).

29And this happens at each point of discontinuity of the excitation ∇ j (Xu0 (t )).
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Algorithm 4.7: Simultaneous integration of the sate and adjoint equations by a
backward Euler method (unconditionally stable).

input : Integration step size h; we assume that h = T
Nsamp

output : Tables X = (
Xi

)Nsamp

i=0 and λ= (
λi

)Nsamp

i=0 containing state and adjoint state

sampling.

begin
1) Integration of the state equation

initialisation :For i = 0, Xi ← X0, where X0 is the initial condition for the state equation

for i = 1 to Nsamp do
• Solve the equation Z −h f (Z ,hi ) = Xi−1 with the help of a fixed point algorithm: if the mapping

Z 7→ f (Z ,hi ) is Lipschitz, one can choose h small enough so that Z 7→ h f (Z ,hi )−Xi−1 is

contracting.

• Z0 ← Xi−1 and Z ← 0

while ‖Z −Z0‖ ≥ ε do
* Z ← Xi−1 +h f (Z0,hi )

* Z0 ← Z
end

• Xi ← Z
end

2) Integration of the adjoint equation

initialisation : ΛNsamp ← 0

for i = Nsamp −1 to 0 do
• Compute the derivative DX f (Xi , i h) and the gradient ∇ j (Xi )

• Solve the linear equation

Λi −hDX f (Xi ,hi )tΛi =Λi+1 +h∇ j (Xi )

to computeΛi fromΛi+1.
end

end

When the state equation is obtained from a FEM model, the amount of data
that must be processed to compute a descent direction may seems unaccept-
able. However, when we deal with a system of linear equations with constant
coefficients, the computations can be simplified in integrating the state and
the adjoint equations with the help of the forced response method introduced
in Chapter 3. The Remarks 4.9 explain how to handle the task.

REMARKS 4.9 1o/ In order to integrate the quation (4.55), which is set backward in time,
by the forced response method introduced in the Section 3.1 we must reformulate this
system of equations in the increasing direction of time. To this end, we make the change
of unknowns

Λ̂ j 7→ Λ̄ j ( j = 1,2) defined by Λ̄ j (t ) := Λ̂ j (T − t ) for t ∈ [0,T ]

to rewrite (4.55) as

(4.56)
d

d t

{
λ̄1

λ̄2

}
=

[
0 −pki i y

I di i −pci i y

]{
λ̄1

λ̄2

}
+

{
[Q]t [M ]−

1
2 Dx j (x̄u0 , ȳu0 )

[Q]t [M ]−
1
2 D y j (x̄u0 , ȳu0 )

}
and integrate this system of equations between 0 and T , with the initial condi-
tion λ̄ j (0) = 0.
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Next, an appropriate renumbering of the equations allows to reduce (4.56) to a system
of uncoupled oscillators

d

d t

{
λ̄1

λ̄2

}
=

[
0 −ω2

1 −c

]{
λ̄1

λ̄2

}
+

{
ḡ1(t )
ḡ2(t )

}
which, modulo a transposition, was studied in the Section (3.1) page 98. For sub-critical
damping30, denoting δ = 1

2

p
4ω2 − c2, this equation can be solved by the convolution

product

Λ(t ) =
t∫

0

[N (t − s)]ḡ (s)d s

where the kernel t 7→ [N (t )] is now the following 2×2 matrix :

(4.57) [N (t )] = e−
ct
2

[
c

2δ sin(δt )+cos(δt ) −ω2

δ sin(δt )
1
δ sin(δt ) cos(δt )− c

2δ sin(δt )

]

2o/ In contrast with what happens for the integration of the state equation, the
terms ḡi (s) (for i = 1,2) are generally both non-zero.

3o/ The algorithm 4.8 summarizes the computation steps to perform the simultaneous
integration of the state and the adjoint equations by the forced response method. The
advantage is to limit the volume of the data which are to be stored; we only store31 5
tables of dimensions k ×Nsamp where k is the dimension of the reduced state equation
and Nsamp is the number of samples of the excitations.

A first illustration. We conclude this Section by treating the following example,
which is intended to illustrate the implementation of the previously introduced method
on a simple case.

EXAMPLE 4.8 We are intending to identify the coefficients ω and c of the second order
equation

ξ̈+ω2ξ+ c ξ̇= cos(α0t ) with the initial conditions ξ(0) = ξ̇(0) = 0

which minimizes the criterion

J (ω,c) =
T∫

0

|sin(α1 t )−ξ(t )|d t

where ω and α1 are two given angular velocities.

i ) The second order equation is first written under the form of the first order system

(4.63)
d

d t

{
ξ1

ξ2

}
=

[
0 1

−ω2 −c

]{
ξ1

ξ2

}
+

{
0

cos(α0t )

}
30We leave to the reader to deal with the cases of critical and over-critical damping.
31To be compared with a table of dimension 2m ×Nsamp where m is the dimension of the state

equation for the classical algorithm 4.7.



4.2. ADJOINT STATE EQUATION 175

Algorithm 4.8: Simultaneous integration of the state and adjoint equations by
the forced response method.

inputs :

• Sampling of excitations
(

fi
)Nsamp

i=1 and sampling frequency Fsamp .

• Matrices [M ]−
1
2 et [M ]

1
2 .

• Truncated modal base [Q̂k ] (with k modes) of the structure.

outputs :

• Criterion J (u0) =
T∫
0

j (x(t ), ẋ(t ))d t .

• Sampled solution
(
Λi

)Nsamp

i=1 of the adjoint equation.

begin
1) Pass the forces in the modal base, f̂i is the k-dimensional vector

(4.58)
(

f̂i
)Nsamp

i=1 = [Q̂k ]t [M ]−
1
2
(

fi
)Nsamp

i=1

2) Computation of k convolution products

(4.59)
(
x̂i

)Nsamp

i=1 =G1 ∗
(

f̂i
)Nsamp

i=1 and
(
ŷi

)Nsamp

i=1 =G2 ∗
(

f̂i
)Nsamp

i=1

3) Computation of the criterion and the right hand member of the adjoint equation

for i = 1 to Nsamp do
• Go back to the original basis with the help of the matrices products

(4.60) xi = [M ]−
1
2 [Q̂k ]x̂i and ẋi = [M ]−

1
2 [Q̂k ]ŷi

• Sampling of the integrand j (xi , ẋi ) and updating of the criterion J (ϕ0)

• Compute the derivatives Dx j (xi , ẋi ) and D ẋ j (xi , ẋi )

• Pass the derivatives of j in the modal base in applying the formula (4.58) to compute �Dx j and�D .
x j .

• Store the results backward in time (ie. starting with the end)

(4.61)

(
Dx j

)
(Nsamp+1−i )

← (
D̂x j

)
i(

D ẋ j
)

(Nsamp+1−i )
← (�D .

x j
)

i

end

4) Compute the convolution products with kernels (4.57). Note that the kernels (4.59) used to integrate

the state equation are entries of the matrix [N ].(
Λi

)Nsamp

i=1
= [N ]∗

(
∇ jx i
∇ jẋ i

)Nsamp

i=1

5) Go back to sampling in ascending time by a formula analogue to (4.61)

6) Go back to the initial basis by the base change

(4.62) Λi = [M
1
2 ][Q̂k ]Λ̂i

to compute the sampling
(
Λi

)Nsamp

i=1 of the solution the adjoint equation.

end

parametrized by ω and c. In this case, the mapping f of the Proposition 4.10 is
defined by{

ξ1

ξ2

}
∈R2 7→ f (ξ1,ξ2, t ) =

{
ξ1

−ω2ξ1 − c ξ2 +cos(α0t )

}
∈R2
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and its derivative with respects of the parameters (ω,c), computed at (ω0,c0) is the
linear mapping of matrix

D(ω,c) f =
[

0 0
−2ω0ξ1 −ξ2

]
i i ) Thus the formula (4.41) allowing to compute the gradient of J at (ω0,c0), says that:

∂ω J (ω0,c0) =−2ω0

T∫
0

ξ1(t )λ2(t )d t

and ∂c J (ω0,c0) =−
T∫

0

ξ2(t )λ2(t )d t

(4.64)

i i i ) where t 7→Λ(t ) = (λ1(t ),λ2(t )) is the solution of the differential equation

(4.65)
d

d t

{
λ1

λ2

}
=

[
0 ω2

−1 c

]{
λ1

λ2

}
−

{
si g n (ξ1(t )− sinα1t )

0

}
Integrated backward in time from T to 0, with the initial condition

λ1(T ) =λ2(T ) = 0

The numerical application shown in figures (Fig. 4.9) and (Fig. 4.10) is carried out
with ω= 2 and α1 = 4r d/s. Once computed the derivatives (4.64), it only remains to
use its “ favorite optimizer ” to compute the optimal values of the parameters ω and c.

4.3. Application to damage criterion

In this Section we specify what is said in the previous Section to the case where the state
equation, depending on a design parameters u, is of the form (3.3) page 96 and where
the optimization criterion is defined by the integral (3.2).

Let’s start this Section by studying two particular cases which show how to use the
results of Proposition 4.10, Theorem 2.3 page 72 and Remark 2.8 page 75 to define the
algorithms allowing to calculate the gradient of the criterion (3.2) with respect to u and
to set up the “steepest descent methods” to identify a set of parameters uopt minimizing
the damage (3.2).

One-dimensional examples. We study two examples which consist to optimize a
one-dimensional spring under fatigue criterion. The design parameters of the spring
are first its resonant frequency and its damping, next we optimize its stiffness and its
mass.

EXAMPLE 4.9 In this first example we intend to find the natural frequency ω and the
damping coefficient c which minimize the damage D(ω,c) caused on the spring de-
scribed in figure (Fig. 4.11) when it is submitted to traction-compression loading defined
on a time horizon [0,T ] and the number of cycles to failure is given by a Stromeyer
formula.



4.3. APPLICATION TO DAMAGE CRITERION 177

0 2 4 6 81 3 5 70.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

20

30

15

25

35

0 2 4 6 81 3 5 70.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

0

−100

100

−50

50

0 2 4 6 81 3 5 70.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

0

−100

100

−50

50

ω

ad
jo

in
ts

ta
te

G
ar

d
ie

n
tc

o
m

p
u

te
d

b
y

G
ar

d
ie

n
tc

o
m

p
u

te
d

b
y

fi
n

it
e

d
if

fr
en

ce
s

C
ri

te
ri

o
n

Zone 2 Zone 3Zone 1

∂ω J = 0

Fig. 4.9. Comparison between the derivatives ofω0 7→ ∂ω0 J obtained
by integration of the adjoint equation and finite differences. Com-

putations are made in assuming that α0 = 2 and α1 = 4 on the time

interval [0,8π], the adjoint state is integrated with the algorithm 4.8

and the convolution products are computed on 512 samples. Beyond

the fact that this figure shows a good correlation level between the two

computation methods of the gradient, it allows to verify that the crite-

rion
8π∫
0
|ξ(t )− si n (4 t )|d t is not a convex function of the parameter ω.

Thus a steepest descent method initialized in the zone 1 leads to soften

the structure to take away ω from the pulsation α0 of the excitation,

where the system enters into resonance. When it is initialized in the

zone 2, it leads to stiffen the structure to bring ω on α1 = 4 which is

the global optimum. At last, the criterion has a stationary point at

phase reversal of the response which occurs at resonance passing of

the undamped system(ω= 2).

i ) The mechanical system is governed by the second-order differential equation

ξ̈+ω2ξ+ c ξ̇= F0 cos(αt ) for t ∈ [0,T ]

ξ(0) = ξ̇(0) = 0
(4.66)
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Fig. 4.10. Details of the resolution of the adjoint equation. Since in

this case their is no bases change to do, the computations are made

with a simplified version of the algorithm 4.8. Notice on the other hand

that the excitation of the adjoint equation jumps a discontinuity every

time the sign of ξ1(t)− sinα1t changes and the solution of adjoint

system never reaches a stationary state. This justifies the interest of

the forced response method introduced in the chapter 3.

i i ) According to the formula (2.63) page 74, the damage is

(4.67) D(ω,c) = 1

2bsCs

T∫
0

[max{(σ0(T + t )−σd ),0}]
1

bs
−1 |σ̇(t )|d t

where:
• σ(t) is a stress defined (according to the displacement ξper (t) and the geo-

metrical characteristics of the spring) as

(4.68) σ(t ) = Eξper (t )

L
where E is the Young modulus of the material

• σ0(t) is, see Theorem 2.3 page 72, the abscissa of the first extremum of the
mapping σa 7→ Eσa (σ, t ) defined by the variational inequality (2.39) page 61,
parametrized in σa and integrated between 0 and 2T ;
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Fig. 4.11. Mechanical parameters. Assume that the specimen is sub-

mitted to tension-compression loaded by a force f (t) = F0 cos(αt),

we want define the mass-stiffness ratio ω=
√

k
m which minimizes

the damage D(ω) when the number of cycles to failure is given by a

stromeyer formula (without accounting of mean stress effect).

• bs , Cs and σd (fatigue limit) are material constants which characterize the
Wöhler’s curve used to compute the number of cycles to failure according to
the applied alternating stresses.

i i i ) The same arguments as those developed in the framework of the Example 4.8 show
that the gradient of (ω,c) 7→D(ω,c) must be defined (formally for the time being)
by the formulas (4.64) where, using the Remarks 2.8 page 75 and the formulas
given in the Example 2.3-1, the Lagrange multipliers λ1 and λ2 satisfy of the adjoint
equation

d

d t

{
λ1

λ2

}
=

[
0 ω2

−1 c

]{
λ1

λ2

}

− E

L


1−bs

4b2
s Cs

σ̇ [max{(σ0(T + .)−σd ),0}]
1

bs
−2

1
2bsCs

si g n(σ̇) [max{(σ0(T + .)−σd ),0}]
1

bs
−1


(4.69)

defined backward in time from T to 0. Using the change of variables introduced
in the Remark 4.9, this system can be solved with the help of the forced response
method32.

i v) Noticing that the discontinuities of the right hand member of the equation (4.69)
result of the discontinuities of

• the si g n(σ̇) when ξ̇(t ) vanishes and changes its sign;
• and of the mapping t 7→ σ0(t) when σ0(t) is in the RMS(σ, t) sequence33

of t 7→σ(t ), and that these discontinuities actually take place only if σ0 >σd ,
the results explained in comments of figure (Fig. 2.11) page 56 show they
impact the right hand member of equation (4.69) at a finite number of times.

we see that the theoretical condition 2o) of Proposition 4.10 can be assumed to be
satisfied and that the computations defined in (4.69) and (4.64) lead to the gradient
of D(ω,c).

It remains at last to explain the computation sequence allowing to

32In contrast with what happens in the case of the Example 4.8, all the terms of the convolution

kernel (4.57) are now taken into account to perform the integration.
33See Definition 2.7 page 53 and figures (Fig. 2.16) and (Fig. 2.20).
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Fig. 4.12. Computation of the damage and its partial derivatives with
respect to ω and c. The excitation is a pure sine which is set so that the state

equation has a resonance at 25H z.

• solve the state equation (4.66) and it’s adjoint (4.69),
• and to compute the integrals (4.67) and (4.64), to obtain the damage and its

partial derivatives with respect to ω and c.

In essence this leads to the algorithm 4.9, whose implementation is illustrated by the
example given in figure (Fig. 4.12).

REMARK 4.10 Due to the nonlinearities introduced by the formulas (2.68) and (2.69)
the spectrum of the excitation (4.70) of the adjoint equation is, see figure (Fig. 4.13),
richer than the one of the state equation, this leads to over-sample the state equation to
accurately compute the Lagrange multiplier λ2 by the convolution product (4.71).

EXAMPLE 4.10 Under the conditions of Example 4.9, we look for a stiffness k and
a mass m of the spring shown in figure (Fig. 4.11) which minimize the map-
ping (m,k) 7→D(m,k) defined in (4.67). In this case, the state equation is

ξ̈+ k

m
ξ+ c ′

m
ξ̇= F (t )

m
for t ∈ [0,T ]

ξ(0) = ξ̇(0) = 0
(4.72)

The mapping f of the Proposition 4.10 is then defined by{
ξ1

ξ2

}
∈R2 7→ f (ξ1,ξ2) =

{
ξ2

− k
m ξ1 − c ′

m ξ2 + F (t )
m

}
∈R2
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Algorithm 4.9: Application of the forced response method to the simultane-
ous integration of state and adjoint equations for an unidimensional damage
problem.

inputs :

• Sampling of the right hand member of the state equation in the table
(
F (tk )

)Nsamp

k=1 .

• Natural frequency ω of the processed oscillator

• Table
(
σa j

)Mσamax

j=1
of the sampling points of the function σa 7→ Eσa (σ, ti ) for (1 ≤ j ≤ Nsamp ).

• Material parameters of the Wöhler’s curves (see the Examples 2.2 page 74).

outputs :
• Damage D(ω,c)

• Derivatives ∇D(ω,c) of the damage computed at ω and c.

begin
1) Solve the state equation by the forced response method (algorithm 4.8)

• In case of subcritical damping, set δ= 1
2

√
4ω2 − c2 and d t = T /Nsamp (step size of the sampling)

• Sample the damping C =
(
d te−ctk /2

)Nsamp

k=1
, the convolution kernels si = (

sin(δtk )
)Nsamp

k=1

and co = (
cos(δtk )

)Nsamp

k=1
• Carry out the discrete convolution products

– 1
δ

(
Ck sik

)Nsamp

k=1 ∗ (
Fk

)Nsamp

k=1 to get the sampling ξ1 = (
ξ1(tk )

)Nsamp

k=1 of the displacement

ξ(t ).

–
(
Ck (cok − sik /(2δ)

)Nsamp

k=1 ∗ (
Fk

)Nsamp

k=1 for the sampling ξ2 = (
ξ2(tk )

)Nsamp

k=1 of the velocity

ξ̇(t ).

2) Use
(
ξ1(tk )

)Nsamp

k=1 and
(
ξ2(tk )

)Nsamp

k=1 to sample the stresses σ= (
σ(ξ(tk ))

)Nsamp

k=1 and their time

derivatives σdot =
(
σ̇(ξ(tk ))

)Nsamp

k=1 ; in the case of the Example 4.9, simply carry out the product of the

table ξi (i = 1,2) by E
L but mores complicated cases are dealt subsequently.

3) Use the algorithm 3.3 with the data σ and σdot to make the sampling σ0 = (
σ0(tk )

)Nsamp

k=1 of the

mapping t 7→σ0(T + t ).

4) Use the datat σ,σ0 and σdot to sample

• the integrand

W = (
w(σ(tk ),σ0(tk ), σ̇(tk ))|σ̇(tk )|)Nsamp

k=1

of the damage defined the formula (2.62) page 72 and compute D(ω,c) by numerical

integration. In the case of the Example 4.9, this reduces to the computation

of 1
2Cs bs

[
max

{
(σ0(tk )−σd ),0

}] 1
bs

−1 ∣∣Σ̇e (tk )
∣∣.

• the derivatives (2.68) and (2.69) defined in the Remark 2.8 page 75, to make the following tables,

which contain the sampling of the right hand member of the adjoint equation.

(4.70) D1 J =
(
∂ j

∂v
(σ(tk ),σ0(tk ),σdot (tk ))

)Nsamp

k=1
and D2 J =

(
∂ j

∂v̇
(σ(tk ),σ0(tk ),σdot (tk ))

)Nsamp

k=1

In the case of the Example 4.9, this reduces to the computation of

1−bs

4b2
s Cs

σ̇(tk )
[
max

{
(σ0(tk )−σd ),0

}] 1
bs

−2 and
1

2bsCs
si g n(σdot (tk )

[
max

{
(σ0(tk −σd ),0

}] 1
bs

−1

5) Solve the adjoint state equation (simplified version of the algorithm 4.8)

• Make the change of variable of the Remark 4.9 on the tables D1 J and D2 J to define the

tables D̃i J (i = 1,2).

• Sample the Lagrange multipliers λ̂2 with the help of the convolution product

(4.71) λ̃2 = (
Ck sik /δ

)Nsamp

k=1 ∗ D̃1 J + (
Ck (cok − csik /(2δ))

)Nsamp

k=1 ∗ D̃2 J

• Apply the reciprocal change of variables to return to λ2(tk ), sampled in the increasing time.

6) Compute the partial derivatives ∂ωD and ∂cD by carrying out numerical the integration on the

tables

−ω(
λ2(tk )ξ1(tk

)Nsamp

k=1 and − (
λ2(tk )ξ2(tk

)Nsamp

k=1

end
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Fig. 4.13. Detail of the computations for the resolution of the ad-
joint equation in the case of the Example 4.9. We see that the spec-

trum of the excitation of the adjoint equation is richer than that of the

state equation, which contains only one frequency.

and the derivative D(k,m) f at a point (k0,m0) is

D(k,m) f =
[

0 0

− 1
m0
ξ1

k0

m2
0
ξ1 + c ′

m2
0
ξ2 − F (t )

m2
0

]
this shows that the gradient of (k,m) 7→D(k,m) is given by

∂kD(k0,m0) =− 1

m0

T∫
0

ξ1(t )λ2(t )d t

∂mD(k0,m0) = 1

m2
0

T∫
0

[
k0ξ1(t )+ c ′ξ2(t )−F (t )

]
λ2(t )d t

(4.73)

where (λ1,λ2) are the solutions of an adjoint system analogous to (4.69) (in which it

suffices to set ω=
√

k
m et c = c ′

m ) note, on the other hand, that ∂mD(k0,m0) can be
simplified as

∂mD(k0,m0) = 1

m0

T∫
0

ξ̇2(t )λ2(t )d t

A numerical application is proposed in the figures (Fig. 4.15), (Fig. 4.16) and (Fig. 4.17),
when the mission profile t 7→ F (t) is the signal shown in the figure (Fig. 4.14). This
numerical application shows that
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Fig. 4.14. Excitation force in case of the Example 4.10. In this case

is the force is F (t) = f0 cos(ω0t) + 2
3 f0 (sin(1.1ω0t )+ sin(0.9ω0t )) +

1
2 f0 (sin(1.2ω0t )+ sin(0.8ω0t )), where ω0 and f0 are given constants;

they are sampled on 8 seconds.

• in this case, the damage is not a convex function of the parameters m and k;
• and the global optimum would be reached for an “ideal” structure which

would be at the same time very stiff and lightweight, however, local optima
can be found but they depend upon the mission profile!

REMARK 4.11 If the spring is modeled as a tensile-compression bar parametrized by the
length L and the section S, the stiffness and the mass are k = ES

L et m = ρSL. The state
equation (4.72) can be written as

(4.74) ξ̈+ E

ρL2 ξ+
c ′

ρSL
ξ̇= F (t )

ρSL

Formulas (4.67) and (4.68) show that damage caused by the loading F (t ) defined on the
time horizon [0,T ] is

D(S,L) = 1

4bsCs

(
E

L

) 1
bs

T∫
0

[
max{(σ0(t +T )−σ′

d (L) ),0}
] 1

bs
−1 ∣∣ξ̇(t )

∣∣ d t

where σ′
d (L) is defined on the basis of the fatigue limit σd by

σ′
d (L) = σd L

E
and explicitly depends upon the design parameter L. The term ∂LD obtained form (4.73)
by the formula ∂LD = ρS∂mD− ES

L2 ∂kD must be completed according to the Remark 4.8-1
page 172.
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Fig. 4.15. Damage and its derivatives computed for a given mass. In

this case, we fix the mass at a given value m0 and we plot on the figures

a), b) and c) the mappings k 7→D(k,m0), ∂k D(k,m0) and ∂mD(k,m0).
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Fig. 4.16. Damage and its derivatives computed for a given stiffness.

In this case, we fix the stiffness at a given value k0 and we plot on

the figures a), b) and c) the mappings m 7→ D(k0,m), ∂k D(k0,m)

and ∂mD(k0,m).
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Fig. 4.17. Comparison between the gradients obtained by integra-
tion of the adjoint equation and finite differences. The curves in red

correspond to the computations by finite differences and the curves

in blue are the results obtained by resolution of the adjoint equation.

Multidimensional case. In the general case, a structural optimization problem
under fatigue life criterion can be written as

Find a set of parameters uopt ∈Uad which minimize the damage

u ∈Uad 7→D(u) =
T∫

0

w
(
Σe (t ),Σ0(t +T ), Σ̇e (t )

)∣∣Σ̇e (t )
∣∣d t ∈R+(4.75.a)

where Σe (t ) :=Σe (xu(t )) is an “equivalent stress” depending on the first component of
the variableXu := (xu , ẋu)34, itself solution of the equation

d Xu

d t
= f (Xu ,u, t ) on [0,T ]

with the initial condition Xu(0) = 0
(4.75.b)

where:

• see Theorem 2.3 page 72, the mapping (v1, v2, v3) 7→ w(v1, v2, v3) is defined (as
a function of the inverse of the number cycles to failure given in the Wöhler
abacuses) by the formula (2.62);

• the system (4.75.b) is obtained in reducing the second order sys-
tem [Mu] ẍ + [Ku] x + [Wu] ẋ = F (t ) to a first order one by the change of
variables introduced in Section 3.1 page 104.

34Here x and ẋ are considered as independent variables.
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If we denote by j the mapping

X = (x, ẋ) 7→ j (X ) = w
(
Σe (x),Σ0, Σ̇e

)∣∣Σ̇e
∣∣ where Σ̇e = (∇Σe (x) ; ẋ)

Proposition 4.10 shows that the i -th component of the gradient (with the respect of the
parameters u) of the damage, computed at u0 ∈Φad is given by

∇D(u0)i =
T∫

0

(
∂ui

[
Mu0

]−1 F −∂ui

([
Mu0

]−1 [
Ku0

])
x

−∂ui

([
Mu0

]−1 [
Wu0

])
ẋ ;Λ2

)
d t

(4.76)

where:

• ui denote generically the i -th component u ∈Uad ;
• the Lagrange multipliersΛ1 andΛ2 are solutions of the adjoint system

(4.77)
d

d t

{
Λ1

Λ2

}
=

[
[0] [K ] [M ]−1

−[I d ] [W ] [M ]−1

]{
Λ1

Λ2

}
−

{
[M ]−1∇x j (Σe , Σ̇e )
[M ]−1∇ẋ j (Σe , Σ̇e )

}
integrated backward in time from T to 0, with the ending conditionΛi (T ) = 0.

Remark 4.8-4 shows that this system may be diagonalized under the form (4.55)

by the change of basese Λi = [M ]
1
2 [Q̂]λ̂i and not by [M ]−

1
2 [Q̂], which is the

change of bases which diagonalizes the state equation.

Using the notations of Remarks 2.8 page 75, the right hand member of the adjoint
equation (4.77), which is formally written as

(4.78)

∇x j =∇Σe (x)∂v j (Σe (x),Σ0, Σ̇e )

+ (
D2Σe (x).ẋ

)
∂v̇ j (Σe (x),Σ0, Σ̇e )

∇ẋ j =∇Σe (x)∂v̇ j (Σe (x),Σ0, Σ̇e )

can be made explicit by the formulas (2.68) and (2.69) of the Remark 2.8-2) page 75 in
which we have set v =Σe and v̇ = Σ̇e = (∇Σe ; ẋ).

REMARK 4.12 The formula (4.76) requires the computation of the partial derivatives

∂ui [Mu]−1, ∂ui

(
[Mu]−1[Ku]

)
etc.

with the respect to those of the matrices [Mu], [Ku], · · · , which are assumed to be defined
elsewhere.

• As, except to the simplifications due to commutativity, the differentiation of a
product of matrices follows the same rules as the differentiation of an ordinary
product and we have

(4.79) ∂ui

(
[Mu0 ]−1[Ku0 ]

)= (
∂ui [Mu0 ]−1) [Ku0 ]+ [Mu0 ]−1 (

∂ui [Ku0 ]
)

• Then, differentiating the equation [M−1
u0

][Mu0 ] = [I d ] we obtain

(4.80) ∂ui [Mu0 ]−1 =−[Mu0 ]−1[∂ui Mu][Mu0 ]−1
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• Computation of the derivative of [Mu0 ]−1[Wu0 ] can be a more complicated
exercise:

– when the damping is proportional to the mass matrix, the ma-
trix [Mu]−1[Wu] doesn’t depend on u and its derivative is 0;

– if the damping is proportional to the stiffness matrix, the job is already
done;

– but if the damping is a fraction of the critical damping per mode for-
mula (3.28) page 114 shows that we have to differentiate the square root
of a matrix to do the computation; and this leads to solve the Lyapounov
equation

(4.81) [Q][P ]
1
2 + [P ]

1
2 [Q] = ∂ui [P ]

where the unknown matrix [Q] is the wished derivative ∂ui [P ]
1
2 . Since the

condition [P ] “definite positive” is a necessary and sufficient condition
for the existence of a positive definite symmetric solution for the equa-
tion (4.81), the damping matrix is differentiable only if the stiffness matrix
is invertible.

At this stage of the presentation, all arguments are in place to formalize in the following
subsection the sequence of computations needed to solve the state and the adjoint
equations of a structural optimization problem.

Algorithmic implementation. All the methods allowing to compute (with the help
of the Proposition 4.10 page 165) the gradient of the damage D caused on a structure
are summarized in the algorithm 4.8, in which it remains to modify, as explained in
algorithm 4.10, the steps 5) and 6) to be able to compute the derivatives ∂ui D without
having to store the sampling of the solution of the adjoint equation.

REMARKS 4.13 1) The most expensive step of algorithm 4.10 is that of damage compu-
tation, because it requires the sampling of the mapping t ∈ [0,2T ] 7→Σ0(t ) and, in fine,
the computation (at each instant of the time sampling) of the graph of the mapping

σa 7→ Eσa (Σe (t ), t )

defined page 61. Thus, once the damage calculation has been carried out, the algo-
rithm 4.10 provides, for a few supplementary matrix manipulations, the sensitivity
analysis of the said damage to the design parameters of the structure.

2) Assume that damping is a fraction of the critical damping per mode allows to make
the optimization process damping independent; thus as unpleasant that it is, the com-
putation of the derivative of M−1

u0
Wu0 is necessary in order that the optimization leads

to modify design parameters such as mass or stiffness, and not, by inadvertence, the
damping, which is not a relevant design parameter in structural mechanics.

3) Some structure sofware make use of “mass-lumping” technique to diagonalize the
mass matrix. If this technique allows to simplify the integration of the state and adjoint
equations, it leads to a mass matrix which is “not differentiable” with respect to the
design parameters and must be surrendered in the framework of structural optimization.
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Algorithm 4.10: Complements of algorithm 4.8 to compute the partial deriva-
tives of the damage.

inputs :
• Derivatives ∂ui [Ku ] , ∂ui [Mu ] , ∂ui [Wu ] of the stiffness, mass and damping matrices with

respect of the design parameters.

outputs :
• Value D(u0) of the damage

• Gradient ∇D(u0) of the damage computed at u0.

begin

1) Use the steps 1) to 4) of the algorithm 4.8 to compute
(
Λi

)Nsamp

i=1
2) Compute the derivatives of [Mu ]−1 F, [Mu ]−1 [Ku ] and [Mu ]−1 [Wu ] in function of the

derivatives ∂ui [Mu ] etc.

3) Sample the integrand(
∂uk [Mu ]−1 F (t )−∂uk

(
[Mu ]−1 [Ku ]

)
x(t )−∂uk

(
[Mu ]−1 [Wu ]

)
ẋ(t ) ; Λ(t )

)
and perform the numerical integration to calculate the derivative ∂uk D

for i = 1 to Nsamp do
• Compute the product ∂uk [Mu ]−1 Fi

• Pass modal displacements and velocities in the initial basis by the matrix product (4.60)

• Pass the Lagrange multipliersΛNe ch−i+1 in the initial basis by the change of bases (4.62) to

obtain the componentΛi

• Compute the scalar product(
∂uk [Mu ]−1 Fi −∂uk

(
[Mu ]−1 [Ku ]

)
xi −∂uk

(
[Mu ]−1 [Wu ]

)
ẋi ; Λi

)
and update the numerical integration to compute ∂uk D.

end

end

Application to shape optimization of a torsional beam. At last, we will use the
algorithm 4.10 to calculate the derivative of the damage with respect to the additional
inertias of the beam studied in Section 3.2. This example has been encoded in Scilab
language and the source code is reproduced in Annex B.2 page 216. The torques used to
calculate the damage and its derivative with respect of the total inertia Iad are shown in
figure (Fig. 4.16), they simultaneously excite the four main eigen-modes of the beam.
The damage and its derivative are computed at points B and C of the beam, see fig-
ure (Fig. 3.13) page 120. The derivative of the damage is calculated by integration of the
adjoint sate equation and compared with a finite difference computation; the results
are plotted in figure (Fig. 4.19).

We can assume that the damage of the beam at point C mainly depends on the excitation
at 35 H z; this hypothesis could be confirmed in calculating the sensitivity of the damage
with respect of the diameter of the notch and this could be carried out with the help of
the algorithm 4.10.
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x4
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l0

Fig. 4.20. Contact problem between sliding masses. We are consid-

ering a mechanical system made up of 4 point masses mi (connected

together by springs ki of lengths li ) constrained to slide along the hor-

izontal axis between two vertical walls. Denoting by xi the position of

the point mass mi , the objective is to write down an algorithm for the

integration of the motion equations of this mechanical system which

takes care of the non-penetration conditions 0 ≤ x1 ≤ x2 ≤ ·· · ≤ x4 ≤ l .

4.4. Exercises and complements

EXERCICE 4.1 Solve the variational inequality (4.5) page 143 when J is the mapping

u ∈ [u1,u2] 7→ u2 or u3

EXERCICE 4.2 Proof that a differentiable numerical mapping J defined on a normed
space E is convex if and only if

(4.82) J (v)− J (u) ≥ J ′(u)(v −u) for all u, v ∈ E

and give a geometrical interpretation of this inequality.

EXERCICE 4.3 Maximize the functional (x1, x2) 7→ 4x1 + 3x2 under the con-
straints x1, x1 ≥ 0 and 2x1 +x2 ≤ 10.

EXERCICE 4.4 Use the Proposition 4.4 page 144 to proof an existence result for the
bending Timoschenko equations of beams; this is a helpful exercise to do the homework
proposed page 130.

EXERCICE 4.5 Use the implicit Euler method and the results obtained in Example 4.6
page 160 to write down an algorithm for the numerical integration of the motion equa-
tions of the mechanical system depicted in figure (Fig. 4.20). Give a mechanical inter-
pretation of the Lagrange multipliers associated with the optimization problem (under
inequality constraints) solved at each time step of the Euler algorithm. Perform numer-
ical simulations (with different stiffnesses and masses) at a given initial velocity and
mechanically explain the obtained restitution coefficients.

EXERCICE 4.6 Compute the derivatives of the mapping

(a,b) 7→ J (a,b) :=
∫ T

0
x(t )d t
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controlled by the differential equation ẋ = bx satisfying the initial condition x(0) = a.

Solutions & homeworks.

Solution of exercise 4.1. In case of mapping u 7→ J (u) = u2 we have to find u∗ in the
interval [u1,u2] such that

(4.83) u∗(u −u∗) ≥ 0 ∀u ∈ [u1,u2]

This means that the condition u∗ 6= 0 entails u∗ = u1 or u∗ = u2. More precisely if u1 > 0
we must have u∗ = u1, while u∗ = u2 if u2 < 0. If u1 < 0 < u2, the solution u∗ of (4.83)
can’t be u1 nor u2 and we necessarily have u∗ = 0.

We have to solve the variational inequality

(4.84) u2
∗(u −u∗) ≥ 0 ∀u ∈ [u1,u2]

for the mapping u 7→ J (u) = u3. In this case, it is immediate to see that u∗ = u1 is always
solution (4.84) but if u1 < 0 < u2 this inequality has also the solution u∗ = 0 which is not
a minimizer for J .

Solution of exercise 4.2. If J is assumed to be convex we have

J (u +λ(v −u))− J (u) ≤λ(J (v)− J (u))

for any 0 ≤λ≤ 1. Dividing this inequality by λ 6= 0 and taking the limit of the obtained
result when λ goes to 0 we get

J ′(u).(v −u) = lim
λ→0+

J (u +λ(v −u))− J (u)

λ
≤ J (v)− J (u)

Conversely, assume that J satisfies (4.82) then we have

J (v) ≥ J (v +λ(u − v))−λJ ′(v +λ(u − v)).(u − v)

J (u) ≥ J (v +λ(u − v))+ (1−λ)J ′(v +λ(u − v))(u − v)

for any real number λ. Assuming that 0 ≤ λ ≤ 1, we can multiply the first inequality
by (1−λ), the second one by λ (which are positive numbers) and add the obtained
results to get

(1−λ)J (v)+λJ (u) ≥ J (v +λ(u − v))

which is the convexity inequality for the mapping J . The geometric interpretation
of (4.82) is given in figure (Fig. 4.21).

Homework.

1o/ Proof that a twice differentiable numerical mapping J defined on a normed space E
is convex if an only if

(4.85) J ′′(u)(v −u, v −u) ≥ 0 ∀u, v ∈ E

2o/ Proof that J is strictly convex if and only if the inequalities (4.82) or (4.85) are strict
when u 6= v .
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u v

J ′(u)(v −u)

J (v)

J (u)

Fig. 4.21. Geometric interpretation of the inequality (4.82). The

function is located above it’s tangent plane.

Solution of exercise 4.3. Let’s Introduce the functional J(x1, x2) :=−4x1 −3x2. The
question can be reformulated as finding (x∗

1 , x∗
2 ) ∈R2 such that:

(4.86) J (x∗
1 , x∗

2 ) = min
−x1 ≤ 0
−x2 ≤ 0

2x1 +x2 −10 ≤ 0

j (x1, x2)

Using Proposition 4.8 page 156, we see that if (x∗
1 , x∗

2 ) is solution of (4.86) there are 3
positive constants λ1, λ2 and λ3 satisfying the equations

−4−λ1 +2λ3 = 0

−3−λ2 +λ3 = 0
(4.87)

with the complementary conditions

(4.88) λ1x∗
1 =λ2x∗

2 =λ3
(
2x∗

1 +x∗
2 −10

)= 0

As the conditions x∗
1 > 0 and x∗

2 > 0 entail λ1 = λ2 = 0, they contradict (4.87) and we
must have x∗

1 = 0 or x∗
2 = 0.

1o/ The condition x∗
2 6= 0 entails λ2 = 0 (by the second equation of (4.88)) and λ3 = 3

(by the second equation of (4.87)). Using the third equation of (4.88) we conclude
that x∗

2 = 10.
2o/ We can see in the same manner that the condition x∗

1 6= 0 entails x∗
1 = 5.

In this particular case, the KKT conditions (4.24) provide the candidates (0,10) and (5,0)
for the resolution of the minimization problem (4.87). As J(0,10) < J(5,0), we must
choose (x∗

1 , x∗
2 ) = (0,10).

This exercise was intending to remind you that Kuhn-Tucker conditions are
necessary (but not sufficient) conditions for a point to be a minimizer.
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Cross-section

Deformed configuration

ϕ

γ

u′
2

Fig. 4.22. Mechanical meaning of the Timoschenko’s parameters. In

their deformed configuration, the cross-sections of the beam remain

plane but they are not necessarily orthogonal to the deformed config-

uration of the neutral line so that the angle γ measure a shear strain

due to the normal loading.

Solution of exercise 4.4. Let’s consider an isotropic rectilinear beam of length L
and define a Cartesian frame (x1, x2, x3) such that x1 becomes the axis of the beam,
whereas x2, x3 are assumed to be principal axes of the cross-sections. In the Timo-
schenko beam theory we assume, see figure (Fig. 4.22), that the displacements are
written as

u1 =−x2ϕ(x1), u2 := u(x1) and u3 = 0

where ϕ is the rotation of the cross-section about the axis x3. As the rotation ϕ can be
different from the rotation u′ of the neutral axis, the difference

γ= u′−ϕ
defines an additional rotation due to the shear deformation. The strain energy of the
beam is defined by35

(4.89) ES(u,ϕ) := 1

2

∫ L

0
E I

(
ϕ′)2 +κG A

(
u′−ϕ)2 d x1

where

• A is the cross-sectional area,
• I is the cross-sectional second moment of area about x3 axis,
• κ is a shear correction factor which depends on cross-sectional shape,
• and G = E

2(1+ν) is the shear modulus of the material.

Assuming that the beam is submitted to

1o/ the distributed forces f (x1) (along the x2 axis) and torques C (x1) (about the x3 axis)
2o/ and to the punctual forces f0 (resp. f1) and torques C0 (resp. C1) at the ends

35To simplify the notations, we drop the dependance in x1 of the functions f ,C ,u, v,ϕ,ψ etc. when

they are written under the integral sign.
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we can define the virtual work produced by this loading system as the following linear
form

V (u,ϕ) :=
∫ L

0
f u +Cϕd x1

+ f0u(0)+ f1u(L)+C0ϕ(0)+C1ϕ1(L)
(4.90)

Applying the principle of minimum total potential energy, the deflection (u∗,ϕ∗) of the
beam is a minimizer of the functional

(4.91) (u,ϕ) 7→ J (u,ϕ) = ES(u,ϕ)−V (u,ϕ)

defined on an appropriate vector space H . It is immediate to see that J is convex;
assuming for the time being that H is defined so that J is moreover differentiable and
coercive, the Proposition 4.4 says that a minimizer (u∗,ϕ∗) of J satisfies

(4.92) J ′(u∗,ϕ∗)(v,ψ) = 0 for any (v,ψ) ∈ H

The derivative of J at a point (u,ϕ) is the linear mapping

(v,ψ) ∈ H 7→
∫ L

0
E Iϕ′ψ′+κG A

(
u′−ϕ)(

v ′−ψ)
d x1

−
∫ L

0
f v +Cψd x1 − f0v(0)− f1v(L)−C0ψ(0)−C1ψ(L)

(4.93)

Using an integration by parts we see that the right end member of the previous formula
can be rewritten as

−
∫ L

0

(
E Iϕ′′−κG A

(
u′−ϕ)+C

)
ψd x1

−
∫ L

0

(
κG A

(
u′−ϕ)′+ f

)
vd x1

+ (
E Iϕ′(L)−C1

)
ψ(L)− (

E Iϕ′(0)+C0
)
ψ(0)

+ (
κG A

(
u′(L)−ϕ(L)

)− f1
)

v(L)− (
κG A

(
u′(0)−ϕ(0)

)+ f0
)

v(0)

and the formula (4.92) shows that a minimizer (u∗,ϕ∗) of the functional J is solution in
the sense of distributions of the following Timoschenko beam equations

E Iϕ′′
∗−κG A

(
u′
∗−ϕ∗

)+C = 0

κG A
(
u′
∗−ϕ∗

)′+ f = 0
(4.94)

The boundary conditions are introduced by appropriately defining the space H of the
admissible displacements: For instance

• the beam is said to be clamped at the end x1 = 0 or x1 = L if the displace-
ment u(x1) and the rotation ϕ(x1) are both zero,

• it is simply supported a x1 if the displacement u(x1) is zero while the rota-
tion ϕ(x1) is left arbitrary,

• the end x1 is said to be free if u(x1) and ϕ(x1) are arbitrary.

REMARK 4.14 We can readily check that the rotation ϕ and the displacement u satisfy
the boundary conditions

ϕ′(L) = C1

E I

(
resp. ϕ′(0) =−C0

E I

)
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if the beam is simply supported or free at the end x1 = L (resp. x1 = L), while we must
add the condition

u′(L)−ϕ(L) = f1

κG A

(
resp. u′(0)−ϕ(0) =− f0

κG A

)
if the end in question is free.

To conclude, it remains to specify a space H of tests functions satisfying the previously
introduced boundary conditions and provide this space with a norm ‖.‖H ensuring
differentiability and coerciveness of J .

To this end we will first define H as a subspace of H 1([0,L])×H 1([0,L]) and endow it
with the “scalar product”(

(u,ϕ), (v,ψ)
) ∈ H 7→< u, v >+<ϕ,ψ>∈R

where

< u, v >=
∫ L

0
uvd x1 +

∫ L

0
u′v ′d x1

is the standard scalar product on H 1([0,L]). To simplify we will use the following
notations:

‖u‖0 :=
(∫ L

0
u(x)2d x

) 1
2

|u|1 :=
(∫ L

0

(
u′(x)

)2 d x

) 1
2

and ‖u‖1 := (‖u‖2
0 +|u|21

) 1
2

and remind that the mappings

u ∈ L2([0,L]) 7→ ‖u‖0 and u ∈ H 1([0,L]) 7→ ‖u‖1

are norms on the spaces L2([0,L]) and H 1([0,L]), providing these spaces with structures
of Hilbert spaces. This enables us to endow H with the norm

(u,ϕ) ∈ H 7→ ‖(u,ϕ)‖H := (‖u‖2
1 +‖ϕ‖2

1

) 1
2

These preliminaries being laid down, we are able to proof that:

1o/ The total energy (u,ϕ) 7→ J(u,ϕ) is continuously differentiable. Using the Holder’s
inequality36 we can indeed see that the formal derivative (4.93) is well defined and
is a continuous function37 of

(
(u,ϕ), (v,ψ)

) ∈ H ×H .

36If u and v are square integrable functions defined on [0,L] then the product uv is integrable and

the following inequality holds ∫ L

0
|uv |d x1 ≤ ‖u‖0‖v‖0

37Introducing the bi-linear form

(4.95)
(
(u,ϕ), (v,ψ)

) ∈ H ×H 7→ B
(
(u,ϕ), (v,ψ)

)
:=

∫ L

0
E Iϕ′ψ′+κG A(u′−ϕ)(v ′−ψ)d x1

the Holder’s inequality allows to proof that there are two positive constants c1 and c2 such that:

(4.96)
∣∣B (

(u,ϕ), (v,ψ)
)∣∣≤ c1‖(u,ϕ)‖H‖(v,ψ)‖H and

∣∣V (v,ψ)
∣∣≤ c2‖(v,ψ)‖H

Inequalities (4.96) show actually that B and V are respectively bounded bilinear and linear forms; as such

they are continuous and even c∞.
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2o/ If the beam is clamped at x1 = 0 for instance the functional J is coercive, or in other
words, there is a positive constant c such that

(4.97) lim
‖(u,ϕ)‖H→∞

J (u,ϕ)

‖(u,ϕ)‖H
≥ c

PROOF. By definition (4.91) of J we have

J (u,ϕ) ≥ ES(u,ϕ)−|V (u,ϕ)|
≥ ES(u,ϕ)− c2‖(u,ϕ)‖H by the second inequality of (4.96)

so that if we can define the space H in order to bound below the strain energy as
follows

(4.98) ES(u,ϕ) ≥ c3‖(u,ϕ)‖2
H

where c3 is a positive constant, the inequality (4.97) clearly holds. �

PROOF OF INEQUALITY (4.98) FOR CLAMPED BEAM. The proof of this inequality
makes use of the following result:

LEMMA 4.5 (Poincaré-Friedrichs inequality) Assume that v ∈ H 1([0,L]) satisfies
the boundary condition v(0) = 0 then there is positive constant c4 such that

(4.99) ‖v‖0 ≤ c4|v |1

Now, the strain energy (4.89) can be written down as

2ES(u,ϕ) = E I |ϕ|21 +κG A
(|u|21 +‖ϕ‖2

0

)−2κG A
∫ L

0
u′ϕd x1

Let µ be a positive constant, we have38

2
∫ L

0
u′

2ϕd x1 ≤µ
∫ L

0
ϕ2d x1 + 1

µ

∫ L

0

(
u′

2

)2 d x1

using the inequality (4.99) with v =ϕ we deduce that

2ES(u,ϕ) ≥ κG A

(
1− 1

µ

)
|u|21 +E I |ϕ|21 +κG A(1−µ)‖ϕ‖2

0

≥ κG A

(
1− 1

µ

)
|u|21 +

E I

2
|ϕ|21 +

(
E I c2

1

2
+κG A(1−µ)

)
‖ϕ‖2

0

If we set µ= E I c2
1

2κG A +1 we get

2ES(u,ϕ) ≥ min

(
E I c2

4

2κG A+E I c2
4

,
E I

2

)(|u|21 +|ϕ|21
)

Then, using once more the inequality (4.99) we obtain

ES(u,ϕ) ≥ c3
∥∥(u,ϕ)

∥∥2
H

38For any couple of numbers x, y , we have the inequality

2x y ≤ x2 + y2

form which we deduce

2ab = 2(
p
µa)

(
bp
µ

)
≤µa2 + 1

µ
b2

if µ is a given positive number and a,b is a couple of real numbers.
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with

c3 = 1

2
min

(
E I c2

4

4κG A+2E I c2
4

,
E I

4

)
min

(
1,c2

4

)> 0

�

PROOF OF LEMMA 4.5. Assume first that v is continuously differentiable. Using the
condition v(0) = 0 , we can see that v(x1) is defined by the formula

v(x1) =
∫ x1

0
v ′(x)d x

so that

v(x1)2 ≤
(∫ x1

0
|v ′(x)|d x

)2

≤
∫ x1

0

(
v ′(x)

)2 d x
∫ x1

0
d x (by the Holder’s inequality)

≤ x1|v |21
for any x1 ∈ [0,L]. Integrating the previous inequality between 0 and L, we get

‖v‖2
0 =

∫ L

0
v2d x1 ≤ |v |21

∫ L

0
x1d x1 = L2

2
|v |21

and we have proofed the formula (4.99) with c4 = Lp
2

for continuously differentiable

functions. Extension of formula (4.99) to the space H 1([0,L]) is obtained by a density
argument (of C 1([0,L]) in H 1([0,L])). �

REMARK 4.15 The condition u(0) =ϕ(0) = 0 is essential for establishing the coerciveness
of J , one can easily check that J is not coercive on H 1[0,L]×H 1[0,L].

Homework.

1o/ Implement a numerical method for the resolution of the mechanical problem
depicted in figure (Fig.4.23).

• Use the Proposition 4.3 to proof an existence result (Hint: check that the set

K := {
(u,ϕ) ∈ H ; u(l1) ≥ 0 and u(l2) ≤ 0

}
is a closed and convex subset of H);

• write down a FEM interpolation of the bending beam equation, formulate the
previously defined optimization problem under the form of a saddle point
problem and give an interpretation of the Lagrange multipliers (Hint: you can
have a look at “http://iut.univ-lemans.fr/ydlogi/index.html” for the computa-
tion of the elementary matrices);

• implement the Uzawa algorithm to compute numerically the saddle point,
plot the deformed configuration of beam and compute the reaction forces F1

and F2.
• how to linearize the problem? (Hint: use a penalty method to compute the

reaction forces and define the linear equations according to the direction of
the loading forces);
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Fig. 4.23. Beam bending under unilateral constraints. We are con-

sidering a beam of neutral axis x1, clamped at the end x1 = 0 and free

at x1 = L. We assume that two mountings are installed around the

beam to impose the displacements x2(l1) ≥ 0 and x2(l2) ≤ 0. The beam

is at last loaded by a distributed system of forces f (x1) directed along

the axis x2 and non zero for 0 ≤ x1 ≤ l1.

• how to use the previously defined mathematical machinery to numerically
solve the associated dynamical equations, assume for instance that the forces
are of the form sin(ωt ) f (x1)? (Hint: use for instance an implicit Euler method);

• can you define a linear problem having the same solution as this dynamical
problem?

2o/ Implement the steepest and the Newton algorithms to identify the coefficients of
the Stromeyer’s formula in Exercise 1.1 page 28.

Solution of exercise 4.5. Setting x = (x1, · · · , x4)t , and introducing potential energy39

x 7→
 1

2

3∑
i=1

ki (xi+1 −xi − li )2 if 0 ≤ x1 ≤ ·· · ≤ x4 < L

+∞ else

the motion equations of the mechanical system defined in figure (Fig. 4.20) can be
written as

[M ]ẍ + [K ]x ∈ f0 +∂ψU (x)

with the initial conditions


x1(0) = x0, x2(0) = x0 + l1, · · · ,

x4(0) = x0 + l1 + l2 + l3

ẋ(0) = y0 are given initial velocities

(4.100)

where

• ψU is the characteristic function of the convex U = {
x ∈R4; 0 ≤ x1 ≤ ·· · ≤ x4 < L

}
,

it is defined by

ψU (X ) =
{

0 if x ∈U
+∞ else

39Which account for the non-penetrating conditions 0 ≤ x1 ≤ ·· · ≤ x4 < L.
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• [M ], [K ] and f0 are respectively defined by

[M ] =


m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

 [K ] =


k1 −k1 0 0
−k1 k1 +k2 −k2 0

0 −k2 k2 +k3 −k3

0 0 −k3 k3


and

f0 =


−k1l1

k1l1 −k2l2

k2l2 −k3l3

k3l3


Denoting h the step size of the time discretization, an iteration of the implicit Euler
method consists, knowing xt and yt , to calculate the positions xt+h and the veloci-
ties yt+h in solving the variational inequation

([M ]+h2[K ])xt+h ∈ h2 f0 + [M ](hyt +xt )+∂ψU (xt+h)

and in setting yt+h := xt+h−xt
h . Using the definition (2.38) page 61 of a subdifferential

and setting zt := h2 f0 + [M ](hyt +xt ), we see that this inequation rewrite as

ψU (x)−ψU (xt+h) ≥ 〈([M ]+h2[K ])xt+h − zt , x −xt+h〉 for any x ∈R4

or, by definition of ψU , as xt+h ∈U satisfies

〈([M ]+h2[K ])xt+h − zt , xt+h −x〉 ≤ 0 ∀x ∈U

which is, see Proposition 4.3 page 143, the Euler-Lagrange inequation associated with
the constrained optimization problem

J (xt+h) = min
x∈U

J (x)

where J is the functional x 7→ 1

2
〈([M ]+h2[K ])x, x〉−< zt , x >

(4.101)

Now, introducing the matrix

[B ] =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


we see that the convex U is the subset

U = {
x ∈R4 ; [B ]x ≤ (0,0,0,0, l )t }

and the problem (4.101) rewrites, in the form defined in the Example 4.6 page 160, as

J (xt+h) = min
[B ]x≤q

J (x) where q := (0,0,0,0, l )t

As such, it can be solved in using the Uzawa algorithm 4.4 page 159 to compute xt+h as
the first argument x∗ of the saddle point (x∗,λ∗) of the Lagrangian

(4.102) (x,λ) ∈R4 × (R+)5 7→ L(x,λ) = 1

2
〈 ([M ]+h2[k])x, x〉−〈zt − [B ]tλ, x〉+< q,λ>

The attentive reader will have noticed that the term 1
h2 [B ]tλ∗ is a contact force between

the particles which forbids interpenetrations.
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Fig. 4.24. Motion of particle m4. We represent in figure Fig.a) the

positions t 7→ x4(t) of the particle m4. We see that the motion takes

place at a constant average velocity between the walls of abscissas 0

and l and that each contact phase (between m1 and m4 and the walls)

contribute to reduce the speed. This is explained in Figures Fig.b) and

Fig.c) which show that the contact takes place into two steps. The first

one consists to instantaneously stop the particle when it reaches the

wall of abscissa l ; this phase is characterized by a strong discontinuity

of the contact force Λ4 plotted in figure Fig.b). In the second stage,

the pushing masses m1, · · · ,m3 deform the spring k1 and convert their

kinetic energies into a deformation energies. The deformation energy

accumulated in the spring k4 is at last reconverted in kinetic energy

of the center of gravity which allows to continue the motion in the

opposite direction.

We propose page 205 a Matlab program which implements this algorithm for the tran-
sient integration of the equations (4.100). This program was run to perform a simulation
of the mechanical system plotted in figure (Fig. 4.20) with the following data

• masses: m1 = m4 = 0.1kg , m2 = m3 = 0.25kg ,
• stiffnesses:

k1 = k3 = 1.0e +03N /m, k2 = 1.0e +04N /m

of lengths l1 = l3 = 0.05m, l2 = 0.1m,
• initial conditions: x0 = 0.01 (position of particle m1) initial velocity 1m/s on

each particle,
• distance between walls: l = 0.8m.

Results of the simulation are plotted and analyzed in figures (Fig. 4.24), (Fig. 4.25)
and (Fig. 4.24).

REMARK 4.16 With these numerical data only the contacts between the particles m4

(resp. m1) and the can take place, so that the simulation results can easily be analyzed
and interpreted. We see that the contact forceΛ4, which is m4v

h , diverges when the time
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Energy lost during
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Fig. 4.25. Motion of the COG of the mechanical system. We see here

that the motion of the center of gravity takes place at a constant ve-

locity between two impacts of the particles m4 and m1, and that the

velocity changes its sign at each impact. Denoting by mt the total

mass of the mechanical system, we can check that the restitution coef-

ficient is −
(
1− m1

mt

)
and corresponds to the loss of linear momentum

resulting of the stopping of the particles m4 and m1 during the im-

pacts. We thus retrieve the classic results of the theory of inelastic

collisions while restitution of energy is not instantaneous but depends

on the time spent by the pushing masses to compress the springs k1

and k2; this loading time depends for instance on the momentums

of the particles m2 and m3. We let the reader check that this coeffi-

cient is an upper limit of the possible restitution coefficients because,

choosing k2 >> k1 = k3, the deformation energy is actually stored in

the contact springs k1 and k3.

step size h goes to 0. There is nothing surprising about this, because the involved me-
chanical phenomena introduce discontinuities of velocities and then of accelerations;
equation (4.100) must thus be understood in the sense of distributions and not in the
classical meaning of the term. In this spirit, we will not draw any conclusions about the
first peak of forces depicted in figure (Fig. 4.25-b) and it will be better to understand
this term as a distribution rather than as a function.

Homework.

1o/ Is the problem (4.100) well-posed? (hint assume that m2 = m3 = m4 = 0 and k1 =
k2 = k3 = 0, verify that the mapping

t 7→ x1(t ) =


x0 + t v0 if x1(t ) ≤ l
l − tc1v0 for l ≥ x1(t ) ≥ 0 where c is a given positive constant

c2v0 for 0 ≤ x1(t ) ≤ l

satisfies the equation (4.100). How to generalize this example when m1 and m2 are
both non-zeros?)
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Fig. 4.26. Performance of the iterative method. We show on this pic-

ture the number of iterations of the Uzawa algorithm necessary to the

computation of the saddle point of the Lagrangian (4.102). We see

that the algorithm reduces to the resolution of a linear system as long

as there is no contact. A non-constant step size projection algorithm

should improve (ie. shorten) the Lagrange multiplier updating process

during the contact phases.

2o/ Run the program in assuming that
• k1 = k2 = k3 = 0 with the initial velocities (1,1,1,1)t , (1,0,0,−1)t and

(2,0,0,−1)t

• the numerical values of the stiffnesses and masses permit multiple simul-
tanous contacts between the particles.

explain the obtained results (by examining the contact forces and the energy
transfers). The reader wishing a better understanding of the mathematical the-
ory of shocks can for instance find his inspiration in the pioneering work of
MOREAU [28] [29].

3o/ How to take into account energy dissipation by local lamination? (hint : assume
for instance that the Rayleigh dissipation function is defined by

∑3
i=1 ci |ẋi − ẋi+1|,

where (ci )3
i=1 are positive constants).

Solution of exercise 4.6. We can easily check that the x(t) = aebt is solution of the
equation ẋ = bx with the initial condition x(0) = a so that

J (a,b) :=
∫ T

0
x(t )d t = a

b
(ebT −1)

This formula leads to compute the derivatives as:

(4.103) ∂a J = 1

b
(ebT −1) ∂b J = a[(T b −1)ebT +1]

b2

Let’s check that these results are obtained with the help the procedure defined in
Proposition 4.10 page 165. within this framework we have f (x,b, t ) := bx and j (x) := x
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so that
Dx f .λ= bλ and ∇ j (x) = 1

and the adjoint equation (4.40) is rewritten as

λ̇+bλ=−1 λ(T ) = 0

and has the solution λ(t ) = eb(T−t ) − 1
b . Using formula (4.41) this leads to compute the

derivative of J with respect to b as the integral

∂b J =
∫ T

0
∂b f (x,b)λ=

∫ T

0
x(t )λ(t )d t

= a
∫ T

0

(
eb(T−t ) − 1

b

)
ebt d t

and we find the second formula in (4.103). Note, on the other hand, thatλ(0) = 1
b (ebT −1)

is ∂a J .

Homework. Within the framework of Proposition 4.10 proof that

• the criteria J is a differentiable function of the initial conditions X (0) = X0 of
the state equation,

• and that the gradient of J is defined by ∇J(X0) = Λ(0) where t 7→ Λ(t) is the
solution of the adjoint equation (4.40).





APPENDIX A

SOME ADDITIONAL PROGRAMS

A.1. Transient Integration algorithm for a contact Problem

The program listed below is the Matlab implementation of the algorithm defined in
Exercise 4.5 pages 190 and 198.

clear all
close all
k_1=1.e+03;k_2=1.e+04;k_3=1.e+03; % Stiffnesses (N/m)
%k_1=1.e+02;k_2=0.0;k_3=1.e+02; % Stiffnesses (N/m)
% Stiffness matrix
K=[k_1,-k_1,0,0;-k_1,k_1+k_2,-k_2,0;...
0,-k_2,k_2+k_3,-k_3;0,0,-k_3,k_3];
%
m_1=0.10;m_2=0.25;m_3=0.25;m_4=0.10;% Masses (kg)
% Mass matrix
M=[m_1,0,0,0;0,m_2,0,0;...
0,0,m_3,0;0,0,0,m_4];
%
% Constraints matrix
B=[-1,0,0,0;1,-1,0,0;...
0,1,-1,0;0,0,1,-1;...
0,0,0,1]; % Note that rank(B)=4
%
% Lengths of the springs (m)
l_1=0.05;l_2=0.1;l_3=0.05;
%
F_0=[-k_1*l_1;k_1*l_1-k_2*l_2;...
k_2*l_2-k_3*l_3;k_3*l_3];
%
L=0.8;% Distance between the walls (m)
%

205
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x_0=0.01; %
X=[x_0;x_0+l_1;...
x_0+l_1+l_2;x_0+l_1+l_2+l_3];% Initial positions
Y=[1.;1.;1.;1];% Initial velocities
% Discretization step-size
Dt=0.0001; A=M+(Dt**2)*K;
% Dt=0.0001/10; A=M+(Dt**2)*K;
%
T=2.0; % Integration time (s)
% T=10.0;
time=0:Dt:T;
%
sol(1:4,1)=X; % Positions
sol(5:8,1)=Y; % Velocities
sol(9:12,1)=[0;0;0;0]; % Contact forces
%
lambda=[0;0;0;0;0]; % Initial condition on the Lagrange multiplayer
rho=1.9*min(eig(A))/norm(B)^2;
N_iter(1)=1;
%
for i=2:size(time,2)

Z=(Dt**2)*F_0+M*(Dt*sol(5:8,i-1)+sol(1:4,i-1));
D_lambda=1.0;
n_iter=0.;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Iterative method to compute
% the saddle point of the Lagrangian (4.102)

% (see algorithm 4.4 page 159).
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while D_lambda>=1.e-09 % Until convergence

X=inv(A)*(Z-B’*lambda);% Compute the positions
%
lambda_1=max(lambda+rho*(B*X-[0;0;0;0;L]),0); % Update the Lagrange multiplier
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Note that rho has been defined according to the formula given in
% footnote 17 page 160 so that the iterative method is convergent.
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
D_lambda=norm(lambda_1-lambda);
lambda=lambda_1;
n_iter=n_iter+1;

end
% Store in the tables N_iter and sol
N_iter(i)=n_iter; % the number of iterations
sol(1:4,i)=X; % the positions
sol(5:8,i)=(X-sol(1:4,i-1))/Dt; % the velocities
sol(9:12,i)=-B’*lambda/Dt/Dt; % and the contact forces
% at time t +Dt.

end
%
% Plot some results
%
figure
subplot(311)
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plot(time,sol(4,:));title(’Position of the particle m_4’)
subplot(313)
plot(time,sol(8,:));title(’Velocity’)
subplot(312)
plot(time,sol(12,:));;title(’Contact force’)
%
% Center of gravity
Mass=m_1+m_2+m_3+m_4;
CoG=(m_1*sol(1,:)+m_2*sol(2,:)+m_3*sol(3,:)+m_4*sol(4,:))/Mass; % Position
Ma=(m_1*sol(5,:)+m_2*sol(6,:)+m_3*sol(7,:)+m_4*sol(8,:));% Linear momentum
KE_CoG=Ma.*Ma/2/Mass; % Kinetic energy
figure
subplot(311);plot(time,CoG);title(’Position’)
subplot(312)
plot(time,Ma);title(’Linear momentum’)
subplot(313)
plot(time,KE_CoG);title(’Kinetic energy’)

% Numerical simulation
figure
plot(time,N_iter); title(’Number of internal iteration in the Uzawa algorithm’)
% Compute the restitution coefficient
Rest=min(Ma)/max(Ma)





APPENDIX B

IMPLEMENTATION OF SOME

EXAMPLES

B.1. Damage computation for a beam

• Main program

Step 1) Initialization of the computations and definition & loading conditions

%Time horizon in seconds
T0=4.0;
% To frame the significant part of the excitation between 3T0

2 and 5T0
2

T=T0*2;
% Number of samples and sampling frequency.
Nb_samp=512*4*2;
Dt=T/Nb_samp;
time=0:Dt:T-Dt;
% Sampling of the torques applied on the ends of the beam
% in the standard case, it is an input of the program,
% which is given as tabulated data.
Torque=1.e+05;% Here a torque at 100 daN*m
% Quasi-static component of the torque
for i=1:Nb_samp

t=time(i);
if t<=T/5.

e1(i)=0;
else if t<=2*T/5

e1(i)=Torque;
else if t<=3*T/5

e1(i)=0.0;
else if t<=4*T/5

209
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e1(i)=-Torque;
else

e1(i)=0.0;
endif

endif
endif

endif
endfor
% Plused component of the torque
% the frequencies are closed to the first natural frequency of the beam
omega_e0=145*2*pi;% the 3i−th mode
omega_e1=35*2*pi;% the 2i−ème mode
% Objective : see the effect of excitation frequencies close to each other
omega_e2=0.95*omega_e0;
%
Torque_2=0.3*(cos(omega_e0*time(Nb_samp/4+1:3*Nb_samp/4))...

+0.5*cos(omega_e1*time(Nb_samp/4+1:3*Nb_samp/4))...
+cos(omega_e2*time(Nb_samp/4+1:3*Nb_samp/4))...
);

%
% Frame the excitations to satisfy the conditions
% of footnote 14 page 115
e1(Nb_samp/4+1:3*Nb_samp/4)=e1(Nb_samp/4+1:3*Nb_samp/4)...

+Torque*Torque_2(1:Nb_samp/2);
%
figure(1);
subplot(2,1,1)
plot(time,e1/1000)% Torque in d aN ∗m

xlabel("Time in second")
ylabel("Torque in daN*m")
title("Torques applied at the ending cross-sections")
% Post-process the fast-Fourier transforms
subplot(2,1,2)
F_samp=1/Dt/2;
dfreq=2*F_samp/Nb_samp;
FFT_signal=abs(fft(e1))(1:Nb_samp/2);
Freq=0:dfreq:F_samp;
plot(Freq(2:Nb_samp/2+1),FFT_signal/Nb_samp/1000)
xlabel("Frequencies in Hz")
ylabel("Torque in daN*m")
title("Fast fourier transform of the applied torques")
clear F_samp dfreq FFT_signal Freq;
%
% Mechanical data
Module_young=0.16500E+05;% Young modulus d aN / mm2

Poisson=0.3;
J=Module_young/(1+Poisson)/2;% Lamé coefficient
Diam=40.5;% Diameter mm

J=J*pi*Diam**4/32.;% Torsional stiffness module
Masse_vol=0.79e-09;% mass density kg ∗e −04 / mm3

section=pi*Diam**2/4;
masse_sect=Masse_vol*section
Inert=masse_sect*Diam**2/4/2; % Inertia of the cross-sections
I_ad=15.0; % Additional inertia in kg*1e-04 mm2

%



B.1. DAMAGE COMPUTATION FOR A BEAM 211

% Parameters of the Wohler’s curve (a Stromeyer formula in this case)
b_s=0.42;
C_s=3.6E+09;
Sigma_d=80.0; % in MPa
%Sigma_d=Sigma_d*0.8;
Sigma_d=Sigma_d*1.2;
epsilon_sigma=1.0e-5;
%
% Geometric data of the beam
Nb_nodes=27;% Number of nodes
delta_s=20.0;% Length of an element in mm
C_1=0.4;% Diameter of notch (nominal)
%
% The table G is intended for defining the diameter of beam at each node
G=[1,1,1,1,0.9,0.8,0.7,0.6,0.5,C_1,C_1,C_1,C_1,...

C_1,C_1,C_1,C_1,C_1,0.5,0.6,0.7,0.8,0.9,1,1,1,1];
% Plot the profile of the beam
figure(2)
hold on
plot(Diam*G/2)
plot(-Diam*G/2)
xlabel(‘Node number’)
ylabel(’Diameter’)
title("Profile of the beam")
%
% Damping model
% Type_damp=2;% Damping proportional to the stiffness matrix
% coef_damp=1/100;
%
Type_damp=2; % Damping proportional to the critical damping per mode
coef_damp=2.5/100;
%
% Type_damp=3.0;% Damping proportional to the mass matrix
% coef_damp=10.0;

Step 2) Assembling of the state equation, which is modified during the optimiza-
tion process if for instance C1 or Iad is an optimization parameter.

%
% Assembling of the stiffness matrix
% (this matrix will not be modified)
XK=assemb_K(Nb_nodes,G,delta_s,J);
%
% Remove the singularity of the stiffness
XK((Nb_nodes-1)/2,(Nb_nodes-1)/2)= ...

1.01*XK((Nb_nodes-1)/2,(Nb_nodes-1)/2);
%
% Assembly of the mass matrix
XM=assemb_M(Nb_nodes,G,delta_s,Inert);
%
% Take into account the additional inertias
XM(4,4)=XM(4,4)+0.5*I_ad;
XM(10,10)=XM(10,10)+0.25*I_ad;
XM(18,18)=XM(18,18)+0.25*I_ad;
XM(24,24)=XM(24,24)+0.5*I_ad;
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Step 3) Matrix manipulations to implement the second of the algo-
rithm 3.5 page 106

%Computation of the square root of M−1

M_s=real(sqrtm(inv(XM)));
%
% Computation of the modal basis
% Digonalization of the matrix [M ]−

1
2 [K ][M ]−

1
2

[R,omega]=eig(M_s*XK*M_s);% omega are the natural velocities
eig_0=M_s*R;% Eigen modes for the state equation
% Eigen-modes for the adjoint equation see formula (4.62)

eig_1=sqrtm(XM)*R;
%
puls=sqrt(abs(diag(omega)));
Freq_prop=puls/2/pi; % Natural frequencies
%
% Definition of the damping
if Type_damp==1

% Case proportional to stiffness matrix
damp=abs(diag(omega))*coef_damp;
else if Type_damp==2

% Case proportional to critical damping
damp=puls*coef_damp;

else
% Constant damping in the modal basis
damp=coef_damp*ones(size(diag(omega),1),1);

endif
endif

Step 4) Sampling of the convolution kernels (according to sampling of the inputs
data)
j1=1;
for j=1:Nb_nodes

omega1=puls(j,1);
c0=damp(j);
% Only the modes whose frequencies are lower than F_samp/2 are
% are taken into account; see table 3.3,
% the contribution of the other modes can be neglected.
if (4*omega1^2-c0^2)>=0

if omega1/pi<=1./Dt
Ind_mod(j1)=j;
delta=sqrt(4*omega1^2-c0^2)/2;
co=cos(delta*time);
si=sin(delta*time);Diam_mil=Diam*(G(No_elt)+G(No_elt-1))/2.;
% Damping of the current mode
amor=exp(-c0*time/2)*Dt;
% See the formulas (3.11)

tab1(j1,:)=(si/delta).*amor;
tab2(j1,:)=(co-c0*si/2/delta).*amor;
j1=j1+1;

endif
else % Case of the rigid body mode see formula (3.14)

tab1(j1,:)=time;
tab2(j1,:)=ones(1:Nb_samp);
j1=j1=1;

endif
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endfor
%
% Plot the eigen-modes taken into account to compute the damage
% Note that they are normalized with respect to the mass matrix
figure(3)
nb_plots=size(Ind_mod,2);
coor=delta_s*(0:1:Nb_nodes-1);
for i=1:nb_plots

subplot(nb_plots,1,i)
plot(coor,eig_0(:,Ind_mod(i)))
j=Ind_mod(i);
txt=[’Mode N° ’,num2str(j),’ at ’,num2str(puls(j,1)/2/pi), ’ Hz’];
title(txt)

endfor
Step 5) Integration of the state equations in the modal basis

f=zeros(Nb_nodes,1);
EIG=R’*M_s;
for j=1:Nb_samp

% Loading of the beam from the imposed torques
% At the right end (point E) torque is distributed over 3 nodes
f(Nb_nodes)=e1(j)/4;
f(Nb_nodes-1)=e1(j)/2;
f(Nb_nodes-3)=e1(j)/4;
% Idem on the left (point A), but with the opposite torque
f(1)=-e1(j)/4;
f(2)=-e1(j)/2;
f(3)=-e1(j)/4;
% Pass the loads in the modal basis
f_m=EIG*f;
% Right hand member of the uncoupled system
for ind_mod=1:size(Ind_mod,2)

ex(ind_mod,j)=f_m(Ind_mod(ind_mod));
endfor

endfor
%
% Computation of the convolution products
for ind_mod=1:size(Ind_mod,2)

sol(ind_mod,:)=conv(tab1(ind_mod,:),ex(ind_mod,:));% Displacements
sol_p(ind_mod,:)=conv(tab2(ind_mod,:),ex(ind_mod,:));% Velocities

end;

Step 6) Post-processing and computation of the stresses at the middle of the
elements

% Element to be post-processed in fatigue
No_elt=10;
% No_elt=14;
% Diameter of the middle of the element
%
Diam_mil=Diam*(G(No_elt)+G(No_elt-1))/2.;
Coeff=Diam_mil*Module_young/delta_s/(1+Poisson)/4;
%
% Return in the original basis and compute the stress
%
for no_samp=1:Nb_samp
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% Stresses and their time derivatives
z=0;
for ind_mod=1:size(Ind_mod,2)

z=z+(eig_0(No_elt,Ind_mod(ind_mod)) ...
-eig_0(No_elt-1,Ind_mod(ind_mod)) ...
)*sol(ind_mod,no_samp);

endfor
% Sampling of Σe (t )

sigma_e(no_samp)=Coeff*real(z);
%
z=0;
for ind_mod=1:size(Ind_mod,2)

z=z+(eig_0(No_elt,Ind_mod(ind_mod)) ...
-eig_0(No_elt-1,Ind_mod(ind_mod)) ...
)*sol_p(ind_mod,no_samp);

endfor
% Sampling of Σ̇e (t )

dot_sigma_e(no_samp)=Coeff*real(z);
endfor
%
% Plot fast Fourier transform of stresses
figure(4);
F_samp=1/Dt/2;
dfreq=2*F_samp/Nb_samp;
FFT_signal=abs(fft(sigma_e))(1:Nb_samp/2);
Freq=0:dfreq:F_samp;
plot(Freq(2:Nb_samp/2+1),FFT_signal/Nb_samp)
xlabel("Frequencies in Hz")
ylabel("Stress in MPa")
txt=["Fast fourier transform of the stress on element ",int2str(No_elt-1)];
title(txt)
clear F_samp dfreq FFT_signal Freq;

Step 7) Compute the damage; implementation of the algorithm 3.3.

% Sampling of the table sigma_a
% (at 1% of the maximal stress)
% see algorithm 3.2
sigma_max=1.1*max(abs(sigma_e));
delta_sigma=sigma_max/100;
sigma_a=[0,epsilon_sigma:delta_sigma:sigma_max];
[n_0,N_sigma]=size(sigma_a);
% Partial integration of the equation (2.39)

% Algorithm 3.1
P_1=0*eye(1,N_sigma);
for no_samp=1:Nb_samp-1

[sigma,P_1]=integ_E_sigma(P_1,sigma_e(no_samp+1),sigma_a,N_sigma);
endfor
% At this stage the relay operators have the right initialization
% and the response of the Preisach operator is ‘‘periodic’’.
% We can start the cycles counting.
sigma_0(1)=sigma; % Sampling of Σ0(t ).
for no_samp=1:Nb_samp-1

[sigma,P_1]=integ_E_sigma(P_1,sigma_e(no_samp+1),sigma_a,N_sigma);
sigma_0(no_samp+1)=sigma;
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endfor
%
for no_samp=1:Nb_samp

[w_0,w_1]=w_strom(C_s,b_s,Sigma_d,sigma_0(no_samp));
% see formula (2.63) page 74
v_dom(no_samp)=w_0*abs(dot_sigma_e(no_samp));
% Store backward the time derivatives;
% see the formulas (2.68) and (2.69) these data are used
% for the integration of the adjoint equation
d1_v_dom(Nb_samp-no_samp+1)=w_1*dot_sigma_e(no_samp);
d2_v_dom(Nb_samp-no_samp+1)=w_0*sign(dot_sigma_e(no_samp));

endfor
% Computation of the damage by numerical integration (trapezes method).
damage=trapz(time(1:Nb_samp),v_dom)

• Auxiliary functions

– Assembling of the mass matrix

function XM=assemb_M(Nb_nodes,G,delta_s,Inert)
XM=zeros(Nb_nodes,Nb_nodes);
for i=1:Nb_nodes-1

% Elementary Mass matrix
M_11=G(i+1)**4+3*G(i)*G(i+1)**3 ...

+6*G(i)**2*G(i+1)**2+10*G(i)**3*G(i+1)+15*G(i)**4;
M_12=5*G(i+1)**4+8*G(i)*G(i+1)**3 ...

+9*G(i)**2*G(i+1)**2+8*G(i)**3*G(i+1)+5*G(i)**4;
M_22=G(i)**4+3*G(i+1)*G(i)**3 ...

+6*G(i+1)**2*G(i)**2+10*G(i+1)**3*G(i)+15*G(i+1)**4;
M_i=delta_s*Inert*[M_11/105.0,M_12/210.0; ...

M_12/210.0,M_22/105.0];
% Assembly to the global matrix
XM(i,i)=XM(i,i)+M_i(1,1);
XM(i,i+1)=XM(i,i+1)+M_i(1,2);
XM(i+1,i)=XM(i+1,i)+M_i(2,1);
XM(i+1,i+1)=XM(i+1,i+1)+M_i(2,2);

endfor
endfunction

– Assembling of the stiffness matrix

function XK=assemb_K(Nb_nodes,G,delta_s,J)
XK=zeros(Nb_nodes,Nb_nodes);
for i=1:Nb_nodes-1

% Elementary stiffness
K_i=J/delta_s*(G(i+1)**4+G(i)*G(i+1)**3+G(i)**2*G(i+1)**2 ...

+G(i)**3*G(i+1)+G(i)**4 ...
)/5.0*[1,-1;-1,1];

% Assembly in the global matrix
XK(i,i)=XK(i,i)+K_i(1,1);
XK(i,i+1)=XK(i,i+1)+K_i(1,2);
XK(i+1,i)=XK(i+1,i)+K_i(2,1);
XK(i+1,i+1)=XK(i+1,i+1)+K_i(2,2);

endfor
endfunction
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– Computation of Σ0(t ).

function [sigma_0,P_1]=integ_E_sigma(P_1,v,sigma_a,N_sigma);
%
% Partial integration of (2.39) for σa ∈ (

σi
)Nsi g ma

i=1
%

P_1=min(v+sigma_a,max(v-sigma_a,P_1));
%
% Research of the first extremum in the table P1

% (see algorithm (3.2) page 118 )
%
for i=1:N_sigma-2

p=(P_1(i)-P_1(i+1))*(P_1(i+1)-P_1(i+2));
if p<=0.0

break;
end

end
%
% Computation of σ0 at time tk+1.
sigma_0=sigma_a(i+1);

endfunction

– Computation of the partial derivatives ∂v j (v,σ0, v̇) and ∂v̇ j (v,σ0, v̇) see
formulas (2.68) and (2.69) page 76

function [w_0,w_1]=w_strom(C_s,b_s,sigma_d,v_2)
% Stromeyer’s formula
% (without accounting for mean stress).
w_0=max(v_2-sigma_d,0)^(1/b_s-1)/b_s/C_s/2;
w_1=(1-b_s)/(4*b_s**2*C_s)*max(v_2-sigma_d,0)^(1/b_s-2);

endfunction

B.2. Integration of the adjoint equation

The elements of program given below are intended for complementing the previous
program to simultaneously integrate the state and the adjoint equations and compute
the gradient of the damage with respect to the design parameters.

• Continuation of the main program

Step 8) Computation of the derivative of the mass matrix with respect to the
additional inertias.

%
% Derivative of the mass matrix
% with respect to the additional inertias
DI_XM=zeros(Nb_nodes,Nb_nodes);
DI_XM(4,4)=0.5;
DI_XM(10,10)=0.25;
DI_XM(18,18)=0.25;
DI_XM(24,24)=0.5;
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Step 9) Computation of the derivatives of [M ]−1, [M ]−1[K ] and [M ]−1[W ] with
respect to the additional inertias

pkg load control;% to have access to the Lyapunov function
% Computation of the derivative of the matrices
%
% Derivative of [M ]−1[K ]

DI_M=-inv(XM)*DI_XM*inv(XM);
DI_K=DI_M*XK;
%
% Derivative of the damping
if Type_damp==1

% Proportional to the stiffness matrix
DI_W=coef_damp*DI_K;
else if Type_damp==2

% Proportional to critical damping per mode
% apply the product rule and the chain rule
% to M−1W , where W is defined by
% the formula (3.28) page 114
DI_M_s=lyap(M_s,DI_M,’c’);% Solve a Lyapounov’s equation
% W1 is the square of the damping matrix in the modal basis
W1=real(M_s*XK*M_s);
W2=real(DI_M_s*sqrtm(W1)*sqrtm(XM));
W3=real(M_s*sqrtm(W1)*lyap(sqrtm(XM),DI_XM,’c’));
DW1=real(DI_M_s*XK*M_s + M_s*XK*DI_M_s);
W4=M_s*real(lyap(real(sqrtm(W1)),DW1,’c’))*real(sqrtm(XM));
DI_W=real(W2+W3+W4)*coef_damp;

else
% DI_W=0

end
end

Step 10) Integration of the adjoint equation in its modal basis

% Computation of right hand member of the adjoint equation
%
E=zeros(Nb_nodes,1);
E(No_elt-1)=-Coeff; % The damage is computed on the element No_elt
E(No_elt)=Coeff;
E_m=eig_0’*E; % Switching to the base which diagonalizes the adjoint equation
%
% Sampling of the right hand member of the adjoint equation
for no_samp=1:Nb_samp

for ind_mod=1:size(Ind_mod,1)
ex_ad_1(ind_mod,no_samp)=d1_v_dom(no_samp)*E_m(Ind_mod(ind_mod));
ex_ad_2(ind_mod,no_samp)=d2_v_dom(no_samp)*E_m(Ind_mod(ind_mod));

endfor
endfor
%
% Integration of the adjoint equation by convolution
for ind_mod=1:size(Ind_mod,1)

lambda_2(ind_mod,:)=conv(tab1(ind_mod,:),ex_ad_1(ind_mod,:)’)...
+conv(tab2(ind_mod,:),ex_ad_2(ind_mod,:)’);

endfor
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Step 11) Back to the original basis and compute the gradient

F=zeros(Nb_nodes,1);
if Type_damp ==3

for no_samp=1:Nb_samp
X=zeros(Nb_nodes,1);% Displacements
Lambda=zeros(Nb_nodes,1); % Lagrange multipliers
for ind_mod=1:size(Ind_mod,1)

X=X+eig_0(:,Ind_mod(ind_mod))*sol(ind_mod,no_samp);
% Sampling in the direction of increasing time
Lambda=Lambda+eig_1(:,Ind_mod(ind_mod))* ...

lambda_2(ind_mod,Nb_samp-no_samp+1);
end
% Distribution of the torques on 3 nodes at the right end
F(Nb_nodes)=e1(no_samp)/4;
F(Nb_nodes-1)=e1(no_samp)/2;
F(Nb_nodes-2)=e1(no_samp)/4;
% Idem on the left
F(1)=-e1(no_samp)/4;
F(2)=-e1(no_samp)/2;
F(3)=-e1(no_samp)/4;
int_Lambda(no_samp)=Lambda’*(DI_M*F-DI_K*X);

end
else

for no_samp=1:Nb_samp
X=zeros(Nb_nodes,1);% Displacements
V=zeros(Nb_nodes,1);% Velocities
Lambda=0*eye(Nb_nodes,1);% Lagrange multipliers
for ind_mod=1:size(Ind_mod,1)

X=X+eig_0(:,Ind_mod(ind_mod))*sol(ind_mod,no_samp);
V=V+eig_0(:,Ind_mod(ind_mod))*sol_p(ind_mod,no_samp);
Lambda=Lambda+eig_1(:,Ind_mod(ind_mod))* ...

lambda_2(ind_mod,Nb_samp-no_samp+1);
endfor
% At the right end, distribution of torques on 3 nodes
F(Nb_nodes)=e1(no_samp)/4;
F(Nb_nodes-1)=e1(no_samp)/2;
F(Nb_nodes-2)=e1(no_samp)/4;
% idem on the left
F(1)=-e1(no_samp)/4;
F(2)=-e1(no_samp)/2;
F(3)=-e1(no_samp)/4;
int_Lambda(no_samp)=Lambda’*(DI_M*F-DI_K*X-DI_W*V);

endfor
endif
%
% Numerical integration
diff_dom=trapz(time(1:Nb_samp),int_Lambda)
%
% Now use your favorite optimizer
% to find the optimal inertia!
%
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