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1 Introduction

The word gradostat has been proposed in the eighties by Lovitt and Wimpenny [18, 19] to name
an experimental device designed to create artificially a gradient of resources in continuous culture,
using several interconencted chemostats. As for the single chemostat, a first vessel is continuously
fed with nutrient via an input flow Q, and its volume V is maintained constant by an output
flow rate equal to Q. In addition, a series of vessels of same volume V are interconnected with a
bidirectional communication rate D (which mimics a diffusion) and creates a gradient of concen-
trations in the succession of vessels (see Fig. 1). The communication rate D is chosen to be equal
to the dilution rate Q/V of the first tank, so that the transfer rate is identical in each tank. This
experiment has been the first one to study the impact of a spatial heterogeneity on the growth
of micro-organisms in a same common environment (temperature, light, pressure, pH...), and the
word ”gradostat” echoes the word ”chemostat”, being dedicated to be studied at steady state with
constant ”static” gradients. Each vessel is assumed to be perfectly mixed, so that one faces indeed
discrete gradients.

V

Q

Q

vessel 1

vessel 2 vessel n

D

D

D

D

D

D

V V

Figure 1: A schematic representation of the gradostat.

This apparatus is described by the gradostat model:
Ṡi = D(Si−1 − 2Si + Si+1)− 1

Y
R(Si, Xi)

Ẋi = D(Xi−1 − 2Xi +Xi+1) +R(Si, Xi)
S0 = sin, Sn+1 = X0 = Xn+1 = 0

where Si and Xi denote the concentrations of substrate and biomass, respectively, in each vessel
i. This model has been first analyzed in [34] and further contributions considered extensions with
several competing species.

Remark 1.1. This representation is the spatial discretisation of the well known fractured media
model in geo-science (see fig. 2a).
If x is the direction of the advective flow and y of a fracture of length l, the mass balance give the

fracture

x=0

y=0

y=l

xadvection

(mobile zone)

(a) continuous representation

zone
mobile

(b) discrete representation

Figure 2: A schematic representation of a fracture.
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equations  ∂t
(
Cm +

∫ l

0

Cim
)

= −u∇xCm + dm∆xCm

∂tCim = dim∆yCim

with the boundary conditions {
Cm(t, x = 0) = Cim(t, y = 0)
∇yCim(t, y = l) = 0

where Cm, Cim denote the chemical concentrations in the ”mobile” and ”immobile” zones (see
[4, 27]). Here there is no the reaction term. The mobile zone is approximated by a perfectly mixed
tank (the first vessel), and the immobile zone by a series of small volumes (see Fig. 2b).

There exist several variants of this model for representing more general situations such as in
biotechnological industry (for large bioreactors that exhibit spatial heterogeneity, interconnected
bioreactors...) or in natural environments (soils, porus media...), with

- different volumes and communication rates of the vessels,

- output flow located at different vessels than the input one,

- several input and output flows,

...

All those more general models are usually enclosed in the wording general gradostat, which de-
scribes a more general class of interconnected chemostats. In the original description of Lovitt
& Wimpenny, the possibility of having two different essential resources fed independently in the
vessels at the extremities of the chain are considered (see Fig. 3). However, in these notes, we

Figure 3: The original description by Lovit and Wimpenny (from [19]).

shall consider only one limiting resource S.
In the next section, we study general properties of the solutions of general gradostat model,

for an arbitrary number of vessels. The complete analytical analysis of the input-output perfor-
mances of the general chemostat is today an open problem, although it can be easily determined
numerically, for each given structure. In the review paper[30], H. Smith wrote ”In the two vessels
case, the results are complete and the conditions are testable... In the most general setting, some
of the computations cannot be carried out explicitly (although any specific ease could be done
numerically)”. In the following sections, we study how a spatial structure can impact locally the
input-output performances, comparing all the possible connections between two adjacent vessels.
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2 The general model

This section has been prepared with J.L. Gouzé.

We consider a network of n interconnected chemostats, and assume that a same single species
is present in each vessel at initial time. The network is fed with a single limiting resource that
allows the growth of the bacterial species. The nodes of the interconnection graph is composed of
the tanks of volume denoted by Vi > 0 (i = 1 · · ·n), and the arcs represent mass transfers between
the tanks (see an example on Fig. 4).
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Figure 4: Example of a ”general” gradostat

We consider four types of arcs (see Fig. 5):

- flux of flow rate Qij ≥ 0 from node i to j with j 6= i (Qij = 0 is there is no flux from vessel
i to vessel j),

- Fick diffusion of parameter dij = dij ≥ 0 between nodes i and j with j 6= i (with dij = 0 if
there is no diffusion between vessels i and j),

- output flow Qouti ≥ 0 from node i (with Qouti = 0 if there is no output flow from vessel i),

- input flow Qini ≥ 0 to node i (with Qini = 0 if there is no input flow to vessel i),

and assume that the Kirchoff law or mass conservation is satisfied at each node.

Hypothesis H0. ∑
j 6=i

Qji +Qini =
∑
k 6=i

Qik +Qouti , ∀i = 1 · · ·n

Notice that summing the above equality on all i imposes the input-output conservation of the
total flow rate: ∑

i

Qini =
∑
i

Qouti := Q.

We denote by I and O the sets of input and output nodes:

I = {i ∈ 1 · · ·n |Qini > 0} , O = {i ∈ 1 · · ·n |Qouti > 0} (1)
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Figure 5: The possible flows about one vessel.

We shall represent by S and X respectively the vectors of concentrations of the limiting resource
and biomass in the set of tank. The time evolution of these vectors is modeled by a dynamical
system of the from  Ṡ = −1

y
R(S,X) +MS +DSin

Ẋ = R(S,X) +MX +DXin
(2)

where y > 0 and R(·) stand respectively for the conversion yield of the species, and the vector
of kinetics that occurs in each vessel. The matrices M and D represent respectively the mass
transfers and inputs and are defined as follows:

Mij =

∣∣∣∣∣∣∣∣∣
− 1

Vi

∑
k 6=i

Qik + dik +Qouti

 , when i = j

1

Vi
(Qji + dij), when i 6= j

(3)

D = diag

({
Qini
Vi

}
i

)
(4)

Remark 2.1. One can check that the parameter y can be chosen equal to one without any loss
of generality, simply replacing Xi/y by Xi in equations (2). Consequently, we shall omit y in the
following.

Remark 2.2. If often happens that each entry node receives the same substrate concentration sin
(with or without the same input concentration of biomass), which amounts to consider the vector
Sin such that Sini = sin for any i = 1 · · ·n. It also often happens to consider the output substrate
concentration sout defined as

sout =

∑
iQ

out
i Si∑

iQ
out
i

which allows to consider the system as an ”input-output” map sin 7→ sout. Properties of this map
will be studied in more details for the two vessels cases in the next section.

Classically, we assume the kinetics to be linear w.r.t. to the biomass concentration and char-
acterized by a specific growth rate µ(·):

Ri(S,X) = µ(Si)Xi , ∀i = 1 · · ·n (5)

We shall assume that the function µ(·) is smooth (at least C2) with µ(0) = 0 and µ(S) > 0 for
S > 0.

This model is an attempt to represent and study spatial inhomogeneity.
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An example. The network depicted on Fig. 4 leads to the following dynamical equations.

Ṡ1 = −µ(S1)X1 + 1
V1

(Qin1 S
in −Q15S1) + d12

V1
(S2 − S1)

Ẋ1 = µ(S1)X1 − 1
V1
Q15X1 + d12

V1
(X2 −X1)

Ṡ2 = −µ(S2)X2 + 1
V2

(Qin2 S
in −Q24S2) + d12

V2
(S1 − S2) + d23

V2
(S3 − S2)

Ẋ2 = µ(S2)X2 − 1
V2
Q24X2 + d12

V2
(X1 −X2) + d23

V2
(X3 −X2)

Ṡ3 = −µ(S3)X3 + d23
V3

(S2 − S3) + d34
V3

(S4 − S3)

Ẋ3 = µ(S3)X3 + d23
V3

(X2 −X3) + d34
V3

(X4 −X3)

Ṡ4 = −µ(S4)X4 + 1
V4

(Q24S2 −Qout4 S4) + d34
V4

(S3 − S4)

Ẋ4 = µ(S4)X4 + 1
V4

(Q24X2 −Qout4 X4) + d34
V4

(X3 −X4)

Ṡ5 = −µ(S5)X5 + 1
V5

(Q15S1 −Qout5 S5) + d56
V5

(S6 − S5)

Ẋ5 = µ(S5)X5 + 1
V5

(Q15X1 −Qout5 X5) + d56
V5

(X6 −X5)

Ṡ6 = −µ(S6)X6 + d56
V6

(S5 − S6)

Ẋ6 = µ(S6)X6 + d56
V6

(X5 −X6)

with Q15 = Qin1 , Q24 = Qin2 , Qout5 = Q15, Qout4 = Q24 to respect the mass balance. The output
concentration is given by

Sout =
Qout5 S5 +Qout6 S6

Qout5 +Qout6

For this model, the matrix representation is given by:

M =



−Q15+d12
V1

d12
V1

0 0 0 0

d12
V2

−Q24+d12+d23
V2

d23
V2

0 0 0

0 d23
V3

−d23+d34
V3

d34
V3

0 0

0 Q24

V4

d34
V4

−d34V4
0 0

Q15

V5
0 0 0 −d56V5

d56
V5

0 0 0 0 d56
V6

−d56V6



D =



Qin1
V1

Qin2
V2

0
0

0
0


, C =

[
0 0 0

Qout4

Qout4 +Qout5

Qout5

Qout4 +Qout5
0
]

We give now general properties of the matrix M .

Lemma 2.1. Under H0, the matrix M is compartmental (the definition is recalled in Appendix
A.1).

Proof. Properties Mii ≤ 0 and Mij ≥ 0 for j 6= i are fulfilled from the definition (3). For
any i, one has ∑

j

Mij =
1

Vi

∑
j 6=i

Qji + dij −
∑
k 6=i

(Qik + dik)−Qouti
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and under Hypothesis H0, one obtains ∑
j

Mij = −Q
in
i

Vi

Then the property
∑
jMij ≤ 0 is fulfilled. �

In the following, we assume that there is no loop in the network that is not connected to the
set O. This property of the graph is often called ”outflow-connected”.

Hypothesis H1. The sets I and O are non-empty and for any i /∈ O there exists j ∈ O and a
sequence i0, · · · , ik such that i0 = i, ik = j with Miαiα+1

> 0.

Remark 2.3. Hypothesis H1 does not imply that the matrix M has to be irreducible. For instance
the matrix M in the previous example is reducible, but the network is outflow connected.

For convenience, we posit the vector Zin = Sin +Xin.

Proposition 2.1. Assume that Hypotheses H0-H1 are fulfilled. The positive domain D = R2n is
invariant by the dynamics (2), and any solution in D is bounded. Furthermore, the matrix M is
inversible and any solution of the system (2) verifies

lim
t→+∞

S(t) +X(t) = −M−1DZin (6)

Proof. From equations (2) and the property that matrix M has non-negative off-diagonal
terms, one deduces the following inequalities

Si = 0⇒ Ṡi ≥ 0 , Xi = 0⇒ Ẋi ≥ 0

and conclude that the domain D is invariant by the dynamics (2).

Consider the vector Z = S +X. One has straightforwardly

Ż = MZ +DZin (7)

We recall that for a compartmental matrix, Hypothesis H1 implies that the matrix M is non-
singular and Hurwitz (see Theorem A.1.1 in Appendix A.1). We can then deduce the asymptotic
property of solutions of system (7).

lim
t→+∞

Z(T ) = Z̄ = −M−1DZin (8)

Furthermore, a non-singular compartmental matrix being diagonal dominant, −M is a M-matrix.
The components of the vector DZin being non-negative, the properties of the M-matrices (see
Theorem A.1.2 in Appendix A.1) implies then the vector Z̄ has non-negative components. Finally,
we deduce the boundedness of the vectors S and X. �

Let us write dynamics (2) in (Z,X) coordinates with Z = S +X.{
Ż = M(Z̄ − Z)

Ẋ = R(Z −X,X) +MX +DXin
(9)

where Z̄ = −M−1DZin. One notice that the system presents a cascade structure, and from
Proposition 2.1, any solution of the first Z-system converges globally toward Z̄. We can then
consider the reduced dynamics

Ẋ = F (X) := R̄(X) +MX +DXin (10)

9



where
R̄(X) = R(Z̄ −X,X)

Indeed, the original dynamics in X can be written as an asymptotically autonomous dynamics:
Ẋ = R(Z(t)−X,X) +MX +DXin whose limit is Ẋ = F (X). The asymptotic properties of its
bounded solutions are then given by the ones of the reduced dynamics (see Appendix A.2). Notice
that the vector R̄(·) has the particular decoupled form

R̄i(X) = ri(Xi) = µ(Z̄i −Xi)Xi (11)

Take ε > 0 and define the number

v =

[
max

(
1,max

i
max

Xi∈[0,Z̄i]
−r′i(Xi)−Mii + ε

)]−1

(12)

Then, we consider the map T (X) = vF (X) + X and write the dynamics (10) in time τ = vt as
follows

dX

dτ
= T (X)−X (13)

Equilibrium points of dynamics (10) are then exactly the fixed points of the map T .

Hypothesis H2. Each functions ri (i = 1 · · ·n) are strictly concave on the domains [0, Z̄i].

Remark 2.4. From the equation (11), one can write

r′′i (Xi) = µ′′(Z̄i −Xi)Xi − 2µ′(Z̄i −Xi)

and check that Hypothesis H2 is fulfilled when the function µ is concave increasing. This is typically
the case for the Monod function:

µ(S) =
µmaxS

K + S

We shall also assume that input flow brings mass in any tank.

Hypothesis H3. Under Hypotheses H0, H1, we assume Z̄ = −M−1DZin > 0.

In the following, we shall denote [0, Z̄] for the cartesian product [0, Z̄1] × · · · × [0, Z̄n], and
[Jac f(x)] for the Jacobian matrix of a map f from Rn to Rn at a point x.

Lemma 2.2. Under Hypotheses H0-H1-H2-H3, the map T is non-decreasing on [0, Z̄] i.e.

[JacT (X)] ≥ 0, ∀X ∈ [0, Z̄] (14)

and one has T ([0, Z̄]) ⊂ [0, Z̄]. Furthermore T fulfills the property

T (λX) > λT (X), ∀X > 0, ∀λ ∈ (0, 1) (15)

Proof. One has
[JacT (X)] = v(diag({r′i(Xi)}i) +M) + I (16)

By definition, one has Mij ≥ 0 when i 6= j, and the choice of the jumber v implies

v(r′i(Xi) +Mii) + 1 > 0, ∀X ∈ [0, Z̄]

So property (14) is fulfilled. Furthermore, one has

T (0) = DXin ≥ 0

10



and
T (Z̄) = −vDSin + Z̄ ≤ Z̄

from which one deduces T ([0, Z̄]) ⊂ [0, Z̄].

Take X > 0 and λ ∈ (0, 1). On has

T (λX) = v
(
R̄(λX) + λMX +DXin

)
+ λX

From Hypothesis H2, one can write

R̄(λX) > λR(X) + (1− λ)R(0) = λR(X)

and consequently
T (λX) > λT (X) + vDXin(1− λ) > λT (X)

�

Proposition 2.2. Under Hypothesis H0-H1-H2-H3, there exists at most one positive fixed point
of T on [0, Z̄].

Proof. Assume that X and Y are two distinct positive fixed points of T in [0, Z̄]. At the
price to exchange X and Y , one can assume that there exists i such that Xi > Yi. Then, consider
the number

λ = min
i

Yi
Xi

Necessarily λ ∈ (0, 1) and one has λX ≤ Y with

i? ∈ arg min
i

Yi
Xi
⇒ λXi? = Yi? (17)

Using Lemma 2.2, one can write

Y = T (Y ) ≥ T (λX) > λT (X) = λX

this last strict inequality contradicting (17). �

Proposition 2.3. Assume that Hypotheses H0-H1-H2-H3 are fulfilled. When µ(Z̄i) > −Mii for
any i = 1 · · ·n, there exists a positive vector X? in [0, Z̄] such that any solution of (10) with a
positive initial condition in [0, Z̄] converges asymptotically to X?.

Proof. Notice that F (0) = DXin ≥ 0 and DF (0) = diag({µ(Z̄i)}i) + M . By assumption,
one has DF (0)∆ > 0 for any ∆ > 0, and by continuity of F (·), we deduce that there exits X > 0
such that

0 < X ≤ X =⇒ F (X) > 0 (18)

Notice also that one has
F (Z̄) = −DSin ≤ 0 (19)

Consider X0 > 0 in [0, Z̄] and denote by X(·) the solution of Ẋ = F (X) with X(0) = X0.
Define X−(·), X+(·) the solutions of Ẋ = F (X) with X−(0) = min(X0, X) > 0 and X+(0) = Z̄
respectively.

As [JacF (X)]ij = Mij ≥ 0 for any i 6= j, the dynamics Ẋ = F (X) is cooperative (definition
and properties of cooperative dynamics are recalled in Appendix A.3) and the following framing
is then fulfilled

X−(t) ≤ X(t) ≤ X+(t), ∀t > 0 (20)

Denote V ±(t) = Ẋ±(t), which are solutions of the non-autonomous dynamics

V̇ ± = [JacF (X±(t))].V ± (21)

11



Notice that (18) and (19) imply V −(0) = F (X−(0)) > 0 and V +(0) = F (Z̄) ≤ 0. The dy-
namics (21) being cooperative, one deduces by Theorem A.3.1 (see Appendix A.3) the vectorial
inequalities:

V −(t) > 0, V +(t) ≤ 0, ∀t > 0

Consequently, each component of the vectors X− and X+ are monotonic bounded functions of
time. Then X−(.) and X+(.) converge asymptotically towards steady states X−?, X+? in [0, Z̄]
such that

0 < X−? ≤ X+? ≤ Z̄
By Proposition 2.2, we conclude that X−? = X+? is the unique positive equilibrium X? of the
dynamics F in [0, Z̄]. Finally, property (20) allows to conclude and that

lim
t→+∞

X(t) = X? .

�

Remark 2.5. Hypotheses of Proposition 2.3 do not prevent the existence of equilibriums X? 6= 0
on the boundaries of the domain [0, Z̄] but they are all repulsive.

3 Analysis of models with two interconnected vessels

Given an input and an output of a system of two interconnected tanks, we consider in this section
its performances either in terms of

- conversion ratio sout/sin (at steady state), given an input flow rate Q and a total volume V ,

or

- residence time t̄ = V/Q, provided a given conversion ratio sout/sin (at steady state),

to be minimized, which are the usual criteria in water treatments (such as decontamination by
bacteria).

Remark 3.1. The ”mean residence time” of a process is commonly defined as

t̄ =

∫ +∞

0

tsout(t)dt∫ +∞

0

sout(t)dt

when at time 0 there is a uniform unitary concentration of the resource (in each tank) with no
biological activity and input concentration at any future time. One can easily show that t̄ = V/Q
where V is the total volume, whatever is the spatial configuration. More details about the mean
residence time can be found for instance in [24, Chapter 15].

For other applications, in biotechnological or agro-food industry, different criteria, such as
productivity (quantity of biomass produced during a given period of time) or output flow-rate of
biogas (as a by-product of the bioreaction), to be maximized, are relevant (but that we do not
consider here).

With two tanks, interconnections can be made in series or in parallel. However, we shall
distinguish four cases, as depicted on Fig. 6. Cases a) and b) are the classical serial and parallel
configurations. In case c), the second tank plays the role of a ”buffer”. This case can be seen as
an extension of case a) when the secondary tank receives in addition part of the input flow. Case
d) is a particular case of case b) with α = 1 . However, this particular configuration is widely
used to model heterogeneity in single tank, and deserves to be studied independently. This is
why we dedicate a thorough analysis in the sub-section. Notice that this configuration is indeed
the classical gradostat (see Fig. 1) with only one lateral tank but that could be here of different
volume.

12
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Figure 6: Four kinds of interconnections of two vessels.

3.1 Vessel with a lateral diffusive compartment

This section has been inspired by [3].

In industrial processes, if often happens that reactors with large volumes are not perfectly
mixed, even when using agitators. “Dead zones” are then observed, so that the effective volumes
have to be corrected in the models to provide accurate predictions [17, 6].

input

output

V1 2V

input

output dead zone

Figure 7: A ”dead-zone” representation (right) is a simple way to model two areas in a bioreactor:
convection dominated versus diffusion dominated (left).

Segregated habitats are also considered in lakes, where the bottom can be modeled as a dead
zone with nutrient mixing between bottom and top achieved by diffusion [23]. In a similar way,
stagnant or ”immobile” zones are known to occur in porous media such as in soils, at various
extents depending on soil structure. The effect of these dead zones on reactive and conservative
mass transport, and thus in turn on the bio-geochemical cycles of elements, can be significant
[35, 28]. The wording “dead-zone” might be slightly miss-leading as it can make believe that part
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of the tank where there is no advection stream from the input flow has no biological activity.
But this does not necessarily mean that these ”dead-zones” are entirely disconnected from other
parts of the reactor. It is simply likely to be influenced by diffusion and not convection. May be,
its is preferable to qualify these zones as ”lateral-diffusive compartments” (the adjective ”lateral”
underlying that the connection is not in the direction of the flow).

We then consider configurations of a main tank of volume V1, subject to input and output
flows, interconnected by Fickian diffusion with a secondary tank of volume V2, as depicted on
Figure 6d). The equations of the model are

ṡ1 = −µ(s1)x1 +
Q

V1
(sin − s1) +

d

V1
(s2 − s1)

ẋ1 = µ(s1)x1 −
Q

V1
x1 +

d

V1
(x2 − x1)

ṡ2 = −µ(s2)x2 +
d

V2
(s1 − s2)

ẋ2 = µ(s2)x2 +
d

V2
(x1 − x2)

(22)

where we have assumed, without any loss of generality, that the yield conversion factor of substrate
into biomass is equal to 1. The parameters Q and sin denote the flow rate and substrate concen-
tration of the input stream, while the parameter d > 0 is the diffusion coefficient between the two
tanks (that we assume to be identical for the substrate and the micro-organisms). The specific
growth rate function of the micro-organisms, denoted by µ, fulfills the classical assumption, as
considered in Section 2.

Hypothesis H2b. The growth function µ(·) is an increasing concave function with µ(0) = 0.

Let us first discuss the modeling of the two limiting cases that are not covered by system (22).

3.1.1 The limiting cases

1. V1 = 0. Physically, this corresponds to a single tank (of volume V2) connected by diffusion
to the input pipe with flow rate Q (see Figure 8). Water charged with substrate at a
concentration sin flows with rate Q along a pipe, which is connected laterally with a vessel
through a diffusion rate d. Substrate reacts with biomass at the tank and leaves the pipe
with flow rate Q.

V2

2
s  , x

2

d

outs

in
s

Q

Figure 8: Representation of the chemostat into consideration in the limiting case when V1 = 0.

There is no biological activity in the pipe but simply a dilution given by the mass balance
at the connection point:{

Q(sin − sout) = d(sout − s2)
−Qxout = d(xout − x2)

⇒ sout =
Qsin + ds2

Q+ d
, xout =

dx2

Q+ d
(23)
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Then the dynamics in the tank with (sout, xout) instead of (s1, x1) is given by the equations
ṡ2 = −µ(s2)x2 +

Qd

(Q+ d)V2
(sin − s2)

ẋ2 = µ(s2)x2 −
Qd

(Q+ d)V2
x2

This is equivalent to have a single tank of volume V2 with input flow rate Qd/(Q + d) but
with an output given by sout = (Qsin + ds2)/(Q+ d).

2. V2 = 0. The dynamics of (s1, x1) is the one of the single chemostat model with volume V1
ṡ1 = −µ(s1)x1 +

Q

V1
(sin − s1)

ẋ1 = µ(s1)x1 −
Q

V1
x1

(24)

This is also equivalent to having no diffusion (d = 0) between the tanks.

3.1.2 Study of equilibria

From Proposition 2.2 of Section 2, we know that there exists at most one positive equilibrium of the
system, the author equilibrium E0 = (0, sin, 0, sin)> being the washout in both tank. Moreover
Proposition 2.3 of Section 2 gives µ(sin) > Q/V1 as a sufficient condition for the existence of
the positive equilibrium, which is then necessarily asymptotically stable, globally on the positive
orthant. However, Proposition 2.3 gives only a sufficient condition. We give now a necessary and
sufficient condition for the existence of the positive equilibrium.

It is convenient to introduce the function

β(s) = µ(s)(sin − s) (25)

that satisfies the following property.

Lemma 3.1.1. Under Hypothesis H2b, the function β is strictly concave on [0, sin]. Thus, one
can define the unique value

ŝ = arg max
s∈(0,sin)

β(s). (26)

Proof. One has β′(s) = µ′(s)(sin − s) − µ(s) and β′′(s) = µ′′(s)(sin − s) − 2µ′(s), which is
negative for any s ∈ [0, sin]. �

Given parameters V1, V2, Q and d, let us define the following polynomial:

P (X) = V1V2X
2 − (dV1 + (Q+ d)V2)X + dQ

The next proposition reveals the role played by the polynomial P in the characterization of positive
equilibriums, given a prescribed value of input concentration sin.

Proposition 3.1.1. The washout equilibrium E0 is the unique steady state of (22) exactly when
sin satisfies the condition

µ(sin) ≤ Q

V1
and P (µ(sin)) ≥ 0. (27)

When condition (27) is not fulfilled, there exists an unique positive steady state E? of (22) distinct
from E0.
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Proof. From the two last equations of (22), one has s1 + x1 = s2 + x2 at steady-state, and
from the two first ones s1 + x1 = sin. The values s1, s2 at steady state are then solutions of the
system of two equations

0 =

(
Q

V1
− µ(s1)

)
(sin − s1) +

d

V1
(s2 − s1) (28)

0 = −µ(s2)(sin − s2) +
d

V2
(s1 − s2) (29)

and x1, x2 at steady state are uniquely defined from each solution (s1, s2) of (28)-(29).
Clearly (sin, sin) is a solution of (28)-(29). We look for (positive) solutions different to (sin, sin).

Posit

λ1(sin) := max

{
s1 ∈ [0, sin] |µ(s1) ≤ Q

V1

}
From equations (28)-(29), a solution different to (sin, sin) has to satisfy s1 > s2 > 0 and then

from equation (28), one has also s1 < λ1(sin). Define then the functions:

φ1(s1) := s1 −
Q− V1µ(s1)

d
(sin − s1) = s1 −

Q

d
(sin − s1) +

V1

d
β(s1), (30)

φ2(s2) := s2 +
V2µ(s2)

d
(sin − s2) = s2 +

V2

d
β(s2). (31)

so that any solution of (28)-(29) fulfills s2 = φ1(s1) and s1 = φ2(s2). One has

φ′1(s1) = 1 +
V1

d
µ′(s1)(sin − s1) +

Q− V1µ(s1)

d
.

Therefore φ1 is increasing on [0, λ1(sin)], with φ1(0) = −(Q/d)sin < 0 and φ1(λ1(sin)) = λ1(sin) >
0. Thus, φ1 is invertible on [−(Q/d)sin, λ1(sin)] with

φ−1
1 (0) ∈ (0, λ1(sin)).

From Lemma 3.1.1, it follows that φ1 and φ2 are strictly concave functions on [0, sin]. Consider
then the function

γ(s2) := φ2(s2)− φ−1
1 (s2) s2 ∈ [0, λ1(sin)], (32)

which is also strictly concave on [0, λ1(sin)]. Then, a solution (s1, s2) can be written as a solution
of

γ(s2) = 0, s1 = φ2(s2) with s2 ∈ [0, λ1(sin)].

Notice that one has γ(0) = −φ−1
1 (0) < 0. We distinguish two cases:

− When λ1(sin) < sin (or equivalently µ(sin) > Q/V1), one has

γ(λ1(sin)) =
QV2

dV1
(sin − λ1(sin)) > 0.

By using the Mean Value Theorem, one concludes that there exists s2 ∈ (0, λ1(sin)) such that
γ(s2) = 0. As γ is strictly concave, s2 is unique.

− When λ1(sin) = sin (that is when µ(sin) ≤ Q/V1), one has γ(sin) = sin and the function γ
takes positive values on the interval [0, sin] if and only if γ′(sin) < 0 (γ being strictly concave on
[0, sin]), or equivalently when the condition

φ′2(sin) <
1

φ′1(sin)
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is fulfilled. Then, there exists an unique solution to γ(s2) = 0 on (0, sin). Notice that one has
φ′1(sin) > 0 because λ1(sin) = sin. So the condition can be also written as φ′1(sin)φ′2(sin) < 1.
From the expressions of φ1 and φ2, one can write this condition as

(d+Q− V1µ(sin))(d− V2µ(sin))

d2
< 1,

and check that this exactly amounts to require sin to satisfy P (µ(sin)) < 0.
We conclude that there exists a positive steady state if and only if µ(sin) > Q/V1 or P (µ(sin)) < 0
and that this steady state (when it exists) is unique. �

This result shows that in the case when µ(sin) > Q/V1, that would conduct the system to
the washout in the first vessel without the connection to the second vessel, the lateral diffusive
compartment can play the role of a ”refuge”, avoiding the washout. Proposition 2.3 does not
give the global convergence in this case. The proof of the global stability for the lateral diffusive
compartment is left in Appendix A.4.

One can guess the existence of a compromise with a ”dead-zone” penalizing the conversion ratio,
as the volume in the main tank is smaller on one hand, but proving robustness against wash-out on
another hand. To formulate it more precisely, we investigate how a lateral diffusive compartment
influences the output concentration of the resource, compared to the chemostat model with a
single compartment of the same total volume. To this aim, we fix the hydric volumes V1, V2, the
input flow Q, and analyze the output map at steady state, as a function of the diffusion parameter
d. Proposition 3.1.1 gives implicitly the existence of a map d → s?1(d) for the unique non-trivial
steady-state of system (22), that we study here as a function of d. However, Proposition 3.1.1 does
not give explicit ranges of existence of this steady-state, depending on the operating parameters
Q and sin.

Proposition 3.1.2. Let V = V1 + V2 and define the number

d̄ = V2µ(sin)
Q− V1µ(sin)

Q− V µ(sin)
.

It follows that:

(i) If µ(sin) < Q/V , then the non-trivial equilibrium s?1(d) < sin exists when d ∈ (0, d̄).

(ii) If Q/V ≤ µ(sin) ≤ Q/V1, then the non-trivial equilibrium s?1(d) < sin exists when d > 0.

(iii) If µ(sin) > Q/V1, then the non-trivial equilibrium s?1(d) < sin exists when d ≥ 0.

Proof. When d = 0 (that is, when the lateral tank detached) the classical equilibrium analysis
of the single chemostat model with volume V1 (see, e.g., [32]) assures that the positive equilibrium
s?1 exists when µ(sin) > Q/V1, which corresponds to the case (iii) on the proposition statement.
When d > 0, we prove cases (i)-(iii) by taking into account that they correspond to three different
scenarios where condition (27) is not fulfilled. For ease of reasoning, we rewrite P (µ(sin)) as

P (µ(sin)) = V2µ(sin)
(
V1µ(sin)−Q

)︸ ︷︷ ︸
A

+d
(
Q− (V1 + V2)µ(sin)

)︸ ︷︷ ︸
B

. (33)

(i). In this case, the non-trivial equilibrium exists when P (µ(sin)) < 0. It is straightforward to
see that A < 0, B > 0 and so s?1(d) < sin exists when 0 < d < d̄ = −V2µ(sin)A/B.
(ii). In this case, the non-trivial equilibrium exists when P (µ(sin)) < 0. It is straightforward to
see that one has A ≤ 0, B < 0 or A < 0, B = 0. Then, s?1(d) < sin exists for all d > 0.
(iii). In this case, the non-trivial equilibrium exists for all values of P (µ(sin)), and so s?1(d) < sin

exists for all d ≥ 0. �

Let us briefly see how the two extreme situations (no diffusion and infinite diffusion) are
recovered.
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Lemma 3.1.2. It follows that

(i) When µ(sin) > Q/V1, the non trivial equilibrium of system (22) fulfills s?1(0) = s?,01 , where

s?,01 = µ−1
(
Q
V1

)
is the non-trivial steady state of a single chemostat model with volume V1.

In other case limd→0+ s?1(d) = sin.

(ii) When µ(sin) ≥ Q/V , the non trivial equilibrium of system (22) fulfills limd→+∞ s?1(d) = s?,∞1 ,

where s?,∞1 = µ−1
(
Q
V

)
is the non-trivial steady state of the single chemostat model with

volume V = V1 + V2.

Proof.
(i). This result is a direct consequence of the classical equilibrium analysis of the single

chemostat model with volume V1 (see, e.g., [32]), which assures that s?,01 exists when µ(sin) >
Q/V1.
(ii). For any d > 0, Proposition 3.1.1 guarantees the existence of a unique non trivial equilibrium
s? = (s?1, s

?
2) ∈ (0, sin)× (0, sin) that is solution of{

d
(
s?2 − s?1

)
=
(
V1µ(s?1)−Q

)(
sin − s?1

)
,

d
(
s?1 − s?2

)
= V2µ(s?2)

(
sin − s?2

)
.

(34)

When d is arbitrary large, one obtains

lim
d→+∞

s?1 − s?2 = 0.

From equations (34), one can also deduce the following equality (valid for any d)

(V1µ(s?1)−Q)(sin − s?1) = −V2µ(s?2)(sin − s?2). (35)

Consequently, one has

lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = sin or lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = s?,∞1

as V = V1 + V2, where the classical equilibrium analysis of the single chemostat model with
volume V assures that s?,∞1 exists when µ(sin) > Q/V . But Proposition 3.1.2 shows that, under
the assumptions of the lemma, s?1(d) cannot converge to sin. �

3.1.3 Optimal configurations

We first give the main properties of the map d → s?1(d), defined at the non-trivial steady state,
and how this value is minimized.

Proposition 3.1.3. Let ŝ be defined in (26) and V = V1 + V2. It follows that:

(i) If µ(sin) < Q/V , then the map d → s?1(d) admits a minimum in d? < d̄ that is strictly less
than sin.

(ii) If µ(sin) ≥ Q/V and s?,∞1 < ŝ, then the map d → s?1(d) admits a minimum at a certain
d? < +∞, and one has s?1(d) < s?,∞1 for any d ≥ d?.

(iii) If µ(sin) ≥ Q/V and s?,∞1 ≥ ŝ, then the map d → s?1(d) is decreasing and s?1(d) > s?,∞1 for
any d > 0.

Proof. If one differentiates system (34) with respect to d, it follows that(
s?2 − s?1

)
+ d
(
∂ds

?
2 − ∂ds?1

)
= ∂ds

?
1

(
Q+ V1µ

′(s?1)(sin − s?1)− V1µ(s?1)
)︸ ︷︷ ︸

A

,
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(
s?1 − s?2

)
+ d
(
∂ds

?
1 − ∂ds?2

)
= ∂ds

?
2

(
V2µ

′(s?2)(sin − s?2)− V2µ(s?2)
)︸ ︷︷ ︸

B

,

which can be rewritten as[
A+ d −d
d −B − d

]
︸ ︷︷ ︸

Γ

(
∂ds

?
1

∂ds
?
2

)
= (s?2 − s?1)

(
1
1

)
.

Remark that

A+ d = dφ′1(s?1), B + d = dφ′2(s?2), det(Γ) = d2
(
1− φ′1(s?1)φ′2(s?2)

)
,

where φ1, φ2 are defined in (30), (31). Moreover s?2 < sin is a zero of the concave function γ
defined in (32), which verifies γ(0) < 0 and γ(sin) = 0. Therefore, one has necessarily γ′(s?2) > 0,
which amounts to write φ′1(s?1)φ′2(s?2) > 1 that is det(Γ) < 0. Then, the derivatives ∂ds

?
1 and ∂ds

?
2

can be written as

∂ds
?
1 = (s?2 − s?1)

−B
det(Γ)

, ∂ds
?
2 = (s?2 − s?1)

A

det(Γ)
. (36)

Firstly, we prove that A > 0 by showing that φ′1(s?1(d)) > 1.
From Proposition 3.1.1, one has that the positive steady-state fulfills

0 < s?1(d) < λ1(sin) = min(sin, s
?,0
1 ).

Since φ1 is concave (equivalently, φ′1 is decreasing) on [0, λ1(sin)], one has that φ′1(s?1(d)) >
φ′1(λ1(sin)). Thus, we prove that A > 0 by showing φ′1(λ1(sin)) > 1:

- If µ(sin) ≤ Q/V1, then λ1(sin) = sin and φ′1(sin) = 1 + Q−V1µ(sin)
d > 1.

- If µ(sin) > Q/V1, then λ1(sin) = s?,01 and φ′1(s?,01 ) = 1 + V1

d µ
′(s?,01 )(sin − s?,01 ) > 1.

Therefore one has ∂ds
?
2 > 0 i.e. s?2(·) is an increasing map.

Now, notice that B = V2β
′(s?2(d)) and its sign depends on the relative position of s?2(d) with

respect to parameter ŝ. The cases considered on the proposition statement are treated separately.
(i) Since s?2(·) is increasing, limd→0 s

?
2(d) = 0, limd→d̄ s

?
2(d) = sin and ŝ ∈ (0, sin), by using the

Mean Value Theorem it follows that there exists a unique value d ∈ (0, d̄) (denoted by d?) such
that s?2(d?) = ŝ, with β′(s?2(d)) > 0 for d < d? and < 0 for d > d?. Consequently, ∂ds

?
1 admits a

unique minimum in d?, as sgn(∂ds
?
1(d)) = −sgn(B).

(ii) Since s?2(·) is increasing, limd→0 s
?
2(d) = 0, limd→+∞ s?2(d) = s?,∞1 and ŝ ∈ (0, s?,∞1 ), by using

the Mean Value Theorem it follows that there exists a unique value d > 0 (denoted by d?) such
that s?2(d?) = ŝ. Consequently, ∂ds

?
1 admits a unique minimum in d?, with s?1(·) decreasing on

[0, d?) and increasing on (d?,+∞). As s?1(·) is increasing on (d?,+∞) and limd→+∞ s?1(d) = s?,∞1

(from Lemma 3.1.2), one necessarily has s?1(d?) < s?,∞1 .
(iii) Since s?2(·) is increasing, limd→+∞ s?2(d) = s?,∞1 and ŝ > s?,∞1 , one has that β′(s?2(d)) > 0,
i.e., s?1(d) is decreasing for any d > 0. As limd→+∞ s?1(d) = s?,∞1 , it follows that s?1(d) > s?,∞1 . �

A schematic representation of the three possible situations can be observed in Figures 9-(a),
9-(b) and 9-(c), respectively.

Cases (a) and (b) are situations for which spatial heterogeneity is beneficial for the resource
conversion, while case (c) is always less efficient than a perfectly mixed volume. Notice that (a)
corresponds to inputs that lead to the wash-out of a perfectly mixed reactor of volume V , which
is usually considered as an irrelevant case in the literature. However, we show here that a spatial
heterogeneity could explain that, under such inputs conditions, the resource conversion is still
possible.

We characterize now the optimal configurations, that are the ones minimizing the residence time
or equivalently the total volume V1 +V2 for a given output concentration at steady state. We first
tackle the problem when the diffusion parameter is fixed. Then, we address the full optimization
problem in which the diffusion parameter is also considered as an optimization variable.
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0

(a) µ(sin) <
Q
V

0

(b) µ(sin) ≥ Q/V and s?,∞1 < ŝ

0

(c) µ(sin) ≥ Q/V and s?,∞1 ≥ ŝ

Figure 9: Plot of the function d→ s?1(d) in the three situations depicted in Proposition 3.1.3.

Parameter d is fixed. Given a nominal desired value sref < sin as output of the process, we
look for solutions of the optimization problem

min
(V1,V2)∈R2

+

{V1 + V2 : such that s1 = sref at steady state }, (37)

that we denote by (V opt
1 , V opt

2 ).
For the analysis of the solution of problem (37), it is convenient to introduce the functions

g(s) =
1

β(s)
and G(s) = (g(sref)− g(s)) (s− sref), (38)

defined on (0, sin), where β is given in (25). Notice that function g admits an unique minimum at
ŝ (by Lemma 3.1.1) and satisfies lims→0 g(s) = lims→+∞ g(s) = +∞.

The solution to the optimization problem (37) is given by the following proposition.

Proposition 3.1.4. Define

α = max
(

0, sref −
Q

d
(sin − sref)

)
.

The solution of problem (37) satisfies:

(i) If ŝ ≤ α, then V opt
1 = 0 and V opt

2 = dg(α)(sref − α).

(ii) If ŝ ∈ (α, sref), then V opt
1 = Q/µ(sref)+dg(sref)(s

opt
2 −sref) and V opt

2 = dg(sopt
2 )(sref −sopt

2 ),
where

sopt
2 =

∣∣∣∣ sG if α ∈ [0, sG],
α if α ∈ (sG, ŝ),

sG being the unique minimum of the function G on the interval [α, sref ]. Moreover, G′(sopt
2 ) >

0 when sopt
2 = α.

(iii) If ŝ ≥ sref , then V opt
1 = Q/µ(sref) and V opt

2 = 0.

Proof. We replace the value of s1 in system (28)-(29) by sref{
0 = Q

V1
(sin − sref) + d

V1
(s2 − sref)− µ(sref)(sin − sref),

0 = d
V2

(sref − s2)− µ(s2)(sin − s2).
(39)

Considering function g, system (39) can be written as{
V1 = Qg(sref)(sin − sref) + dg(sref)(s2 − sref) := v1(s2),
V2 = dg(s2)(sref − s2) := v2(s2).

(40)

Thus, given model parameters d, Q, sin and sref , the volumes are completely characterized by
variable s2 and solving the optimization problem (37) is equivalent to look for solutions of the
problem

min
s2∈S2

v1(s2) + v2(s2), (41)
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where S2 is the set of admissible values of s2. That is, the solution of problem (37) is given by(
v1(sopt

2 ), v2(sopt
2 )

)
, where sopt

2 is solution of problem (41). In order to determine the admissible
set S2, we take into account that both values V1, V2 must be non-negative and proceed as follows:

a) v1(s2) ≥ 0⇔ Qg(sref)(sin − sref) + dg(sref)(s2 − sref) ≥ 0⇔ s2 ≥ sref − Q
d (sin − sref).

b) v2(s2) ≥ 0⇔ dg(s2)(sref − s2) ≥ 0⇔ s2 ≤ sref .

Moreover, we have to impose variable s2 to be non-negative, since it describes a (substrate)
concentration. One concludes that S2 = [α, sref ].
For analytical purposes, we rewrite problem (41) as

min
s2∈[α,sref ]

Qg(sref)(sin − sref)︸ ︷︷ ︸
A

+dG(s2). (42)

The term QA corresponds to the optimal volume obtained with a single tank, and with a view to
reduce this value, we aim to characterize solutions of problem (42) with values of the function G
being negative.
The cases considered in the proposition statement are treated separately.

(i) ŝ ≤ α: Since function g(·) is increasing on the right of ŝ, then g(sref) ≥ g(s2) for all
s2 ∈ [α, sref ]. Consequently, function G is negative on [α, sref ] and is minimized for sopt

2 = α.

(ii) ŝ ∈ (α, sref): In order to find sopt
2 on [α, sref ] such that G(sopt2 ) is minimum, we look for

critical points of G, which satisfy

g′(s) = H(s) :=
g(sref)− g(s)

s− sref
.

By construction, function g′ is increasing on (0, sin), g′(ŝ) = 0 (since g is strictly convex,
being equal to 1/β and β strictly concave by Lemma 3.1.1), g′(·) < 0 on (0, ŝ) and g′(·) > 0
on (ŝ, sin). Moreover, it is easy to see that the equation H(s) = 0 has two solutions (and not
more, as g is strictly convex): sref and s̄ref := {s ∈ (0, ŝ): g(s̄ref) = g(sref)}. In addition, it
follows that H(·) > 0 on [0, s̄ref) and H(·) < 0 on (s̄ref , sref). As a result, we can state that
any critical point of function G belongs to the interval (s̄ref , ŝ).
We show that there exist a unique critical point sG ∈ (s̄ref , ŝ) of G by proving that function
H is decreasing on this interval

H ′(s) =
−g′(s)(s− sref)−

(
g(sref)− g(s)

)
(s− sref)2

= −g
′(s) +H(s)

s− sref
< 0.

Since we look for the minimum value of function G on the interval [α, sref ], one has that sopt
2

depends on the value of α. A direct conclusion is that G′(sopt
2 ) = 0 when sopt

2 = sG, while
G′(sopt

2 ) > 0 when sopt
2 = α.

(iii) sref ≤ ŝ: One has that s2 ≤ sref ≤ ŝ for all s2 ∈ [α, sref ]. Since function g(·) is decreasing on
the left of ŝ, then g(sref) ≤ g(s2). Consequently, function G is non-negative on [α, sref ] and
the optimal value which makes it equal to zero is sopt

2 = sref .

�

Remark 3.1.1. From Proposition 3.1.4, one concludes that the particular configuration with
V1 = 0 (as the one depicted in Figure 8) is optimal if ŝ ≤ α or if sG < α < ŝ < sref .

Characterization of the best value of the parameter d. Given a nominal desired value
sref < sin as output of the process, we look for solutions of the optimization problem

min
(V1,V2,d)∈R3

+

{V1 + V2 : such that s1 = sref at steady state }, (43)

that we denote by (V ∗1 , V
∗
2 , d

∗).
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Proposition 3.1.5. The solution of problem (43) satisfies:

(i) If ŝ < sref , then V ∗1 = 0, V ∗2 = Q(sin − sref)g(ŝ) and d∗ = Q sin−sref
sref−ŝ .

(ii) If ŝ ≥ sref , then V ∗1 = Q/µ(sref), V ∗2 = 0 and d∗ can take any value on the interval [0,+∞).

Proof. In order to solve problem (43), we rely on the previous optimization results (i.e. for
a given d). Thus, (V ∗1 , V

∗
2 , d

∗) = (V opt
1 (d∗), V opt

2 (d∗), d∗), where d∗ minimizes V opt
1 (d) + V opt

2 (d)
and V opt

1 , V opt
2 are given by Proposition 3.1.4.

(i) From Proposition 3.1.4, one easily deduces that the total volume V opt(d) = V opt
1 (d) + V opt

2 (d)
fulfills

V opt(d) =

∣∣∣∣∣ Q
µ(sref )

+ dG(sopt(d)) if 0 ≤ d < d∗ (case (ii) in Prop.3.1.4),

Q(sin − sref)g(sref − Q
d (sin − sref)) if d ≥ d∗ (case (i) in Prop.3.1.4),

where sopt must be now seen as a function of parameter d.
We analyze the monotonicity of function V opt.

a) When 0 ≤ d < d∗, one has that

∂V opt

∂d
= G(sopt(d))− d∂G

∂s
|s=sopt(d)

∂sopt(d)

∂d
.

From Proposition 3.1.4, it follows that G(sopt(d)) < 0 and sopt(d) corresponds either to sG

(with G′(sG) = 0) or to α (with G′(α) > 0). In both cases one has ∂V opt

∂d < 0, that is, V opt

is decreasing on [0, d∗).

b) When d ≥ d∗, one has that

∂V opt

∂d
=
Q2

2d2
(sin − sref)

2g′(sref −
Q

d
(sin − sref)).

By definition, ŝ is the only value satisfying g′(ŝ) = 0 and so d∗ is the only critical point of
function V opt(·).
It remains to prove that d∗ is a minimum of function V opt(d). But

∂2V opt

∂d2
(d∗) =

Q3

4(d∗)4
(sin − sref)

3g′′(ŝ),

which is positive as g is strictly convex. Therefore V opt is increasing on [d∗,∞).

From these two points we conclude that the optimal value of d is d∗.
(ii) This is a direct consequence of the statement (iii) in Proposition 3.1.4, since in this case the
optimal volumes, solution of problem (37), do not depend on parameter d. �

3.1.4 Discussion and interpretation of the results

This section is devoted to the analysis of the impact of the lateral diffusion from both ecological
and engineering points of view.

From an ecological view point. In the previous section, we have investigated the yield conver-
sion of the proposed structured chemostat and compared it with the one of a single-tank chemostat.
Our main result, presented in Proposition 3.1.3 can be interpreted depending on the global re-
moval rate D = Q/V and a threshold ŝ (that is defined as the maximizer of the function β defined
in (25)) as follows:

1. If D > µ(sin), a spatial distribution of the total volume V could avoid the extinction of
the micro-organisms while it happens when the volume V is perfectly mixed. Therefore,
the lateral-diffusive compartment plays the role of a “refuge” for the micro-organisms under
large removal rates.

22



2. If D ∈ [µ(ŝ), µ(sin)], a spatial distribution of the total volume V increases systematically
the output substrate concentration with respect to that obtained if the volume V would be
perfectly mixed.

3. If D < µ(ŝ), a spatial distribution of the total volume V could reduce the output substrate
concentration obtained when the volume V is perfectly mixed, but this is not systematic.
This means that for small removal rates D (as often met in soil ecosystems) one cannot
know if a perfectly mixed model is under- or over-estimating the expected output level of
the resource.

We have also analyzed the influence of the diffusion parameter d on the yield conversion in cases
1 and 3 and shown the existence of a most efficient value d?. The fact that a lateral-diffusive
compartment is beneficial for “extreme” cases (i.e. large or small removal rates) does not appear
to be an intuitive result.

From an engineering view point. In the previous section, we studied optimal choices of
the main design parameters (reactor volume and diffusion rate) that minimize the residence time
(or equivalently the required volume) for a given conversion rate. Our main result, presented
in Propositions 3.1.4 and 3.1.5 states that, when the desired substrate output concentration is
above certain threshold (more precisely, when sref > ŝ), the volume of a single-tank chemostat
can be reduced by using the structure with lateral diffusion. This result complements the work in
[36, 7, 10, 20, 25], where the authors propose a methodology to diminish the volume of a single-
tank chemostat when sref ≤ ŝ, by using either n CSTR (perfecyly mixed) reactors in series or one
(perfectly mixed) reactor connected in series to a ”Plug Flow” Reactor”. We distinguish between
the following cases:

a) Diffusion coefficient is fixed. Depending on model parameters sin, sref , Q, d and µ(·), the
optimal structure may be composed of two tanks (of non null volumes V opt

1 and V opt
2 ) or a

a single lateral tank (of volume V opt
2 ) connected by diffusion to the main stream.

b) Diffusion coefficient can be optimized as well. The optimal structure is necessarily a sin-
gle lateral tank (of volume V opt

2 ) connected by diffusion (with optimal diffusion rate d∗ =
Q sin−sref

sref−ŝ ) to the main stream.

So an important message of this study is that the particular structure of a single tank connected
by diffusion to a pipe that conducts the input stream, as depicted on Figure 8, can be an efficient
configuration, better than a single tank directly under the main stream.

The mathematical analysis has also revealed that the function g, i.e. the inverse of the function
β defined in (25), is playing an important role in determining if the best configuration is composed
of one or two tanks (more precisely the relative position of the output reference value sref with
respect to the minimizer ŝ of g). This is the same function than the one used for the optimal
design of tanks in series (with also a discussion on the relative position of sref with respect to ŝ,
see, e.g., [7, 12]), but with two main differences:

1. Due to the particular considered structure, there is a trichotomy (one single mixed tank,
two tanks, or one single lateral tank) instead of the dichotomy (one or more tanks) found
for the problem with tanks in series. This trichotomy is discussed below with the help of
the additional parameter α = max(0, sref − Q

V (sin − sref)).

2. For small values of sref (compared to ŝ), a lateral-diffusion compartment does not bring any
improvement compared to a single perfectly mixed tank, while this is the opposite for tanks
in series (i.e. several tanks are better than a single one when sref < ŝ).

These points can be grasped by the following graphical interpretation. Consider the total volume
V required to obtain the output concentration sref at steady state. In our case, it can be written
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in terms of the function g as follows

V = Qg(sref)(sin − sref)︸ ︷︷ ︸
A

+d (g(sref)− g(s?2))(s?2 − sref)︸ ︷︷ ︸
B

(44)

where s?2 is the steady state in the second compartment. One can notice that the number A is
proportional to the volume necessary for a single chemostat to have sref as resource concentration
at steady state. Therefore, a configuration with a lateral-diffusive compartment would require a
smaller volume than that of the single chemostat exactly when the number B is negative. Figure
10 illustrates that this is possible only when sref is above the minimizer ŝ of the function g.

(a) sref < ŝ (B is negative) (b) sref > ŝ (B is positive)

Figure 10: Graphical representation of quantities A and |B| in (44).

Furthermore, the quantity B is equal to G(s?2), where the function G defined in (38) admits an
unique minimum at sG ∈ [0, sref ]. Proposition 3.1.4 states that, when sref > ŝ, the optimal value
of s?2 is sG when α ≤ sG and α in other case, the later scenario corresponding to the particular
configuration with V1 = 0. A graphical interpretation of the optimized structures obtained when
parameter d is fixed is given in Figure 11. When the diffusion rate can be chosen, the optimized
configuration is as depicted in Figure 11-(c).

(a) sref < ŝ (b) α ≤ sG < ŝ < sref (c) ŝ ≤ α or sG < α < ŝ < sref

Figure 11: Graphical representation of the optimized configurations when parameter d is fixed.

Finally, let us recall from the theory of optimal design of chemostats in series that the first
tank (when it is optimal to have more than one tank) has systematically a resource concentration
s?1 above ŝ at steady state (see, e.g., [7, 12]). Thus, for an industrial perspective, we can state
that a lateral-diffusive compartment for the first tank of an optimal series of chemostat could
systematically improve the performance of the overall process.
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3.2 Which of serial or parallel interconnection is better?

This section has been inspired by [9].

The aim of this section is to identify conditions, when a flow rate Q and a total hydric volume
V are given, which among the best serial or parallel configurations has the best conversion rate,
playing with the distribution parameter between the volumes r = V1/V (where V = V1 + V2), the
flow distribution α and the diffusion coefficient d for the parallel case.

For sake of simplicity of the analytical analysis, we assume that the growth function µ(·) is a
linear function of the resource concentration:

µ(S) = mS

However, all the results hold true for any increasing growth functions, although expressions are
more complex. As usual, the yield coefficient y of the bio-conversion can be kept equal to one (we
recall that this is always possible by choosing the unit measuring the biomass). in view of compar-
ing configurations, it is convenient to write dimensionless concentrations: for each concentration
Ci in the compartment i (Ci can denote Si or Xi), we posit

ci = m
V

Q
Ci and ri =

Vi
V
.

We shall also consider that the time t is measured in units such that Q = V . For this analysis, we
assume that the input concentration Sin is large enough to avoid the (trivial) wash-out equilibrium
to be the only steady-state in each compartment, so that we do not have to deal with ”degenerate”
case.

3.2.1 The single compartment model

We consider the single tank model as the ”reference” model, whose dynamical equations are{
ṡ = −sx+ sin − s
ẋ = sx− x

The non-trivial equilibrium is (1, sin − 1) under the condition sin > 1. Then, one has s?out = 1
(and its globally asymptotic convergence on the positive domain is guaranteed by Proposition 2.3).
Therefore, any other configuration is better than the single tank one when its output concentration
at steady state s?out is below 1.

Remark 3.2.1. This is a well known property from the theory of the chemostat that the output
concentration at steady state is independent of the input concentration, provided this latter to be
large enough (i.e. sin ≥ 1).

3.2.2 The serial configuration

We consider the serial configuration (see Fig. 6a), whose dynamical equations are

ṡ1 = −s1x1 +
1

r
(sin − s1)

ẋ1 = s1x1 −
1

r
x1

ṡ2 = −s2x2 +
1

1− r
(s1 − s2)

ẋ2 = s2x2 +
1

1− r
(x1 − x2)

(45)

where r is different to 0 and 1.
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Proposition 3.2.1. When sin > 1/r, there exists an unique equilibrium (s?1, x
?
1, s

?
2, x

?
2) of (45)

on the positive orthant. One has necessarily s?1 = 1/r and s?2 < min(1/r, 1/(1− r)). Furthermore,
one has

s?out < 1⇐⇒ sin > 1 + 1/r . (46)

Proof. One can readily check that there exists a non-trivial equilibrium (1/r, sin − 1/r) for
the first compartment exactly when sin > 1/r. Furthermore, this equilibrium is unique. Then,
any equilibrium for the overall system (45) has to be (s?2, sin − s?2) for the second compartment,
with s?2 solution of the equation

s2(sin − s2) =
1

1− r
(1/r − s2) (47)

with s?2 < 1/r. One can easily verify that there exists a unique s?2 solution of (47) on (0, 1/r).
Graphically, s?2 is the abscissa of the intersection of the graphs (see Figure 12) of the polynomial
function

φ(s2) = s2(sin − s2)

and the affine function

l(s2) =
1

1− r
(1/r − s2) .

1/r
sin

1/r−s

1−r

in

s

2

2

2s*2

s  (s   −s  )
2

Figure 12: Graphical determination of s?2.

Remark that sin > 1/r implies the inequality φ(1/(1− r)) > l(1/(1− r)), from which one deduces
s?2 < 1/(1− r). Finally one can compare sout = s?2 with the value obtained in the configuration of
one compartment:

s?out < 1⇐⇒ φ(1) > l(1)⇐⇒ sin > 1 + 1/r .

�

Remark 3.2.2. The global stability of the non-trivial equilibrium is guaranteed by Proposition
2.3, as one µ(sin) > Q/V1 and µ(sin) > Q/V 2.

Equivalence (46) implies the existence a threshold s̄in = 2 such that for any sin ≤ s̄in, and
serial distribution of the volumes has a worse conversion rate than the single tank case. On the
opposite, for sin > s̄in, there exists a distribution of the volumes that produces a better conversion
rate. As an illustration, the graph of the function s?out is plotted as function of r ∈ [1/sin, 1] on
Figure 13 for different values of the input concentration sin.
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Figure 13: Comparison of s?out for the serial configuration.

3.2.3 The parallel configuration

The dynamical equations of the model with two compartments in parallel with diffusion, depicted
on Figure 6b) are 

ṡ1 = −s1x1 +
α

r
(sin − s1) +

d

r
(s2 − s1)

ẋ1 = s1x1 −
α

r
x1 +

d

r
(x2 − x1)

ṡ2 = −s2x2 +
1− α
1− r

(sin − s2) +
d

1− r
(s1 − s2)

ẋ2 = s2x2 −
1− α
1− r

x2 +
d

1− r
(x1 − x2)

(48)

where r is different to 0 and 1, with the output concentration given by

sout = αs1 + (1− α)s2 .

For convenience, we posit

α1 =
α

r
, α2 =

1− α
1− r

,

and assume, without any loss of generality that one has α2 ≥ α1 (if it is not the case one can just
exchange indexes 1 and 2). Notice that one has necessarily α2 ≥ 1 and α1 ≤ 1.

The conditions of Proposition 2.3 to ensure the existence of a positive steady-state are here
µ(sin) > α1 + d/r and µ(sin) > α2 + d/(1− r). However, we show that the existence of a positive
steady-state can be obtained even when these conditions are not satisfied.

When d = 0 (no diffusion), the equilibrium of the system can be determined independently
in the two compartments as simple chemostat models. In this case, there is an unique globally
stable equilibrium (s∗1, sin − s?1, s∗2, sin − s?2) in the non-negative orthant, where s∗i = min(αi, sin)
(i = 1, 2).

When d > 0, we define the functions

φ2(s1) = s1 +
r

d
(sin − s1)(s1 − α1) ,

φ1(s2) = s2 +
1− r
d

(sin − s2)(s2 − α2) ,

and
g(s1) = φ1(φ2(s1))− s1 .
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Proposition 3.2.2. When sin > 1 and d > 0, there exists a unique equilibrium (s?1, x
?
1, s

?
2, x

?
2) of

(48) in the positive orthant, where (s?1, s
?
2) is the unique solution of the system

s?2 = φ2(s?1) and s?1 = φ1(s?2) , (49)

on the domain (0, sin) × (0, sin), with x?i = sin − s?i (i = 1, 2). Furthermore, s?1 = s?2 = 1 when
α2 = α1 and

α1 < s?1 < s?2 < min(α2, sin) (50)

when α2 > α1.

Proof. At equilibrium, one has

r(ṡ1 + ẋ1) + (1− r)(ṡ2 + ẋ2) = 0,
r(ṡ1 + ẋ1) = 0,

which amounts to write, from equations (48)

α(sin − s?1 − x?1) + (1− α)(sin − s?2 − x?2) = 0,
α(sin − s?1 − x?1) + d(s?2 + x?2 − s?1 − x?1) = 0,

or equivalently [
α 1− α

α+ d −d

]
︸ ︷︷ ︸

M

(
sin − s?1 − x?1
sin − s?12 − x?2

)
=

(
0
0

)

One has det(M) = α2 − α− d ≤ −d < 0 and deduces the property

s?1 + x?1 = s?2 + x?2 = sin .

Consequently, an equilibrium in the positive orthant has to fulfill s?i ∈ [0, sin] for i = 1, 2. Replacing
x?i by sin − s?i in equations (48) at equilibrium, one obtains the equations

d(s?2 − s?1) = r(sin − s?1)(s?1 − α1)
d(s?1 − s?2) = (1− r)(sin − s?2)(s?2 − α2)

(51)

which amounts to write that (s?1, s
?
2) is solution of the system (49) (see Figure 14) or equivalently

s?1 is a zero of the function g(·).

2

α 2

s*
2

s*
1α s

in

s
1

2
s

1

φ

φ 1

Figure 14: Graphical determination of the steady states (when α1 < α2 < sin).

When α2 = α1 = 1, one can check that s?1 = s?2 = 1 < sin is solution of (49). When α2 > α1,
one has necessarily α1 < 1 and the condition sin > 1 implies g(α1) < 0. We distinguish now two
cases:
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Case α2 < sin. If φ2(α2) ≤ sin, notice that one has φ2(α2) > α2 and then g(α2) > 0. If
φ2(α2) > sin, notice that φ2(α1) = α1 < sin and by the Mean Value Theorem, there exists
s̃2 ∈ (α1, α2) such that φ2(s̃2) = sin which implies g(s̃2) = sin − s̃2 > 0. In both cases, one
deduces by the Mean Value Theorem the existence of s?1 ∈ (α1, α2) such that g(s?1) = 0.

Case α2 ≥ sin. One has g(sin) = 0 with

g′(sin) =
r(1− r)
d2

(α1 − sin)(α2 − sin) +
1− sin
d

< 0 .

Rolle and Mean Value Theorems allow to conclude the existence of s?1 ∈ (α1, sin) such that
g(s?1) = 0.

In any case, we obtain the existence of (s?1, s
?
2) solution of (49) with s?1 belonging to the interval

(α1,min(α2, sin)), that implies s?2 = φ2(s?1) > s?1. But then s?1 = φ1(s?2) < s?2 implies s?2 <
min(α2, sin). Thus, the inequalities (50) are fulfilled.

Finally, notice that functions φ1(·), φ2(·) are both strictly concave, and steady states (s?1, s
?
2)

are intersections of G1, the graph of the function φ1(·), and G2 the symmetric of the graph of
φ2(·) with respect to the first diagonal. Consequently, if (s?1, s

?
2) is a steady state different from

(sin, sin), G1 and G2 are respectively above and below the line segment (s?1, s
?
2) − (sin, sin). We

conclude that there exists at most one non-trivial equilibrium. �

Corollary 3.2.1. When sin > 1 and d > 0, the value s?1 of the non trivial equilibrium is the
unique zero of the function g(·) on (α1,min(α2, sin)). Furthermore, one has g′(s?1) > 0.

Proof. When α1 = α2, one has s?1 = s?2 = 1 and one can easily check

g′(s?1) =
(

1 +
r

d
(sin − 1)

)(
1 +

1− r
d

(sin − 1)

)
− 1 > 0 .

When α2 > α1, one has g(α1) < 0 and we recall from the proof of Proposition 3.2.1 that s?1 is the
unique zero of g(·) on (α1,min(α2, sin)). We conclude that g is non decreasing at s?1. Notice that
φ1 and φ2 are concave functions and that

φ′1(φ2(s?1))) = 1 +
1− r
d

(sin + α2 − 2s?2) > 0

implies

g′′(s?1) = φ′′1(φ2(s?1)). [φ′2(s?1)]
2

+ φ′1(φ2(s?1)).φ′′2(s?1) < 0

We deduce that g′(s?1) cannot be equal to zero (because g changes its sign at s?1), and consequently
one has g′(s?1) > 0. �

Proposition 3.2.2 defines properly the map d 7→ s?out = αs?1+(1−α)s?2 for the unique non-trivial
steady-state, that we aim at studying as a function of d. Accordingly to Proposition 3.2.2, s?out is
equal to one for any value of the parameter d in the non-generic case α2 = α1. We shall focus on
the case α2 6= α1 (and without loss of generality we shall consider α2 > α1). We start by the two
extreme situations: no diffusion and infinite diffusion.

Lemma 3.2.1. For the non trivial equilibrium, one has

s?out(0) ≥ 1⇐⇒ sin ≥ s0
in =

r − α2

r(1− α)

with s0
in ∈ (1, 2).

Proof. Under the assumptions sin > 1 and α2 ≥ α1, we distinguish two cases when d = 0.
If sin ≥ α2, one has s?1 = α1 and s?2 = α2. Then, one can write

s?out =
α2

r
+

(1− α)2

1− r
= 1 +

(α− r)2

r(1− r)
≥ 1 .
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If sin < α2, on has s?1 = α1, s?2 = sin and

s?out ≥ 1⇐⇒ sin ≥
1− αα1

1− α
= s0

in .

(recall that assuming α2 ≥ α1 imposes to have α < 1, and s0
in is well defined). Notice that the

number s0
in is necessarily larger than one because α1 ≤ 1, and one has also

α2 − s0
in =

(r − α)2

r(1− r)(1− α)
≥ 0.

Consequently one concludes that s?out ≥ 1 exactly when sin ≥ s0
in. Finally, remark that one has

s0
in =

r − α2

r(1− α)
= 1− (α− r)2

r(r − α)
+
r − α
1− α

< 2 .

�

Lemma 3.2.2. For sin > 1, the non trivial equilibrium fulfill

lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = lim
d→+∞

s?out(d) = 1 .

Proof. For any d > 0, Proposition 3.2.2 guarantees the existence of a unique non trivial
equilibrium (s?1, s

?
2) ∈ (0, sin) × (0, sin) that is solution of (51). When d is arbitrary large, one

obtains from (51)
lim

d→+∞
s?1(d)− s?2(d) = 0 .

From equations (51), one deduces also the following equality valid for any d

r(sin − s?1)(s?1 − α1) + (1− r)(sin − s?2)(s?2 − α2) = 0 ,

that can rewritten, taking into account the equality rα1 + (1− r)α2 = 1:

(sin − s?1)(s?1 − 1) = (1− r)(s?1 − s?2)(sin + α2 − s?1 − s?2) .

Consequently, one has

lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = 1 or lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = sin .

If α2 < sin, the property s?1 < α2 valid for any d > 0 implies that s?1 cannot converges to sin.
If α2 ≥ sin and lim s?1 = lim s?2 = sin, there exists d such that rs?1 + (1− r)s?2 > (sin + 1)/2. Then,
one has

g′(s?1) =
r(1− r)
d2

(sin + α1 − 2s?1)(sin + α2 − 2s?2) +
sin + 1− 2(rs?1 + (1− r)s2?)

d
< 0

that contradicts Corollary 3.2.1. Finally, one has lim s?1 = lim s?2 = 1 and consequently lim s?out = 1.
�

We present now the main result concerning properties of the map d 7→ s?out(d) defined at the
non-trivial steady-state.

Proposition 3.2.3. Assume α2 > α1.

- When sin ≥ 2, the map d 7→ s?out(d) (for the non trivial equilibrium) is decreasing and
s?out(d) > 1 for any d ≥ 0.
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- When sin < 2, the map d 7→ s?out(d) (for the non trivial equilibrium) admits a minimum in
d? < +∞, that is strictly less than one. Furthermore, one has

sin > sin =
2α1α2

α1 + α2
=⇒ d? > 0

with sin < min(2, α2).

Proof. Let differentiate with respect to d the equations (51) at steady state:

(s?2 − s?1) + d (∂ds
?
2 − ∂ds?1) = r(sin − 2s?1 + α1)︸ ︷︷ ︸

A

∂ds
?
1

(s?1 − s?2) + d (∂ds
?
1 − ∂ds?2) = (1− r)(sin − 2s?2 + α2)︸ ︷︷ ︸

B

∂ds
?
2

that can rewritten as follows[
A+ d −d
d −B − d

]
︸ ︷︷ ︸

Γ

(
∂ds

?
1

∂ds
?
2

)
= (s?2 − s?1)

(
1
1

)

Remark that one has

A+ d = dφ′2(s?1)
B + d = dφ′1(s?2)
det(Γ) = d2(1− φ′1(s?2)φ′2(s?1)) = −d2g′(s?1)

From Corollary 3.2.1, one has det(Γ) < 0 and one deduces that the derivatives ∂ds
?
1, ∂ds

?
2 are

defined as follows

∂ds
?
1 = (s?2 − s?1)

−B
det(Γ)

∂ds
?
2 = (s?2 − s?1)

A

det(Γ)

(52)

Notice from inequalities (50) that we obtain B > 0 and deduce ∂ds
?
1 > 0 for any d. With Lemma

3.2.2 we conclude that s?1(d) < 1 for any d.
From equations (52), we can write

∂ds
?
out=(s?2 − s?1)

αB − (1− α)A

−det(Γ)
=[α1(sin − 2s?2)− α2(sin − 2s?1)]︸ ︷︷ ︸

σ

d(s?2 − s?1)r(1− r)
−det(Γ)

When sin ≥ 2, one has A > 0 and then ∂ds
?
2 < 0. With Lemma 3.2.2 we conclude that s?2(d) > 1

for any d. Then, one obtains the inequality

σ < (sin − 2)(α1 − α2) ≤ 0

which proves with Lemma 3.2.2 that s?out is a decreasing function of d that converges to one.

When sin < 2, we write

σ = (sin − 2)(α1 − α2) + 2(α1(1− s?2)− α2(1− s?1))

As s?1 and s?2 tend to one when d takes arbitrary large values, we conclude that there exists d̄ < +∞
such that σ > 0 for any d > d̄ and consequently s?out is smaller than one and increasing for d > d̄.
We conclude that the map d 7→ s?out(d) admits a minimum, say at d? < +∞, that is strictly less
than one.
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When d = 0, one has s?1 = α1 and s?2 = α2 if sin ≥ α2. Then, one obtains σ = sin(α1−α2) < 0.
So the map d 7→ ∂ds

?
out(d) is decreasing at d = 0 and consequently d? > 0.

When d = 0 with sin < α2, one has s?2 = sin and then σ = 2α1α2− sin(α1 +α2), for which we
conclude

σ < 0⇐⇒ sin >
2α1α2

α1 + α2
= sin .

Notice that this case is feasible because of the inequality 2α1α2 < min(2, α2)(α1 + α2). We con-
clude that for sin larger than this last value, d? is necessarily strictly positive. �

As mentioned previously, Proposition 2.3 cannot allow to conclude about the global stability
of the positive equilibrium in any case. A complete proof is given in Appendix A.5.

Remark 3.2.3. We obtain the same threshold s̄in = 2 than the one obtained for the serial config-
uration (cf Section 3.2.2) on the value of sin which discriminates situations for which it is possible
to be better than the single tank configuration or not (bt here the condition is reversed).

For the parallel interconnection, we depict on Figure 15 the two kind of configurations that
occur, depending on whether the number sin is larger than one or not.
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Figure 15: Comparison of s?out for the parallel configuration (sin > 1 on the left and sin < 1 on
the right) .

3.2.4 Conclusions

Given a flow rate and the total volume of a chemostat-like system, this study reveals the existence
of a threshold s̄in on the value of the input concentration sin such that above and below this
threshold, serial and the parallel configurations are respectively the best ones with respect to the
criterion of minimizing the output concentration s?out at steady state. Moreover, for the parallel
scheme, the best performances are obtained for a precise value of the diffusion parameter that is
proved to be positive when sin is not too small (i.e. above another threshold sin < s̄in).

These results show that a single perfectly mixed vessel (when it does not lead toward the
wash-out of the biomass) can be advantageously replaced by a configuration of two tanks with
the same total volume (serial or parallel, depending on the value of the input concentration) that
provides a better conversion rate of the substrate at steady state, for the same total volume (or
equivalently the same total residence time).

Finally, this study reveals the role of the spatial structure on the performances of simple
ecosystems or bio-processes, and can be of interest for reverse engineering for deciding which among
serial or parallel configurations is better fit for the modeling of biochemical systems, providing
that one has already an estimation of the hydric capacity of the system, as depicted on Fig.16.
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wet drytemperate

Figure 16: The microbial activity of a soil in temperate or humid climate is expected to better
represented by a serial configuration, while parallel scheme may better suits shallow grounds in
dry climate.

3.3 Vessel with a buffer compartment

This section has been inspired by [26].

In this section we consider configurations as depicted on Fig. 6c) but with a slightly different
objective than from the previous sections: the growth function µ is here non-monotonic (for which
the results exposed in Section 2 do not apply).

3.3.1 Consideration of growth inhibition

Let us first recall the properties of the model with a single tank:
Ṡ = −µ(S)X +

Q

V
(Sin − S) ,

Ẋ = µ(S)X − Q

V
X ,

(53)

(where the yield coefficient has been kept equal to 1 without loss of generality), where µ belongs
to the following class of uptake functions.

Hypothesis H2c. The function µ(·) is analytic and such that

(i) µ(0) = 0, µ(S) > 0 for any S > 0,

(ii) there exists Ŝ > 0 such that µ(·) is increasing on (0, Ŝ) and decreasing on (Ŝ,+∞).

A typical instance of such functions is the Haldane one [1]

µ(S) =
µ̄S

K + S + S2/KI
, (54)

For convenience, we denote the dilution rate

D =
Q

V
.

and consider classically the ”growth” set (see Fig. 17 for the Haldane function)

Λ(D) = {S > 0 | µ(S) > D}. (55)

Under Hypothesis H2c, the set Λ(D) is either empty or an open interval that we denote

Λ(D) = (λ−(D), λ+(D))
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Figure 17: The set Λ(D) = (λ−(D), λ+(D)) for the Haldane growth function.

(where λ+(D) could be +∞). We recall from the classical theory of the chemostat model (see for
instance [32, 11]) that under Hypothesis H2c there are three kinds of asymptotic behaviors of the
dynamics (53), depending on the parameter Sin.

Proposition 3.3.1. Under Hypothesis H2c, one of the following cases occur.

(case 1) Λ(D) = ∅ or λ−(D) ≥ Sin. The washout equilibrium E0 = (Sin, 0) is the unique
non negative equilibrium of system (53). Furthermore it is globally attracting.

(case 2) Sin > λ+(D). The system (53) has two positive equilibria E−(D) = (λ−(D), Sin −
λ−(D)), E+(D) = (λ+(D), Sin − λ+(D)) in addition to the washout equilibrium E0 =
(Sin, 0). Only E−(D) and E0 are attracting, and the dynamics is bi-stable.

(case 3) Sin ∈ Λ(D). The system (53) has one positive equilibrium E−(D) = (λ−(D), Sin −
λ−(D)) and the washout equilibrium E0 = (Sin, 0). E−(D) is globally attracting on the
positive quadrant.

In this rest of the section, we consider that the case 2, which exhibits instability, occurs. Then
the asymptotic behavior of the system (wash-out or not) depends on which attraction basin the
initial condition belongs to. The question we investigate is related to the assumption that the
vessel is perfectly mixed, and to the role that a spatial structure could have on the stability of the
dynamics. Let us fix the total volume V , the input flow rate Q and the input concentration Sin so
that one has Sin > λ+(D). Consider a serial structure, as depicted on Fig. 6a, with V1 + V2 = V .
The dynamics of the first tank of volume V1 is given by the same equations (53) where V is re-
placed by V1 ≤ V . Its dilution rate is then equal to Q/V1, which is greater than D = Q/V and
consequently one has Sin /∈ Λ(Q/V1). According to Proposition 3.3.1, Case 2 occurs in the first
tank i.e. the positive equilibrium E−(Q/V1) and the wash-out E0 are both attractive equilibriums.
When the first tank is conducted to the wash-out, then the system behaves asymptotically as a
single tank of volume V2 with input concentration Sin for the substrate and 0 and no biomass at
input. Proposition 3.3.1 applies again and the wash-out in both tanks is necessarily an attractive
equilibrium, whatever is the volume distribution. However, we shall show see that it is possible
to fix the flow distribution α as depicted on Fig. 6c) so that the whole system admits an unique
positive equilibrium that is globally asymptotically stable on the positive orthant.

The model equations of the two tanks models with the second have as a ”buffer” (Fig. 6c)

Ṡ1 = −µ(S1)X1 +
Q

V1
(αSin + (1− α)S2 − S1),

Ẋ1 = µ(S1)X1 +
Q

V1
((1− α)X2 −X1),

Ṡ2 = −µ(S2)X2 +
Q(1− α)

V2
(Sin − S2) ,

Ẋ2 = µ(S2)X2 −
Q(1− α)

V2
X2 .

(56)
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(keeping again the yield coefficient equal to 1 without loss of generality). It is convenient to
parameterize the system with

r =
V1

V
∈ (0, 1), ρ =

(1− α)

(1− r)
> 0 .

which allows to rewrite the system as follows

Ṡ1 = −µ(S1)X1 +D
ρ(1− r)(S2 − S1) + (1− ρ(1− r))(Sin − S1)

r
,

Ẋ1 = µ(S1)X1 +D
ρ(1− r)(X2 −X1)− (1− ρ(1− r))X1

r
,

Ṡ2 = −µ(S2)X2 + ρD(Sin − S2) ,

Ẋ2 = µ(S2)X2 − ρDX2 .

(57)

Then, the condition Sin > λ+(D) amounts to have

µ(Sin) < D (58)

An equilibrium (S?1 , X
?
1 , S

?
2 , X

?
2 ) of dynamics (57) is solution of the following equations:

1 +
1− r
r

(
1− ρSin − S

?
2

Sin − S?1

)
=
µ(S?1 )

D
or {S?1 = Sin when S?2 = Sin} (59)

X?
1 = Sin − S?1 (60)

ρ =
µ(S?2 )

D
or S?2 = Sin (61)

X?
2 = Sin − S?2 (62)

Notice that the dynamics of the second vessel can be studied independently to the first one fixing
only the parameter ρ. To obtain a global stability in this tank we have then to choose ρ < µ(sin)/D
accordingly to Proposition 3.3.1. Then an equilibrium in the first tank is characterized by a value
of S?1 solution of the equation

φρ,r(S
?
1 ) =

µ(S?1 )

D
(63)

where

φρ,r(s) = 1 +
1− r
r

(
1− ρSin − S

?
2 (ρ)

Sin − s

)
(64)

Notice that the graphs of the the family of functions φρ,r are hyperbolas Hρ,r and thus S?1 is the
abscissa of the intersection of Hρ,r with the graph of the function µ/D on (0, Sin). Therefore we
expect possibilities of have multiplicity of equilibriums, or only one intersection (cf Fig. 18). To
help grasping the geometric condition (63), one can easily check that, once ρ is fixed, the family
Hρ,r with r ∈ (0, 1) has the following remarkable property

φρ,r(S(ρ)) = 1, ∀r ∈ (0, 1) .

where
S(ρ) = ρS?2 (ρ) + (1− ρ)Sin . (65)

Notice also that the functions s 7→ φρ,r(s) are decreasing and that one has φρ,r(λ
−(D)) > 1 be-

cause ρ < 1 (cf condition 58) and S?2 = λ−(ρD) < λ−(D). Therefore the number S(ρ) belongs to
the interval (λ−(D), Sin).

Let us explicit the condition (63) on the specific case of the Haldane function (54):

D(Sin − s− ρ(1− r)(Sin − S?2 (ρ))(K + s+ s2/KI) = rµ̄s(Sin − s) . (66)
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S?1 is then a root of a polynomial P of degree 3. So there exist at most three solutions of
φρ,r(s) = µ(s)/D. For small values of r, we remark that φρ,r(0) is very large and φρ,r has a high
slope. On the contrary, for r near to 1, φρ,r(0) is closed to 1 and φρ,r has a light slope. Intuitively,
we expect to have only one root for small values of r and three for large values of r. For r̄ such
that there exists a solution S?1 of φρ,r̄(s) = µ(s)/D and φ′ρ,r̄(s) = µ′(s), one has P (S?1 ) = 0 and
P ′(S?1 ) = 0, that is S?1 is a double root of P (and there exists at most one such double root because
P is of degree 3). At such S?1 , the hyperbola Hρ,r̄ is tangent to the graph of µ(·). Intuitively, this
corresponds to the limiting case for the parameter r in between cases for which there is one or
three roots (see Fig. 18 where tangent hyperbola are drawn in thick line).

−λ +λ(D) (D)ρS(  )

1

µ/D

S
λ − +λ ρ

1

µ/D

S
(D) S(  )(D)

Figure 18: Examples of functions φρ,r(·) when S(ρ) < λ+(D) (on the left) and S(ρ) > λ+(D) (on
the right), illustrated with an Haldane function (when λ+(D) < Sin)).

We formalize now this study in a more general setup.

3.3.2 Asymptotic behavior

Similarly to the single tank model where we have considered the set Λ(D) given in (55), we define
the set

Γρ,r(D) = {S ∈ (0, Sin) |µ(S) > Dφρ,r(S)} . (67)

and consider the subset of configurations for which system (56) admits an unique positive equilib-
rium, denoted by

Rρ(D) = {r ∈ (0, 1) | ∃! s ∈ (0, Sin) s.t. Dφρ,r(s) = µ(s)} . (68)

We assume that the second tank admits a positive equilibrium, which amounts to require the
following hypothesis.

Hypothesis H4 D and ρ are positive numbers such that Λ(ρD) 6= ∅ and λ−(ρD) < Sin.

Proposition 3.3.2. Let Hypotheses H2c and H4 be fulfilled. The set Γρ,r(D) is non-empty, and
for almost any r ∈ (0, 1) one has the following properties, except from a subset of initial conditions
of zero Lebesgue measure.

(i) When the initial condition of the (S2, X2) sub-system belongs to the attraction basin of
(Sin, 0), the solution (S1, X1) of system (56) converges exponentially to the steady-state
(λ−(D/r), Sin−λ−(D/r)) when λ−(D/r) < Sin, or to the washout equilibrium when µ(Sin) <
D/r.

(ii) When the initial condition of the (S2, X2) sub-system does not belong to the attraction basin
of (Sin, 0), the trajectory of the system (56) converges exponentially to a positive equilibrium

E? = (S?1 , Sin − S?1 , λ−(ρD), Sin − λ−(ρD))

where S?1 is the left endpoint of a connected component of Γρ,r(D).
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Moreover, the set Rρ(D) is non-empty.

Proof. Let us consider the vector

Z =

[
X1 + S1 − Sin
X2 + S2 − Sin

]
whose dynamics is linear:

Ż = D

 −1

r

ρ(1− r)
r

0 −ρ


︸ ︷︷ ︸

A

Z .

The matrix A is clearly Hurwitz and consequently Z converges exponentially towards 0 in forward
time. then, from equations (57), the dynamics of the variable S1 can be written as an non-
autonomous scalar equation:

Ṡ1 =

(
−µ(S1) +D

1− ρ(1− r)
r

)
(Sin − S1)

+D
ρ(1− r)

r
(S2(t)− S1)− µ(S1)Z1(t)

(69)

When the initial condition of sub-system (S2, X2) belongs to the attraction basin of the
washout, the dynamics (69) is asymptotically autonomous with the limiting equation

Ṡ1 = (−µ(S1) +D/r)(Sin − S1) . (70)

From Theorem A.2.1 (see Appendix A.2), we deduce that S1 converges to S?1 , one of the zeros of
the function

f(s) = (−µ(s) +D/r)(Sin − s)

on the interval [0, Sin], that are Sin, λ−(D/r) (if λ−(D/r) < Sin) and λ+(D/r) (if λ+(D/r) < Sin).
The Jacobian matrix of the whole dynamics (57) at steady state (S?1 , Sin−S?1 , Sin, 0) in (Z, S1, S2)
coordinates is 

A 0

−µ(S?1 ) 0

0 −µ(Sin)

f ′(S?1 ) D
ρ(1− r)

r

0 µ(Sin)− ρD


.

When the attraction basin of the washout of the (S2, X2) subsystem is not reduced to a singleton,
one has necessarily µ(Sin) < ρD (see Lemma A.6.1 in Appendix A.6). Furthermore, one has
f ′(Sin) = µ(Sin) −D/r and f ′(S?1 ) = −µ′(S?1 )(Sin − S?1 ) when S?1 < Sin. So, apart two possible
particular values of r that are such that r = D/µ(Sin) or λ−(D/r) = λ+(D/r) < Sin, f ′(S?1 ) is non-
zero and the equilibrium is thus hyperbolic. Finally, we conclude about the possible asymptotic
behaviors of the whole dynamics as follows.

- The washout equilibrium is attracting when µ(Sin) < D/r. When µ(Sin) > D/r, this equi-
librium is a saddle (with a stable manifold of dimension one). Accordingly to the Theorem
of the Stable Manifold, the trajectory solution cannot converges to such an equilibrium,
excepted from a measure-zero subset of initial conditions.

- When λ−(D/r) < Sin, the equilibrium with S?1 = λ−(D/r) is always attracting.
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- When λ+(D/r) < Sin, the equilibrium with S?1 = λ+(D/r) is a saddle (with a stable manifold
of dimension one). Accordingly to the Theorem of the Stable Manifold, the trajectory
solution cannot converges to such an equilibrium, excepted from a measure-zero subset of
initial conditions.

This finishes to prove the first point of the Proposition.

When the initial condition of sub-system (S2, X2) does not belong to the attraction basin of
the washout, Proposition 3.3.1 ensures that S2(t) converges towards a positive S?2 that is equal to
λ−(ρD) or λ+(ρD). Then, equation (69) can be equivalently written as:

Ṡ1 = (Dφρ,r(S1)− µ(S1))(Sin − S1) +D
ρ(1− r)

r
(S2(t)− S?2 )− µ(S1)Z1(t) . (71)

So the dynamics (71) is asymptotically autonomous with the limiting equation

Ṡ1 = (Dφρ,r(S1)− µ(S1))(Sin − S1) . (72)

From Theorem A.2.1 (see Appendix A.2), we conclude that forward trajectories of the (S1, X1)
sub-system converge asymptotically either to a stationary point (S?1 , Sin − S?1 ) where S?1 is a zero
of the function

fr(s) = Dφρ,r(s)− µ(s)

on the interval (0, Sin), either to the washout point (Sin, 0). We show that this last case is not
possible. From equations (57), one has

X1 = 0 =⇒ Ẋ1 = D
ρ(1− r)

r
X2

and as X2(t) converges to a positive value, we deduce that X1(t) cannot converges towards 0.
The functions fr being analytic for any r, the roots S?1 are isolated. Consider the function

γ(s) =
S − s

S − Sin + (Sin − s)µ(s)/D

that is analytic on its domain of definition and such that

fr(s) = 0⇐⇒ γ(s) = r .

This shows that, excepted for some isolated values of r in (0, 1), the zero of fr are such that
f ′r(S

?
1 ) 6= 0.

Let us now write the Jacobian matrix J? of dynamics (57) at steady state E? = (S?1 , Sin −
S?1 , S

?
2 , Sin − S?2 ) in (Z, S1, S2) coordinates:

J
?

=



A 0

−µ(S?1 ) 0

0 −µ(S?2 )

f ′r(S
?
1 )(Sin − S?1 ) D

ρ(1− r)
r

0 −µ′(S?2 )(Sin − S?2 )


.

Considering the following facts:

1. A is Hurwitz,

2. Λ(ρD) 6= ∅ implies that S?2 is not equal to Ŝ. So one has µ′(S?2 ) 6= 0 (cf Hypothesis H2c),

3. f ′r(S
?
1 ) 6= 0 for almost any r,
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we conclude that any equilibrium E? is hyperbolic (for almost any r) and is

- a saddle point when µ′(S?2 ) > 0 or f ′r(S
?
1 ) > 0,

- an exponentially stable critical point otherwise.

Furthermore, the left endpoints of the connected components of the set Γρ,r(D) are exactly
the roots of fr with fr(S

?
1 ) < 0. Finally, from the Stable Manifold Theorem we conclude that,

excepted from the stable manifolds of the saddle equilibriums, the trajectory converges to an
equilibrium that is such that S?2 = λ−(ρD) and fr(S

?
1 ) < 0. This ends the proof of the second

point. �

Remark 3.3.1. The inequality S(ρ) > λ−(D) implies φρ,r(S) > µ(S)/D for S < S(ρ). There-
fore the value S?1 (which is the output concentration at steady-state) is necessarily larger than
λ−(D), which is the output concentration at steady-state for the single tank model at the positive
equilibrium.

3.3.3 Multiplicity of equilibriums

Under Hypothesis H2c, we consider the set of s at which the hyperbola Hρ,r is tangent to the graph
of the function µ(·)/D and is locally on one side (which amounts to have 0 as a local extremum
of the function φρ,r(·)− µ(·)/D at s):

Sρ,r(D) = {s ∈ (0, Sin) s.t. n?(s) is even and larger than 1} (73)

where n?(·) is defined as

n?(s) = min

{
n ∈ N s.t. D

dnφρ,r
dsn

(s) 6= dnµ

dsn
(s)

}
.

We consider also the sets

Rρ(D) = {r ∈ (0, 1) s.t. Sρ,r(D) 6= ∅} . (74)

The next proposition gives properties on these sets and the number of equilibriums.

Proposition 3.3.3. Assume Hypothesis H2c is fulfilled and D > 0 is such that λ+(D) < Sin.
Take a positive number ρ such that Hypothesis H4 is satisfied. Let S?2 (ρ) ∈ (0, Sin) be such that
µ(S?2 (ρ)) = ρD. Then, for any r ∈ (0, 1) there exists an equilibrium (S?1 , Sin − S?1 , S?2 (ρ), Sin −
S?2 (ρ)) of (57), with

S?1 ∈
∣∣∣∣ (S(ρ), Sin) when Λ(D) = ∅ or S(ρ) /∈ Λ(D) ,

[λ−(D), S(ρ)] when S(ρ)) ∈ Λ(D) .
(75)

Furthermore, the set Rρ(D) defined in (74) is not reduced to a singleton when it is non-empty.
We consider a partition of the set Rρ(D) with

R−ρ (D) = {r ∈ (0, 1) | ∃s ∈ Sρ,r(D) s.t. (s− S(ρ))(λ+(D)− S(ρ)) < 0} ,

R+
ρ (D) = {r ∈ (0, 1) | ∃s ∈ Sρ,r(D) s.t. (s− λ+(D))(λ+(D)− S(ρ)) ≥ 0} .

Then, the set R+(ρ) is non-empty, and the set R−(ρ) is not reduced to a singleton when it is
non-empty. One has

Rρ(D) =

∣∣∣∣∣∣∣∣
(0,minR+(ρ)) ,

when R−(ρ) = ∅ ,
(0,minR+(ρ)) ∩ (0, 1) \ [minR−(ρ),maxR−(ρ)] ,

when R−(ρ) 6= ∅ .
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For any r ∈ (minR+(ρ), 1), there exist at least two equilibriums such that (S(ρ) − S?1 )(λ+(D) −
S(ρ)) ≥ 0, and at least four for r in a subset of (minR+(ρ), 1) when R+(ρ) is not reduced to a
singleton.

When R−(ρ) is non-empty, for any r ∈ (minR−(ρ),maxR−(ρ)), there exist at least three
equilibriums such that (S(ρ)− S?1 )(λ+(D)− S(ρ)) < 0.

Remark 3.3.2. The tangency of the graphs of φρ,r and µ occurs for a certain r with an abscissa
that is located

- either at the right of λ+ when S(ρ) < λ+(D),

- either at the left of λ+ when S(ρ) > λ+(D).

These cases correspond to the subset R+
ρ (D) while the subset R−ρ (D) corresponds to other tangen-

cies that could occur (but that do not necessarily exist) on either side of S(ρ).

Proof of Proposition 3.3.3. For simplicity, we denote by S?2 and S the values of S?2 (ρ) and
S(ρ), with S?2 such that µ(S?2 ) = ρD. For each r ∈ (0, 1), we define the function

fr(s) = Dφρ,r(s)− µ(s) .

A non-negative equilibrium for the first tank has then to satisfy fr(S
?
1 ) = 0.

One can easily check that φρ,r(S) = 1 whatever the value of r ∈ (0, 1). The function φρ,r(·)
being decreasing, one has φρ,r(s) > 1 for s < S and φρ,r(s) < 1 for s > S. For convenience, we
shall also consider the function

γ(s) =
S − s

S − Sin + (Sin − s)µ(s)/D
(76)

that is defined on the set of s ∈ (0, Sin) such that (Sin − s)µ(s) 6= Sin − S. On this set, one can
easily check that the following equivalence is fulfilled

fr(s) = 0⇐⇒ γ(s) = r .

From (76), one can also write

γ(s) =
(φρ,r(s)− 1) r

1−r
(φρ,r(s)− 1) r

1−r − 1 + µ(s)/D

and deduce the property

γ′(s) = 0⇐⇒ φ′ρ,r(s)(µ(s)/D − 1) = (φρ,r(s)− 1)µ′(s)/D . (77)

Recursively, one obtains for every integer n{
dpγ

dsp
(s) = 0 , p = 1 · · ·n

}
⇐⇒

{
D
dpφρ,r
dsp

(s)(µ(s)−D) = (Dφρ,r(s)−D)
dpµ

dsp
(s) , p = 1 · · ·n

}
.

Consequently, the set Sρ,r defined in (73) can be characterized as

Sρ,r =

{
s ∈ (λ−, Sin) s.t. γ(s) = r and min

{
n ∈ N? | d

nγ

dsn
(s) 6= 0

}
is even

}
or equivalently

Sρ,r = {s ∈ (0, Sin) s.t. γ(s) = r is a local extremum } . (78)

In the following, we simply denote Λ, λ± and Rρ for Λ(D), λ±(D) and Rρ(D) respectively, for
simplicity.

We consider three sub-cases depending on the relative position of S with respect to λ+.
Sub-case 1: S < λ+. As for Case I, we distinguish:
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S ≤ λ−: one has fr(S) ≥ 0 and fr(S) < 0 for any S ∈ Λ. fr(·) being decreasing on [0, λ−],
one deduces that there exists exactly one solution S?1 of fr(S) = 0 on the interval [0, λ+],
whatever is r. Furthermore, this solution has to belong to [S, λ−]. The functions φr(·)
and µ(·) being respectively decreasing and increasing on this interval, one has necessarily
γ′(S?1 ) 6= 0 and then R−ρ = ∅.

S > λ−: one has fr(S) > 0 for any S ∈ [0, λ−], and fr(S) < 0 for any S ∈ [S, λ+]. On the interval
I = (λ−, S), the function γ(·) is well defined and γ(I) = (0, 1) with γ(λ−) = 1 and γ(S) = 0.
If R−ρ is empty, then γ(·) is decreasing on I, and for any r ∈ (0, 1) there exits a unique
S?1 ∈ I such that γ(S?1 ) = r. If R−ρ is non-empty, property (78) implies that γ admits local
extremums. Similarly to Case I, we obtain by the Mean Value Theorem that there exists
exactly one solution S?1 of γ(s) = r on the interval [0, λ+] for any r /∈ [minR−ρ ,minR−ρ ], and
there are at least three solutions for r ∈ (minR−ρ ,minR−ρ ).

Notice that on interval K = (λ+, Sin) the function γ(·) is well defined and positive with γ(λ+) = 1
and lims→Sin γ(s) = 1. We define

r+ = min{γ(s) | s ∈ K}

that belongs to (0, 1). Then r+ belongs to R+
ρ , and for any r < r+ there is no solution of γ(s) = r

on K. Thus r+ is the minimal element of R+
ρ . By the Mean Value Theorem there are at least two

solutions of γ(s) = r on K when r > r+. When R+
ρ is not reduced to a singleton, the function γ

has at least on local maximum rM and one local minimum rm, in addition to r+. By the Mean
Value Theorem, there are at least four solutions of γ(s) = r on K for r ∈ (rm, rM ).

Finally, we have shown that the set R+
ρ is non-empty, and that the uniqueness of the solution

of γ(S?1 ) = r occurs exactly for values of r that do not belong to the set [minR−ρ ,maxR−ρ ] ∪
[minR+

ρ , 1].
Sub-case 2: S = λ+. One has fr(S) = 0 for any r, so there exists a positive equilibrium

with S?1 = S. fr(S) > 0 for any S ∈ [0, λ−] and the function γ(·) is well defined on I ∪ J =
(λ−, S) ∪ (S, Sin) with γ(I ∪ J) = (0, 1), γ(λ−) = 1 and lims→Sin γ(s) = 1. Using the L’Hôpital’s
rule, we show that the function γ(·) can be continuously extended at S:

lim
s→S

γ(s) = lim
s→S

−1

−µ(s)/D + (Sin − s)µ′(s)/D
=

1

1− (Sin − S)µ′(S)/D
.

Note that µ′(S) < 0 so that γ(S) belongs to (0, 1), and we pose

r̄ = min{γ(s) | s ∈ (λ−, Sin)} .

Then, for r < r̄, there is no solution of γ(s) = r on (λ−, Sin), and S is the only solution of
fr(s) = 0 on (0, Sin). On the contrary, for r > r̄, there are at least two solutions of γ(s) = r on
(λ−, Sin) and the dynamics has at least two positive equilibriums.

Similarly, the function γ(·) is C1 on (λ−, Sin) because it is differentiable at S:

γ′(S) = D
(Sin − S)µ′′(S)− 2µ′(S)

[D − (Sin − S)µ′(S)]2

(and recursively as many time differentiable as the function µ(·) is, minus one). Then r̄ is the
minimal element of the set R+

ρ , and the set R−ρ is empty by definition. As previously, when R+
ρ is

not reduced to a singleton, γ(s) = r has at least four solutions for r in a subset of (minR+
ρ , 1).

Sub-case 3: S > λ+. We proceed similarly as in sub-case 1. Note first that there is no solution
of fr(s) = 0 on the intervals (0, λ−) and (λ+, S) whatever is r.

On the set Λ, γ(·) is well defined with γ(Λ) ⊂ (0, 1), γ(λ−) = 1 and γ(λ+) = 1 and we define

r+ = min{γ(s) | s ∈ Λ}
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that belongs to (0, 1). One has necessarily r+ = minR+
ρ , and there is no solution of γ(S?1 ) = r

exactly when r < r+. For r > r+, there exist at least two solutions by the Mean Value Theorem,
and four for a subset of (r+, 1) when R+

ρ is not reduced to a singleton.
On the interval J = (S, Sin), the function γ(·) is well defined with γ(J) = (0, 1), γ(S) = 0

and γ(Sin) = 1. There exists at least one solution of fr(s) = 0 on this interval. If R−ρ = ∅,
γ(·) is increasing and there exists a unique solution of γ(S?1 ) = r on J whatever is r. Otherwise,
minR−ρ and maxR−ρ are the smallest local minimum and largest local maximum of the function
γ on the interval J , respectively. Then, uniqueness of S?1 on J is achieved exactly for r that does
not belong to [minR−ρ ,maxR−ρ ], and for r ∈ (minR−ρ ,maxR−ρ ), there are at least three solutions
by the Mean Value Theorem. �

Under the conditions of Proposition 3.3.2, consider the number

r̄D(ρ) = supRρ(D) (79)

that guarantees that for any (r, ρ) with r < r̄D(ρ), the buffer configuration admits a unique
(globally asymptotically stable) positive equilibrium. +We study now the set of “stable” buffered
configurations CD as the set of pairs (ρ, r) such that the chemostat model with buffer admits a
unique positive equilibrium. The upper boundary of CD is thus given by the curve

ρ ∈ (0, µ(Sin)/D] 7→ r̄D(ρ)

where r̄D(ρ) is the single element of the set R+
ρ (D). Notice that the limiting case ρD = µ(Sin)

can have also global stability (see Lemma A.6.1 in Appendix A.6).

Remark 3.3.3. The map (ρ, r) 7→ S?1 (ρ, r), where S?1 (ρ, r) is the unique solution of (63) on
(0, Sin), is clearly continuous and one can then consider the limiting map:

S̄?1 (ρ) = lim
r<r̄D(ρ), r→r̄D(ρ)

S?1 (ρ, r) .

When λ+(D) < Sin, one has S̄?1 (ρ) ≤ λ+(D) (resp. S̄?1 (ρ) ≥ λ+(D)) when S(ρ) < λ+(D) (resp.
S(ρ) > λ+(D)). Consider, if it exists, a value of ρ, denoted by ρ, that is such that S(ρ) = λ+(D).
Although one has φρ,r(λ+(D)) = µ(λ+(D))/D for any r, there is no reason to have

lim
ρ<ρ, ρ→ρ

S̄?1 (ρ) = λ+(D) or lim
ρ>ρ, ρ→ρ

S̄?1 (ρ) = λ+(D) .

Consequently, the map ρ 7→ r̄D(ρ) might be discontinuous at such value ρ.

The number r̄D(ρ) can then be determined numerically as the unique minimizer of the function

Fρ(r, s) = (µ(s)/D − φρ,r(s))2
+
(
µ′(s)/D − φ′ρ,r(s)

)2
on (0, 1)×{s ∈ (λ−(D), Sin) s.t. (s−λ+(D))(λ+(D)−S(ρ)) ≥ 0} that is, for the Haldane function:

Fρ(r, s) =
(

(µ̄/D)s
K+s+s2/KI

− 1
r + ρ 1−r

r
Sin−λ−(ρD)

Sin−s

)2

+
(
µ̄/D(K−s2/KI)
(K+s+s2/KI)2 + ρ 1−r

r
Sin−λ−(ρD)

(Sin−s)2

)2

where S(ρ) is defined in (65).

On Fig. 19, different domains C(D) are represented for the Haldane function, depending on
the value of Sin (the values of the parameters are µ̄ = 12, D = 1, K = 1, KI = 0.8, which give
λ−(D) ' 0.103, λ+(D) ' 0.777). One can see that the map ρ 7→ r̄D(ρ) is discontinuous at ρ = ρ,
where ρ is such that S(ρ) = λ+(D) (when it exists), as mentioned in Remark 3.3.3. On Fig. 20
one can see that the two limiting hyperbolas Hρ,r̄(ρ) about ρ are different in a such a case.
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Figure 19: Domain CD of stable configurations for different values of Sin.
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Figure 20: The limiting hyperbolas Hρ,r̄(ρ) about ρ = ρ (for Sin = 1.4).

3.3.4 Discussion

From an ecological point of view. Proposition 3.3.2 shows that there exist buffered config-
urations (ρ, r) (with Sin ∈ (ρD) and r ∈ Rρ(D)) such that the overall dynamics has an unique
globally stable positive equilibrium. Recall that we considered situations for which any invasive
species cannot setup in a one tank or serial configuration. This property demonstrates that a
simple (but particular) spatial structure such as the buffered one can explain the persistence of
a species in an environment that is unfavorable if it was homogeneous. Furthermore, Proposition
3.3.2 shows that in absence of initial biomass in the main tank, a species seeded in the buffer can
invade and persist in the main tank. We conclude that a buffer can play the role of a ”refuge”.

However, it can be shown (which as not been considered here, see [26]) that a buffer can create
a multi-stability or even leads to a complete washout, while the dynamics has a positive globally
asymptotically stable equilibrium in perfectly mixed conditions. So the buffered configuration can
have positive or negative effects on the stability of an ecosystem, depending on the characteristics
of the buffer (size and flow rate).

From a biotechnological point of view. A typical field of biotechnological applications is the
waste-water treatment with micro-organisms. For such industries, a usual objective is to reduce
the output concentration of substrate that is pumped out from the main tank. Typically, a species
that is selected to be efficient for low nutrient concentrations could present a growth inhibition for
large concentrations (its growth rate being thus non-monotonic). Usually, the input concentration
Sin is imposed by the industrial discharge and cannot be changed, but the flow rate Q can be
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manipulated. During the initial stage of continuous stirred bioreactors (that are supposed to be
perfectly mixed), the biomass concentration is most often low (and the substrate concentration
large). This means that there exists a risk that the initial state belongs to the attraction basin
of the washout equilibrium if one immediately applies the nominal flow rate Q. Such situation
could also occurs during nominal functioning, under the temporary presence of a toxic material
that could rapidly deplete part of the microbial population, and leave the substrate concentration
higher than expected. Those situations are well known from the practitioners: the process needs
to be monitoring with the help of an automatic control that makes the flow rate Q decreasing in
case of deviation toward the washout. But such a solution requires an upstream storage capacity
when reducing the nominal flow rate, that could be costly. Keeping a constant input flow rate is
thus preferable. An alternative is to oversize the volume of the tank so that there is no longer bi-
stability and no need for a controller. Compared to these two solutions, a design with a main tank
and a buffer (that guarantees a unique positive and globally asymptotically stable equilibrium)
presents several advantages:

- It does not require to oversize the main tank,

- It does not require any upstream storage and the implementation of a controller,

- It allows to seed the initial biomass in the buffer tank only.

Notice that a by-pass of a single chemostat is also a way to reduce the effective flow rate and
to avoid a washout. It happens to be a particular case of the buffered configuration with V1 = 0.

Nevertheless, there is a price to pay to obtain the global stability over the single bi-stable tank
configuration:

- If the buffered configuration has the same total volume than the single chemostat, then
the output concentration at steady state S?1 would be higher than λ−(D), meaning that
the buffered configuration would be less efficient than the single chemostat at its (locally
asymptotically) stable positive equilibrium.

- To obtain the same nominal output λ−(D) with a buffered configuration, one needs to have
a larger total volume.

However, considering a single chemostat of volume V that presents a bi-stability (that is when
Λ(D) 6= ∅ and λ+(D) < Sin), one can compare the minimal volume increment required to obtain
a single positive globally asymptotically stable equilibrium by one of the following scenarios:

- Scenario 1: enlarging the volume of the single chemostat by ∆V .

- Scenario 2: adding a buffer of volume V2.

For the first strategy, this amounts to have a new dilution rate equal to D/(1 + ∆V
V ). Then,

the condition to be in Case 3 of Proposition 3.3.1 is to have

Sin ∈ Λ

(
D

1 + ∆V
V

)
,

or equivalently
∆V

V
>

(
∆V

V

)
m

=
D

µ(Sin)
− 1 . (80)

For the second strategy, one has to choose first the dilution rate D2 = Q2/V2 of the buffer
(with Q2 < Q). For any positive number D2 < µ(Sin), there exists a unique positive equilibrium
(S?2 (D2), Sin − S?2 (D2)) in the buffer, where

S?2 (D2) = λ−(D2) < s̄ = λ−(µ(Sin)) .
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Proposition 3.3.4. Assume that the hypothesis H2c is fulfilled with Λ(D) 6= ∅ and λ+(D) < Sin.
There exist buffered configurations with an additional tank of volume V2 that possesses a unique
globally exponentially stable positive equilibrium from any initial condition with S2(0) > 0, exactly
when V2 fulfills the condition

V2

V
>

(
V2

V

)
m

=

max
s∈(λ+(D),Sin)

ϕ(s)

max
s∈[0,s̄]

ψ(s)
, (81)

where the functions ϕ(·) and ψ(·) are defined as follows:

ϕ(s) = (Sin − s)(D − µ(s)) , ψ(s) = µ(s)(Sin − s) , (82)

and s̄ is the number
s̄ = lim

ρ→µ(Sin)
S?2 (ρ) . (83)

The dilution rate D2 ∈ (0, µ(Sin)) has then to satisfy the condition

max
s∈(λ+(D),Sin)

ϕ(s) < D2
V2

V
(Sin − S?2 (D2)) < Sin .

Furthermore, one has (
V2

V

)
m

<

(
∆V

V

)
m

. (84)

Proof. One can straightforwardly check on equations (56) that a positive equilibrium in the
first tank has to fulfill

ϕ(S?1 ) = D2
V2

V
(Sin − S?2 (D2)) . (85)

Let us examine some properties of the function ϕ on the interval (0, Sin):

1. ϕ is negative exactly on the interval Λ(D),

2. ϕ′ is negative on (0, λ−(D)) with ϕ(0) = Sin and ϕ(λ−(D)) = 0,

3. ϕ(λ+(D)) = ϕ(Sin) = 0 and ϕ reaches its maximum m+ on the sub-interval (λ+(D), Sin),
that is strictly less than Sin = ϕ(0),

from which we deduce that there exists a unique solution of ϕ(s) = c on the whole interval (0, Sin)
exactly when c ∈ (m+, Sin) (see Fig. 21 as an illustration). The configurations for which there

Sin

Sin

(D)+(D)−

ϕm+

0

s
λλ

Figure 21: Illustration of the graph of the function ϕ.

exists a unique S?1 ∈ (0, Sin) solution of the equation (85) are exactly those that fulfill the condition
D2

V2

V (Sin − S?2 (D2)) ∈ (m+, Sin), or equivalently

m+

D2(Sin − S?2 (D2))
<
V2

V
<

Sin
D2(Sin − S?2 (D2))
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with D2 ∈ (0, µ(Sin)). Then, Proposition 3.3.2 with ρ = D2/D and r = 1/(1 + V2

V ) guarantees
that the unique positive equilibrium (S?1 , Sin − S?1 , S?2 (D), Sin − S?2 (D)) is globally exponentially
stable on the domain R2

+ × R?+ × R+.
Among all such configurations, the infimum of V2/V can be approached arbitrarily close when

D2 is maximizing the function
D2 7→ ρ(Sin − S?2 (D2))

on [0, µ(Sin)], that exactly amounts to maximize the function ψ(·) on the interval [0, s̄].
Finally, let s? be a minimizer of ϕ on (λ+(D), Sin). One has µ(s?) > µ(Sin) = µ(s̄) and can

write (
V2

V

)
m

≤ ϕ(s?)

ψ(s̄)
<

(Sin − s?)(D − µ(Sin))

µ(Sin)(Sin − s̄)
=
Sin − s?

Sin − s̄

(
∆V

V

)
m

which leads to the inequality (84). �

This result provides an explicit lower bound on the volume V2 to ensure a unique globally
exponentially stable positive equilibrium from any initial condition with S2(0) > 0. Furthermore,
this bound is necessarily such that (

V2

V

)
m

<

(
∆V

V

)
m

.

The benefit of Scenario 2 over Scenario 1 in terms of volume increment is numerically demonstrated
on Fig. 22 (for the same values of the parameters that have been considered previously).

S

2

λ+

in

with buffer

V∆

single tank

V
V

V

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.8

1.0

1.2

1.4

0.6

Figure 22: Comparison of the minimal increase of volume required to obtain the global stability.
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A Appendices

A.1 Compartmental and M-matrices

A square matrix A is said to be compartmental if it fulfills the following properties

i. Aii ≤ 0 for any indice i,

ii. Aij ≥ 0 for any indices i 6= j,

iii. for any indice i, one has
∑
j

Aij ≤ 0

A matrix A is diagonal dominant when there exists positive numbers d1 · · · dn such that

di|Aii| >
∑
j 6=i

dj |Aji|, ∀i = 1 · · ·n (86)

and matrices A such that −A is compartmental and diagonal dominant are called M-matrices.

A matrix is irreducible if it is not similar via a permutation to a block upper triangular matrix
(that has more than one block of positive size). Replacing non-zero entries in the matrix by one,
and viewing the matrix as the adjacency matrix of a directed graph, the matrix is irreducible if
and only if such directed graph is strongly connected.

A compartmental matrix is said to be outflow connected if its adjacency graph as the property
that there exists a node j such that from any node i 6= j there exists a path from i to j.

One has the following properties for the compartmental (see [5, 14]) and M-matrices (see [2]).

Theorem A.1.1. An compartmental matrix that is outflow-connected is Hurwitz (i.e. all the real
parts of its eigenvalues are negative).

Theorem A.1.2. A M-matrix is non-singular and its inverse is non-negative (i.e. all its elements
are non-negative).

A.2 Semi-flows and asymptotically autonomous dynamics

Consider a non-autonomous dynamics in Rn:

ẋ = f(t, x) (87)

We say that the dynamics is asymptotically autonomous with limiting dynamics

ẏ = g(y) (88)

if f(t, x)→ g(x) when t→ +∞, uniformly on each compact of Rn. Under the assumption that f
and g are continuous and the initial value problem for each dynamics has unique solution defined
for any future times, we consider the (non-autonomous) semi-flow associated to the dynamics f
as the mapping

Φ : {(t, s) : ∞ < s ≤ t <∞)} × Rn → Rn

where Φ(t, s, x0) is the solution x(·) of (87) with x(s) = x0. Similarly, we associate to the dynamics
g the autonomous semi-flow

Θ : R+ × Rn → Rn

where Θ(t, x0) is the solution y(·) of (88) with y(0) = x0.
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The ω-limit set of a bounded solution x(·) of (87) on t ≥ t0 with x(t0) = x0 is defined as

ω(t0, x0) :=
{
y : y = lim

n→∞
x(tn) for some sequence tn → +∞

}
Let Θ be an autonomous semi-flow. A non-empty positively invariant subset S of Rn is said

to be chain recurrent if any point in S is chain recurrent in S. A point x in S is chain recurrent
in S if for any ε > 0 and t > 0 there exists an (ε, t) chain from x to x in S. An (ε, t) chain from
x to y in S is a sequence {x1 = x, · · · , xn = y; t1, · · · , tn−1} with xi in S and ti > t such that
d(Θ(ti, xi), xi+1) < ε for any i = 1, · · · , n− 1.

We recall a result from [21, Theorem 1.8].

Theorem A.2.1. Let Φ be an asymptotically autonomous semi-flow with limit semi-flow Θ, and
let the orbit OΦ(τ, ξ) have compact closure. Then the ω-limit set ωΦ(τ, ξ) is non-empty, compact,
connected, invariant and chain-recurrent by the semi-flow Θ and attracts Φ(t, τ, ξ) when t→∞.

A.3 Partial orders and monotone dynamical systems

Given a cone K of Rn, the partial order ≤K on Rn is defined by x ≤K y if y−x ∈ K. The partial
order <K on Rn is defined by x <K y if x ≤K y and xi 6= yi for any i = 1, · · ·n. When K = Rn+,
we simply write x ≤ y and x < y.

Consider a non-autonomous dynamics

ẋ = f(t, x) (89)

defined on D = Rn (or a positively invariant convex subset of Rn) for t ≥ 0, where f is C1 with
respect to x, and π its semi-flow (whose definition is recalled in section A.2). The dynamics (89)
is said to be monotone with respect to ≤K on D if the property

x ≤K y ⇒ π(t, x) ≤K π(t, y) for any t > 0

holds for any x, y in D. The dynamics is said to be strongly monotone with respect to ≤K if the
property

x ≤K y ⇒ π(t, x) >K π(t, y) for any t > 0

is verified for any x, y in D. The dynamics (89) is said to be cooperative on D if the property

[Jac f(t, x)]ij =
∂if

∂xj
(t, x) ≥ 0,

is fulfilled for any t ≥ 0 and x in D. Then, one has the following property (see for instance [32,
Theorem C.1])

Theorem A.3.1. If (89) is cooperative on D then (89) is monotone with respect to ≤ on D. If
furthermore the Jacobian matrix of f is irreducible at any (t, x) ∈ R+ × D, then (89) is strongly
monotone with respect to ≤ on D.

Consider now autonomous dynamics

ẋ = f(x) (90)

on D. Denote by γ+(x0) the forward orbit of x0 ∈ D:

γ+(x0) := {π(t, x0), t ≥ 0} .

and by E be the set of equilibria of (89) in D. One has then the following result (see for instance
[32, Theorem C.8]).

Theorem A.3.2. Assume that (90) is strongly monotone on D and E has no accumulation point
in D. If γ+(x) has a compact closure for any x in D, then the set of points x0 ∈ D for which
π(t, x0) does not converge to an equilibrium has null Lebesgue measure.

See [31] for a recent review of results about monotone dynamical systems.
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A.4 Stability result for the model with lateral diffusive compartment

Proposition A.4.1. When the washout equilibrium E0 is the unique steady state, it is globally
asymptotically stable on R4

+. When the positive steady state E? exists, for any initial condition
except on a set of null measure, the solution of (22) converges asymptotically to E?, which is
moreover locally exponentially stable.

Proof. Consider the variables zi = sin− si− xi for each tank i = 1, 2 and the dynamics (22)
in (z, s) coordinates:

ż1 = − Q
V1
z1 −

d

V1
(z1 − z2),

ṡ1 = −µ(s1)(sin − s1 − z1) +
Q

V1
(sin − s1) +

d

V1
(s2 − s1),

ż2 = − Q
V2

(z2 − z1),

ṡ2 = −µ(s2)(sin − s2 − z2) +
d

V2
(s1 − s2).

(91)

This system has a cascade structure with a first independent sub-system linear in z

ż =

 −Q+ d

V1

d

V1
d

V2
− d

V2


︸ ︷︷ ︸

A

z, (92)

where one has

tr(A) = −Q+ d

V1
− d

V2
< 0 and det(A) =

Qd

V1V2
> 0.

Therefore the matrix A is Hurwitz and any solution z of (92) converges exponentially to 0.

The Jacobian matrix in the (z, s) coordinates depends only on s and is equal to

J(s) =

[
A 0

B(s) Ja(s)

]
with Ja(s) =

 − d

V1
φ′1(s1)

d

V1
d

V2
− d

V2
φ′2(s2)

 , B(s) =

[
µ(s1) 0

0 µ(s2)

]

Accordingly to Proposition 3.1.1, the equilibrium E? 6= E0 exists when P (µ(sin)) > 0 or µ(sin) >
Q/V1.

- When P (µ(sin)) > 0, one has φ′1(sin)φ′2(sin) < 1 or equivalently det(JFa(s0)) < 0. Then E0

is a saddle point (with a stable manifold of dimension one).

- When µ(sin) > Q/V1, notice that the equilibrium E0 is not necessarily hyperbolic (as one
can have P (µ(sin)) = 0 which implies then det(JFa(s0)) = 0) and we cannot conclude its
stability properties directly.

The solution s can be written as the solution of the non autonomous dynamics

ṡ = F (t, s) =


(
Q

V1
− µ(s1)

)
(sin − s1) +

d

V1
(s2 − s1) + µ(s1)z1(t)

−µ(s2)(sin − s2) +
d

V2
(s1 − s2) + µ(s2)z2(t)

 . (93)

Notice that, for any (t, s), one has

∂F1(t, s)

∂s2
=

d

V1
> 0 and

∂F2(t, s)

∂s1
=

d

V2
> 0,
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and so the dynamics (93) is cooperative (the definition is recalled in Section A.3). Moreover it
is irreducible when µ(s1) or µ(s2) is non null. Then, the dynamics is strongly monotone on the
invariant domain D := R2 × (R+ \ {0})2 (cf Theorem A.3.1). As any forward orbit of (91) in D is
bounded (see Proposition 2.1), we can use Theorem A.3.2 to conclude that for any initial condition
of (22) in R4

+, except on a set of null measure, the trajectory solution converges asymptotically to
an equilibrium. Finally, when the equilibrium E? exists, one can see from the proof of Proposition
3.1.1 that one has necessarily γ′(s?2) > 0 (because γ(0) < 0, γ(λ1(sin)) ≥ 0 and γ is strictly
concave). This implies φ′1(s?1)φ′2(s?2) > 1 and so φ′2(s?2) > 0. Then, one has tr(Ja(s?)) < 0 and
det(Ja(s?)) > 0 i.e. J(s?) is Hurwitz, which proves that the attractive equilibrium E? is also
locally exponentially stable. �

A.5 Stability result for the model with two vessels in parallel

Proposition A.5.1. When sin > 1 and d > 0, any trajectory of (48) with initial condition in R4
+

such that x1(0) > 0 and x2(0) > 0 converges exponentially to the unique non-trivial steady-state
(s?1, x

?
1, s

?
2, x

?
2) given by Proposition 3.2.2.

Proof. We consider the 2-dimensional vector z of variables zi = sin−xi−si (i = 1, 2) whose
dynamics is

ż = Apz =

[
−α1 − d

r
d
r

d
1−r −α2 − d

1−r

]
z

where Ap is Hurwitz :

tr(Ap) = −α1 − α2 −
d

r
− d

1− r
< 0 , det(Ap) = α1α2 +

d

r(1− r)
> 0

So z converges exponentially toward 0, which implies that dynamics (48) is dissipative, in the sense
that any solution of (48) in R4

+ converge exponentially to the compact set K = {(s1, x1, s2, x2) ∈
R4

+ s.t. x1 + s1 = sin and x2 + s2 = sin}.

Considering the time vector z(·), the (s1, s2) sub-system of dynamics (48) can be written as
solution of a non-autonomous planar dynamics{

ṡ1 = s1(z1(t) + s1 − sin) + α1(sin − s1) + d
r (s2 − s1)

ṡ1 = s2(z2(t) + s2 − sin) + α2(sin − s2) + d
1−r (s1 − s2)

(94)

We know that z converges to 0 and consequently the vector S of variables s1, s2 converges to the
set S = [0, sin]× [0, sin]. We study now the limiting autonomous dynamics{

ṡ1 = (sin − s1)(α1 − s1) + d
r (s2 − s1)

ṡ2 = (sin − s2)(α2 − s2) + d
1−r (s1 − s2)

(95)

on the domain S. Let B be the boundary {s1 = sin} ∪ {s2 = sin}. On the domain S \ B, we
consider the vector σ of variables σi = log(sin − si), whose dynamics can be written as follows

σ̇ = F (σ) =

[
−α1 + sin − eσ1 − d

r (1− eσ2−σ1)
−α2 + sin − eσ2 − d

1−r (1− eσ1−σ2)

]
(96)

One can easily compute

div(F ) = −eσ1 − eσ2 − d

r
eσ2−σ1 − d

1− r
eσ1−σ2 < 0

From Poincaré-Bendixon theorem and Dulac criterion, we conclude that bounded trajectories of
(96) cannot have limit cycle or closed path and necessarily converge to an equilibrium point.
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Consequently, any trajectory of (95) in S either converges to the rest point S? = (s?1, s
?
2) or

approaches the boundary B. Notice that one has

si = sin, sj < sin ⇒ ṡi < 0 (i 6= j)

So the only possibility for approaching B is to converge to the other rest point S0 = (sin, sin).
This shows that the only non-empty, closed, connected, invariant and chain recurrent subsets of
S are the singletons {S?} and {S0}.

Applying Theorem A.2.1 we conclude that any trajectory of (94), issued from initial condition
of dynamics (48) in R4

+, converges asymptotically to S? or S0. Consider now any initial condition
with x1(0) > 0 and x2(0) > 0. We show that the solution (s1(·), s2(·)) of (48) cannot converge to
S0. If it is the case, there exists T < +∞ such that one has

s1(t) > α1 and rs1(t) + (1− r)s2(t) > 1 for any t ≥ T

under the assumption sin > 1. Let us consider the function

V (x1, x2) = min(rx1 + (1− r)x2, x1)

(see Figure 23) and v(t) = V (x1(t), x2(t)) that is positive and tends to 0 when t tends to +∞

x

x
2

1

Figure 23: Iso-value of the function V .

If x1(t) < x2(t), one has v(t) = x1(t) and

v̇ = ẋ1 > (s1(t)− α1)x1 > 0 for t ≥ T

If x1(t) > x2(t), one has v(t) = rx1(t) + (1− r)x2(t) and

v̇ = rẋ1 + (1− r)ẋ2 = r(s1 − α1)x1 + (1− r)(s2 − α2)x2

> (rs1 + (1− r)s2 − 1)x2 > 0 for t ≥ T

We conclude that the function t 7→ v(t) is non-decreasing for t ≥ T and consequently cannot
converge to zero, thus a contradiction.

The Jacobian matrix of dynamics (48) at the non-trivial equilibrium (s?1, x
?
1, s

?
2, x

?
2) is of the

following form in (z1, z2, s1, s2) coordinates[
Ap 0
? J?

]
with J? =

[
−drφ

′
2(s?1) d

r

d
1−r − d

1−rφ
′
1(s?2)

]

Recall that Ap is Hurwitz. One has

det(J?) =
d2

r(1− r)
(φ′1(s?2)φ′2(s?1)− 1) and tr(J?) = −d

r
φ′2(s?1)− d

1− r
φ′1(s?2) .
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The function φ1(·) being concave, one has φ1(sin) ≤ φ1(s?2) + φ′1(s?2)(sin − s?2). Along with the
inequalities sin > s?2 and φ1(sin) = sin > s?1 = φ1(s?2), one deduces φ′1(s?2) > 0. Recall from
Corollary 3.2.1 that one has g′(s?1) = φ′1(s?2)φ′2(s?1) − 1 > 0. Then the inequality φ′2(s?1) > 0 is
necessarily satisfied. Finally, we have shown det(J?) > 0 and tr(J?) < 0, that guarantee the
exponential stability of the non-trivial equilibrium (s?1, x

?
1, s

?
2, x

?
2). �

Remark A.5.1. The wash-out equilibrium (sin, 0, sin, 0) is not necessarily hyperbolic. This ex-
plains why we cannot use the Convergence Theorem for asymptotically autonomous dynamics given
in Appendix F of [32].

A.6 The buffer tank with non-hyperbolic equilibrium

The following lemma allows to deal with the limiting case µ(Sin) = ρD for the buffer tank with µ(·)
non-monotonic (this is a non generic case that is usually not considered in the classical literature,
and that cannot be treated with the usual arguments because the wash-out equilibrium is not
hyperbolic in this particular situation).

Lemma A.6.1. For any ρ > 0 such that ρD ≤ µ(Sin) and non-negative initial condition with
X2(0) > 0, the solution of (57) satisfies

lim
t→+∞

(S2(t), X2(t)) = (λ−(ρD), Sin − λ−(ρD)) .

Proof. Considering the variable Z2 = S2 + X2 − Sin, one obtains from equations (57) the
dynamics Ż2 = −ρDZ2. We deduce that S2(t) and X2(t) satisfy

lim
t→+∞

S2(t) +X2(t) = Sin .

The dynamics of the variable S2 can thus be written with an non autonomous scalar equation:

Ṡ2 = (ρD − µ(S2))(Sin − S2)− µ(S2)Z2(t)

that is asymptotically autonomous. The study of this asymptotic dynamics is straightforward:
any trajectory that converges forwardly to the domain [0, Sin] has to converge to Sin or to a zero
S?2 of S2 7→ ρD − µ(S2) on the interval (0, Sin). Then, the application of Theorem A.2.1 allows
to conclude that forward trajectories of the (S2, X2) sub-system converge asymptotically either to
the positive steady state (S?2 , Sin − S?2 ) or to the “washout” equilibrium (Sin, 0).

For ρ such that ρD < µ(Sin), there is only one such zero, that is equal to λ−(ρD) (and
necessarily lower than Sin). We are in conditions of Case 3 of Proposition 3.3.1: Sin ∈ Λ(ρD),
and the convergence to the positive equilibrium is proved.

For the limiting case ρD = µ(Sin), either λ−(ρD) = Sin when µ(·) is monotonic on the interval
[0, Sin] (then the washout is the only equilibrium), or λ−(ρD) < Sin when µ(·) is non-monotonic.
In this last situation, none of the cases of Proposition 3.3.1 are fulfilled. We show that for any
initial condition such that X2(0) > 0, the forward trajectory cannot converge to the washout
equilibrium. From equations (57) one can write

X2(t) = X2(0) e

∫ t

0

(µ(S2(τ))− ρD)dτ
.

If X2(.) tends to 0, then one should have∫ +∞

T

(µ(S2(τ))− ρD)dτ = −∞ (97)

for any finite positive T . Using Taylor-Lagrange Theorem, there exists a continuous function θ(.)
in (0, 1) such that

µ(S2(τ)) = µ(Sin) + µ′(S̃2(τ))(S2(τ)− Sin)
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with
S̃2(τ) = Sin + θ(τ)(Sin − S2(τ)) .

One can then write∫ +∞

T

(µ(S2(τ))− ρD)dτ=

∫ +∞

T

(µ(Sin)− ρD)dτ −
∫ +∞

T

µ′(S̃2(τ))X2(τ)dτ

+

∫ +∞

T

µ′(S̃2(τ))Z2(τ)dτ

= −
∫ +∞

T

µ′(S̃2(τ))X2(τ)dτ − 1

ρD

∫ +∞

T

µ′(S̃2(τ))Ż2(τ)dτ

Note that S2(.) tends to Sin when X2(·) tends to 0. So there exists T > 0 such that S̃2(τ) > Ŝ
for any τ > T , and accordingly to Hypothesis H2c, there exist positive numbers a, b such that
−µ′(S̃2(τ)) ∈ [a, b] for any τ > T . The following inequality is obtained∫ +∞

T

(µ(S2(τ))− ρD)dτ ≥ a
∫ +∞

T

X2(τ)dτ − b

ρD
|Z2(T )|

leading to a contradiction with (97). �
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