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Abstract: In these notes, we first introduce the theory of arbitrage and
pricing for frictionless models, i.e. the classical theory of mathematical
finance. The main classical results are presented, i.e. the characterization
of absence of arbitrage opportunities, based on convex duality, and dual
characterizations of super-hedging prices are deduced. We then present
financial market models with proportional transaction costs. We discuss
no arbitrage conditions and characterize super-hedging prices as in the
frictionless case. Another approach based on the liquidation value con-
cept is finally introduced.
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1. Markets without friction

1.1. Introduction

We consider a discrete-time stochastic basis (Ω, (Ft)t=0,1,··· ,T , P ). The set Ω
is the space of all possible states of the financial market we consider on the
period [0, T ]. A state ω ∈ Ω may be complicated; it may include risky asset
prices but also preferences of agents acting on the market. For every t, we
suppose that Ft is a σ-algebra, which is supposed to be complete, i.e. contains
the negligible sets for the probability measure P . Recall that, by definition,
the elements of Ft are subsets of Ω and we have the following properties:

(i) Ω, ∅ ∈ Ft,
(ii) Ft ∈ Ft implies that F c

t := Ω \ Ft ∈ Ft,
(iii) For all countable family (F n

t )n≥1 of Ft,
⋃
n F

n
t ,
⋂
n F

n
t ∈ Ft.

Notice that (Ft)t=0,1,··· ,T is called a filtration in the sense that, for all t < u,
Ft ⊆ Fu. The σ-algebra Ft models the information available at time t.

Example Let us consider a financial market composed of d exchangeable
assets whose prices are given at time t by the vector St = (S1

t , · · · , Sdt ). We
define

Ft = σ (Su : u ≤ t) , t ≥ 0,

as the smallest σ-algebra making the mappings Su : ω 7→ Su(ω), u ≤ t,
measurable with respect to Ft. Such a σ-algebra exists as an intersection
of any family of σ-algebras is a σ-algebra. We may verify that (Ft)t≥0 is a
filtration.

In finance, we generally suppose that the filtration (Ft)t≥0 is complete,
i.e. F0 contains the negligible sets for P . Actually, the classical case is to
consider F0 as the smallest σ-algebra containing the negligible sets. We may
show that X0 is F0-measurable if and only if there exists a constant c such
that P (X = c) = 1, i.e. X = c a.s. (almost surely).

The family of random variables (Xt)t≥0 is said to be a stochastic pro-
cess adapted to the filtration (Ft)t≥0 if, for all t ≥ 0, Xt : Ω → Rd is
Ft-measurable. This means that, for all B in the Borel σ-algebra B(Rd),
X−1
t (B) ∈ Ft. Notice that, if Ft is the information available at time t on the

market, the Ft-measurability means that Xt is observed at time t.
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In the following, we describe a portfolio process by the quantities held by
an agent acting on the market. Precisely, a strategy θ̂ = (θ0, θ) is such that
θ0
t is the quantity at time t invested in some non risky asset whose price is
S0
t at time t while θt = (θ1

t , · · · , θdt ) is the vector of quantities θit invested in
risky asset number i = 1, · · · , d whose price is Sit at time t.

Remark 1.1. The asset S0 is said non risky if var(S0) = 0, i.e. there is
no uncertainty about the future prices S0

t : out of a negligible set N , we have
S0
t (ω) = S0

t , for all ω ∈ N c. In particular, we know by advance the prices
(S0

t )t∈[0,T ]. A classical modeling of S0 is given by the deterministic dynamics

dS0
t = rS0

t dt, S0
0 = 1.

The solution is given by S0
t = ert as it is the solution of the o.d.e. (S0

t )
′ =

dS0
t

dt
= rS0

t . Notice that

r = lim
dt→0

(
S0
t+dt − S0

t

S0
t

)
/dt.

This means that r is interpreted as an instantaneous interest rate.

On the contrary, we say that the asset (St)t∈[0,T ] is risky at time t if
var(St) > 0. This means that the mapping ω 7→ St(ω) is not constant. There-
fore, we do not know by advance the future values of St(ω) as it depends on
the market state ω ∈ Ω. A classical example is given by the Black and Scholes
model, i.e. the price S follows the dynamics:

dSt = µStdt+ σStdWt, S0 is given.

The stochastic process W is supposed to be a (standard) Brownian motion,
i.e. W satisfies the following conditions:

1 For all t, Wt is Ft-measurable and W0 = 0.
2 With probability 1, the trajectories t 7→ Wt(ω), ω ∈ Ω, are continuous.
3 For all u < t, Wt −Wu is independent of Fu.
4 If t4− t3 = t2− t1, then Wt4−Wt3 and Wt2−Wt1 are equally distributed

as N (0, t4 − t3) 1.

Let us interpret the dynamics of (St)t∈[0,T ]. We introduce the discrete dates
tni = T

n
i, i = 0, 1, · · · , n. We have ∆tni := tni − tni−1 = T/n. As n→∞,

∆Stni+1
:= Stni+1

− Stni ' µStni ∆tni + σStni ∆Wtni+1
, i ≥ 1,

1It is a Gaussian distribution with mean 0 and variance t4 − t3
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where ∆Wti =
√
T/nGi with (Gi)i=1,··· ,n a family of i.i.d. random variables

with common distribution N (0, 1). This property is directly deduced from the
definition of W . Notice that, when σ = 0, St = S0e

µt is deterministic, i.e.
it is non risky. If σ > 0, the Black and Scholes model supposes that the
log-returns log(Stni+1

/Stni ) are normally distributed. Indeed, we may show that

Stni+1
= Stni e

σ∆Wtn
i+1

+(µ−σ2/2)∆tni+1. The coefficient σ is called the volatility. The

larger σ is, the further should be St from the deterministic trajectory S0e
µt.

Actually, we may show that E(St) = S0e
µt, t ≥ 0.

For readers interested in stochastic calculus, very good notes by Jeanblanc
M. are available in french [11] but also by Lamberton D. and Lapeyre B. in
english [16].

1.2. Financial market without friction

A financial market is said without friction if there is no transaction costs
when selling or buying risky assets. For a strategy θ̂ = (θ0, θ), we define the
liquidation value at time t:

Vt = V θ̂
t = θ0

tS
0
t + θt · St = θ0

tS
0
t +

d∑
i=1

θitS
i
t .

The stochastic process V = V θ̂ is called the portfolio process associated to θ̂.
Here, θii is allowed to be non positive (short position), which corresponds to a
debt in the asset number i. The formulation above supposes that there is no
transaction costs. Indeed, otherwise, when selling or buying risky assets to
liquidate the positions given by θ̂, there should be a cost ct > 0 to withdraw
from the liquidation value.

In the following, we denote by L0(Rn,Ft), n ≥ 1, the set of all Ft-
measurable random variables with values in Rn.

Definition 1.2. An European option is a contract between two agents (seller
and buyer) allowing the option holder (buyer) to get a terminal wealth ξT
(called the payoff) from the seller at some fixed maturity T > 0. Such a
contract is sold at time t = 0 at some price. The classical example is the so-
called Call option, i.e. such that ξT = (ST −K)+ where K ≥ 0 is a constant,
which is called the strike. This means that, if ST ≥ K, the option holder get
ST − K and 0 otherwise. Such a contract corresponds to the possibility for
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the holder to buy the underlying asset S at price K at time T instead of the
real price ST . This is clearly interesting only if ST ≥ K, in which case the
gain of the transaction is ST −K ≥ 0.

The problem in mathematical finance is to determine a price for an Euro-
pean option. To do so, we introduce the following definitions.

Definition 1.3. A portfolio process Vt = V θ̂
t , t = 0, · · · , T , is said self-

financing if

θ0
t−1S

0
t + θt−1 · St = θ0

tS
0
t + θt · St, t = 1, · · · , T.

For any stochastic process X, we introduce the following notations: ∆Xt =
Xt − Xt−1 for t ≥ 1 and the discounted value X̃t = Xt/S

0
t . We may easily

show the following:

Lemma 1.4. A portfolio process Vt = V θ̂
t , t = 0, · · · , T , is said self-financing

if and only if ∆Vt = θ0
t−1∆S0

t + θt−1 ·∆St, t = 1, · · · , T .

Lemma 1.5. A portfolio process Vt = V θ̂
t , t = 0, · · · , T , is said self-financing

if and only if ∆Ṽt = θt−1 ·∆S̃t, t = 1, · · · , T .

In the following, we denote by RT
0 the set of all discounted terminal values

ṼT of self-financing portfolio processes starting from the initial value Ṽ0 =
V0 = 0. Writing ṼT = Ṽ0 +

∑T
t=1 ∆Vt, we have

RT
0 =

{
T∑
t=1

θt−1 ·∆S̃t : θt ∈ L0(R,Ft), t = 0, · · · , T − 1

}
.

We also introduce the set of hedgeable claims AT0 = RT
0 −L0(R+,FT ) we may

obtain from a zero initial endowment, i.e. ξT ∈ AT0 if and only if there exists
VT ∈ RT

0 such that VT ≥ ξT a.s. In that case, we say that V super-replicates
ξT at time T . Moreover, if VT = ξT a.s. we say that V replicates ξT .

Definition 1.6. A price for the payoff ξT is any initial value V0 of a self-
financing portfolio process V such that VT ≥ ξT a.s. We denote by P(ξT ) the
set of all prices for ξT .

1.3. One step financial market: T = 1 and d = 1

In this section, we consider the simplest case where T = 1 and d = 1. It
sufficed to understand the main ideas in that case to extend them to the
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general case, up to some technical difficulties. Here, observe that we have

RT
0 =

{
θ0 ·∆S̃1 : θ0 ∈ R

}
. A price for the payoff ξ1 ∈ L0(R,F1) is a value

p0 such that Ṽ1 = p0 + θ0 ·∆S̃1 ≥ ξ̃1 a.s. for some θ0 ∈ R. This is equivalent
to say that ξ̃1 − p0 ∈ A1

0. Therefore, the question is whether ξ̃1 − p0 ∈ A1
0 or

not: ξ̃1 − p0 /∈ A1
0. The last condition may be related to a convex separation

problem as A1
0 is actually a convex cone. This is why, we prefer for A1

0 to
be closed. The natural problem is to find a condition under which this is the
case.

Notice that, if d = 1, S0 is a price for ξ1 = (S1 − K)+, K ≥ 0. Indeed,
it suffices to follow the buy and hold strategy θ0 = (0, 1), i.e. buying one
unit of the risky asset at price S0. At T = 1, we obtain Ṽ1 = S0 + θ0∆S̃1 =
S0 + (S̃1 − S0) = S̃1. So, V1 = S1 ≥ (S1 −K)+ = ξ1.

It is traditional to suppose the closedness of AT0 to characterize the super-
hedging prices. Of course, we need to precise the topology we use. In partic-
ular, L0(Rd,FT ) is endowed with the topology of the convergence in proba-
bility, so that it is a metric space: d0(X, Y ) = E (|X − Y | ∧ 1). The spaces
Lp(Rd,FT ), p ∈ [1,∞] are endowed with the usual norms ‖X‖p := (E|X|p)1/p

if p < ∞ and ‖X‖∞ is the usual norm for bounded random variables X of
L∞. With 1

p
+ 1

q
, the topological dual of Lp(Rd,FT ) is Lq(Rd,FT ) for p ≤ 1

but the dual of L∞(Rd,FT ) is larger than L1(Rd,FT ) except if we endow
L∞(Rd,FT ) with the σ(L∞, L1) topology.

Closedness of A1
0 in L0(R,F1) for d = 1.

We denote by S the single risky asset. Let Xn = θn0 ∆S1 − ε+n ∈ A1
0 where

(θn0 )n≥1 is a sequence of R and (ε+n )n≥1 is a sequence in L0(R+,F1). Suppose
that Xn → X a.s.

1rst case: supn |θn0 | < ∞. In that case, a compactness argument allows to
claim that θn0 → θ0 ∈ R. Therefore, (ε+n )n≥1 is almost surely convergent to
some ε+ ∈ L0(R+,F1). We conclude that X = θ0∆S1 − ε+ ∈ A1

0.

2nd case: supn |θn0 | = ∞. In that case, we may suppose that |θn0 | → ∞.
Let us define θ̄0

n
= θn0/(1 + |θn0 |). We define similarly X̄n and ε̄+n . We have

X̄n = θ̄0
n
∆S1 − ε̄+n ∈ A1

0 where |θ̄0
n| ≤ 1. Therefore, we may apply the first

case and, as n→∞, we deduce an equality of the type 0 = θ̄0∆S̃1− ε̄+ where
|θ̄0| = 1. We deduce that θ̄0∆S1 ≥ 0 a.s.

In the case where θ̄0 = 1, we have ∆S1 ≥ 0 a.s. Otherwise, we have ∆S1 ≤ 0
a.s. At this stage, we can not conclude anything about the closedness. Let
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us consider the case ∆S1 ≥ 0 a.s. Consider the strategy θ̂n0 = n(−S0, 1).
Then, starting from the zero initial endowement, we get the terminal portfolio
process Ṽ n

1 = 0+θn0 ∆S1 = n∆S1 ≥ 0 a.s. This means that from nothing (zero
initial capital), we get a non negative terminal wealth, i.e. we do not take
any risk to face a loss. Moreover, if n is large enough and if P (∆S1 > 0) there
is a non null probability to get a strictly positive gain n∆S1 > 0 as large
as we want, i.e. we get what we call an arbitrage opportunity. If the agents
acting on this financial market are well informed and rational, we may think
that they all utilize this possibility to get positive money without taking any
risk. Therefore, they all buy the risky asset to hold a position of type θn0 .
Then, the risky asset price S0 should go up and the condition ∆S1 ≥ 0 a.s.
should fail. This leads to the absence of arbitrage opportunity condition we
now define.

Definition 1.7. An arbitrage opportunity is a terminal portfolio process
ṼT ∈ RT

0 starting from the zero initial endowment such that ṼT ≥ 0 a.s.
and P (ṼT > 0) > 0.

Definition 1.8. We say that the NA condition (No Arbitrage opportunity)
holds if there is no arbitrage opportunity, i.e. RT

0 ∩ L0(R+,FT ) = {0} or,
equivalently, AT0 ∩ L0(R+,FT ) = {0}.

Proposition 1.9. If NA holds, then A1
0 is closed.

Proof. From above, it suffices to study the case where ∆S̃1 ≥ 0 a.s. or
∆S̃1 ≤ 0. In that case, ±∆S̃1 ∈ A1

0 ∩ L0(R+,F1) = {0} hence ∆S̃1 = 0 a.s.
hence Xn = −ε+n → X ≤ 0 a.s. This implies that X ∈ −L0(R+,F1) ⊆ A1

0.
The conclusion follows. 2

The following step is to characterize the NA condition. To do so, we first
recall a lemma, see [13, Lemma 2.1.3, Section 2.1.2].

Lemma 1.10. Let G = (Γi)i∈I be a family of elements of a σ-algebra F such
that, for all Γ ∈ F , if P (Γ) > 0, there exists i ∈ I such that P (Γ ∩ Γi) > 0.
Then, there exists a countable family (Γin)n≥1 such that Ω =

⋃∞
n=1 Γin a.s.

Proof. We may suppose that G is stable under countable union. Indeed, in
the contrary case, it suffices to replaceG by G̃, which is the set of all countable
unions of elements of G. Let us consider m = supi P (Γi). For a countable
sequence, we have m = lim ↑ P (Γin) = P (Γ̂) where Γ̂ =

⋃∞
n=1 Γin . We claim

that P (Γ̂) = 1, which is enough to conclude. Suppose by contradiction that
P (Γ̂) < 1 hence P (Γ̂c) > 0. By assumption, there exits i0 ∈ I such that
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P (Γ̂c ∩ Γi0) > 0. Therefore, as G is stable under countable union,

m ≥ P (Γ̂ ∪ Γi0) = P (Γ̂) + P (Γ̂c ∩ Γi0) > P (Γ̂) = m.

We get a contradiction so we may conclude. 2

Theorem 1.11. Suppose that T = 1 = d. Then, NA holds if and only if
there exists Q ∼ P such that dQ/dP ∈ L∞(R,F1) and EQS̃1 = S0.

Proof. Before presenting the proof, let us recall that the probability mea-
sures Q and P are equivalent (Q ∼ P ) means that they admit the same
negligible sets. By the Radon-Nikodym theorem, if Q ∼ P , there exists
ρ ∈ L0((0,∞),F1) such that dQ/dP = ρ, i.e. Q(A) = EP (ρ1A) for all A ∈ F1.
In particular, we have EQ(X) = EP (ρX) for all X ∈ L1(R,F1, P ).

Suppose that NA holds. The property still holds under P ′ ∼ P . In par-
ticular, with dP ′/dP = αe−|S̃1|, we may suppose w.l.o.g. that S̃1 is inte-
grable under P . We know that A1

0 is a closed convex cone. By NA, for all
x ∈ L1(R+,F1) \ {0}, x /∈ A1

0 ∩ L1(R,F1). By the Hahn-Banach separation
theorem, we deduce the existence of ρx ∈ L∞(R,F1) and c ∈ R such that

E(ρxX) < c < E(xρx), ∀X ∈ A1
0.

As A1
0 is a cone, replace X by kX and make k →∞. We get that E(ρxX) ≤ 0

for all X ∈ A1
0. Since, −L0(R+,F1) ⊆ A1

0, we then deduce that ρx ≥ 0 a.s.
With X = 0, we get that c > 0 and, as R1

0 is a vector space, E(ρxX) = 0
for all X ∈ R1

0. As P (ρx > 0) > 0 (see the strict inequality above), we may
renormalize and suppose that ‖ρx‖∞ = 1.

Let us consider the family G = (Γx)x∈I where I = L1(R+,F1) \ {0} and
Γx = {ρx > 0}. For any Γ ∈ F1 such that P (Γ > 0), x = 1Γ ∈ I. Therefore,
E(ρx1Γ) > 0 hence P (Γx ∩ Γ) > 0. By Lemma 1.10, we may write Ω =⋃∞
i=1 Γxi . Let us define ρ =

∑∞
i=1 2−iρxi . We have ρ > 0 a.s. and we may

renormalize ρ such that ρ ∈ L∞(R+,F1) and EP (ρ) = 1. We then define
Q ∼ P such that dQ/dP = ρ. We still have E(ρX) = 0 for all X ∈ R1

0, in
particular with X = ∆S̃1 ∈ R1

0, we may conclude that EQ(S̃1) = S0.
Reciprocally, suppose the existence of Q ∼ P such that EQ(S̃1) = S0.

Take ṼT = θ0∆S̃1 ∈ RT
0 ∩ L1(R+,F1). We have EQ(ṼT ) = EQ(θ0∆S̃1) =

θ0EQ(∆S̃1) = 0. As ṼT ≥ 0 a.s., we get that ṼT = 0, i.e. NA holds. 2

A probability Q as in Theorem 1.11 is called a risk-neutral probability
measure or (equivalent) martingale measure. Recall that, if ξT ∈ L1(R,F1)
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is a payoff, a (super-replicating) price for ξT is an initial endowment p0 of a
portfolio process V satisfying VT ≥ ξT a.s. We say that V replicates ξT when
VT = ξT a.s. We denote by Γ(ξT ) the set of all prices for ξT .

Theorem 1.12. Suppose that T = 1 and NA holds. Let us consider the set
EMM6= ∅ of all equivalent martingale measure. Then, if ξT ∈ L1(R,F1),

Γ(ξT ) =

[
sup

Q∈EMM
EQ(ξ̃T ),∞

)
.

Proof. Consider p0 ∈ Γ(ξT ), i.e. there exists θ0 ∈ R such that p0 +θ0∆S̃1 ≥
ξ̃T a.s. Taking the Q-expectation, we get p0 ≥ EQ(ξ̃T ) since EQ(θ0∆S̃1) =
θ0EQ(∆S̃1) = 0. It remains to show that p∗0 = supQ∈EMM EQ(ξ̃T ) ∈ Γ(ξT ).

Let us suppose by contradiction that p∗0 /∈ Γ(ξT ), i.e. ξ̃T − p∗0 /∈ A1
0. As the

latter set is a closed convex set in L1, the Hahn-Banach separation theorem
applies and we get Z ∈ L∞(Rd,F1), c > 0, such that

E(ZX) < c < E(Z(ξ̃T − p∗0)), ∀X ∈ A1
0.

As in Theorem 1.11, we get that Z ≥ 0 and E(Z∆S̃1) = 0. Consider Z1 =
dQ1/dP where Q1 ∈ EMM 6= ∅. We define ρ = α (βZ + Z1). We have

E(ρ(ξ̃T − p∗0)) = α
(
βE(Z(ξ̃T − p∗0)) + E(Z1(ξ̃T − p∗0))

)
.

As E(Z(ξ̃T −p∗0)) > 0, we may choose β > 0 large enough in such a way that
E(ρ(ξ̃T −p∗0)) > 0. We fix α such that ρ > 0 defines an equivalent probability
measure Q ∼ P with dQ/dP = ρ. Moreover, by construction, EQ(S̃1) = 0,
i.e. Q ∈ EMM . It follows that p∗0 ≥ EQ(ξ̃T ). On the other hand, EQ(ξ̃T ) > p∗0
by construction hence a contradiction. 2

A natural question is whether EMM is a singleton. This is related to the
concept of completeness for the market.

Definition 1.13. We say that the financial market is complete if for any
ξT ∈ L1(R,FT ), there exists a self-financing portfolio process V such that
VT = ξT .

Proposition 1.14. Let T = 1. Suppose that NA holds. Then, the market is
complete if and only if EMM is a singleton.
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Proof. Suppose that the market is complete. Let Q1, Q2 ∈ EMM . Consider
A ∈ F1. The payoff ξT = 1A is replicable by assumption, i.e. there exists a self-
financing portfolio process V such that VT = 1A. We have ṼT = V0+θ0∆S̃1 for
some θ0 ∈ R, hence EQ1ṼT = EQ2ṼT = V0. This implies that Q1(A) = Q2(A),
for all A, i.e. Q1 = Q2.

Reciprocally, if EMM = {Q}, we know by Theorem 1.12, that p∗0 = EQ(ξ̃1)
is a super-replication price, i.e. there exists a portfolio process V such that
Ṽ1 ≥ ξ̃1. This means that ξ̃1 = p∗0 + θ0S̃1 − ε+1 where ε+1 ∈ L0(R+,F1). We
deduce that EQ(ξ̃1) = p∗0 − EQ(ε+1 ) hence EQ(ε+1 ) = 0 and ε+1 = 0. This
implies that ξ̃1 is replicable. 2

1.4. General case: the Dalang-Morton-Willinger theorem

In this section, we generalize the results of the last section.

Definition 1.15. Let Q ∼ P . We say that the stochastic process (Mt)t=0,··· ,T
is a Q-martingale if, for all t = 0, · · · , T , Mt is Q-integrable (EQ|Mt| <∞)
and EQ(Mt+1|Ft) = Mt.

We shall need a generalized version of the conditional expectation:

Definition 1.16. Let G ⊆ F be two σ-algebras and X ∈ L0(Rd,F), d ≥ 1.
We say that X admits a conditional expectation E(X|G) if E(|X||G) < ∞
a.s. In that case, we define

E(X|G) = E(X+|G)− E(X−|G) ∈ L0(Rd,G).

We may show the following:

Lemma 1.17. Let XG ∈ L0(Rd,G) and suppose that Y ∈ L0(Rd,F) admits a
conditional expectation E(Y |G). Then, XGY admits a conditional expectation
such that E(XGY |G) = XGE(Y |G).

Proposition 1.18. Suppose that NA holds. Then, AT0 is closed in L0.

Proof. We show the statement by induction. For two dates, let us consider
Xn = θnT−1S̃T−εn+

T ∈ ATT−1 converging a.s. to X as n→∞. We suppose that
θnT−1 ∈ L0(Rd,FT−1) and εn+

T ∈ L0(R+,FT ). We split Ω into two subsets:

a) On the set ΩT−1 = {lim infn |θnT−1| <∞} ∈ FT−1. By [13, Lemma 2.1.2,
Section 2.1.2 ], there exists a random sequence nk ∈ L0(N,FT−1) such that
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θnkT−1 converges almost surely to some θT−1. Notice that

θnkT−1 =
∞∑
j=k

θjT−11nk=j ∈ L0(Rd,FT−1).

We deduce that θT−1 ∈ L0(Rd,FT−1). At last, we get that εn+
T → ε+T ∈

L0(R+,FT ). Finally, X1ΩT−1
= θT−11ΩT−1

S̃T − ε+T 1ΩT−1
∈ ATT−1.

b) On the set Ωc
T−1 = {lim infn |θnT−1| = ∞}. We use the normalization

procedure, as in the last section, of the type X̄ = X/(1 + |θnT−1|). Then, we

apply the first step a) to the sequence X̄n. In limit, we get that θ̄T−1S̃T− ε̄+T =
0 for some ε̄+T ≥ 0 a.s. and θ̄T−1 ∈ L0(Rd,FT−1) such that |θ̄T−1| = 1. As
θ̄T−1S̃T = ε̄+T ∈ ATT−1 ∩ L0(R+,FT−1), we get that θ̄T−1S̃T = 0 by NA.

Let us restrict ourselves to the case d = 1. We shall see the general case
below. As θ̄T−1 ∈ {−1, 1}, we get that ∆S̃T = 0 hence Xn ≤ 0 and X ≤ 0.
Therefore,X1ΩcT−1

∈ ATT−1. We conclude thatX = X1ΩT−1
+X1ΩcT−1

∈ ATT−1.

Suppose by induction that ATt is closed and let us show that ATt−1 is also

closed. To do so, consider a converging sequence Xn = θnt−1∆S̃t + · · · +

θnT−1∆S̃T − εn+
T → X.

c) On the set Ωt−1 = {lim infn |θnt−1| < ∞} ∈ Ft−1, we may suppose
w.l.o.g. (see the first step a)) that θnt−1 → θt−1 ∈ L0(Rd,Ft−1). Therefore,

θnt ∆S̃t+1 + · · ·+ θnT−1∆S̃T − εn+
T is convergent by the induction hypothesis to

Xt,T ∈ ATt . It follows that X1Ωt−1 = θt−11Ωt−1∆S̃t +Xt,T1Ωt−1 ∈ ATt−1.

d) On the set Ωc
t−1 = {lim infn |θnt−1| = ∞} ∈ Ft−1, we use the normal-

ization procedure as in b) and we deduce an equality of the type γt−1 =
θ̄t−1∆S̃t + · · ·+ θ̄T−1∆S̃T − ε̄+T = 0. In the case where d = 1, θ̄t−1 ∈ {−1, 1}.
We split Ωc

t−1 = {θ̄t−1 = −1}∪{θ̄t−1 = 1}. On the set {θ̄t−1 = 1}, we observe
that

Xn = Xn − θnt−1γt−1 = θnt ∆S̃t+1 + · · ·+ θnT−1∆S̃T − εn+
T ∈ A

T
t .

Using the induction hypothesis, we may conclude. Similar arguments apply
on the set {θ̄t−1 = −1}.

The general case where d > 1 needs to be thought component-wise. As
|θ̄t−1| = 1, we split Ωc

t−1 into a partition (Bi)i=1,··· ,d of Ft−1 such that Bi ⊆
{θ̄it−1 6= 0}. On each Bi, we assume w.l.o.g. that θnit 6= 0 and we write
Xn = Xn − αnt−1γt−1 where αnt−1 is chosen such that it is possible to rewrite
Xn in such a way that θnit−1 = 0, i.e. we have strictly reduced the number
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of non null components of θnt−1. We then go to step c) and, if necessary, we
still reduce the number of non null components of θnt−1. As d is finite, we
may conclude as, in the worst case, θnt−1 is finally reduced to 0 so that the
induction hypothesis applies. Another technique is to define almost surely a
matrix P n such that P nθ̄t−1 = θnt and observe that Xn = Xn − P nγT−1. In
that case, we need do show that P n is Ft−1-measurable. This may be proven
by a measurable selection argument. 2

The following result is fundamental in the theory of arbitrage theory. A
complete version is given in [13].

Theorem 1.19 ( Dalang-Morton-Willinger theorem). The condition NA
holds if and only if there exists Q ∼ P such that (S̃t)t=0,··· ,T is a Q-martingale.

Proof. Suppose that NA holds. We know by Proposition 1.18 that AT0 is
closed in L0. So, we apply the reasonings we did for T = 1 and we deduce
Q ∼ P such that EQ(X) = 0 for all X ∈ RT

0 . In particular, for all t ≥ 1, for
all Ft−1 ∈ Ft−1, 1Ft−1∆S̃t ∈ AT0 hence EQ(1Ft−1∆S̃t) = 0. This implies that

EQ(∆S̃t|Ft−1) = 0, i.e. S̃ is a Q-martingale.
Reciprocally, suppose that S̃ is a Q-martingale. Consider ṼT ∈ AT0 ∩

L0(R+,FT ). We write ṼT = ṼT−1 + θT−1∆S̃T where θT−1 ∈ L0(Rd,FT−1).
As ∆S̃T is Q-integrable, we deduce that ṼT admits a generalized conditional
expectation such that EQ(ṼT |FT−1) = ṼT−1. We repeat the argument and we
get that EQ(ṼT |FT−2) = ṼT−2. Finally, we have EQ(ṼT ) = Ṽ0 = 0. As ṼT ≥ 0
a.s., ṼT = 0, i.e. NA holds. 2

As in the case T = 1, we also deduce the following dual characterization
of the prices from the set EMM of all equivalent martingale measures Q ∼ P
under which S̃ is a Q-martingale.

Theorem 1.20. Suppose that NA holds. Consider ξT ∈ L1(R,FT ). The set
of all super-hedging prices of ξT is

Γ(ξT ) = [ sup
Q∈EMM

EQ(ξ̃T ),∞).

Conclusion: We have presented the main ideas of arbitrage theory without
friction and in discrete-time, i.e. a no arbitrage condition NA is considered
to ensure the closedness of the set of hedgeable claims. The NA condition
is equivalent to the existence of a probability risk measure under which the
discounted prices are martingales. At last, it is possible to dually characterize
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the super-hedging prices under NA via the dual elements, i.e. probability risk
measures. For a deeper study of arbitrage theory for frictionless models, we
send the readers to [13, Section 2].

2. Markets with friction

2.1. Introduction

The theory we present in this section is rather recent. Most of the main results
of the literature have been developed in the last fifteen years. A pioneering
work is the paper by Jouini and Kallal [12] where bid and ask prices are
considered. We propose in this section an introduction to financial market
models with proportional transaction costs. In the following, we consider a
discrete-time stochastic basis (Ω, (Ft)t=0,1,··· ,T , P ). We denote by e1 the vector
of Rd, d ≥ 1, such that the only non null component is the first one which is
fixed to 1.
Example. Suppose that the market is composed of two assets. The first
one is non risky and its (discounted) value is S0

t = 1 for all t ∈ [0, T ]. The
second asset is risky and the price is St at time t. As usual, we suppose
that S is a stochastic process adapted to the filtration. We suppose that we
need to pay proportional transaction costs when buying or selling the risky
asset. Precisely, when buying one unit of the risky asset, we pay the price
St(1+ ε) = St+Stε. When selling one unit of the risky asset, we get the price
St(1− ε) = St − Stε. This means that the proportional transaction cost rate
is ε > 0.

In this setting, we denote by V a portfolio process. Contrarily to the fric-
tionless, V is expressed in physical units, i.e. V is the strategy θ̂ of the last
section. This choice is motivated by technical reasons: the dynamics of a port-
folio process is not trivial with transaction costs. In the sequel, a financial
position (x, y) describes the quantity x ∈ R and y ∈ R invested in assets S0

and S respectively.

Definition 2.1. The liquidation value at time t of the financial position (x, y)
is

Lt((x, y)) := x+ y+St(1− ε)− y−St(1 + ε).

This definition is clear. If y > 0, we liquidate the long position by selling
the y units of risky asset at price St(1 − ε). If y < 0, we liquidate the short
position by buying the y− units of risky asset at price St(1 + ε).
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Definition 2.2. At time t, the solvency set is defined as

Gt(ω) := {z = (x, y) ∈ R2 : Lt(z) ≥ 0}.

Gt is the set of all positions we may liquidate without any debt. Indeed, if
z ∈ Gt, write z = z−Lt(z)e1 +Lt(z)e1 and observe that Lt(z−Lt(z)e1) = 0.
We may easily show that Gt is a closed convex cone. For y ≥ 0, z = (x, y) ∈
Gt if and only if x+ ySt(1− ε) ≥ 0, i.e. z.g2∗

t ≥ 0 where g2∗
t = (1, ySt(1− ε)).

For y < 0, z = (x, y) ∈ Gt if and only if x + ySt(1 + ε) ≥ 0, i.e. z.g1∗
t ≥ 0

where g1∗
t = (1, ySt(1 + ε)). The vectors g1∗

t and g2∗
t are the generators of the

positive dual cone

G∗t = {z ∈ R2 : z.gt ≥ 0, ∀gt ∈ Gt} = cone (g1∗
t , g

2∗
t ).

Lemma 2.3. The solvency set is Ft-graph-measurable at time t:

graphGt := {(ω, z) ∈ Ω× Rd : z ∈ Gt(ω)} ∈ Ft ⊗ B(Rd).

Proof. It suffices to observe that (ω, z) ∈ graph (Gt) if and only if zg1∗
t ≥ 0

and zg2∗
t ≥ 0. 2

Similarly, we have Gt = cone (g1
t , g

2
t ), where g1

t = (St(1 + ε),−1) and
g2
t = (−St(1 − ε), 1). Therefore, G∗t is Ft-graph-measurable at time t since

(G∗t )
∗ = Gt.

Proposition 2.4. For all z ∈ R2,

Lt(z) = max{α ∈ R : z − αe1 ∈ Gt}.

Proof. Consider α ∈ R such that z−αe1 ∈ Gt. Then, Lt(z−αe1) ≥ 0, i.e.
Lt(z) − α ≥ 0 hence α ≤ Lt(z). Moreover, Lt(z − Lt(z)e1) = 0 implies that
z − Lt(z)e1 ∈ Gt. The conclusion follows. 2

Definition 2.5. A self-financing portfolio process is a stochastic process
(Vt)t=0,··· ,T starting from an initial endowment V−1 = V0− such that, for all
t ≥ 0, ∆Vt ∈ −Gt a.s.

The interpretation of the dynamics above is the following: we may write
Vt−1 = Vt+(−∆Vt) so that it is possible to change Vt−1 into Vt as it is allowed
to let aside (−∆Vt) whose liquidation value is non negative. Observe that the
terminal value of V is an element of V0− +

∑T
t=0 L

0(−Gt,Ft).
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Several no arbitrage conditions have been considered in order to solve the
super-hedging problem, as in the frictionless case. To do so, we consider the
set of all terminal claims AT0 we may obtain from a zero initial capital. We
have

AT0 =
T∑
t=0

L0(−Gt,Ft).

Note that R2
+ ⊆ Gt a.s. hence −L0(R2

+,FT ) ⊆ AT0 .

Definition 2.6. NAw: AT0 ∩ L0(R2
+,FT ) = {0}.

Proposition 2.7. Suppose that ST > 0 a.s. and ε < 1. The condition NAw

holds if and only if, for all VT ∈ AT0 , LT (VT ) ≥ 0 implies that LT (VT ) = 0
a.s.

Proof. Suppose that NAw holds and consider VT ∈ AT0 such that LT (VT ) ≥
0. Since VT−LT (VT )e1 ∈ GT and GT is stable under addition, we deduce that
LT (VT )e1 = VT − (VT −LT (VT )e1) ∈ AT0 ∩L0(R2

+,FT ) = {0}, i.e. LT (VT ) = 0
a.s. Reciprocally, consider VT ∈ AT0 ∩ L0(R2

+,FT ). Necessarily, LT (VT ) ≥ 0
hence LT (VT ) = 0. As VT ∈ R2

+, we have 0 = LT (VT ) = V 1
T + V 2

T ST (1− ε). It
follows that V 1

T = V 2
T = 0. 2

Clearly, the meaning of NAw is the same than the NA condition of the
frictionless case. In general, we shall see that stronger conditions are con-
sidered in presence of transaction costs to ensure the closedness of AT0 . In
the following, we introduce the stochastic preorder x ≥Gt y if and only if
x− y ∈ Gt, t = 0, · · · , T .

Definition 2.8. A price for the payoff ξT ∈ L0(R2,FT ) is a vector p0 ∈ R2

which is the initial capital of a self-financing portfolio V such that VT ≥GT ξT
a.s.

Notice that p0 ∈ R2 is a price if p0 + VT = ξT for some VT ∈ AT0 . As in
the frictionless case, let us see whether AT0 may be closed. Let us start with
T = 1.

Lemma 2.9. Suppose that T = 1 and S1 is not deterministic. Then, A1
0 is

closed in probability under NAw.

Proof. Consider a convergent sequence Xn = −gn0 − gn1 where gnt ∈ −Gt

a.s., t = 0, 1. We denote bt X the limit of (Xn)n≥1.

1) First case: supn |gn0 | < ∞. By a compactness argument, we may suppose
that gn0 → g0 ∈ G0. Therefore, gn1 → g1 ∈ L0(G1,F1) hence X = −g0 − g1 ∈
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A1
0.

2) Second case: supn |gn0 | =∞. We may suppose that |gn0 | → ∞. We normalize
the sequence by setting ḡn0 = gn0 /|gn0 |, X̄n = Xn/|gn0 |, etc. By the first case, we
get an equality of the type g0 + g1 = 0 where gt ∈ Gt a.s., t = 0, 1. Therefore
−g0 ∈ A1

0 is such that L1(−g0) = L1(g1) ≥ 0 hence L1(g1) = L1(−g0) = 0
by NAw. Moreover, g1 = −g0 is deterministic. In the case where the second
component g2

1 of g1 is non negative, L1(g1) = 0 means that g1
1+g2

1S1(1−ε) = 0.
If g2

1 = 0, then g1
1 = 0 hence g0 = −g1 = 0 in contradiction with |g0| = 1. So,

g2
1 6= 0 and S1 = −g1

1/(g
1
1(1 − ε)). This leads to a contradiction. Similarly,

the case where g2
1 ≤ 0 is excluded. 2

Theorem 2.10. Suppose that T = 1 and S1 is not deterministic. Then, NAw

holds if and only if there exists a process (Zt)t=0,T such that Z0 = E(Z1) and
Zt ∈ G∗t a.s., t = 0, T .

Proof. Suppose that NAw holds. Then, by Lemma 2.9, we deduce that
A1

0 ∩ L1(R2,F1) is closed in L1(R2,F1). Moreover, for any x ∈ L1(R2
+,F1) \

{0}, x /∈ A1
0 by NAw. Therefore, by the Hahn-Banach separation theorem,

there exists Zx ∈ L∞(R2,F1) and c > 0 such that E(XZx) < c < E(xZx)
for all X ∈ A1

0. Note that Zx 6= 0 and we may assume that ‖Zx‖∞ = 1. As
A1

0 is a cone, we deduce that E(XZx) ≤ 0 for all X ∈ A1
0. With X = −g0

where g0 is chosen arbitrarily in G0, we deduce that g0E(Zx) ≥ 0 for any
g0 ∈ G0, i.e. E(Zx) ∈ G∗0. Similarly, we have E(Zxg1) ≥ 0 for all g1 ∈
L1(G1,F1). We deduce that Zx ∈ G∗1 ⊆ R2

+ a.s. Indeed, otherwise, we may
construct pointwise g1 ∈ L0(G1,F1) with |g1| = 1 such that Zxg1 ≤ 0 a.s. and
P (Zxg1 < 0) > 0, i.e. a contradiction. To do so, we apply [13, Theorem 5.4.1,
Section 5.4] which asserts that a F1-measurable selection g1 exits as soon as
the existence holds pointwise. We now consider the family (Gx)x∈L1(R2

+,F1)\{0}
with Gx := {Zxe1 > 0}. For any Γ such that P (Γ) > 0, consider x = 1Γe1 ∈
L1(R2

+,F1) \ {0}. As E(xZx) > 0, we deduce that P (Γ ∩ {Zxe1 > 0}) > 0.
Therefore, Lemma 1.10 applies: we have Ω =

⋃∞
i=1{Zxe1 > 0} for some

countable family (xi)i≥1. We finally conclude with Z1 =
∑

i≥1 2−iZxi > 0 and
Z0 = E(Z1).

Reciprocally, suppose the existence of Z and consider V1 = −g0 − g1 ∈
A1

0 ∩ L1(R2
+,F1). Then Z1V1 ≥ 0 and Z1V1 = 0 if and only if V1 = 0 as

Z1 ∈ G∗1 ⊆ intR2
+. On the other hand, E(Z1V1) = −g0Z0 − E(g1Z1) ≤ 0 by

assumption. Therefore, Z1V1 = 0 and V1 = 0. 2

Definition 2.11. A consistent price system (CPS) is a P -martingale (Zt)t=0,··· ,T
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adapted to the filtration (Ft)t=0,··· ,T such that Zt ∈ G∗t \ {0} a.s. for all
t = 0, · · · , T .

The following theorem (see [7]) is a generalization of Theorem 2.10 for
d = 2, see [13, Theorem 3.2.15, Section 3].

Theorem 2.12 (Grigoriev’s theorem). Suppose d = 2 and T is arbitrarily
chosen. The following statements are equivalent:

1) NAw.

2) AT0 ∩ L1(R2
+,F1) = {0}.

3) There exists a CPS.

In [13, Section 3], some counterexamples show that AT0 is not necessarily
closed under NAw. In that case, it is not possible a priori to characterize the
set of all super-hedging prices of a payoff.

Proposition 2.13. Suppose that NAw holds and AT0 is closed. Consider a
payoff ξT ∈ L1(Rd,FT ). Then, the set of all super-replicating prices Γ(ξT ) of
ξT is given by

Γ(ξT ) =
{
x0 ∈ Rd : x0Z0 ≥ E(ZT ξT ), ∀Z, CPS

}
.

Proof. Let us consider x0 ∈ Γ(ξT ), i.e. there exists VT ∈ AT0 such that
x0 + VT = ξT . We have Vt = −

∑t
u=0 gu where gu ∈ L0(Gu,Fu), u = 0, · · · , t

and t ≤ T . We have ZT ξT = ZT (x0 +VT ) = ZT (x0 +VT−1−gT ). As ZT ∈ G∗T ,
we deduce that ZT ξT ≤ ZT (x0 + VT−1) hence, considering the generalized
conditional expectation, we get that

E(ZT ξT |FT−1) ≤ ZT−1(x0+VT−1) = ZT−1(x0+VT−2−gT−1) ≤ ZT−1(x0+VT−2).

Repeating the reasonning, i.e. take the successive generalized conditional
expectations, we finally get that E(ZT ξT ) ≤ Z0x0.

Reciprocally, consider x0 ∈ Rd such that E(ZT ξT ) ≤ Z0x0 for all CPS Z.
Suppose by contradiction that ξT − x0 /∈ AT0 ∩ L1(Rd,FT ). By the Hahn-
Banach separation theorem, there exists Ẑ ∈ L∞(Rd,FT ) and c ∈ R such
that

E(ẐX) < c < E(Ẑ(ξT − x0)), ∀CPSZ.

As AT0 is a cone, we deduce that E(ẐX) ≤ 0 for all X ∈ AT0 and c > 0. With
X = −gt ∈ L0(−Gt,Ft) ⊆ AT0 , we have E(Ẑtgt) ≥ 0 for any gt ∈ L0(Gt,Ft),
where Ẑt = E(Ẑ|Ft). Arguing by contradiction with a measurable selection
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argument, see [13, Theorem 5.4.1, Section 5.4], we deduce that Ẑt ∈ G∗t a.s.
Let us define Zt = αZ̄t + Ẑt where Z is a CPS. By construction Z is a CPS
if α > 0. Moreover, with α small enough, we get that E(Ẑ(ξT − x0)) > 0 in
contradiction with the property satisfied by x0. 2

In the literature, a stronger no-arbitrage condition NAr has been intro-
duced. This condition means that there is no arbitrage opportunity even if
the transaction costs are slightly smaller. Equivalently, this means that there
is no arbitrage opportunity when the solvency set is larger, i.e. the positive
dual is smaller. A CPS for this enlarged market is therefore in the interior of
the initial positive dual. This ensures the closedness of AT0 , see [13, Section
3.2.2], so that Proposition 2.13 applies.

2.2. A new approach based on the liquidation value

In the last section, we have seen that the set of all terminal claims AT0
is not necessarily closed under NAw. A natural question is to understand
whether this is the case for the liquidation values of these terminal claims.
We consider here the case d = 2. The first asset is riskless and defined by
the price S0

t = 1, t = 0, · · · , T . The risky asset is defined by the bid and ask
prices Sbt and Sat such that 0 < Sbt ≤ Sat , t = 0, · · · , T . At time t, Sbt and Sat
are respectively the prices we get when selling/buying one unit of the risky
asset. That corresponds to the best bid/ask prices in an order book. The
liquidation value process is then:

Lt((x, y)) = x+ y+Sbt − y−Sat , t = 0, · · · , T.

We then define Gt := {z ∈ R2 : Lt(z) ≥ 0} as in the last section. Similarly,
we define

Atu : =
t∑

r=u

L0(−Gr,Fr),

Ltu : = {Lt(Vt) : Vt ∈ Atu} 0 ≤ u ≤ t ≤ T.

In the following, we consider a technical condition:

E: For T ≥ 2, for all t ≤ T − 1 and u ≥ t+ 1, Fu ∈ Fu,

(i) If Sat = Sbt on Fu, then there exists r ≥ u such that Sat ≥ Sar on Fu.



/ 19

(ii) If Sbt = Sat on Fu, then there exists r ≥ u such that Sbr ≥ Sbt on Fu.

In [20], we provide classical examples where Condition E is satisfied. The
following is easy to prove:

Lemma 2.14. The condition NAw is equivalent to one of the equivalent
conditions:

LT0 ∩ L0(R+,FT ) = {0} ⇔ AT0 ∩ L0(R2
+,FT ) = {0}.

The following theorem is new and proved in [20]. It may be seen as an
analog of the DMW Theorem 1.19.

Theorem 2.15. Suppose that condition E holds when T ≥ 2. Then, the
following conditions are equivalent:

(i) NAw.
(ii) LT0 is closed in probability and LT0 ∩ L0(R+,FT ) = {0}.

(iii) There exists Q ∼ P satisfying dQ/dP ∈ L∞((0,∞),FT ) such that
EQ(LT (VT )) ≤ 0 for all LT (VT ) ∈ LT0 ∩ L1(R,FT ).

Proof. We provide here the proof in the case where T = 2. The general
case is deduced by induction, see [20].

The implication (ii) ⇒ (iii) follows from the Hahn-Banach separation
theorem, see the last sections. The implications (iii) ⇒ (i) and (ii) ⇒ (i)
are trivial.

Closedness. It remains to show that (i)⇒ (ii), i.e. LT0 is closed in probability.
With one time step, this is immediate as LTT = −L0(R+,FT ). We may show
that, for any γ ∈ LT0 , γe1 = −gT0 ∈ AT0 where gtu, u ≤ t, is a general
notation we introduce for the sequel to designate a sum gtu =

∑t
r=u gr with

gr ∈ L0(Gr,Fr), r ≤ T . When considering a sequence of such elements,
we write them gt,nu =

∑t
r=u g

n
r with gnr ∈ L0(Gr,Fr). In the following, we

may suppose w.l.o.g. that gr ∈ ∂Gt for all t ≤ T − 1. To do so, we withdraw
Lr(gr) ≥ 0 from gr that we add to GT . Recall that, by the Grigoriev theorem,
there exists a CPS Z.

Two steps. Consider γ∞T = limn γ
n
T where γnT e1 = −gT,nT−1 ∈ LTT−1. Define the

set ΓT−1 := {lim inf |gnT−1| = ∞} ∈ FT−1. Up to a random subsequence,
we may suppose that |gnT−1| > 0. We normalize the sequences by setting

γ̃nT := γnT/|gnT−1|, g̃nT−1 := gnT−1/|g
T,n
T−1|. As |g̃nT−1| = 1, we may assume that

g̃nT−1 → g̃∞T−1 ∈ GT−1, see [13, Lem. 2.1.2]. As limn γ̃
n
T e1 = 0, we deduce that
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g̃nT → g̃∞T ∈ GT and g̃∞T−1 + g̃∞T = 0 where g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ GT .
We set g̃∞T−1 = g̃∞T = 0 on ΛT−1 = Ω \ ΓT−1 ∈ FT−1. Let Z be a CPS. As
ZT (g̃∞T−1 + g̃∞T ) = 0, we deduce that ZT−1g̃

∞
T−1 + E(ZT g̃

∞
T |FT−1) = 0. By

duality, i.e. using the property that a CPS evolves in the positive dual of G,
we get that ZT−1g̃

∞
T−1 = ZT g̃

∞
T = 0. As g̃∞T = −g̃∞T−1 is FT−1-measurable,

we get that 0 = E(ZT g̃
∞
T |FT−1) = ZT−1g̃

∞
T . So, ZT−1g̃

∞
T = ZT g̃

∞
T hence

ZT−1 ∈ (R+ZT ) ∩G∗T . Therefore, ZT−1γ
n
T e1 = −ZT−1g

n
T−1 − ZT−1g

n
T ≤ 0 by

duality. Since ZT−1e1 > 0, we deduce that γnT ≤ 0. So, γnT e1 = −ĝT,nT−1 a.s.,
where ĝnT−1 = gnT−11ΛT−1

∈ ∂GT−1 and ĝnT = gnT1ΛT−1
+ (−γnT e1)1ΓT−1

belongs
to L0(GT ,FT ). By construction, lim infn |ĝnT−1| < ∞ hence we may suppose
that ĝnT−1 → ĝ∞T−1 ∈ L0(GT−1,FT−1) by [13, Lem. 2.1.2]. We deduce that

ĝnT → ĝ∞T ∈ L0(GT ,FT ) hence γ∞T = −ĝT,∞T−1 ∈ LTT−1. 2

In the following, we denote by M∞(P ) the set of all Q ∼ P such that
dQ/dP ∈ L∞ and EQLT (V ) ≤ 0 for all LT (V ) ∈ LT0 . For any contingent
claim ξ ∈ L1(R,FT ), we define the set Γ(ξ) of all initial endowments of
portfolio processes whose terminal liquidation values coincide with ξ, i.e.

Γ(ξ) := {x ∈ R : ∃V ∈ AT0 : LT (xe1 + VT ) = ξ}.
Corollary 2.16. Suppose that condition E holds. Let ξ ∈ L0(R,FT ) be such
that EP|ξ| <∞. Then, under condition NAw, Γξ = [supQ∈M∞(P ) EQξ,∞).

The proof is very similar to the one for frictionless markets.

2.3. When the solvency set is not a convex cone

All the arguments we have used in the previous sections are possible because
the solvency sets are closed convex sets. In that case, AT0 is a closed convex
cone under some no-arbitrage condition. This allows to deduce a dual charac-
terization of no-arbitrage conditions and super-hedging prices. Clearly, this
classical principle in mathematical finance is no more valid if G is not convex.
In the following, we present a modest new contribution allowing to compute
the super-hedging prices in a non convex setting.

Let us consider the very simple example with two assets and two time
steps. The first one is S0

t = 1, t = 0, 1, the second one is risky and defined
by the price St, t = 0, 1. We suppose that there are proportional transaction
costs to pay when buying/selling the risky asset. Moreover, a fixed cost c ≥ 0
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is charged. We suppose that the agent accepts to pay c only if the liquidation
value of the risky position y is either negative or larger than the fixed cost.
Indeed, if 0 < yS1(1 − ε) ≤ c, it is not interesting for the agent to liquidate
the risky position y. Precisely, we suppose that

Lt((x, y)) = x+ (ySt(1− ε)− c)+ − y−St(1 + ε)− c1y<0, t = 0, 1.

As usual, we define the solvency set Gt := {z ∈ R2 : Lt(z) ≥ 0}, t = 0, 1.
We may easily observe that G is not convex. By [21], z 7→ Lt(z) is upper
semi-continuous.

A new approach is necessary to obtain the super-hedging prices of some
payoff ξ1 ∈ L0(Re1,F1). We suppose that ξ1 is of the form ξ1 = h(S1)e1 where
h is a continuous function. The problem we propose to solve is to characterize
the set of all prices p0 ∈ Γ(h) such that p0e1 − g0 − g1 = h(S1)e1 for some
gt ∈ L0(Gt,Ft), t = 0, 1, i.e.

Γ(h) = {p0 ∈ R : p0 − h(S1) + L1(−g0) ≥ 0}.

Notice that p0 ∈ Γ(h) if and only if p0 ≥ p0(g0) = ess supF0
(h(S1)− L1(−g0)),

where the notion of essential supremum is given in [13, Section 5.3.1]. More-
over, Γ(h) is an interval. Our goal is to determine inf Γ(h). By [1, Proposition
2.13], we have

p0(g0) = sup
s∈supp (S1)

g(g0, s), g0 ∈ G0,

where supp (S1) is the support of S1 and

g(g0, s) = h(s) + γ(g0, s), g0 = (x0, y0),

γ((x0, y0), s) = x0 − (y0s(1− ε) + c)− + y+
0 s(1 + ε) + c1y0>0.

In the following, we suppose that h(s) = (s − K)+, k ≥ 0, and we use the
notation g0 = (x0, y0). We suppose that supp (S1) = [Smin

1 , Smax
1 ]. We have:

g(g0, s) = g1(g0, s) = x0 + y0s(1 + ε) + c+ (s−K)+, y0 > 0,

= g2(g0, s) = x0 + (s−K)+, 0 < s ≤ −c
y0(1− ε)

, y0 < 0

= g3(g0, s) = x0 + y0s(1− ε) + c+ (s−K)+, s >
−c

y0(1− ε)
, y0 < 0.
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Therefore,

p0(g0) = g1(g0, S
max
1 ), y0 > 0,

p0(g0) = g2

(
g0,

−c
y0(1− ε)

∨ Smin
1

)
, y0 ≤

−1

1− ε

p0(g0) = max

(
g2

(
g0,

−c
y0(1− ε)

∨ Smin
1

)
, g3(g0, S

max
1 )

)
, 0 > y0 >

−1

1− ε
.

Notice that g0 = (x0, y0) ∈ G0 if and only if x0 + L0((0, y0)) ≥ 0, i.e.
x0 ≥ δ(y0) := −L0((0, y0)). Therefore,

p∗0 = inf Γ(h) = inf
y0∈R

p0(δ(y0), y0).

When computing p∗0, we obtain the argmin y0 and x0 = δ(y0) such that
g0 = (x0, y0). For instance, with c = 1.5, ε = 5% and K = 50, we get
that g0 = (64.05,−0.61) and p∗0 = 74. With c = ε = 0 and K = 50, we
get g0 = (56.99,−0.5699) and p∗0 = 65.27. In Table 2.3, minimal prices are
computed.

Fig 1. The price function y0 7→ p0(δ(y0), y0) for y0 ∈ [−1, 1]. The parameters are c = 1.5,
K = 50, ε = 5%.

3. Conclusion

We have discovered the main arguments and tools allowing to characterize no-
arbitrage conditions and then deduce dual characterizations of super-hedging
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K=30 K=50 K=70 K=100
c = ε = 0% p∗0 = 85.27 p∗0 = 65.27 p∗0 = 49.96 p∗0 = 28.21

c = 1.5, ε = 0% p∗0 = 85.72 p∗0 = 66.8 p∗0 = 50.28 p∗0 = 28.8
c = 1.5, ε = 1% p∗0 = 88 p∗0 = 68 p∗0 = 49.22 p∗0 = 34.5
c = 1.5, ε = 5% p∗0 = 91.8 p∗0 = 74 p∗0 = 56.8 p∗0 = 31.15
c = 1.5, ε = 10% p∗0 = 98.8 p∗0 = 79.2 p∗0 = 60 p∗0 = 34.1

Fig 2. Numerical computation of the minimal prices for several parameters.

prices. It was possible to do it because the set of terminal claims is a closed
convex cone under NA or other stronger condition. In practice, the transac-
tion costs are not necessarily linear so that the solvency set G is not a cone.
Then, new approaches need to be invented. One of them could be to use
the natural stochastic preorder generated by G, i.e. x ≥Gt y if and only if
x− y ∈ Gt, see [21] and [22]. We also presented a new approach that should
be generalized.

For readers who wish to deepen their knowledge on arbitrage theory, a
list of references is given in the bibliography. Among the very well known
authors among others 2 (curently) working on arbitrage theory, we may cite
Bouchard B, Campi L., Cherny A., Delbaen F. , Guasoni P., Kabanov Y. ,
Rásonyi M., Schachermayer W., Touzi N.
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