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Groups of finite Morley rank and their representations

Adrien Deloro
May 2017 (revised May 2019)

Abstract

Notes for a mini-course given at Universidad de los Andes in May 2017. There were four
lectures of 105 minutes each, although 2 hours might have been more reasonable.
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Introduction

The following inclusions sum up our setting and goals:

{algebraic geometry} C {model theory};
e {constructible sets} C {definable sets};

{linear algebraic groups} C {groups of finite Morley rank}

(equality, in the simple case, is called the Cherlin-Zilber conjecture);

e for a group G = Gg, where G is an algebraic group and K a field of finite Morley rank,
{algebraic representations of G} C {modules of finite Morley rank for G}.

That is, we use groups of finite Morley rank to describe groups of K-points (for K an
algebraically closed field). Naturally, much is said about fields of finite Morley rank, taking
into account both their abstract properties and their interplay with groups. We emphasise
the topics of field interpretation, and definably linear groups. This will lead us to exploring
modules of finite Morley rank and definable representations of algebraic groups, where active
research is ongoing.

The course is not about the Cherlin-Zilber conjecture; the final open questions do not
directly relate to the classification programme of infinite simple groups of finite Morley rank.

These lecture notes may be a tad less fully self-contained than those for another course
I gave in Los Andes, on “Groups of small Morley rank” (see the bibliography). The overlap
between both courses, hence between both sets of notes, is actually small; I will occasionally
direct there. In particular the complete beginner is advised to start with the other course.



Lecture 1 — Rank and Groups

In this lecture. We quickly introduce groups of finite Morley rank; some prior knowledge
of model theory will help find the pace reasonable. Morley rank and the Borovik-Poizat
axioms are presented; then Macintyre’s theorem on abelian groups is proved.

The versed reader may however find some interest in the (very classical) definability of
the Jordan decomposition inside GL, (K).

References:
e An extremely well-explained reference is [Borovik-Nesin, §4-5].
e More details on model theory in [Poizat, Introduction—§1].
e Even more model theory in [Marker, §3.2, §6.2].
e As a general reference for linear algebraic group theory, [Humphreys].

Let us first describe the setting for our lectures: universes of finite Morley rank. This
requires a minimal model-theoretic framework which is better understood in view of the theory
of linear algebraic groups; knowledge of the latter helps, but is not a formal prerequisite.
Conversely the non-logician lost in Morley rank should focus on the Borovik-Poizat axioms,
which are quite natural from the point of view of algebraic geometry.

1 Morley rank

1.1 Definable and interpretable sets

Definition (structure). A structure is a set M equipped with relations. Each relation R; is a
subset of M™* for some n; which can depend on R;. Using the graph trick we may also allow
functions f; : M™ — M. We write M = (M;{R;}) to denote the structure.

A group structure is a structure (G;-,=,...), with possibly more relations than just the
group law, i.e. it can be an expansion of the group language. Likewise a field structure is
possibly an expansion of (K;+,-,=,...). The phrase pure group (or pure field ) helps emphasise
the other case.

Definition (definable and interpretable sets). Definable sets are the members of the definable
class, which is the smallest collection:

e containing all singletons, all Cartesian powers M™, and all relations R;;

o stable under Boolean combinations (viz. under finite intersections, finite unions, and
taking complements; but infinitary combinations are not allowed);

e stable under projection (viz. if A C M™" is definable, so is m(A) = {T € M™ : Iy ¢
M, (Z,y) € A}; and likewise for the other projections).

Likewise the interpretable class is the smallest collection:
e containing all definable sets;

e stable under taking quotients (viz. if A C M™ is interpretable and E C A? is an inter-
pretable equivalence relation on A, then AJE is interpretable).

There is a difference; however we shall soon abuse terminology. The reason comes from
geometry and requires one more definition.

[Borovik-Nesin]: Alexandre Borovik and Ali Nesin. Groups of finite Morley rank. Vol. 26. Oxford Logic Guides.
The Clarendon Press — Oxford University Press, New York, 1994, pp. xviii4+409

[Poizat]: Bruno Poizat. Stable Groups. Vol. 87. Mathematical Surveys and Monographs. American Mathematical
Society, Providence, 2001, pp. xiii4+129

[Marker]: David Marker. Model theory: An Introduction. Vol. 217. Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002, pp. viii4342

[Humphreys]: James Humphreys. Linear algebraic groups. Vol. 21. Graduate Texts in Mathematics. New York:
Springer-Verlag, 1975, pp. xiv4247



Definition (Zariski-closed and constructible sets). Let K |= ACF, i.e. let K be a pure algeb-
raically closed field.

o A subset A C K" is Zariski-closed if it is defined by a system of polynomial equations.
To a model-theorist, it means that A is defined by a conjunction of atomic formulas in
the pure field language (with parameters).

e Now A C K" is constructible if it is in the Boolean algebra generated by Zariski-closed
sets.

To a model-theorist, it means that A is defined by a quantifier-free formula (always with
parameters).

Fact (Chevalley’s Constructible Theorem [Marker, Corollary 3.2.8]). If K is an algebraically
closed field, then the constructible class is stable under projections.

Model-theoretically, it just means that the constructible class and the definable class coin-
cide. This is a straightforward consequence of quantifier elimination.

Fact (Tarski’s Elimination Theorem [Marker, Theorem 3.2.2]). ACF eliminates quantifiers.

Later on we shall consider algebraically closed fields with extra structure; of course Tarski’s
Theorem will no longer hold. We now turn to the interpretable class in a model of ACF.

Fact (Poizat; first appeared in [Poi83], alternative proof in [Hol93]; see [Marker, The-
orem 3.2.20]). ACF eliminates imaginaries, i.e. if A C K" is definable in K = ACF and
E C A2 is a definable equivalence relation, then there are definable B C K™ and f : A - B
such that on A, one has zEy iff f(z) = f(y).

Hence A/E can be safely parametrised by the definable set B.

As a consequence, if K = ACF is a pure algebraically closed field, then the interpretable
class can be considered to be no larger than the definable class (geometers apparently have no
name for this phenomenon).

Later, when working with expansions of algebraically closed fields, interpretability will no
longer collapse to ordinary, “Cartesian” definability. So there will be two options:

e work with definable sets mostly;
e also allow interpretable sets.

Now our topic is group theory, and group theorists are extremely keen on taking quotients.
So the most convenient (algebraically speaking) choice is to allow interpretable sets.

Definition (universe). The universe of a structure M is the class of its interpretable sets
(with parameters).

Remark. Be extremely careful when reading most sources on groups of finite Morley rank
(such as [Borovik-Nesin]) that definable is systematically used to mean interpretable. The
versed model-theorist will use the phrase definable in M®Y; T won’t.

1.2 Definability of the Jordan decomposition

Here the model-theorist may pause and learn something in group theory.

Lemma. Let K be an algebraically closed field and G = GL,(K) as a group. Then the sets of
semisimple (i.e. diagonalisable), resp. unipotent (i.e. Id +nilpotent) elements, are definable.

Proof. It is not a good idea to think in terms of the spectrum (set of eigenvalues), as G is
an abstract group and we have lost the action on K. We need something more intrinsincally
group-theoretic.
Take a diagonal matrix d with distinct entries. Then C(d) is exactly the diagonal sub-
group, and Ug ccC (d7) is the set of semisimple elements, which is therefore definable.
Being unipotent in characteristic p > 0 could easily be defined by: having order dividing

p". Nothing similar works in characteristic 0. But in either case, being unipotent means

[P0oi83]: Bruno Poizat. ‘Une théorie de Galois imaginaire’. J. Symbolic Logic 48(4) (1983), 1151-1170 (1984)
[Hol93]: Jan Holly. ‘Definable operations on sets and elimination of imaginaries’. Proc. Amer. Math. Soc. 117(4)
(1993), pp. 1149-1157



being conjugate to the strictly upper-triangular group:

1 * *
*
1
To prove definability of Ug < U? it suffices to prove that of U.

The associative K-algebra M, (K) is around; the group does not know this but we do.
Observe that Chy, k)(X) is always a K-vector space. By the descending chain condition on
vector subspaces (which relates to dimension theory and we shall return to this shortly),
Chr,, ) (U) is a finite intersection Chy,, k) (ut, . . ., ux) for some tuple (u1,...,ux) € U, In
particular Cq(U) = G N Cun,x)(U) = Ca(ui,...,ux) is definable. A computation shows

that:
Ui = Co(U) = {M + pF1n: (\p) e K x Ky}
where E; ; is the matrix with only one non-zero entry, in cell (i, 7).
Now it is a fact that for any i # j, the group Ui ; := {AM + puFi; : (A\,p) € K* x Ki}
is G-conjugate to Ui, hence definable as well (take a “permutation matrix”). Consider the
group they generate when i < j:

A %k %
UZ=<Ui,j2i<j>= * A e KX
A

One should be careful in general with generation but here again, by dimension theory, finite
products will do: so U is definable. Therefore so is its normaliser:

* ok %

B:= Ng(U) =

It so happens that B’ = U. One should be careful in general with commutator subgroups,
but here again finite products of commutators do (actually U is even the set of commutators
of B). Hence U is definable. O

Remark. The question would have been trivial if we had worked in the ring M, (K).

The Jordan decomposition will reappear in the third and last lectures. To some extent it
is central in this class.

1.3 Morley rank

One more notion from model theory.

Definition (Morley rank). Let M be an w-saturated structure. The Morley rank of definable
X C M"™ is given by the following induction, where o is an ordinal:

o MR(X) >0 iff X # 0;

e MR(X) > a + 1 iff there are definable (Y;)icw disjoint, all contained in X, and with
MR(Y:) > o
)

(
e MR(X) > a for limit a iff MR(X) > B for all B < a.
Remarks.

e The Morley rank of X = p(M) does not increase if we go to N = M, precisely because
M is w-saturated. So it is a “strong” notion, a property of the theory.

e In general the induction need not terminate. Two special cases are worth highlighting:

— if MR(M) is an ordinal, the structure (its complete theory) is said to be totally
transcendental (this is equivalent to being w-stable if the language is countable);

— if MR(M) is a finite ordinal, we say that it has finite Morley rank.



Examples.

e A pure algebraically closed field K = ACF has Morley rank 1 (by quantifier elimination).
A definable subset A C K" has Morley rank equal to its Zariski dimension, which may
be defined topologically, or equivalently through commutative algebra, or equivalently
geometrically. The model-theoretic intuition is certainly a decent point of view as well:
Zariski dimension is a special case of Morley rank [Poizat, §4.2], [Marker, pp. 226-227];
cf [Humphreys, §3].

e Any divisible torsion-free group, seen as a pure group, has Morley rank 1 (QE again).

e Later we shall see that infinite fields of finite Morley rank are algebraically closed (a
theorem by Macintyre). Which infinite groups have finite Morley rank is a good question
(the group-theoretically simple case is the famous Cherlin-Zilber conjecture, which stands
open; exotic groups of finite Morley rank alien to algebraic geometry are already known
to exist, though none so far is simple).

Remark. Having finite Morley rank is inherited by definable sets (and definable algebraic
structures). Hence a group or field which is definable in a structure of finite Morley rank, has
finite Morley rank too.

Definition (Morley degree). If X C M™ has ordinal MR, then it also has an integer Morley
degree deg X, which is the maximal number of Y one can simultaneously find in the definition.

2 Groups of finite Morley rank

2.1 Borovik-Poizat axioms

It so happens that for our mostly algebraic purposes, a less model-theoretic and more naive
setting is enough. In the early 80’s Borovik first suggested an axiomatic framework for what
he considered worth of interest. Poizat later added the fourth (missing) axiom and was able
to prove “completeness” of the resulting definition, in the sense of his Equivalence Theorem
below.
Remark. Bear in mind that we call definable the elements of the universe of a structure
(instead of interpretable).
Definition (rank function; Borovik-Poizat axioms). Let M be a structure and U be its uni-
verse. A rank function is a finite-valued map vk : U \ {0} — w with the following properties,
in which A, B stand for definable sets and f : A — B is a definable surjection:

e tk A > n + 1 iff there are infinitely many disjoint definable B; C A with tkB; > n

(“monotonocity”);

o for every integer k, the set Fy, == {b € B :1k f~1(b) = k} is definable (“definability”);

e if B = Fy for some k then tk A = k + 1k B (“additivity”);

e there is an integer £ such that for each b € B, either f~'(b) has at most £ elements or is

infinite (“elimination of infinity”).

As a consequence of the first axiom, rk A = 0 iff A is finite.
Theorem (Poizat’s Equivalence Theorem; [Poizat, §2.4]). Let G be a group structure. Then
G has finite Morley rank iff the universe of G has a rank function; in which case MR = rk
everywhere.

This also applies to expansions of groups: for instance to field structures as well.
Poizat’s Equivalence Theorem is non-trivial for two reasons:

e it is not clear whether in a group of finite Morley rank, MR extends to interpretable sets;

e it is not even clear in the first place whether a ranked group is a group of finite Morley
rank, as the Borovik-Poizat axioms do not require w-saturation.

The proof involves a thorough analysis of groups with a suitable dimension on definable
sets (something common to both groups of finite Morley rank and ranked groups). We can
but direct to Poizat’s book for details.

As a corollary to Poizat’s theorem, both points of view (orthodox model-theoretic, revi-
sionist algebraic) can be adopted in the study of groups of finite Morley rank/ranked groups.
Both phrases will be used indifferently. And since MR must then be the only rank function, it
is safe to say “rank” and “degree” with no reference to Michael Morley.



Conjecture (Cherlin-Zilber Algebraicity Conjecture, [Che79], [Zil77]). Let G be a simple,
infinite, ranked group. Then G is the group of points of an algebraic group, viz. there are
an algebraically closed field K and an algebraic group G such that G ~ G(K) (as an abstract
group).

Despite its significance in model theory, as the last standing conjecture “a la Zilber”, its
central role in the historical development of the topic of groups of finite Morley rank, its tight
relations with other parts of mathematics, its beauty. .. this conjecture hardly matters here.

2.2 Basic properties

Our first results are classical: the descending chain condition, existence of a definable connected
component.

Lemma (descending chain condition; [Borovik-Nesin, §5.1], [Poizat, §1.3], [Marker, §7.1]).
Let G be a ranked group. Then every descending sequence of definable subgroups terminates.

Proof. Let (H;);er be such a sequence. As rank and degree are ordinals, at some point the
sequences rk H; and deg H; must become stationary.

So it remains to show that whenever K < H are definable groups with same rank and
degree, equality holds. This is because H is a disjoint union of translates of K, which all
have same rank and degree as K: so there is only one such, i.e. H = K. O

Lemma (and definition: connected component; [Borovik-Nesin, §5.2], [Poizat, §1.4], [Marker,
§7.1]). Let G be a group of finite Morley rank. Then there is a smallest definable subgroup
of finite index. It is definably characteristic in G and called the connected component of G,
denoted G°.

Remark. Be very careful that there is no general notion of connected components for definable
sets: there is no topology here.

Proof. Intersect all definable subgroups of finite index: by the DCC, we get a definable
subgroup, of finite index, and clearly minimal as such. It is easily seen that G° is definably
characteristic in G. O

Corollary (and definition: definable envelope). Let X C G be any subset. Then there is a
smallest definable subgroup containing X, called the (definable) envelope of X and denoted by
<X>def S G.

Remark. Here again there is no general analogue of the Zariski closure, i.e. no general defin-
ition of a “definable closure” in our sense (the phrase exists in model theory but means some-
thing else). This can only produce definable groups—because the DCC works only for definable
subgroups.

2.3 Abelian groups

We finish with a nice application of the DCC.

Theorem (Macintyre’s Theorem on abelian groups [MacT71a]; see [Borovik-Nesin, The-
orem 6.7]). Let A be an abelian group of finite Morley rank. Then there are definable, charac-
teristic subgroups D, B < A such that:

e D is divisible and B has bounded exponent;
e A=D+ B and DN B is finite.

Proof. We use additive notation. Consider the following chain of subgroups:

A>2A>--->nlA> ...

[Che79]: Gregory Cherlin. ‘Groups of small Morley rank’. Ann. Math. Logic 17(1-2) (1979), pp. 1-28

[Zil77]: Boris lossifovitch Zilber. ‘Groups and rings whose theory is categorical’. Russian. Fund. Math. 95(3)
(1977), pp. 173-188

[Mac71a]: Angus Macintyre. ‘On wi-categorical theories of abelian groups’. Fund. Math. 70(3) (1971), pp. 253
270



By the descending chain condition, it must become stationary at say no!A = D, which is
a definable, characteristic subgroup. We claim that D is divisible. This is by stationarity:
D =nolA = (no+n)!A <n-no!A=nD, which is n-divisible.

Now let B = {a € A : ngla = 0} be the subgroup of elements of order dividing no!.
Clearly B is a definable and characteristic subgroup of bounded exponent. We claim that
A =D+ B. For if a € A, then nola € D and since D is divisible there is d € D with
nold = nola. So by construction b=a —d € B, and a =d +b.

It remains to show that the intersection I = DN B must be finite. Consider the definable
homomorphism f : D — D with f(d) = no!d. The kernel of f is I. So all fibres of f have rank
equal to rk I. But D as we know is divisible, so f is onto. All this shows rk D =rk D +rk 1,
and therefore by additivity rk I = 0: so I = D N B is finite. O

More can be said, for which you need to know the quasi-cyclic Prifer p-group Z/p™Z =
U, Z/p"Z ~{z€C* :3n € N: 2P =1}. See the exercises.

Final notes and exercises

Elimination theorems

It is well-known that an elimination theorem is both useful and expensive.

e Other instances of elimination of quantifiers: the theory of real closed fields RCF in the
language of ordered rings (Tarski-Seidenberg Theorem, see [Marker, Corollary 3.3.18]), the
theory of p-adically closed fields in Macintyre’s language [Mac76].

e Any (expanded) field of finite Morley rank eliminates imaginaries [Wag01, Corollary 6]. In
an arbitrary theory of finite Morley rank EI has no reason to hold; but the whole universe
approach has the effect of carefully eluding the problem of interpretability vs. definability,
and people in groups of finite Morley rank never distinguish the two notions.

e In the o-minimal case there are various results covering all reasonable cases, with the proviso
that an o-minimal theory need not eliminate imaginaries [Pil86]. Apart from that, the
theory of an o-minimal group does eliminate imaginaries [EdmO03], and in an o-minimal
theory any interpretable group is definable [EPR14].

I have no idea what happens with the p-adics.

Definability of the Jordan decomposition

e Our proof that U is definable relies of course on the Chevalley-Zilber generation lemma
([Humphreys, Proposition 7.5]; in model theory it is sometimes referred to as “Zilber’s
Indecomposability Theorem” [Zil77, Theorem 3.3]; see [Borovik-Nesin, §5.4], [Poizat, §2.2],
[Marker, §7.3]).

Although the lemma appears repeatedly in this class, we neither prove nor state it. It is
typical of Nj-categorical behaviour and its generalisations are not as nice.

e It is an excellent question whether given G = Gg the group of K-points of an algebraic
group G defined in an algebraically closed field K, the two following universes coincide:

— the universe of the pure group (Gj;-);

— the trace on G of the universe of K, i.e. sets of form A/E with A C G™ K-definable

and E C A? a K-definable equivalence relation.

It is a non-trivial observation by Poizat that in case K = ACF is a pure algebraically
closed field and G is a simple algebraic group (typically SLy,), then both universes do agree
[Poi88], [Poizat, Corollary 4.16].
There are counterexamples without simplicity; see [Bal89] or [Frél0]. For which affine
groups G it holds is open.

[Mac76]: Angus Macintyre. ‘On definable subsets of p-adic fields’. J. Symbolic Logic 41(3) (1976), pp. 605-610
[Wag01]: Frank Wagner. ‘Fields of finite Morley rank’. J. Symbolic Logic 66(2) (2001), pp. 703-706

[Pil86]: Anand Pillay. ‘Some remarks on definable equivalence relations in o-minimal structures’. J. Symbolic Logic
51(3) (1986), pp. 709-714

[EAmO03]: Mério Edmundo. ‘Solvable groups definable in o-minimal structures’. J. Pure Appl. Algebra 185(1-3)
(2003), pp. 103-145

[EPR14]: Pantelis E. Eleftheriou, Ya’acov Peterzil and Janak Ramakrishnan. ‘Interpretable groups are definable’.
J. Math. Log. 14(1) (2014), pp. 1450002.1-1450002.47

[P0i88]: Bruno Poizat. ‘MM. Borel, Tits, Zilber et le général nonsense’. J. Symbolic Logic 53(1) (1988), pp. 124
131

[Bal89]: John T. Baldwin. ‘Some notes on stable groups’. In: The model theory of groups (Notre Dame, IN,
1985-1987). Vol. 11. Notre Dame Mathematical Lectures. Univ. Notre Dame Press, Notre Dame, IN, 1989,
pp. 100-116

[Fré10]: Olivier Frécon. ‘Splitting in solvable groups of finite Morley rank’. J. Log. Anal. 2 (2010), pp. 1-15



Morley rank
If we drop the w-saturation clause on M then we compute its so-called Cantor rank (which can
increase if we go up to an elementary extension). The topic of groups of finite Cantor rank seems
untractable if not artificial; Poizat however did something there [Poil0].

The Cherlin-Zilber conjecture
Immensely more could be said as in the past four decades most of the attention devoted to
groups of finite Morley rank has focused on the question of algebraicity of abstract, simple
groups. Under the influence of Borovik, methods were borrowed from the classification of the
finite simple groups, making the theory of groups of finite Morley rank resemble finite group
theory more than algebraic group theory or model theory.
One should however not forget that there are other legitimate approaches (though none proved
as fruitful as Borovik’s) and other legitimate open problems. The present course precisely tries
to introduce questions of a different nature, where there is more algebraic group theory, at times
more model theory, and remarkably less finite group theory. I believe that there is something
significant to be done at the intersection between model theory and representation theory, and
the Nj-categorical setting is a good laboratory to run the experiment.
For a discussion of the status of the Cherlin-Zilber Conjecture let me refer to the first lecture
(and final notes) of another class I gave—afterwards—in Los Andes [Del18].

Chain conditions and envelopes
Here again, see the final notes of lecture 2 of [Dell8] for many generalisations.

Abelian (and nilpotent) groups of finite Morley rank
It is well-known amongst algebraists that a nilpotent group is nothing but an abelian group where
commutativity fails. Macintyre’s analysis of abelian groups of finite Morley rank was extended
by Nesin.

Theorem (Nesin’s structure theorem for nilpotent groups [Nes91]; see [Borovik-Nesin, The-
orem 6.8]). Let N be a nilpotent groups of finite Morley rank. Then there are definable, char-
acteristic subgroups D, B < A such that D is divisible and B has bounded exponent, N = D - B
and D N B is finite.

And yet, the Baudisch group confirmed that any hope of classifying nilpotent groups of finite
Morley rank would be hopeless, as we shall see in the next lecture.

Nesin’s theorem is too long to be an exercise. But it is a very good take-home problem as you
will require to develop a theory of nilpotent groups of finite Morley rank (general hint: try and
adapt classical properties from the finite case).

Exercise. Find parameter-free definitions in GLy, (K) of the set of semisimple elements, of the set of
unipotent elements (in our proof we had to fix matrices d and u; with good properties).—Unipotence
is difficult.

Exercise. Prove that SLy(C) is definable in GL2(C) (hint: Gauf’ algorithm). Prove that a field
isomorphic to C is definable in SL2(C) (hint: write the upper-triangular subgroup as a semi-direct
product).

The first is a consequence of the Chevalley-Zilber generation lemma; the second, of the Schur-Zilber
field lemma—of course you have to do without those.

Exercise. The field R is not totally transcendental, i.e. MR(R) is greater than any ordinal.

Exercise. Let D be a divisible, abelian group of finite Morley rank. Prove that there are integers dj,
indexed by the prime numbers and an arbitrary index set I such that:

p~Par~n*ePa
p I

Exercise (the rigidity of tori). Let G be a group of finite Morley rank and T' < G be a divisible
abelian p-subgroup (we do not suppose definability). Then [Ng(T') : Cg(T)] is finite and Ng(T) is
definable.

Hint: definability of Cq(T) is by the pcc; now T ~ (Z/p>®Z)? for some d; then Ng(T)/Cq(T)
embeds into Ng(Tpr)/Ca (T, ) for k large enough, where Tp, = {t € T': " = 1}.

Exercise (torsion lifting). Let p be a prime and N < G be two definable groups of finite Morley rank.
If g € G satisfies gP € N, then there is a p-element € gN (of order a power of p).

Hint: first prove it for finite G, using Bézout relations. Then prove that in the ranked case one has
(9)gos = D ® C where D = (g) g, is divisible and C is a finite cyclic group.

[P0i10]: Bruno Poizat. ‘Groups of small Cantor rank’. J. Symbolic Logic 75(1) (2010), pp. 346-354

[Del18]: Adrien Deloro. ‘Groups of small Morley rank’. Lecture notes of a mini-course given at Univ. Los Andes.
2018

[Nes91]: Ali Nesin. ‘Poly-separated and w-stable nilpotent groups’. J. Symbolic Logic 56(2) (1991), pp. 694699



Lecture 2 — Fields in Groups

In this lecture. We begin with the study of abstract ranked fields, which are algebraically
closed (Macintyre’s Theorem), but can be model-theoretically much more complicated than
in geometry. Then we shall see how fields tend to spontaneously appear (definably) in
ranked groups, or more precisely ranked modules: this is the Schur-Zilber Field Lemma.

References: Classical sources [Borovik-Nesin|, [Poizat], [Marker] cover most of it. The
Linearisation Theorem is however not in the canon.

Before we start, remember that any field interpretable in a ranked group must be ranked
as well. Also bear in mind that by Poizat’s Equivalence Theorem, fields of finite Morley rank
and ranked fields are the same.

3 Abstract fields of finite Morley rank

Let us begin with properties of the base field in algebraic geometry. We shall address the
following questions.

Questions.

1. Recall that a pure algebraically closed field has rank and degree 1 (“strong minimality”:
immediate from quantifier elimination).

Conversely, is an (infinite) field of finite Morley rank algebraically closed? (luckily, YES).
2. Must a field structure of finite Morley rank have rank 12 (unfortunately, NO).

3. It is a non-trivial theorem by Poizat that an infinite field I definable in a pure algebra-
ically closed field K must be isomorphic to K (and even definably so).

Is the same true if K is an arbitrary field of finite Morley rank? (unfortunately, NO).

4. Tt is a consequence of dimension theory that if K = ACF is a pure algebraically closed
field, then K4 and K* are minimal (viz. contain no constructible, proper, infinite sub-
groups).

Is the same true if K is an arbitrary field of finite Morley rank? (unfortunately, NO).

3.1 Good news

We first answer Question (Q1) above.

Theorem (Macintyre’s Theorem on fields [Mac71b]; see [Borovik-Nesin, Theorem 8.1], [Marker,
Theorem 7.2.10], or [Poizat, Theorem 3.1]). IfK is an infinite field of finite Morley rank, then
K is algebraically closed.

Proof. This involves a bit of Galois theory. The proof is extremely interesting in its own
right but not in the spirit of the lectures. O

As a matter of fact, commutativity is not required.

Theorem (Zilber [Zil77], Shelah [She75], Cherlin [CheT78]). Any infinite (possibly non-
commutative) domain of finite Morley rank is an algebraically closed field.

Good news almost stop here, save for one little bit around Question (Q4).

[Mac71b]: Angus Macintyre. ‘On wi-categorical theories of fields’. Fund. Math. 71(1) (1971), pp. 1-25

[She75]: Saharon Shelah. ‘The lazy model-theoretician’s guide to stability’. Logique et Analyse (N.S.) 18(71-72)
(1975). Comptes Rendus de la Semaine d’Etude en Théorie des Modéles (Inst. Math., Univ. Catholique Louvain,
Louvain-la-Neuve, 1975), pp. 241-308

[CheT78]: Gregory Cherlin. ‘Super stable division rings’. In: Logic Colloquium 77 (Wroclaw, August 1-12, 1977).
Ed. by Angus Macintyre, Leszek Pacholski and Jeff Paris. Vol. 96. North-Holland, Amsterdam-New York, 1978,
pp. 99-111



Definition (minimal group). Call a group minimal if it has no definable, infinite, proper
subgroup.

Examples.
e Any divisible, torsion-free, abelian group. As a matter of fact, any pure group of the

form @p (Z/pOOZ)dT’ st @I Q.

e As we know, in a pure algebraically closed field, Ky and K* are minimal; so are elliptic
curves (which are non-affine algebraic groups).

Lemma (Zilber, but I could not source the original; see [Poizat, Corollary 3.3]). If K is a
field of finite Morley rank of characteristic zero, then Ky is minimal.

Proof. Let A < K4 be a infinite, definable, proper subgroup; we shall prove A = 0. Let
N = {z € K: zA = A}. Clearly N is a definable subfield of K. Since the characteristic
is zero, N is infinite. Since rkK is finite, the extension K/N is finite. But by Macintyre’s
Theorem, N is algebraically closed already: hence N = K. So A is a proper ideal of the field
K, forcing A = 0. O

3.2 Bad news

We turn to Question (Q3). Pure geometry, as mentioned, behaves nicely.

Fact (Poizat’s Monosomy Lemma,; first [Poi88, Lemme p. 129], see [Poizat, Theorem 4.15]).
Let K |= ACF be a pure algebraically closed field. Then any infinite field definable in (K;+, )
is definably isomorphic to K.

Alas a ranked field structure can encode many fields—even in Morley rank 1, which makes
it even worse.

Fact (Hrushovski [Hru92]). There ezists a strongly minimal structure (i.e. of Morley rank
and degree 1) (K; 8, ; ®, ®) where (K; B8, 1) and (K; ®, ®) are fields of different characteristic.

This was among the first so-called “amalgam” constructions. Later when such construc-
tions were better understood, more pathologies could be constructed, yielding bad answers to
Questions (Q4) and (Q2).

Fact.
e There exists a field K of finite Morley rank of characteristic zero with non-minimal K*
[Bau+09].

e There exists a field K of finite Morley rank of characteristic p > 0 with non-minimal K
[BMZ07].

e [t is open whether there exists a field K of finite Morley rank of characteristic p > 0 with
non-minimal K* (but regarded as unlikely by number-theorists [Wag03] ).

In particular, there are fields of finite Morley rank > 1.
Remember however that in characteristic 0, K4 must be minimal.
charK ‘ 0 P

K4+ minimal not necessarily minimal
K> not necessarily minimal open (but with strong constraints)

4 Presence of fields

There is one more observation from algebraic geometry and one more question.

[Hru92]: Ehud Hrushovski. ‘Strongly minimal expansions of algebraically closed fields’. Israel J. Math. 79(2-3)
(1992), pp. 129-151

[Bau+09]: Andreas Baudisch et al. ‘Die bose Farbe’. J. Inst. Math. Jussieu 8(3) (2009), pp. 415-443

[BMZO07]: Andreas Baudisch, Amador Martin-Pizarro and Martin Ziegler. ‘Red fields’. J. Symbolic Logic 72(1)
(2007), pp. 207-225

[Wag03]: Frank Wagner. ‘Bad fields in positive characteristic’. Bull. London Math. Soc. 35(4) (2003), pp. 499-502
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Question.

5. It is a non-trivial fact in geometry that for K a pure algebraically closed field, any non-
trivial, connected, non-abelian algebraic group of K-points interprets K, and no other
infinite field.

Does every infinite, non-abelian group of finite Morley rank interpret a field? A unique
field?

The answer is not as good as one may wish. First, because of the negative answer to
Question (Q3), uniqueness should not be expected in Question (Q5). What about existence?

4.1 Intepretation theorem

Here is a partial positive answer to field interpretability.

Theorem (Linearisation Theorem; largely inspired by [Nes89a]). In a ranked universe, let
G be a definable, infinite group acting definably on a definable, abelian group V. Suppose that
the action is faithful and V is irreducible, i.e. has no definable, proper, infinite, G-invariant
subgroup.

Then K = Cpetgna(v)(G) is a definable field. If infinite then it is algebraically closed; V is
finite-dimensional and G < GL(V), definably.

Of course one has let DefEnd(V') be the ring of definable endomorphisms of V. Although
its elements are, DefEnd(V) itself need not be definable.

Proof.

Step 1. FEither V has prime exponent p > 0, or it is divisible and torsion-free.

Proof. Return to Macintyre’s theorem on abelian groups. V' decomposes as D + B, where
both D and B are definable and characteristic, and consequently G-invariant. By irredu-
cibility, either V' = B, in which case it is easily seen to have prime exponent, or V = D, in
which case it is divisible.

In the latter case it remains to show that V is actually torsion-free. But it can be
proved that for any prime p, Tor, (V) = {v € V : In : p"v = 0} (this need not be definable)
is isomorphic to (Z/p™Z)% for some integer d, > 0. Now if Tor(V) # 0 then there is
p with d, > 0. Observe how Tor,(V) is then infinite countable; as it has at most 2"°
endomorphisms and G is infinite, there must be f # g € G which coincide on Tor,(V).
Then Tor, (V) < ker(f — g) which is definable, so (Tory(V)),.; < ker(f — g). However
Tor, (V) is G-invariant, so its envelope as well. By irreducibility one has (Tor,(V)) s = G,
so f = g in End(V), against faithfulness of G.

We carried the proof in a sufficiently saturated model: this is allowed since by Poizat’s
Equivalence Theorem, a ranked group always has a saturated elementary extension with
the same rank function. O

The theorem is a definable version of Schur’s Lemma. We would like to introduce the
collection of covariant endomorphisms of V', and prove that it is a skew-field. As we work in
the definable category, it is natural to restrict oneself to definable ones. So we aim at showing
that:

K= CDefEnd(V)(G) = {f S DefEnd(V) :VgeGgof=fo g}
is a definable skew-field, and then rely on our knowledge of ranked skew-fields (Macintyre’s
and Cherlin-Shelah-Zilber’s Theorems). (If K is finite there is not much to do: it is easily
seen to be a finite domain, hence a finite skew-field, hence a finite field, and definability is
no issue. So we keep the infinite case in mind.)

The strategy followed in the present proof is not the most general, but it has its merits.

Step 2. There are an integer n and some wo € V with V = G, - wo, where G, denotes the
set of at most n elements of G.

Proof. A little model theory. Notice that this is almost trivial if V' is divisible and torsion-
free, since in that case G - wo is infinite, and the sum has to stop by finiteness of the
rank. If V has exponent p this uses classical techniques reminiscent of the Chevalley-Zilber

[Nes89a]: Ali Nesin. ‘Nonassociative rings of finite Morley rank’. In: vol. 11. 1989, pp. 117-137
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generation lemma (“Indecomposability Theorem”), for which we have no time. o

Notation. Let:

L= ﬂ ker h

he(G):
wo Eker h

For wy € L, let:

where f € Gy.

L is a form of double centraliser. The map Aw,—w,; is conveniently thought of as a
replacement map insofar as it replaces the argument in the function f.

Step 3. This is well-defined; moreover K = {Awy—w; : w1 € L}.

Proof. Notice that since there always is such an f and since G,, is a definable set, the map
is definable.

Well-definition requires a word. But if v = f(wo) = g(wo) for f and g in (G), then
f — g € (G) vanishes at wo. So by definition, f — g vanishes at wi: hence f(wi) = g(w1)
and the map is well-defined. It is left as an exercise to check that Aw,—w, is even an
endomorphism.

We claim that Ayy—w, € K. For simplicity, just write \. Now if g € G and v = f(wo) €
V with f € G, then g(v) = f'(wo) for some other sum of at most n operators f’. Notice
that gf — f' € (G) vanishes at wo, so it must vanish at w; as well. Hence:

g(A®)) = g(f(wo)) = g(f(wr)) = f'(wr) = A(f'(wo)) = A(g(v))

as desired. This means A € K. The converse inclusion is left as an exercise. O

Step 4. K is a definable, algebraically closed field; V is a K[G]-module.

Proof. Of course we assume that K is infinite. The previous step entails definability of K.
So it remains to prove that it is a skew-field. This is a good exercise in the spirit of Schur’s
Lemma.

As a conclusion, K is an infinite definable skew-field, hence by the Macintyre-Cherlin-
Shelah-Zilber theorem, an algebraically closed field. Now V' is a vector space over K, hence
finite-dimensional, and the action of G is linear (by definition of K). We are done. O

This concludes the proof of the theorem. O

Question (open, and unlikely). Can one extend the Linearisation Theorem to the case where
V has exponent p without assuming that G has an infinite centraliser?
(For instance would something like: “for all v € V\ {0}, Cv (C¢(v)) is infinite” be enough?)

As a first corollary we derive a famous result.

Corollary (“Zilber’s Field Theorem”; [Borovik-Nesin, Theorem 9.1], [Poizat, Theorem 3.7],
[Marker, Theorem 7.3.9]). In a ranked universe, let G be a definable, infinite, abelian group
acting definably on a definable, abelian group V. Suppose that the action is faithful and V is
irreducible.

Then there is an algebraically closed field K with V ~ Ky and G < K*, definably.

Remarks.

e This corollary is but a very special case and should not be regarded as the fundamental
phenomenon.

e Zilber’s Field Theorem drew interest to the model-theory of K*; we now know (see the
“bad news” above, §3.2, answering Question (Q4)) that it need not be minimal, i.e. that
in finite Morley rank the embedding G — K* may be proper.

e Asa corollary to the Chevalley-Zilber generation lemma (“Indecomposability Theorem”),
any soluble, connected, non-nilpotent ranked group defines an algebraically closed field:

12



this was apparently first used in [Zil84].

However—and despite the proof we gave—the Schur-Zilber Field Lemma itself does not
require irreducible generation.

We also retrieve another theorem which was deemed independent.

Corollary ([LW93]). In a ranked universe, let G be a definable, infinite group acting defin-
ablly on a definable, abelian group V. Suppose that the action is faithful and V is irreducible.
Suppose that V' does not have bounded exponent. Then there is a definable algebraically closed
field K over which K is a finite-dimensional vector space and G — GL(V'), definably.

Let us mention one further consequence, which will be in the exercises.

Corollary (Nesin [Nes89b], isolated by Poizat [Poizat, Theorem 3.8]). In a ranked universe,
let G be a definable, infinite group acting definably on a definable, abelian group V. Suppose
that the action is faithful and V is irreducible. Suppose that G is connected, and contains an
infinite, definable, abelian, normal subgroup A < G.

Then there is a definable, algebraically closed field K over which V' is a finite-dimensional
vector space; G — GL(V) while A — K* Idy.

4.2 Pathologies, known and potential

The Linearisation Theorem (more precisely, Zilber’s version) yields a partial answer to Ques-
tion (Q5). One cannot expect a full positive answer though.

Fact ([Bau96]). There exists an infinite, connected, nilpotent group of finite Morley rank
which cannot define an infinite field.

Baudisch’s group (which was obtained through a Hrushovski-style construction) is a peri-
odic group, a group in which all elements have finite order. It is mot an object of algebraic
geometry: whence the title of Baudisch’s publication.

Our knowledge ends here: beyond is the realm of fantasies.

Definition (bad group). A bad group would be a non-nilpotent group of finite Morley rank
all of whose definable, connected, soluble subgroups would be nilpotent.

We do not know whether there is a such a thing. Ever since Cherlin’s first paper [Che79]
on groups of finite Morley rank, they drew attention as the worst possible pathology. However
one should be careful with terminology.

e First: no relationship with what was once called bad fields. This is just an instance of
unimaginative (not to say: bad) terminology.

e Then: the very notion of a bad group has changed over the years.

e Last but not least: the definition is concerned with the case where soluble interpretation a
la Zilber fails to produce a field. So far this is the main tool, but obsession with nilpotence
of soluble subgroups tends to hide the possibility to retrieve a field using other methods.
There is no proof that a bad group in this sense would necessarily be a negative answer
to Question (Q5).

I personally tend to avoid the terminology as highly unclarifying, and use either “asomic
group” for a group not defining an infinite field, or “group with nilpotent Borel subgroups”
for a group whose definable, connected, soluble subgroups (its Borel subgroups) are nilpotent.

[Zi184]: Boris lossifovitch Zilber. ‘Some model theory of simple algebraic groups over algebraically closed fields’.
Collog. Math. 48(2) (1984), pp. 173-180

[LW93]: James Loveys and Frank O. Wagner. ‘Le Canada semi-dry’. Proc. Amer. Math. Soc. 118(1) (1993),
pp. 217-221

[Nes89b]: Ali Nesin. ‘On solvable groups of finite Morley rank’. J. Algebra 121(1) (1989), pp. 26-39

[Bau96]: Andreas Baudisch. ‘A new uncountably categorical group’. Trans. Amer. Math. Soc. 348(10) (1996),
pp. 38893940
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Final notes and exercises

Macintyre’s Field Theorem
Algebraic closedness naturally occurs in the w-stable context, where it was first proved; it was
extend by Cherlin and Shelah to the superstable setting [CS80]; however, it is still open whether
all stable fields are separably closed (already known in characteristic 0 though).
As we said, commutativity is not a necessary assumption, viz. skew-fields tend to be fields in
model-theoretic context; see the exercises. (This also extends to superstable [CS80]; in the stable
case, the latest result towards commutativity seems to be [Mil11].)
Around minimality
In algebraic geometry, minimal groups are easily classified.
Fact ([Humphreys, Theorem 20.5]). Any connected, algebraic group of dimension 1 is one of
the following:
o G, viz. the additive group K4 ;
o Gy, viz. the multiplicative group K*;
e an elliptic curve.

Only the first two are affine: they are the two sole atoms of linear algebraic group theory (which
explains in a sense the Jordan decomposition); an exercise of Lecture 3 will provide a proof.

In the abstract theory of groups of finite Morley rank there is nothing similar. The reader is
certainly familiar with Reineke’s theorem.

Theorem ([Rei75]; see [Dell8, §3.4] for a discussion). A minimal group of finite Morley rank
is abelian.

It is hard to say anything sensible past that point. This is the reason why describing “matter”
in abstract groups of finite Morley rank is so difficult—except in the definably linear case, where
the extrinsic Jordan decomposition provided by linear algebra returns and interacts with the
group structure. This will be seen in the next lecture.

Linearisation, field interpretation
e The version we stated can hardly be considered optimal; [DW19] goes well beyond. As a
matter of fact, and contrary to the proof given here, the Chevalley-Zilber generation lemma

plays mo role in defining a field. [DW19] takes place in the context of finite-dimensional
theories, which also encompasses the o-minimal case.

e We should mention another interpretation result.
Fact (special case of [GH93]). Any torsion-free, nilpotent, non-abelian stable group defines
an infinite field.
In the finite Morley rank case, this non-trivial result reduces to an exercise below. Torsion-
freeness is essential, as exemplified by the Baudisch groups.

e Last but not least, there is Hilbert’s theorem that an arguesian projective plane defines a
skew-field—see Lecture 4 of [Dell8] for its use in finite Morley rank.

The Baudisch groups

Baudisch actually constructed 280 pairwise non-isomorphic such objects. Interestingly enough
(and despite the lack of simplicity, so that Zilber’s categoricity theorem does not apply) they
are Np-categorical; also see [Tan88]. It is therefore hopeless to try to classify nilpotent groups,
or even groups of rank 2. Of course one can still ask whether Baudisch constructed all possible
such objects.

“Bad” groups
Frécon [Frél8b] proved the Cherlin-Zilber conjecture in rank 3; in particular there are no “bad
groups” of rank 3. This is still open in rank 4 as Frécon’s method does not generalise beyond
specific configurations in rank 2n + 1 (Poizat and Wagner [PW16], [Poil8], [WaglT7]).
We definitely refer to the Los Andes course [Del18].
In any case these objects are ill-named and one should promote more modern terminology.

[CS80]: Gregory Cherlin and Saharon Shelah. ‘Superstable fields and groups’. Ann. Math. Logic 18(3) (1980),
pp. 227-270

[Mil11]: Cédric Milliet. ‘Stable division rings’. J. Symbolic Logic 76(1) (2011), pp. 348—-352

[Rei75]: Joachim Reineke. ‘Minimale Gruppen’. Z. Math. Logik Grundlagen Math. 21(4) (1975), pp. 357-359
[DW19]: Aldrian Deloro and Frank Wagner. ‘Linearisation in model theory’. In preparation. 2019

[GH93]: Claus Griinenwald and Frieder Haug. ‘On stable torsion-free nilpotent groups’. Arch. Math. Logic 32(6)
(1993), pp. 451-462

[Tan88]: Katsumi Tanaka. ‘Nonabelian groups of Morley rank 2’. Math. Japon. 33(4) (1988), pp. 627635
[Fré18b]: Olivier Frécon. ‘Simple groups of Morley rank 3 are algebraic’. J. Amer. Math. Soc. 31(3) (2018),
pp. 643-659

[PW16]: Bruno Poizat and Frank Wagner. ‘Commentaires sur un résultat d’Olivier Frécon’. 2016

[Poil8]: Bruno Poizat. ‘Milieu et symétrie, une étude de la convexité dans les groupes sans involutions’. J. Algebra
497 (2018), pp. 143-163

[Wagl7]: Frank Wagner. ‘Bad groups’. In: Mathematical Logic and its Applications. Ed. by Makoto Kikuchi.
Vol. 2050. RIMS Kokytroku. Kyoto: Kyoto University, 2017, pp. 57—66
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Exercise. Prove the Cherlin-Shelah Theorem: any infinite (possibly non-commutative) domain of
finite Morley rank is an algebraically closed field.

Hint: division ring by the DcC. Then take a minimal counter-example to commutativity and use
Reineke’s Theorem on minimal groups (take a definable subgroup of K*) to derive a contradiction.

Exercise. Let K be a field of finite Morley rank.
1. If K has characteristic 0, then the only definable field automorphism is Id.

2. If K has characteristic p > 0, then every definable set of definable field automorphisms is finite
(hint: bounded implies finite; study the restriction to Fp). Every definable group of definable
automorphisms is trivial. Any two definable field automorphisms commute.

3. Any definable field automorphism is actually @-definable (hint: vary the parameters; by finiteness
of the resulting family, there is ¢ = p* large enough to distinguish them).

Exercise. Complete the proof of the interpretation theorem as follows.
1. Finish Step 3: prove that any ;o € K is some Awg—w; -

2. Finish Step 4: show that K does act by automorphisms.

Hint: to kill a finite kernel ker A > 0 with XA € K\ {0}, form K = Un ker A™, an infinite countable
G-invariant subgroup of V, and use saturation like in the first step of the proof.

Exercise. The goal of this exercise is to prove the Nesin-Poizat linearisation theorem [Poizat, The-
orem 3.8]. So let G # 1 be a definable, connected group acting definably, faithfully, and irreducibly on
a definable, abelian group V. Suppose that there is an infinite, definable, abelian, normal subgroup
A<LG.

1. Let S = Cpetenda(v)(A), on which G acts. Also let A = {L < V : definable, connected, A-
invariant, and A-irreducible}.
Prove that for any L € A, one can linearise the action of A/C4(L) on L (hint: although we
did not assume A to be connected, C4(L) has infinite index in A because V is a finite sum of
memebrs of A). Deduce that Kz, = Cpegna(r)(A) is an algebraically closed field.

2. Now let Spy (V) = {Anng(L) : L € A}. Prove that Sp4(V) is finite (hint: lines with different
annihilators are in direct sum, this is easier than prime avoidance), and actually a singleton
(hint: G permutes Sp 4(V)).

3. Conclude by proving and using this lemma of general interest: if K is a definable field and S C K
is a (non-necessarily definable) subring S which contains an infinite, definable set X, then S = K.

The next three exercises use a corollary to the Chevalley-Zilber generation lemma.

Corollary ([Borovik-Nesin, Corollary 5.29]). if G is a connected group of finite Morley rank and
X C G is any subset, then [G, X] is definable and connected.

Exercise (Zilber [Zil84, Corollary p. 175]). Let G be a non-trivial, connected, non-nilpotent, soluble
group of finite Morley rank. Prove that G defines an algebraically closed field.

Exercise (Lie-Kolchin-Malcev theorem; apparently first proved by Zilber, but published in [Nes89b];
see [Poizat, Corollary 3.19], also [Humphreys, Theorems 17.6 and 21.2]). Let G be an infinite, connec-
ted, soluble group of finite Morley rank. Prove that G’ is nilpotent.

Hint: first use induction to reduce to proving that Z(G’) is infinite. Now take V < G’ be definable,
infinite, G-invariant, and minimal with these properties. Let I' = G/Cg(V) so we have a faithful
module; let £ be minimal killing the k-th commutator subgroup, I'(®) =1, and suppose k > 1. Using
the Nesin-Poizat theorem, linearise the action of I' on V and study det : I*=2) — KX to see that
k=1 acts by roots of unity. Find a contradiction to k£ > 1, and get the desired conclusion.

Exercise. Prove that a nilpotent, non-abelian, torsion-free group of finite Morley rank defines a
(characteristic 0) field.

Hint: use torsion-lifting and Chevalley-Zilber generation to reduce to the 2-nilpotent case, G =
Z3(G). Then fix a,b with ¢ = [a,b] # 1 and show that:

(@) ges - 0] = {[2,0] : @ € (@)ges} = (Oaer = [0 (B)aee] = {[a, 2] : @ € (B)ger}-
Now on K := (c) 4. use - as addition, and as multiplication the law * given by:

For c1,c2 € K there are a1 € (a)go5,b2 € (b)gor With c1 = [a1,b] et c2 = [a,b2]. Let
c1 % cg = [a1, b2].
Exercise (Poizat, [Poizat, Corollary 3.32]). The ultimate bad-like configuration (open) would be the

following: a simple group G with a definable, proper, connected, self-normalising subgroup B < G
whose conjugates partition G.

1. Prove that every finite subgroup H < G would be contained in a conjugate of B. (Hint: let
Bi, ..., Bg be the various non-trivial intersections H N BY; count the cardinal of UheH B{‘ and
see that d > 1 is a contradiction.)

2. Deduce that G would satisfy a sentence false in every locally finite group. (Hint: G = ¢(b),
where b are used to define B, so G = 3z ¢(z). Use the first question to find a suitable ¢.)
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Such groups without the restriction on finiteness of the Morley rank do exist: a Tarski monster
as constructed by Olshanski [Ols79] (independently, Rips in work unpublished but cited by Collins
[Co190] and Shelah [She87]) has all non-trivial, proper subgroups conjugate and isomorphic to Z/pZ,
which implies the desired structure. If Tarski monsters are an overkill, there is something simpler in
[HW14, §5.2].

The existence of similar bad-like configurations under model-theoretic constraints remains open.

Lecture 3 — Groups in Fields

In this lecture. Last time we studied why and which fields appear definably in groups
of finite Morley rank. Today we change point of view and ask which groups can be defined
in fields of finite Morley rank.

The most general notion is that of an interpretable group; in a pure algebraically closed
field, this is the same as an algebraic group (Weil-Hrushovski Theorem). In an expanded
field of finite Morley rank, Wagner [Wag01, Corollary 6] proved that interpretable reduces
to definable (viz. elimination of imaginaries holds; see final notes of Lecture 1). But the
class of definable groups is likely to be wild.

So in the expanded case we focus on the more reasonable class of definably linear
groups, where linear algebra provides additional methods. In characteristic 0, simple,
definably linear groups are either constructible or highly pathological (Macpherson-Pillay,
Poizat; existence is open). In characteristic p, simple, definably linear groups are always
algebraic up to isomorphism, but not necessarily constructible (Poizat).

References:
e For the Weil-Hrushovski Theorem, [Poizat, §4.5] or Marker’s book [Marker, §7.4].
e The characteristic 0 study first appeared in [MP95].
e The characteristic p phenomenon was proved by Poizat [Poi01].

5 Definable groups

5.1 Groups definable in pure fields

Theorem (Weil-Hrushovski: constructible groups are algebraic). Let K = ACF be a pure
algebraically closed field and G be an interpretable group. Then there is a unique algebraic
variety structure on G making it an algebraic group.

Notice that by elimination of quantifiers and imaginaries, this geometrically amounts to
stating: every constructible group can be made algebraic. The proof proceeds by taking a
generic “chunk” of the group, and using it to define an algebraic variety structure on G. This
is explained in [Poizat, §4.5] or [Marker, §7.4].

5.2 Groups definable in expanded fields
There is little hope of saying anything sensible here.

e First return to the “exotic” field of finite Morley rank constructed by Hrushovski: a
strongly minimal structure (K; 8, [, ®, ®) consisting of two different field structures (see
Question (Q3) in Lecture 2). Notice that Kg x K® is then definable in a field expansion,
but one hardly sees whether the base field should be (K;H,H) or (K;®, ®).

[O1s79]: Alexander Olshanski. ‘Infinite groups with cyclic subgroups’. Dokl. Akad. Nauk SSSR 245(4) (1979),
pp. 785-787

[Co190]: Michael Collins. ‘Some infinite Frobenius groups’. J. Algebra 131(1) (1990), pp. 161-165

[She8T7]: Saharon Shelah. ‘Uncountable groups have many nonconjugate subgroups’. Ann. Pure Appl. Logic 36(2)
(1987), pp. 153206

[HW14]: Pierre de la Harpe and Claude Weber. ‘Malnormal subgroups and Frobenius groups: basics and examples’.
Confluentes Math. 6(1) (2014). With an appendix by Denis Osin, pp. 65-76

[MP95]: Dugald Macpherson and Anand Pillay. ‘Primitive permutation groups of finite Morley rank’. Proc.
London Math. Soc. (3) 70(3) (1995), pp. 481-504

[Poi01]: Bruno Poizat. ‘Quelques modestes remarques & propos d’une conséquence inattendue d’un résultat sur-
prenant de Monsieur Frank Olaf Wagner’. J. Symbolic Logic 66(4) (2001), pp. 1637-1646
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e Now take a ranked field with non-minimal K* (these do exist in characteristic 0), say
1 < T < K* is an infinite, proper, definable subgroup. Then T x K is a definable group
which can be viewed as the following linear group:

T><K+:{<t T):teT,aeK}.

This is not an algebraic group over any field, since one can define two minimal groups of
distinct rank; which is impossible in algebraic geometry, because the two minimal affine
algebraic groups are G, and G,,, both with dimension 1, hence with the same Morley
rank.

6 Definably linear groups in expanded fields

Since the definable class is too wild, let us be less ambitious.

6.1 Definable linearity

One special case of algebraic groups is the class of linear algebraic groups, for which there are
three equivalent definitions:

1. a linear algebraic group is a Zariski-closed subgroup of some GL,, (K);
2. a linear algebraic group is a constructible subgroup of some GL (K);

3. a linear algebraic group is an algebraic group whose underlying set is a Zariski-closed
set of some K" (when using this definition, one traditionally refers to an affine algebraic
group).

The equivalence (i)<>(ii) is routine; the implication (ii)=-(iii) is not hard (use the “determ-
inant trick”, i.e. view GLy as {(M,\) € M,(K) x K: det M - A = 1} to create a Zariski-closed
subset of K"ZH). But (iii)=-(i) is a little algebraic geometry [Humphreys, Theorem 8.6],
[Poizat, Proposition 4.11].

Linear algebraic groups are easier to study than general algebraic groups because of the
usual tools of linear algebra, such as the Jordan decomposition. This suggests which class of
groups definable in field expansions can reasonably be approached.

Definition (definably linear group). Let K be a field structure. A group structure G is defin-
ably linear if it is a definable subgroup G < GLy(K) (here definable is in the full K-structure
induced on GL,(K), not in the pure group GL,(K) nor in GL, (K) with the pure K-structure).

Besides the ability to use linear algebra, another advantage of working with definably linear
groups is to remove the Hrushovski-style pathology Kg x K® (see §3.2 in Lecture 2): it forces
the structure to choose which base field it is about.

Remark. Notice that one could even study groups of the form H/N with N < H < GL,(K)
are definable, and call them interpretably linear; it is not clear a priori whether H/N is then
(isomorphic to something) definably linear or not.

This holds if K is a pure algebraically closed field, i.e. in the linear algebraic case; this
is however non-trivial [Humphreys, Theorem 11.5]. (No, it is not the mere elimination of
imaginaries: the reparametrisation/elimination function has no reason to preserve the group
structure.)

So it looks more reasonable to stick to definably linear groups.

Finally let me mention an important fact, and an open question.
Fact (Rosenlicht [Ros56, Corollary 3 p. 431]; [Poizat, Theorem 4.14]). Let G be a connected
algebraic group. Then G/Z(G) is a linear algebraic group.

In particular, any simple algebraic group is actually linear, i.e. affine. In view of the Weil-
Hrushovski theorem, this rephrases as: if G is a connected group definable in a pure field of
finite Morley rank, then G/Z(G) is definably linear.

Question. Is there anything similar for expanded fields of finite Morley rank?

The question is highly non-trivial since Rosenlicht’s theorem is proved by letting G act
on function germs at 1; it thus makes essential use of the (co-)adjoint action—something
completely out of grasp in the finite Morley rank setting.

[Ros56]: Maxwell Rosenlicht. ‘Some basic theorems on algebraic groups’. Amer. J. Math. 78 (1956), pp. 401443
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6.2 Characteristic 0

We shall prove that in characteristic 0, simple, definably linear subgroups G < GL,(K) are
algebraic: and even more than that, that they are constructible (constructible is stronger
because it says something about the inclusion map, not only up to isomorphism). We first
return to the Jordan decomposition.

Theorem (definably linear groups in characteristic 0 are stable under Jordan decomposition
[Poil2, Lemme 2]). Let K be a field of finite Morley rank of characteristic zero and G <
GL,(K) be a definable subgroup. Then G is stable under the Jordan decomposition: if x =
s-u € G with commuting semisimple s and unipotent u, then s,u € G.

Proof. The core idea is that the finite Morley rank setting, being close to classical algebraic
geometry, should not encode field exponentials. This will make sense at some point, and
certainly involves definable homomorphisms between K% and (K*)®. They will appear in
time.

Write g = us; we may suppose u # 1. Conjugating, we may suppose that u is strictly
upper-triangular and that s is diagonal. Let Y = (u),; be the envelope of v and © = (s) ¢
be the envelope of s. We proved during the first lecture that the upper-triangular subgroup
U and the diagonal subgroup T are definable: hence Y < U and © < T. We also introduce
I' = (9) 4o < G (since G is definable). Now of course I' <Y x ©. We shall show that I, as a
graph, defines a map © — Y. Since I' is a group, this map will be a group homomorphism.

We shall prove that Y ~ K, . Consider the Lie algebra:

0 * x*
u= *
0
and the partial exponential function:
exp: u  — U

D

The good thing with working with nilpotent elements is that the sum is actually finite:
so exp : u — U is definable (even constructible). It also is a bijection, so it exchanges
definable subsets of u with definable subsets of U. Now since Y is abelian, its preimage
(intuitively, something like its Lie algebra, but Y is not yet known to be constructible)
u = exp '(Y) is a definable subgroup of u. Applying the idea in the proof minimality of
K+ in characteristic 0,, we see that u is a vector space over K. (This is not unexpected from
an ordinary Lie algebra, but Y was not known to be topologically closed: so some model
theory was involved here.) There is more: let £ = exp~*(u). Since exp exchanges definable
sets, u = exp (V) = exp™ ' ({(u) 4or) = (£)4e; 18 actually a one-dimensional vector space. As
a conclusion, Y ~ u ~ K4 definably, and in particular Y is minimal and torsion-free.

With this information we finally get a map. Consider {y € Y : (y,1) € I'}, a definable
subgroup of Y. If it equals Y, then certainly u € I' < G and we are done. Otherwise it is
trivial: this means that I defines a map © — Y, which is a group homomorphism.

We derive a contradiction. Remember that © < T ~ (K*)". It suffices to show that
there are no definable homorphisms from definable subgroups of (K*)™ to K. This is left
as an exercise. O

Corollary (Macpherson-Pillay [MP95, Theorem 1.4.a], Poizat [Poi01, Théoréme 3]: the struc-
ture of simple, definably linear groups in char. 0). Let K be a field of finite Morley rank of
characteristic zero and G < GL,(K) be a quasi-simple (= simple modulo a finite centre),
definable subgroup. If G is not constructible, then G contains only semisimple elements.

Proof. Suppose that G contains more than just semisimple elements; so there is a non-
trivial Jordan decomposition g = us. We know from the previous theorem that u,s € G; in
particular, G contains a non-trivial unipotent element. Let Y = (u)4., and argue like in the
previous theorem. When we proved that u was a vector space over K, we proved that it was

[Poil2]: Bruno Poizat. ‘Groupes linéaires de rang de Morley fini’. Ann. Sci. Math. Québec 36(2) (2012), pp. 591—
602
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constructible. Now since exp : u — U is constructible too, so is Y. Being a group it is closed.

We conclude with a classical result from algebraic geometry: a group generated by
irreducible, closed subgroups, is closed as well (this is the usual, algebraic version of the
Chevalley-Zilber generation lemma [Humphreys, Proposition 7.5], one does not need the full
strength of Zilber’s version). By quasi-simplicity, G = (Y9 : g € G) is closed, i.e. definable
in the pure field. O

6.3 Characteristic p

The study in characteristic 0 cannot be adapted, but it can be substituted with something
much harder.

Theorem (simple, definably linear groups in char. p are algebraic [Poi01, Théorémes 1 et
2]). Let K be a field of finite Morley rank of positive characteristic and G < GL,(K) be a
quasi-simple, definable subgroup. Then:

e G is definably isomorphic to a constructible subgroup of GLy(K);

e G is definable in the pure field K augmented by a finite number of definable field auto-
morphisms.

The proof is rather intricate and we have no time to explain it in detail. It uses highly
non-trivial model theory (in particular a beautiful theorem on fields by Wagner [Wag01, Co-
rollary 9], an article already cited in the notes of Lecture 1) and the classification of the locally
finite simple groups (which relies on the classification of the finite simple groups) obtained by
Thomas [Tho83]—also independently by Belyaev and by Hartley-Shute.

Proof. The main ideas are as follows. Using saturation, we may assume that G contains an
infinite, definable, connected subgroup T' consisting of diagonal matrices, T < (K*)™. By
the Chevalley-Zilber generation lemma, G = (1Y : g € G) is definable in (K;+,-, 7).

Observe how the Frobenius automorphism of K is then actually an automorphism of 7.
Let F = KNTF,, the subfield of K isomorphic to F, (bear in mind K is algebraically closed
and has characteristic p).

By Wagner’s theorem [Wag01] and since there is a non-trivial automorphism, we find
(F;4,-,T) < (K;+,-T). Notice that linear groups definable in (F;+,-,T) are locally finite;
transferring, G turns out to be pseudo-locally-finite, viz. a model of the theory of locally
finite groups.

Then by [Tho83], it is a Chevalley group over some field I which can be reconstructed
from G; a Chevalley twist would be a definable field automorphism of L., and this cannot
happen in finite Morley rank, so our Chevalley group is untwisted: it is an algebraic group

over L.
Poizat then works a bit more to conclude that . ~ K definably, and that actually a finite
number of definable automorphisms of K are needed to retrieve the identification. O

Remark. Be careful however that G need not be constructible (i.e. definable in the pure field
K). Let o be a definable, non-constructible field automorphism (if there is such a thing: the
question is open), and consider, as 4 X 4 matrices:

{(A Ag> :AeSLz(K)},

a group isomorphic to SLz(K) but definitely not constructible in GL4(K).

To our current knowledge there is insufficient control on definable automorphisms of ranked
fields in characteristic p. This is what makes the fourth lecture of interest.

Final notes and exercises

‘Weil-Hrushovski Theorem

[Tho83]: Simon Thomas. ‘The classification of the simple periodic linear groups’. Arch. Math. (Basel) 41(2)
(1983), pp. 103-116
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Weil’s theorem [Wei55, Theorem (i), p. 375] is more general than the version we give: it is
enough to have a group chunk. But Hrushovski proved something even stronger and much
more model-theoretic, discussed in [Poizat, Theorem 5.23]; then Van den Dries observed that
this would in particular yield a model-theoretic proof of Weil’s classical result; see the very
interesting historical notes in [Poizat, §4.8].

Reconstruction of a compatible topology works quite similarly in the o-minimal case [Pil88];
one can go pseudofinite [HP94]; the latest avatar of the method seems to be [MOS18].

Non-algebraic groups in expanded fields
Return to the example of a non-algebraic, non-nilpotent group of finite Morley rank: T x Ky
where 1 < T < K4 witnesses non-minimality of K*. This group is non-algebraic, non-abelian
but not simple (it is 2-soluble), so it does not refute the Cherlin-Zilber conjecture. There is a
reason to that.

Fact ((BMW16]). Let K be one of the fields we know so far with K* non-minimal. Let G be
an infinite simple group definable in K. Then G is an algebraic group.

Be very careful however. For the moment no field expansion we know can define a non-algebraic
simple group of finite Morley rank. What about the future?

e Perhaps some day, a new field expansion will be constructed which defines a non-algebraic
simple group—hence refuting the Cherlin-Zilber conjecture in a rather strong sense.

e Another possibility is that there will be non-algebraic simple groups of finite Morley rank,
but none of them will be definable in a field expansion: Cherlin-Zilber would be false, but
not because of fields (this might be the case should “bad/asomic groups” exist).

e And of course there is the possibility that the Cherlin-Zilber conjecture is simply true.

Rosenlicht’s Theorem
There is a dual statement (Barsotti-Chevalley-Rosenlicht, with an interesting story): if G is a
connected algebraic group, then G’ is a linear algebraic group [Ros56, Theorem 16]. It would be
interesting to have an elementary proof, along the lines of the one Poizat gave for Rosenlicht’s
G/Z(G) theorem [Poizat, Theorem 4.14]. And of course, there is nothing similar for abstract
groups of finite Morley rank.

It is unclear what the contents of [Frél8a)] are; at times it seems to try to take this direction.

Definably linear groups in characteristic 0
It is a significant open question whether there exists a simple, definable subgroup of GLy, (K)
which is not constructible. A little more is known: its connected soluble subgroups would be
abelian (already in [MP95, Theorem 1.4]), and it would have no involutions [BB08]—the latter
was generalised in [DW18].
Some (in particular Poizat) have discussed the possibility to use a ranked field with non-minimal
K* and infinite 1 < T' < K* to construct such a monster, where the maximal definable, connected
subgroups would be conjugates of T. Apparently this was never realised.
Incidence geometries left aside (recently revived in [BP19]), Hrushovski amalgams mostly pro-
duced fields. The only groups of finite Morley rank obtained by such means are (so far) the
Baudisch groups, which are nilpotent; so perhaps being able to amalgamate simple groups will
require new developments in pure model theory.

Non-simple, definably linear groups
Mustafin [Mus04] provided the following generalisations; R(G) denotes the soluble radical
[Borovik-Nesin, §7.2].

Theorem ([Mus04, Théoréme 2.6]). Let K be a ranked field of positive characteristic and G <
GLn(K) be a definable, connected subgroup. Then G/R(G) is definably isomorphic to a finite
product of simple algebraic groups over K.

[Wei55]: André Weil. ‘On algebraic groups of transformations’. Amer. J. Math. 77 (1955), pp. 355-391

[Pil88]: Anand Pillay. ‘On groups and fields definable in o-minimal structures’. J. Pure Appl. Algebra 53(3)
(1988), pp. 239-255

[HP94]: Ehud Hrushovski and Anand Pillay. ‘Groups definable in local fields and pseudo-finite fields’. Israel J.
Math. 85(1-3) (1994), pp. 203—262

[MOS18]: Samaria Montenegro, Alf Onshuus and Pierre Simon. ‘Stabilizers, groups with f-generics in NTP2 and
PRC fields’. Preprint. arXiv:1610.03150. 2018

[BMW16]: Thomas Blossier, Amador Martin-Pizarro and Frank O. Wagner. ‘A la recherche du tore perdu’. J.
Symb. Log. 81(1) (2016), pp. 1-31

[Fré18a]: Olivier Frécon. ‘Algebraic Q-groups as abstract groups’. Mem. Amer. Math. Soc. 255(1219) (2018)
[BBO08]: Alexandre Borovik and Jeffrey Burdges. ‘Definably linear groups of finite Morley rank’. Preprint.
arXiv:0801.3958. 2008

[DW18]: Adrien Deloro and Joshua Wiscons. ‘The Geometric Theorem (Paris Album No.1)’. In preparation. 2018
[BP19]: John Baldwin and Gianluca Paolini. ‘Strongly minimal Steiner systems I: Existence’. Preprint.
arXiv:1903.03541. 2019

[Mus04]: Yerulan Mustafin. ‘Structure des groupes linéaires définissables dans un corps de rang de Morley fini’.
J. Algebra 281(2) (2004), pp. 753-773
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Theorem ([Mus04, Théoréme 2.9]). Let K be a ranked field of characteristic 0 and G < GLy, (K)
be a definable, connected subgroup. Then G/R(G) is equal to C' x (A1 X --- X Ayg), the direct
product of a definable group with no unipotent elements and finitely may simple algebraic groups
over K.

Exercise. Let K be field of finite Morley rank.

1. Let U be a definable K-vector space.
Let A < U be a definable, additive subgroup. Suppose that Nx(A) = {k € K: kA < A} is
infinite. Prove that A is a vector subspace.

2. If K has characteristic 0, then any definable group homomorphism K7 — K7 is K-linear.

3. There are no definable group homomorphisms K’ — (K*)™ nor (K*)™ — K'P.

Exercise. Let K be any field of positive characteristic and G < GLp(K) be any (not necessarily
definable) subgroup. Suppose that G, as a group, has finite Morley rank. Then G is stable under the
Jordan decomposition. Hint: study (g) je¢-

Exercise. The goal of this exercise is to prove that the minimal linear algebraic groups are G, and
Gy, [Humphreys, Theorem 20.5] using the theory of groups of finite Morley rank.
Let K be an algebraically closed field and A < GL,(K) be a minimal linear algebraic group.

1. Show that we may assume that A consists of triangular matrices.

2. If A intersects the diagonal subgroup, then A ~ K*. (Hint: take a non-trivial coordinate map
m;,; + A — K*. To kill the finite kernel F' show A ~ A/F using a power map.)
From now on suppose that A consists of strictly upper-triangular matrices.

3. If K has characteristic 0, then A ~ K.

From now on suppose that K has characteristic p.
4. Using the truncated exponential and logarithm, show that A/F ~ K4 for some finite FF < A.

5. Conclude by proving and using this lemma of general interest: if K = ACF,, V = K%, and

+7
a € V, then V/{a) ~ V definably (hint: Artin-Schreier map).

Exercise. The goal of this exercise is to prove Poizat’s Monosomy Lemma (see §3.2, Lecture 2). Let
K be a pure algebraically closed field and L be an infinite field definable in K. We want to show that
there is a definable field isomorphism ¢ : K ~ L.

1. Prove that Ly is a strictly upper-triangular, linear algebraic group over K. Hint: Weil-Hrushovski
and Rosenlicht Theorems.

2. If K has characteristic 0 then Ly ~ K4 (hint: this is yet another use of the Lie algebra).

3. If K has characteristic p > 0 then Ly ~ K (hint: admit from algebraic geometry [Humphreys,
Theorem 19.3] that L* ~ (K*)™ for some n. Studying torsion, conclude that rkL = rkK, so
L4+ /F ~ Ky for finite F < L4. Kill F & la Artin-Schreier).

4. Conclude by admitting and using this lemma of general interest: if K is a pure algebraically
closed field, then any definable group of automorphisms of Ky is contained in K*.

Be very careful that for two definable fields, having definable group isomorphisms K4 ~ L; and
K> ~ LL*X does not guarantee K ~ L. as fields.

Lecture 4 — Rank and Representations

In this lecture. Today we talk about representations of finite Morley rank.

References:

e [BCO8] was the first article seriously considering groups of finite Morley rank as
permutation groups.

e The most general text on representations of finite Morley rank is [Dell6c¢].

[BCO08]: Alexandre Borovik and Gregory Cherlin. ‘Permutation groups of finite Morley rank’. In: Model theory
with applications to algebra and analysis. Vol. 2. Ed. by Zoé Chatzidakis et al. Vol. 350. London Mathematical
Society Lecture Note Series. Cambridge: Cambridge University Press, Cambridge, 2008, pp. 59-124

[Dell6c¢]: Adrien Deloro. Un regard élémentaire sur les groupes algébriques. Mémoire d’habilitation & diriger des
recherches. Paris, 2016
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7 Generalities

7.1 Setting

One mostly represents algebraic structures into vector spaces. However in our setting it is
more natural to consider action on abelian groups:

e such configurations arise naturally in the study of permutation groups ([MP95] ports the
O’Nan-Scott Theorem from finite group theory to the finite Morley rank case);

e it is known, and compatible with the general ideology, that group actions often linearise
spontaneously (see the Linearisation Theorem in §4.1, Lecture 2).

This we hope motivates the following as a decent investigation topic.

Definition (module of finite Morley rank). A module of finite Morley rank is a triple (G, V,-)
where G is an infinite group, V is a connected abelian group, - is an action of G on 'V (say,
a subset of G x V2), and all three are definable in some large structure of finite Morley rank.

Remark.
e The “large structure” can be taken to have underlying set G x V.

e Requiring V' to be connected has an effect. The module is irreducible, also known as G-
minimal, if there are no non-trivial definable, connected, proper, G-invariant subgroups.

There are two main forms of reasonable questions, described as follows.

7.2 Simultaneous identification

Here one tries to identify both G and the action on V as in the following results.

Theorem ([Del09]). Let (G,V) be an irreducible, faithful module of finite Morley rank with
G non-soluble and rkV = 2. Then:

e or G ~ SLy(K) in its natural action;
e or G ~ GL2(K) in its natural action.

Theorem ([BD16]). Let (G, V) be an irreducible, faithful module of finite Morley rank with
G non-soluble and rk'V = 3. Then:

o cither G ~ PSL2(K) in its adjoint action (the action on trace zero, 2 X 2 matrices);
o or G ~ SL3(K) in its natural action;
e or G ~ GL3(K) in its natural action.

Interestingly enough, proving the latter required just every single piece of work on groups
of finite Morley rank, featuring:

e the “even type” positive solution to Cherlin-Zilber by Altinel, Borovik and Cherlin
[ABCO8];

e Poizat-style study of definably linear groups ([Poi01], see previous lecture);
e all the involution-based technology;

e the thorough study of “small configurations of odd type” [DJ16];

e Frécon’s result that bad groups of rank 3 do not exist [Fré18b].

As a result, I consider reading [BD16] an excellent way to learn about groups of finite
Morley rank, both concrete and abstract.

[Del09]: Adrien Deloro. ‘Actions of groups of finite Morley rank on small abelian groups’. Bull. Symb. Log. 15(1)
(2009), pp. 70-90

[BD16]: Alexandre Borovik and Adrien Deloro. ‘Rank 3 Bingo’. J. Symb. Log. 81(4) (2016), pp. 1451-1480
[ABCO08]: Tuna Altinel, Alexandre Borovik and Gregory Cherlin. Simple groups of finite Morley rank. Vol. 145.
Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 2008. xx+556

[DJ16]: Adrien Deloro and Eric Jaligot. ‘Involutive Automorphisms of Ng-groups of finite Morley rank’. Pacific
J. Math. 285(1) (2016), pp. 111-184
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7.3 Modules for algebraic groups

For instance, if G = Gk is the group of K-points of some algebraic group over some (algebra-
ically closed) field, then any algebraic representation V' of G taken over K will be a module of
finite Morley rank for G. The main question is: are there other modules? Does model-theoretic
representation theory extend algebraic representation theory beyond predictable twists?

This is what we discuss in the final section.

8 Definable representations of algebraic groups

8.1 Matter

Lemma (the characteristic of a module). Let (G,V') be a non-trivial, irreducible module of
finite Morley rank. Then:

e cither V has prime exponent;
e or 'V is divisible and torsion-free.

We say that V' has characteristic p or 0, accordingly—and extend the definition to the non-
irreducible case.

Proof. This is exactly what we proved in the first step of the Linearisation Theorem (see
§4.1, Lecture 2). O

Corollary (the structure of matter for faithful modules of characteristic p). Let (G, V) be a
module of finite Morley rank where G is faithful and V' has characteristic p > 0 (we do not
need irreducibility here). Then every definable, soluble subgroup of G has the form B =T x U,
where U is a definable, nilpotent p-group of bounded erponent, and T is a divisible, abelian
group with no p-element.

Proof. This mostly uses Nesin’s classical structure theorem for nilpotent groups of finite
Morley rank (see the final notes of Lecture 1). We want to give an idea. Suppose that B
contains an infinite elementary abelian g-group for ¢ # p, say U # 1. We shall prove a
contradiction.

Take a U-composition series V.= V,, > --- > Vy = 0, so that the V;’s are definable,
connected, U-invariant, and W; = V;/V;_1 is U-irreducible. Consider the faithful action of
the abelian, connected group U/Cy(W;) on the irreducible module W;. If U/Cy(W;) # 1
then by the Linearisation Theorem we find an algebraically closed field with W; ~ K’ and
U/Cy(W;) — GL,(K). Because of V, K must have characteristic p; this prevents GL,(K)
from having an infinite elementary abelian g-group, hence U/Cy (W;) = 1.

In other words, U centralises all quotients in the composition series. It easily follows that
U x V is nilpotent, and as in the finite case, it can be proved that the p-torsion subgroup
commutes with the g-torsion subgroup. So U centralises V', and by faithfulness U = 1. This
rules out “g-unipotence” for q # p.

The same argument prevents B from containing a copy of Z/p®Z. As a matter of fact,
using also a Corollary to Wagner theorem on fields (see §6.3 in Lecture 3) discussed in the
exercises, one can also prove that there is no non-trivial “O-unipotence” in B. Then thanks
to the theory of soluble groups of finite Morley rank one may reach the conclusion. O

As a consequence, no cross-characteristic phenomena occur in our setting: if G = Gk is the
group of K-points of a simple algebraic group in characteristic ¢ (possibly 0), then non-trivial
irreducible modules have characteristic q.

Remark. It can even be shown using Wagner’s Theorem that T is the definable envelope of
its (non-definable) torsion subgroup; T is called a good torus; see the final notes.
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8.2 Characteristic 0

Corollary ([CD12, Lemma 1.4]; modules for alg. groups in char. 0 are algebraic). Let (G,V)
be an irreducible, faithful module of finite Morley rank where G has the form Gk for a simple
algebraic group G and an algebraically closed field K of characteristic zero.

Then V is isomorphic to an algebraic representation of G as an algebraic group; i.e. up to
isomorphism, (G, V) already lives in the algebraic category.

Proof. Using Zilber-style interpretation, the soluble, non-nilpotent subgroups of G (which
exist by geometry [Humphreys, Proposition 21.4.B]) interpret a field K;; one does not really
need Poizat monosomy to see that K; has characteristic 0. In particular the structure of
matter forces V' to be divisible and torsion-free.

Thanks to the Linearisation Theorem we then find a definable, algebraically closed field
L of characteristic 0 such that V ~ L} and G — GL,(L) definably. Now G is quasi-
simple; since it has non-nilpotent, soluble subgroups, these do not consist of (geometrically)
semisimple elements [Humphreys, Proposition 19.2]; finally since the characteristic of L is 0,
we know from the structure of definably linear groups that G is constructible, i.e. definable
in the pure field L.

Then seeing G as an algebraic group over L, we have a constructible subgroup of GLy, (IL)
acting naturally on V ~ L : we are done. O

Remark. Using Poizat’s Monosomy Lemma (see §3.2, Lecture 2) twice, one finds K ~ K; ~ L.

The resulting isomorphism K ~ L. is however not definable in any structure smaller than
the universe containing both K and L. Since K; is definable in G, which is definable in K,
the isomorphism K ~ K; is K-definable. Since K; is definable in GG, which is definable in L,
the isomorphism K; ~ L is L.-definable. But neither K nor L lives in the pure universe of the
other: IL is not definable in G but in (G, V); while in L only the copy K; is definable.

This is the end of the story in characteristic 0.

8.3 Positive characteristic

Question. Can one classify representations of finite Morley rank in positive characteristic?

Conjecture ([Dell6c]). Let G be a reductive algebraic group, K be a field of finite Morley
rank of characteristic p, and G = Gk as a group of finite Morley rank. Let V' be an irreducible
G-module of finite Morley rank with Ca(V) finite.

Then there are irreducible representations W; of G as an algebraic group and definable
automorphisms ¢ € Aut(K) such that V ~ ®;¥*W; (twist-and-tensor).

The conjecture is modelled after Steinberg’s celebrated Tensor Product Theorem [Ste63].

Remark. As we know, definable field automorphisms of ranked fields do not exist in charac-
teristic 0. So the conjecture is much simpler in that case, and positively settled by §8.2.

Here is what we know so far.

Fact (unpublished [Dell6a]). Definable in a ranked universe, let K be a field, G ~ SLa(K),
and V be an irreducible G-module of Morley rank < 4-1k(K). Then one of the following holds:

o tkV =2rkK; V ~K? in the natural action of G;

e 1kV = 31kK; V ~ K3 in the adjoint action of PSL2(K) (i.e. action on homogeneous
polynomials K[ X2, XY,Y?]);

e 1kV = 41kK; V ~ K* in the rational representation of dimension 4 (i.e. action on
homogeneous polynomials K[X3 X?Y, XY? Y?));

o tkV = 4rkK; there is a definable field automorphism ¢ € DefAut(K) such that V ~
(K?) ®% (K?) (twist-and-tensor).

The first two cases were already in [CD12], though obtained more clumsily. Notice that
only the fourth case involves a tensor product. So the above conjecture is known to hold in
the first non-trivial case (the Nat-by-twist-Nat representation). Beyond is a mystery.

[CD12]: Gregory Cherlin and Adrien Deloro. ‘Small representations of SL2 in the finite Morley rank category’. J.
Symbolic Logic T77(3) (2012), pp. 919-933

[Ste63]: Robert Steinberg. ‘Representations of algebraic groups’. Nagoya Math. J. 22 (1963), pp. 33-56
[Dell6a]: Adrien Deloro. ‘For a study of definable representations of algebraic groups’. Preprint. 2016
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8.4 Tools

There are two issues to discuss.

1. First, field automorphisms make the conjecture a little beyond algebraic (bear in mind
that the classification of definable field automorphisms is an open question).
Let us return to Poizat’s Theorem on definably linear groups in positive characteristic
(§6.3, in Lecture 3). Suppose (G, V) is an irreducible module with G = G(K) a simple
algebraic group in characteristic p > 0. Suppose one could linearise, i.e. find V ~ L7} and
G < GL,(L). By Poizat’s Theorem, G is definably isomorphic to an algebraic group
over L; K and L are isomorphic, but finding a field isomorphism requires a finite number
of automorphisms of L. This is consistent with the spirit of the conjecture, but one does
not see how to analyse V' into a tensor product.

2. More importantly, one cannot linearise a priori in positive characteristic (this is a serious
limit of the Linearisation Theorem).
The only strategy one can imagine so far is to try to reconstruct “weight spaces”, viz. to
understand the action of the algebraic torus; this is how [Dell6a] proceeds.
Of course the question itself is non-trivial since we fall short of a linear structure a priori.
Here is our best approximation of such spaces.

Theorem (Tindzogho Ntsiri [Tin17, Corollary 2.14]: complete reducibility of fixed-point free
toral actions). In a universe of finite Morley rank, let T be a definable, connected, soluble, pt
group and V be a T-module of characteristic p. Suppose Cv(T) = 0. Then every T-submodule
admits a direct complement T-module.

As a corollary, if T is the algebraic torus of an algebraic group G and V is a G-module,
then V. = Cv(T) @ [T, V] and [T, V] is completely reducible, i.e. a direct sum of T-minimal
submodules W;.

It is then quite tempting to call these the weight spaces. As a matter of fact, by the
Linearisation Theorem, there is a definable field L; with W; ~ (L;)+ and T maps to an infinite
subgroup of L. However:

e it is not clear whether the various IL; are isomorphic to K;
e it is not even clear whether L; ~ IL; must hold.

To achieve this, further tools (still in development) will be needed, and hopefully new
monosomy properties.

Lemma. IfV is an irreducible SL2(K)-module and T ~ K* denotes the algebraic torus, then
[T,V] is a direct sum of an even number of T-minimal modules all of same rank as K.

Then in rank < 4rk K, some ugly group-theoretic computations work—but this is a small
rank miracle. So to be honest, as of today, I can think of no general strategy to attack the
next non-trivial question.

Question. Classify irreducible SLz(K)-modules of finite Morley rank (towards the conjecture).

This is something I will enjoy spending time on.

Final notes and exercises

Modules of finite Morley rank
It is not clear whether every simple infinite group of finite Morley rank has a non-trivial module;
and although it would follow from the Cherlin-Zilber conjecture, in its absence it is not clear what
the overlap between both problems is. So far only the remotely related question of non-definable
linearity (viz. one requires V' to be a vector space but one drops the definability requirement)
has been tackled, in the nilpotent and soluble cases [AW09], [AW11].
Linearising in an algebraic group relies on its local coordinates, and involves the cotangent action
[Poizat, Theorem 4.14], [Humphreys, Theorem 8.6].
How to define the tangent Lie ring of an abstract group of finite Morley rank, is a purely specu-
lative question.

[Tin17]: Jules Tindzogho Ntsiri. ‘The structure of an SLp-module of finite Morley rank’. Math. Log. Q. 63(5)
(2017), pp. 364-375

[AWO09]: Tuna Altinel and John Wilson. ‘On the linearity of torsion-free nilpotent groups of finite Morley rank’.
Proc. Amer. Math. Soc. 137(5) (2009), pp. 1813-1821

[AW11]: Tuna Altinel and John Wilson. ‘Linear representations of soluble groups of finite Morley rank’. Proc.
Amer. Math. Soc. 139(8) (2011), pp. 29572972
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Simultaneous identification
[BD16] may be seen as a step towards a general conjecture, which requires a definition.

Definition (generic transitivity). The action of a group G on a set X is generically n-transitive
if G has a full-rank orbit in X™.

Conjecture (Borovik-Cherlin, [BC08, Problem 13]). Let (G, V) be a faithful, irreducible module
of finite Morley rank with tkV = n. Suppose G acts generically n-transitively. Then there is a
definable field K with V ~ K% and G ~ GLn(K).

Notice that solving this conjecture would not require solving all of Cherlin-Zilber: for instance, a
high generic transitivity degree immediately yields involutions (which disposes of some annoying
cases in CZ). [BD16] gives a positive answer for n < 3; Borovik expects an inductive approach
from there on. It has been solved in the sharply generically n-transitive case [BB18].

Incidentally, the conjecture is itself a step towards a larger one.

Conjecture (Borovik-Cherlin, [BCO08, Problem 9]). Let (G, X) be a faithful permutation group
of finite Morley rank with tk X = n. Suppose G acts generically n + 2-transitively. Then there
is a definable field K with V ~ P™*(K) and G ~ GLp4+1(K).

Case n = 1 is a classical theorem by Hrushovski [Hru89]. Altinel and Wiscons [AW18] have
recently solved case n = 2 and are pushing the matter further [AW19].

Matter in abstract groups
Matter is a remarkably delicate topic in the context of abstract groups of finite Morley rank.

e The notion of semisimplicity can be regarded as extremely satisfactory if there is divisible
torsion, and quite disarming if there isn’t.
In the torsion case, one will definitely adopt Cherlin’s good, or decent, tori [Che05], which
have all expectable properties, including conjugacy.
In the non-torsion case, one can use the theory of Carter subgroups instead; it is not clear
to me how much Carter theory fits into the orthodox Borovik programme.

e The notion of unipotence is a nightmare. Torsion unipotence (i.e. if one imitates the beha-
viour of a linear algebraic group in positive characteristic) can be understood quickly—at
a superficial level. Torsion-free unipotence (imitating characteristic 0) has proved a remak-
ably subtle topic with Burdges’ massive theory [Bur04], but with key applications to the
classification of small groups [DJ16].

As aresult, it is hard (though not hopeless [ABF15]) to define an abstract Jordan decomposition
in general. It is remarkable how the issue vanishes in the presence of a module; which also suggests
that the above question of the existence of modules for abstract groups is untractable.

The tensor conjecture
The unpublished [Dell6a] tackles Nat SL2(K) ® Nat SL2(K)# at a considerable computational
cost. As a matter of fact one could hope to push the method to rk V' < 51k K, but for serious
geometric obstructions explained in [Dell16b], it will not extend any furhter. So there is at
present no general strategy even for G = (P)SL,(K) acting on a module V' with rkV = 6k K.

e One could try using the representation theory of the locally finite model, viz. consider
the representation theory of SLa(F,) for increasing g, hoping that the resulting module
structures will match up well.

e One could also be more model-theoretic, and try to use more systematically the torus to
produce weight spaces, and connect them using unipotent groups and commutator maps.

Exercise. Let (B,V) be a faithful module of finite Morley rank where B is connected and soluble,
and V has characteristic 0.

Prove that B cannot contain an infinite group of bounded exponent; that for each prime p > 0, if
B contains a copy of (Z/p>Z)%, then d < rkV (one says that the Priifer p-rank of B is bounded by
rk V; more specifically by £5(V), its length as a B-module).

[BB18]: Ayse Berkman and Alexandre Borovik. ‘Groups of finite Morley rank with a generically sharply multiply
transitive action’. J. Algebra 513 (2018), pp. 113-132

[Hru89]: Ehud Hrushovski. ‘Almost orthogonal regular types’. Ann. Pure Appl. Logic 45(2) (1989). Stability in
model theory, II (Trento, 1987), pp. 139-155

[AW18]: Tuna Altinel and Joshua Wiscons. ‘Recognizing PGL3 via generic 4-transitivity’. J. Eur. Math. Soc.
20(6) (2018), pp. 1525-1559

[AW19]: Tuna Altinel and Joshua Wiscons. ‘Toward the recognition of PGL,, via a high degree of generic transit-
ivity’. Comm. Algebra 47(1) (2019), pp. 206-215

[Che05]: Gregory Cherlin. ‘Good tori in groups of finite Morley rank’. J. Group Theory 8(5) (2005), pp. 613-621
[Bur04]: Jeffrey Burdges. ‘Simple groups of finite Morley rank of odd and degenerate type’. PhD thesis. New
Brunswick, New Jersey: Rutgers University, 2004. 225 pp.

[ABF15]: Tuna Altinel, Jeffrey Burdges and Olivier Frécon. ‘Structure of Borel subgroups in simple groups of
finite Morley rank’. Israel J. Math. 208(1) (2015), pp. 101-162

[Del16b]: Adrien Deloro. ‘Symmetric powers of Nat SL2(K)'. J. Group Theory 19(4) (2016), pp. 661-692
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The next two exercises rely on the following corollary to Wagner’s theorem on fields.

Corollary (consequence of [Wag01, Corollary 9]). If K is a field of finite Morley rank of positive
characteristic, then every non-trivial definable subquotient of K* contains torsion.

(In characteristic O this fails: one can produce T' < K* which contains no torsion.)

Exercise. Let (A,V) be a faithful, irreducible module of finite Morley rank with A abelian. Suppose
that V' has characteristic p > 0 and that for all primes g # p, A contains a copy of Z/q°°Z. Prove that
rk A=rkV.

Exercise. Let (B,V) be a faithful module of finite Morley rank where B is connected and soluble,
and V has characteristic p > 0. Prove that all subquotients of B contain torsion.

Exercise. This exercise is key to understanding the “three field configurations” in [CD12, §1.3], [Tin17,
§3.1], [Dell6a, §2.2]. All objects are definable in a common ranked universe.
1. Let K, L be definable fields. Suppose that K X L contains an infinite definable subring F.
Prove that the first projection map induces a field isomorphism K ~ F. Deduce K ~ L definably.
2. Now we have a definable K-vector space U and a definable L-vector space V. We also have a
definable group T and definable morphisms x : T'— KX, XA : T — L*; so U and V are T-modules.
We even have a non-trivial, definable, additive morphism « : U — V which is T-covariant
(viz. aft - u) =t - a(u)).
Prove that ker k = ker A.
3. Prove that if im x or im A is infinite, then K ~ L definably.
4. Now suppose that « is contravariant instead, viz. a(t-u) = t =1 - a(u). Prove that if im x or im \
is infinite, then K ~ LL definably.
Hint: introduce L' = L\ {0} U {co} with obvious multiplication and addition given by:

b
axb= a

Exercise. The goal of this exercise is to prove Tindzogho Ntiri’s complete reducibility theorem. Let
p be a prime. Let (T, V) be a module of finite Morley rank with T' definable, connected, soluble, and
pL, and V has characteristic p. Suppose Cy (T) = 0. We admit that the last assumption carries to
subquotient modules.

Let 0 < W <V be a T-submodule: we seek a direct complement in the category of T-modules.

1. Reduce to p-divisible, abelian T" with Cp (V) = 1.

2. Using induction, reduce to the case where both W and V/W are T-irreducible, and W is the
only non-trivial, proper T-submodule of V.

3. Let R be the ring generated by T inside DefEnd (V). Prove that m := Anng(W) = Anng(V/W)
is a maximal ideal. (Hint: for f € R, play with ker® f and im f, which are T-invariant.)

4. Prove that R is p-divisible. Deduce that m = 0, and that R is a definable field. Conclude.

Remark. There should be a more direct proof, perhaps even one avoiding the p > 0 restriction.
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