CNRS Summer School *IDENTIFICATION PROCEDURES USING FULL-FIELD MEASUREMENTS APPLICATIONS IN MECHANICS OF MATERIALS AND STRUCTURES*

May 21 – 25, 2013, Montpellier

From IR thermal images to heat source assessments

Part 2

A. Chrysochoos (*), X. Balandraud (**), B. Wattrisse (*)

3h: lecture - 4h: tutorial

(*) Laboratoire de Mécanique et Génie Civil UMR CNRS 5508, Montpellier (**) Institut Pascal, UMR CNRS 6602, Clermont-Ferrand

Strain-induced thermal effects Nature of the heat sources

• Two « do-it-yourself » experiments

- break a paper clip (fingers as thermal sensor)
- *stretch and relax a rubber band (lips as thermal sensor)*

Gough 1805: "...bring the middle of the piece into slight contact with the edges of the lips..."

- Local energy analysis of material behavior
 - deformation energy (input)
 - dissipation: irreversibility, material degradation
 - coupling source: thermal sensitivity

What do we mean by thermo-mechanical effects?

Thermo-elastic effects

Gough 1805, Joule, 1857, Lord Kelvin, 1880 Micro-calorimetry techniques

4

Thermo-elastic and plastic dissipative effects

Thermo-Elasto-Plastic material:

Essai de traction ondulée $|\dot{\sigma}| = 40 \text{ MPa.s}^{-1}$

Matériau : acier pour emboutissage

Equipe Thermomécanique des Matériaux Laboratoire de Mécanique et de Génie Civil - UMR 5508 Université Montpellier II

What are the necessary investments?

Part 1

1 -	Thermal sciences and heat diffusion	4 slides
2 -	Thermal sensors	14 slides
3 -	Quantitative Infrared thermography	10 slides

Part 2

4 -	Theoretical framework (CM + TIP)	11 slides
5 -	Image processing and heat source assessment	11 slides
6 -	Illustrative examples	. 6 slides

Part 3

7 - Tutorial session

Balance equations

		ρ mass density
		D strain rate tensor
<u>Mass</u> :	$\dot{\rho} + \rho \operatorname{tr}(\mathbf{D}) = 0$	σ Cauchy stress
Linear momentum:	$div\sigma + \rho f = \rho \gamma$	γ acceleration vector
<u>Moment</u> :	$\sigma = \sigma^{\intercal}$	e specific internal energy
Energy:	$\rho \dot{e} = \sigma : \mathbf{D} - \operatorname{div} \boldsymbol{q} + r_{e}$	q heat influx vector r _a external heat supply
<u>Entropy</u> :	$r_{si} = \rho \dot{s} - \frac{r_e}{T} + \operatorname{div}\left(\frac{\mathbf{q}}{T}\right) = \frac{d}{T} \ge 0$	r_{si} entropy production s specific entropy
Dissipation:	$d = T r_{si} \ge 0$	<i>T</i> absolute temperature
	(via Clausius-Duhem inequality)	d dissipation
intrinsic dissipation		ermal dissipation
$d_1 = \boldsymbol{\sigma} : \boldsymbol{D} - \rho \boldsymbol{e}_{, \boldsymbol{\varepsilon}} : \dot{\boldsymbol{\varepsilon}}$	$-\rho \mathbf{e}_{,\alpha} \cdot \dot{\alpha} \ge 0$ d_2	$\mathbf{q}_2 = -\mathbf{q}/T.\nabla T \ge 0$

Constitutive equations

Generalized standard material formalism

[Son & Halphen, 75]

state variables	$\{T, \epsilon, \alpha\}$	▲ SPH
internal/free energy potential state equations	$e(s,\varepsilon,\alpha) \psi(T,\varepsilon,\alpha)$ $-s = \psi_{,T} \sigma^{r} = \rho \psi_{,\varepsilon}$	Α =ρ $ψ$,α
dissipation potential evolution equations	$\varphi(q, \dot{\varepsilon}, \dot{\alpha}; T,) -\frac{\nabla T}{T} = \varphi_{,q} \qquad \sigma^{\text{ir}} = \varphi_{,\dot{\varepsilon}}$	- Α =φ, _ά

material degradation heat diffusion

 $d_1 = \sigma^{\text{ir}} : \dot{\varepsilon} - A . \dot{\alpha}$ $d_2 = \phi_{,q} . q = -\frac{\nabla T}{T} . q$

irreversibility

Energy balance (I)

Energy balance (II)

• internal energy rate

$$\rho \dot{e} = \rho C \dot{T} + (\sigma^{r} : \dot{e} + A.\dot{\alpha}) - (T \sigma^{r}_{,T} : \dot{e} + T A_{,T}.\dot{\alpha})$$

$$= \rho C \dot{T} + w^{*}_{e} + w^{*}_{s} - w^{*}_{thc}$$
• heat diffusion equation
$$\rho C \dot{T} + \text{div}\mathbf{q} = \sigma^{ir} : \dot{e} - \mathbf{A}.\dot{\alpha} + T \sigma^{r}_{,T} : \dot{e} + T \mathbf{A}_{,T}.\dot{\alpha} + r_{e}$$

$$d_{1}$$
C.1: C specific heat
$$C.2: q = -k: \text{grad}T$$

$$C.3: \dot{T} = \frac{\partial T}{\partial t} + \mathbf{v}.\nabla T$$

Energy balance (III)

Energy balance over a cycle

Prager linear kinematic hardening Poynting-Thomson (or Zener) linear viscoelasticity

Energy balance over a cycle

Dissipative vs. coupling effects

Thermoelastic effects : 'strong' coupling

Viscous dissipation : 'weak' coupling

Energy balance: comparative study

Experimental context

Experimental context

• Thanks to heat diffusion:

$$\overline{\theta}(t, x, y) = \frac{1}{e} \int_{-e/2}^{e/2} \theta(t, x, y, z) dz \approx \theta_{\mathsf{IR}}(t, x, y)$$

• Integrating the 3D heat equation over the thickness leads to:

$$\rho C \left(\frac{\partial \overline{\Theta}}{\partial t} + \frac{\overline{\Theta}}{\tau_{th}} \right) - k \Delta_{x,y} \overline{\Theta} = \overline{W}_{h}^{\bullet}$$

(un)known measured unknown

... with linear Fourier boundary conditions (τ_{th})

- To assess heat sources, it is « only » necessary to estimate partial differential operators using discrete noisy data fields.
- When sources are known (e.g. zero), then thermophysical parameters can be identified (cf tutorials on diffusivity identification...)

Here, heat source assessment = direct PDO estimate !

$$\rho C \left(\frac{\partial \overline{\theta}}{\partial t} + \frac{\overline{\theta}}{\frac{\tau_{th}}{2}} \right) - k \Delta_{x,y} \overline{\theta} = \overline{w}_{h}^{\bullet}$$
1: out-of plane heat losses 2: stored/released heat rate

3: 2D laplacian, in-plane neat losses

- Several possible methods, but ...:
 - *finite differences*: ... beware of thermal noise!!
 - spectral method: truncated projection onto the eigenfunction basis
 - Fourier analysis: DFT + filtering (cf. tutorial 'convolution filtering')
 - LSQ fitting: local space-time approximation

- ...

- interpolation, splines, ... beware of thermal noise!!

Simplified but convenient thermal models

<u>1D Model</u>: integration over a cross-section, linear heat exchanges

<u>OD local model</u>: homogeneous distribution of sources, use of spectral solution for linear, homogeneous B.C. (heat diffusion = differential problem)

$$\rho C \left(\dot{\theta} + \frac{\theta}{\tau_{eq}} \right) = W_{h}^{\bullet}$$

Discrete noisy thermal data

θ (°C

Example

Thermal noise:

Gaussian probability distribution

Use of truncated spectral solution

tricky issues :

- numerical-analytical computation of the ev and EF,
- numerical computation of the projections (a_{kl}):
 accurate numerical integration time-consuming

Derivative Gaussian Filter

(Cf. Tutorials)

tricky issues :

- choice of the size of the kernel
- choice of the standard deviation of the Gaussian function

Local LSQ fitting

Local space-time approximation of the temperature field:

tricky issues : choice of fitting parameters type of approximation function approximation zone size

Comparative analysis

1D benchmark test: high diffusivity coefficient, boundary conditions, noise ...

 $k=360 \text{ W.m}^{-1}\text{.K}^{-1}$ $\rho = 8920 \text{ kg.m}^{-3}$ $C = 385 \text{ J.kg}^{-1}\text{.K}^{-1}$ $D \approx 10^{-4} \text{ m}^2\text{.s}^{-1}$ NETD= 150 mK T.B.C.: unsteady

Comparative analysis

PMMA & PC : polymers in glassy state

isothermal SPH : the realm of linear viscoelasticity J. Alfrey (48), M. Biot (65), F. Sidoroff (70-75) *Equivalence of series and parallel models (e.g. P.T. and Z. models)*

[S. Moreau, PhD 03]

Non isothermal process Introduction of thm couplings

/!\

PMMA & PC : polymers in glassy state

High cycle fatigue : mechanical response

DP 600 steel $\Delta \sigma$ = 471 MPa, R_{σ} =-1, f_{L} = 5.5 10⁻³ Hz

High cycle fatigue : thermal response

High cycle fatigue : temperature fields

High cycle fatigue : dissipation fields

Conclusion and prospects

Theoretical objective: energy analysis of material behavior

- Heat source assessment \rightarrow energy balance \rightarrow constitutive equations
- Stored energy $\leftarrow \rightarrow$ state eq. ; dissipation $\leftarrow \rightarrow$ evolution eq.
- Full field measurements: initial and boundary conditions

IR metrology:

- Thermal stability, pixel calibration
- Frame rate, image lost
- Parasitic radiation ...

Heat source identification:

- Thermo-physical parameters ; thermal noise ; heat diffusion
- Direct methods : 0-2D approaches → real 3D inverse problem
- Use of POD-SVD pre-processing