
HAL Id: cel-02047265
https://hal.science/cel-02047265

Submitted on 24 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Inference via Convex Optimization
Anatoli B. Juditsky, Arkadi Nemirovski

To cite this version:
Anatoli B. Juditsky, Arkadi Nemirovski. Statistical Inference via Convex Optimization. 3rd cycle.
France. 2018. �cel-02047265�

https://hal.science/cel-02047265
https://hal.archives-ouvertes.fr


Statistical Inference
via Convex Optimization

Anatoli Juditsky and Arkadi Nemirovski

https://www.isye.gatech.edu/~ nemirovs/StatOpt LN.pdf

ENSAE ParisTech, October-November 2018

Transparencies in Dropbox https://bit.ly/2AhVMNH

 https://bit.ly/2AhVMNH


Preface

• Many inference procedures in Statistics reduce to optimization
Example: MLE – Maximum Likelihood Estimation

Problem: Given a parametric family {pθ(·) : θ ∈ Θ} of probability
densities on Rd and a random observation ω drawn from some density
pθ?(·) from the family, estimate the parameter θ?.
MLE: Given ω, maximize pθ(ω) over θ ∈ Θ and use the maximizer
θ̂ = θ̂(ω) as an estimate of θ?.

• In MLE, (most of the time) optimization is used for number crunching only
and has nothing to do with motivation and performance analysis of MLE.
• Most of traditional applications of Optimization in Statistics are of “number
crunching” nature. Though important, “number crunching” applications are
beyond our scope



Our scope: inference routines motivated and justified by Optimization Theory

Our “working horse” will be Convex Optimization Theory – Convex Analysis,
Optimality Conditions, Duality...

This choice is motivated by

• nice geometry of convex sets, functions, and optimization problems

• computational tractability of convex optimization implying computational effi-
ciency of statistical inferences stemming from Convex Optimization.
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FOR INTRODUCTION:
LINEAR FUNCTIONAL ESTIMATION

IN WHITE NOISE

• Donoho’s Theorem

• Estimating Linear Functionals on Unions of Convex Sets



Linear Functional Estimation in White Noise Model

We consider the model

ω = Ax+ σξ

with

• observable ω ∈ Rd;
• unknown parameter x ∈ Rn; it is known a priori that x ∈ X, X ⊂ Rn

being convex and compact;
• sensing matrix A ∈ Rd×n;
• observation noise ξ ∼ N(0, Id), σ > 0 is known.

Our goal is to estimate the value g(x) at x of a given linear functional

g(z) = gTz.
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Estimation risk: given ε ∈ (0,1), we define the risk of an estimator ĝ(ω) of
gTx on X as the maximal width of confidence interval of level 1− ε:

Riskε[ĝ|X] = min
{
ρ : Probx

{
|ĝ(ω)− gTx| > ρ

}
≤ ε ∀x ∈ X

}
We are specifically interested in the minmax risk

RiskOptε = inf
ĝ

Riskε[ĝ|X],

•We say that an estimator ĝ = ĝc,φ is affine if it is of the form

ĝc,φ(ω) = φTω + c, φ ∈ Rd, c ∈ R.

We want to compare the minmax risk RiskOptε to the maximal on X risk of
the best affine estimator:

RiskAε = inf
c,φ

Riskε[ĝc,φ|X].
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White Noise Model : Donoho’s Theorem

Thorem [Donoho, 1995] In the white noise model

RiskAε ≤ C RiskOptε

with C ≤ 1.25 when ε ≤ 0.01.

Let us prove the following version of this result:

Proposition Let ε ∈ (0,1/2). There is an affine estimator ĝc,φ(·) of g(x)

such that

Riskε[ĝc,φ|X] ≤
qN (1− ε/2)

qN (1− ε)
RiskOptε

where qN (α) is the α-quantile of N (0,1).

Note: the ratio qN (1−ε/2)
qN (1−ε) → 1 as ε ↓ +0
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Proof. 1o Note that ∀u ∈ X,

ĝc,φ(ω)− g(u) = φTω + c− gTu = φTAu− gTu+ σφTξ︸ ︷︷ ︸
∼N (0,σ2‖φ‖2

2)

≤ (ATφ− g)u+ c+ qN(1− ε/2)σ‖φ‖2

with probability 1− ε/2.

Thus, for ρ = maxu∈X(ATφ− g)u+ c+ qN(1− ε/2)σ‖φ‖2,

sup
u∈X

Probu{ĝ(ω)− g(u) ≥ ρ} ≤ ε/2.

For the same reasons,

sup
v∈X

Probv{ĝ(ω)− g(v) ≤ −ρ′} ≤ ε/2.

where ρ′ = maxv∈X(g −ATφ)v − c+ qN(1− ε/2)σ‖φ‖2.
Let us put

c = 1
2

[
max
u∈X

(g −ATφ)Tx−max
v∈X

(ATφ− g)Tv

]
.

With this choice of c we have ρ = ρ′, and

ρ = 1
2

max
u,v∈X

{
Φ(φ;u, v) := [gT(v − u) + φTA(u− v)] + 2qN(1− ε/2)σ‖φ‖2

}
.

is the half-length of the confidence interval of ĝ(Y ). We conclude that

Riskε[ĝc,φ|X] ≤ OptX := min
φ

[
max
u,v∈X

Φ(φ;u, v)

]
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2o Observe that Φ(φ;u, v) is convex and coercive in φ and concave in u, v. Thus, by the
Sion-Kakutani theorem,

min
φ

[
max
u,v∈X

Φ(φ;u, v)

]
= max

u,v∈X

[
min
φ

Φ(φ;u, v)

]
Note that

min
φ

Φ(φ;u, v) = gT(v − u) + min
φ

[
φTA(u− v) + 2qN(1− ε/2)σ‖φ‖2

]
=

{
gT(v − u), ‖A(u− v)‖2 ≤ 2qN(1− ε/2)σ,

−∞, otherwise,

and we conclude that

OptX = max
{

1
2
gT(v − u) : u, v ∈ X, ‖A(v − u)‖2 ≤ 2qN(1− ε/2)σ

}
. (∗)

3o We need to show that

OptX ≤
qN(1− ε/2)

qN(1− ε)
RiskOptε := ψ(ε)RiskOptε.

Let us assume, on the contrary, that

ρ∗ = RiskOptε<ψ(ε)−1OptX.

Observe that (∗) is clearly solvable, let [ū; v̄] be an optimal solution; we have

2ρ∗ < ψ(ε)−1gT(v̄ − ū) < gT(v̄ − ū).
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Let now [û; v̂] be a “contraction” of [ū; v̄] such that

2ρ∗ = gT(v̂ − û).

We have
‖A(v̂ − û)‖2 =

ρ∗

OptX︸ ︷︷ ︸
<ψ−1

‖A(v̄ − ū)‖2 < 2qN(1− ε)σ.

Now let us consider the problem of deciding between hypotheses

H1 : x = û and H2 : x = v̂.

Let g∗(·) be the (minmax) estimator of g(u) with risk ρ∗.

Now consider the rule T (·) deciding between H0 and H1:

T decides H1 if g∗(ω) ≤ 1
2
gT(v̂ + û), and decides H2 otherwise.

By construction, the probability that T (ω) rejects Hi, i = 1,2 when it is true is ≤ ε.
On the other hand,

‖Av̂ −Aû‖2 < 2qN(1− ε)σ.
Then, by the Neyman-Pearson lemma, there is no test for H1 and H1 with the risk 2ε, and we
arrive at a contradiction. �
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Interpreting the result

In order to find ĝ one has to solve a conic convex problem

OptX = max
u,v∈X

{
1
2
gT (v − u) : ‖A(v − u)‖2 − 2qN (1− ε/2)σ︸ ︷︷ ︸

:=f(u,v)

≤ 0
}
.

It is a “well structured” problem and can be solved efficiently if X is computa-
tionally tractable.

Note that an optimal solution (ū, v̄) to this problem can be augmented by the
Lagrange multiplier ν ≥ 0 such that the vectors

eu = ∂
∂u

∣∣∣∣∣
(u,v)=(ū,v̄)

[
1
2
gTu+ νf(u, v)

]
ev = ∂

∂v

∣∣∣∣∣
(u,v)=(ū,v̄)

[
−1

2
gTv + νf(u, v)

]
belong to the normal cone of X ×X at (ū, v̄):

∀(u, v ∈ X) : eTu (u− ū) ≥ 0, eTv (v − v̄) ≥ 0. (!)
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There are two possible cases:

• ν = 0: in this case the constraint ‖A(v − u)‖2 ≤ 2qN (1 − ε/2) is not
active, and

[ū; v̄] ∈ Argmax
{
gT (v − u) : u, v ∈ X

}
.

We have φ∗ = 0 and c∗ = gT (ū+ v̄);
• ν > 0: in this case ‖A(v̄ − ū)‖2 = 2qN (1− ε/2)σ, and we set

ĝ(ω) = φT∗ ω + c∗, φ∗ = ν
A(v̄ − ū)

‖A(ū− v̄)‖2
, c∗ = 1

2
gT (ū+ v̄).

One verifies straightforwardly that Φ(φ∗;u, v) attains its maximum over
u, v ∈ X at the point (ū, v̄), and the maximal value is exactly 2OptX .
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Linear Functional Estimation over Unions of Convex Sets

• Given

• collection Xj, j = 1, ..., J , of nonempty convex compact sets in Rn

• d× n matrix A
• linear function gTx on Rn

• observation ω = Ax+ ξ, ξ ∼ N (0, σ2Id), σ > 0,

we want to estimate gTx.

Same as before, we quantify the performance of an estimate ĝ(·) by its ε-risk:

Riskε[ĝ|X] = min
{
ρ : Probx

{
|ĝ(ω)− gTx| > ρ

}
≤ ε∀(j ≤ J, x ∈ Xj)

}
.

We consider estimates which are aggregates of “pairwise” estimates of the
form

gij(ω) = φTijω + cij, 1 ≤ i, j ≤ J.
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Let ε ∈ (0,1), g(x) = φTω + c, φ ∈ Rd, c ∈ R. Observe that ∀x ∈ X,

g(ω)− gTx = (ATφ− g)x+ c+ σφTξ ≤ (ATφ− g)x+ c+ σ‖φ‖2qN(1− ε/2),

gTx− g(ω) = (g −ATφ)x− c+ σφTξ ≤ (g −ATφ)x− c+ σ‖φ‖2qN(1− ε/2)

with probability 1− ε/2. Therefore, for any 1 ≤ i, j ≤ J ,

∀u ∈ Xi: g(ω)− gTu ≤ maxu∈Xi
(ATφ− g)u+ c+ σ‖φ‖2qN(1− ε/2),

∀v ∈ Xj: gTv − g(ω) ≤ maxv∈Xj
(g −ATφ)v − c+ σ‖φ‖2qN(1− ε/2).

Let

c = 1
2

[
max
v∈Xj

(g −ATφ)v −max
u∈Xi

(ATφ− g)u

]
.

We conclude that g(ω) satisfies:

sup
u∈Xi

Probu{g(ω)− gTu ≥ ρ} ≤ ε/2,

sup
v∈Xj

Probv{gTv − g(ω) ≥ ρ} ≤ ε/2,

where

ρ = 1
2

max
u∈X i,v∈Xj

{
Φ(φ;u, v) := [gT(v − u) + φTA(u− v)] + 2qN(1− ε/2)σ‖φ‖2

}
.
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Building the estimate: Let ε = ε/J . For 1 ≤ i, j ≤ J , consider convex optimization problems

Optij = min
φ

{
max

u∈Xi,v∈Xj

1
2
Φ(φ;u, v)

}
= min

φ

{
max

u∈Xi,v∈Xj

1
2

[
(gT(v − u) + φTA(u− v)) + 2qN

(
1− ε

2J

)
σ‖φ‖2

]}
.

Let φij be feasible solutions to these problems, and ρij be the corresponding values of the
objectives (the closer to Optij, the better).

•We set

gij(ω) = φTijω + cij, cij = 1
2

[
max
v∈Xj

(g −ATφ)v −max
u∈Xi

(ATφ− g)u

]
.

thus ensuring

Probu
{
gij(ω) > gTu+ ρij

}
≤ ε

2J
, u ∈ Xi

Probv
{
gij(ω) < gTv − ρij

}
≤ ε

2J
, v ∈ Xj
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Probu
{
gij(ω) > gTu+ ρij

}
≤ ε

2J
, u ∈ Xi

Probv
{
gij(ω) < gTv − ρij

}
≤ ε

2J
, v ∈ Xj

• Given observation ω, we build the matrix[
Eij := gij(ω)

]
1≤i,j≤J

,

and set
ri = maxj Eij, r = mini ri = minimaxj Eij,
sj = miniEij, s = maxj sj = maxj miniEij.

The estimate ĝ(ω) of gTx, x ∈ X = ∪jXj, is set to

ĝ(ω) = 1
2
[r + s].

Theorem ε-Risk of the estimate ĝ satisfies

Riskε[ĝ|X] ≤ ρ := max
i,j

ρij.
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Probu
{
gij(ω) > gTu+ ρij

}
≤ ε

2J
, u ∈ Xi

Probv
{
gij(ω) < gTy − ρij

}
≤ ε

2J
, v ∈ Xj

(a)

Eij = gij(ω) (b)

ri = maxj Eij, r = mini ri = mini maxj Eij,
sj = miniEij, s = maxj sj = maxj miniEij

(c)

ĝ(ωK) = 1
2
[r + s] (d)

Proof. 10. By (b),

ri ≥ Eij ≥ sj ⇒ ri ≥ sj ∀i, j (e)

20. Let x ∈ X`, and let E be the event

g`j(ω) ≤ gTu+ ρ`j ∀j ≤ J, and gi`(ω) ≥ gTv − ρ ∀i ≤ J,
so that by (a) and union bound,

P (E) ≥ 1− ε.
Let ∆ = [gTx− ρ, gTx+ ρ]. Note that when ω ∈ E , one has r, c ∈∆.

Indeed, when ω ∈ E , we have

r`j ≤ gTx+ ρ`j ∀j ⇒ r` ≤ gTx+ ρ ⇒ r ≤ gTx+ ρ,

same as
si` ≥ gTx− ρi` ∀i ⇒ s` ≥ gTx− ρ ⇒ s ≥ gTx− ρ.

Since r ≥ s by (e), we conclude that r, s ∈∆ whenever ω ∈ E . �
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Near-Optimality

Optij = min
φ

{
max

u∈Xi,v∈Xj

1
2

[
(gT(v − u) + φTA(u− v)) + 2qN

(
1−

ε

2J

)
σ‖φ‖2︸ ︷︷ ︸

Φ(φij;u,v)

]}

Because Φ(φij;u, v) is convex and coercive in φ and concave in u, v while
Xi, Xj are convex compact sets, by the Sion-Kakutani theorem,

min
φ

[
max

u∈Xi,v∈Xj
Φ(φij;u, v)

]
= max

u∈Xi,v∈Xj

[
min
φ

Φ(φ;u, v)

]
Same as above, we conclude that Optij is either −∞, or

Optij = max
{

1
2
gT(v − u) : u ∈ Xi, v ∈ Xj, ‖A(v − u)‖2 ≤ 2qN

(
1−

ε

2J

)
σ
}
. (∗)

It is immediately seen that Optii is a nonnegative real, so that

Opt := max
i,j

Optij ≥ 0.
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Note that we can make the bound ρ on ε-risk of our estimate arbitrarily close
to Opt by properly selecting corresponding feasible solutions.

We are to show that Opt is nearly the optimal ε-risk in our estimation problem

RiskOptε = inf
ĝ

Riskε[ĝ|X].

Theorem Let ε ∈ (0,1/2). Assume that we are in the special case where for
every i, j there exists xij ∈ Xi ∩Xj. Then

Opt ≤
qN (1− ε

2J)

qN (1− ε)
RiskOptε.
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Optij = max
{

1
2
gT(v − u) : u ∈ Xi, v ∈ Xj, ‖A(v − u)‖2 ≤ 2qN

(
1−

ε

2J

)
σ

}
. (∗)

Proof. 1o We are to show that for all 1 ≤ i, j ≤ J

Optij ≤
qN(1− ε

2J
)

qN(1− ε)︸ ︷︷ ︸
:=ψ(ε)

RiskOptε [≥ 0]

Let us associate with (∗) a parametric problem

wij(s) = max
{

1
2
gT(v − u) : u ∈ Xi, v ∈ Xj, ‖A(v − u)‖2 ≤ s

}
. (Ps)

Note that (Ps) is convex (in the sense that its objective is concave and the domain is convex)
and feasible ∀s ≥ 0 (with a feasible solution u = v = xij) with wij(0) ≥ 0. We conclude that
wij(s) is nonnegative, concave and bounded on R+⇒ wij(s) is continuous for s > 0.
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wij(s) = max
{1

2
gT(v − u) : u ∈ Xi, v ∈ Xj, ‖A(v − u)‖2 ≤ s

}
. (Ps)

We claim that
wij(s∗) ≤ RiskOptε, s∗ = 2σqN(1− ε).

Let us assume, on the contrary, that wij(s∗) > RiskOptε, so that for some s′ ∈ (0, s∗),
wij(s′) > RiskOptε. Then there exist ū ∈ Xi and v̄ ∈ Xj which are feasible for (Ps′) and
such that

‖A(ū− v̄)‖2<2σqN(1− ε),
and

1
2
gT(v̄ − ū) > RiskOptε.

We have already seen that this is impossible by the Neyman-Pearson lemma, thus arriving to
a contradiction.

2o. We conclude that wij(s∗) ≤ RiskOptε. Now, we for

s̄ = ψ(ε)s∗ = 2qN
(

1−
ε

2J

)
σ

we have by concavity of wij(s) and due to wij(0) ≥ 0:

wij(s̄) ≤ ψ(ε)wij(s
′) ≤ ψ(ε)RiskOptε. �
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Numerical Illustration

Setup: Given J = 100 points xj ∈ R20 and stationary K-repeated observation noisy obser-
vation

ωK = (ω1, .., ωK), ωk ∼ N (Ax, I20)

of one of the points (we do not know which one!), we want to recover the first entry of the point.
• A: randomly generated matrix
• ε = 0.01.
Note: We are in the situation where Xi = {xi} are singletons.

20 30 40 50 100 200 300

0

0.5

1

1.5

2

2.5

Opt(K) vs. σ−2, data over 20 randomly generated collections {xi}100
i=1
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HYPOTHESIS TESTING, I

• Preliminaries

• Tests & Risks

• Repeated Observations

• 2-Point Lower Risk Bound

• Pairwise Tests via Euclidean Separation

• From Pairwise to Multiple Hypothesis Testing



Hypothesis Testing Problem

Given
• observation space Ω where our observations take values,
• L families P1, P2,...,PL of probability distributions on Ω, and
• an observation ω – a realization of random variable with unknown probability

distribution P known to belong to one of the families P`: P ∈
L⋃
`=1
P`,

we want to decide to which one of the families P` the distribution P belongs.

Equivalent wording: Given the outlined data, we want to decide on L hy-
potheses H1, ..., HL, with `-th hypothesis H` stating that P ∈ P`.

A test is a function T (·) on Ω. The value T (ω) of this function at a point
ω ∈ Ω is a subset of the set {1, ..., L}.
– relation ` ∈ T (ω) is interpreted as “given observation ω, the test accepts the
hypothesis H`”
– relation ` 6∈ T (ω) is interpreted as “given observation ω, the test rejects the
hypothesis H`”
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Simple tests

• T is called simple, if T (ω) is a singleton for every ω ∈ Ω.

Risks of a simple test T , are defined as follows:

• `-th partial risk of T is the (worst-case) probability to reject `-th hypothesis
when it is true:

Risk`[T |H1, ..., HL] = sup
P∈P`

Probω∼P {` 6∈ T (ω)}

• total risk of T is the sum of all partial risks:

Risktot[T |H1, ..., HL] =
∑

1≤`≤L
Risk`[T |H1, ..., HL].

• risk of T is the maximum of all partial risks:

Risk[T |H1, ..., HL] = max
1≤`≤L

Risk`[T |H1, ..., HL].
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Remark: What was called test is in fact a deterministic test.

A randomized test is a deterministic function T (ω, η) of observation ω and in-
dependent of ω random variable η ∼ Pη with once for ever fixed distribution
(e.g., Pη = Uniform[0,1]).

• Values T (ω, η) of T are subsets of {1, ..., L} (singletons for a simple test).
• Given observation ω, we “flip a coin” (draw a realization of η), accept hy-
potheses H`, ` ∈ T (ω, η), and reject all other hypotheses.
• Partial risks of a randomized test are

Risk`[T |H1, ..., HL] = sup
P∈P`

Prob(ω,η)∼P×Pη{` 6∈ T (ω, η)}.

Exactly as above, these risks give rise to the total risk and risk of T .
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Testing from repeated observations

There are situations where an inference can be based on several observations
ω1, ..., ωK rather than on a single observation. Our related setup is as follows:

We are given L families P`, ` = 1, ..., L, of probability distributions
on observation space Ω and a collection

ωK = (ω1, ..., ωK),

and want to make conclusions on how the distribution of ωK “is posi-
tioned” w.r.t. the families P`, 1 ≤ ` ≤ L.

Specifically, we are interested in three situations of this type.
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A. Stationary K-repeated observations

Situation: ω1, ..., ωK are drawn independently of each other from the same
distribution P . Our goal is to decide, given ωK , on the hypotheses P ∈ P`,
` = 1, ..., L.

Equivalently: Families P` of probability distributions of ω ∈ Ω, 1 ≤ ` ≤ L,
give rise to the families

PK` = {PK = P × ...× P︸ ︷︷ ︸
K

: P ∈ P`}

of probability distributions on ΩK = Ω× ...×Ω︸ ︷︷ ︸
K

. Given observation ωK ∈

ΩK , we want to decide on the hypotheses

HK
` : ωK ∼ PK ∈ PK` , 1 ≤ ` ≤ L.
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B. Semi-stationary K-repeated observations

Situation: “The nature” selects somehow a sequence P1, ..., PK of distribu-
tions on Ω, and then draws, independently across k, observations ωk from
these distributions:

ωk ∼ Pk are independent across k ≤ K

Our goal is to decide, given ωK = (ω1, ..., ωK), on the hypotheses

{Pk ∈ P`,1 ≤ k ≤ K}, ` = 1, ..., L.

Equivalently: Families P` of probability distributions of ω ∈ Ω, 1 ≤ ` ≤ L,
give rise to the families

P⊕,K` =
K⊕
k=1

P` := {PK = P1 × ...× PK : Pk ∈ P`, 1 ≤ k ≤ K}

of probability distributions on ΩK = Ω× ...×Ω︸ ︷︷ ︸
K

. Given observation ωK ∈

ΩK , we want to decide on the hypotheses

H
⊕,K
` : ωK ∼ PK ∈ P⊕,K` , 1 ≤ ` ≤ L.
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C. Quasi-stationary K-repeated observations:
We observe random sequence ωK = (ω1, ..., ωK) generated as follows:

There exists a random sequence ζ1, ..., ζK of driving factors such that
for 1 ≤ k ≤ K
• ωk is a deterministic function of ζk = (ζ1, ..., ζk)

• conditional, given ζk−1 , distribution of ωk always belongs to P`.

Our goal is to decide, given ωK , on the underlying `.

Equivalently: Families P` of probability distributions on Ω, 1 ≤ ` ≤ L, give

rise to the quasi-direct products P⊗,K` =
K⊗
k=1
P` of families P`.

Family
K⊗
k=1
P` is comprised of all probability distributions on ΩK = Ω× ...×Ω︸ ︷︷ ︸

K
which can be obtained from P` via the above “driving factors” mechanism.
Given observation ωK ∈ ΩK , we want to decide on the hypotheses

H
⊗,K
` : ωK ∼ PK ∈ P⊗,K` , 1 ≤ ` ≤ L.
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Important fact: 2-point lower risk bound

Consider a simple pairwise test deciding on two simple hypotheses on the
distribution P of observation ω ∈ Ω:

H1 : P = P1, H2 : P = P2.

Let P1, P2 have densities p1, p2 w.r.t. some reference measure Π on Ω.
Then the total risk of every test T deciding on H1, H2 admits lower bound as
follows:

Risktot[T |H1, H2] ≥
∫
Ω

min[p1(ω), p2(ω)]Π(dω).

As a result,

Risk[T |H1, H2] ≥ 1
2

∫
Ω

min[p1(ω), p2(ω)]Π(dω). (∗)

The bound does not depend on the choice of Π (for example, we can always
take Π = P1 + P2).
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Risk[T |H1, H2] ≥
1

2

∫
Ω

min[p1(ω), p2(ω)]Π(dω). (?)

Proof (for deterministic test). Simple test deciding on H1, H2 must accept H1

and reject H2 on some subset Ω1 of Ω and must reject H1 and accept H2 on
the complement Ω2 = Ω\Ω1 of this set. We have

Risk1[T |H1, H2] =
∫

Ω2

p1(ω)Π(dω) ≥
∫

Ω2

min[p1(ω), p2(ω)]Π(dω)

Risk2[T |H1, H2] =
∫

Ω1

p2(ω)Π(dω) ≥
∫

Ω1

min[p1(ω), p2(ω)]Π(dω),

thus
Risktot[T |H1, H2] ≥

∫
Ω2

min[p1(ω), p2(ω)]Π(dω) +
∫

Ω1

min[p1(ω), p2(ω)]Π(dω)

=
∫
Ω

min[p1(ω), p2(ω)]Π(dω) �
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Remark: In the situation in question, consider the test T∗:

T∗ accepts H1 if p1(ω) ≥ p2(ω), and accepts H2 if p1(ω) < p2(ω)

(Neyman-Pearson or Likelihood Ratio test).

Lemma [Neyman-Pearson] For any test T

Risktot[T |H1, H2] ≥ Risktot[T∗|H1, H2] =
∫
Ω

min[p1(ω), p2(ω)]Π(dω).

Example: Gaussian distributions. Let Ω = Rd, our observation

ω = x+ ξ,

where x is deterministic and ξ ∼ N (0, I), i.e., has the density p(u) = (2π)−d/2e−
1
2
uTu. Our

goal is to decide on two simple hypotheses: H1 : x = x1 and H2 : x = x2, x1, x2 being two
given points.
The corresponding test T∗ decides H1 if

φ∗(ω) = eT [ω − 1
2
(x1 + x2)] ≥ 0, e =

x1 − x2

‖x1 − x2‖2

and decides H2 otherwise. Its total risk is given by

Risktot[T |H1, H2] = P1(φ∗(ω) < 0) + P2(φ∗(ω) ≥ 0)

= 2Probζ∼N(0,1)

{
ζ ≥ 1

2
‖x2 − x1‖2

}
= erfc

(
‖x2−x1‖2

2
√

2

)
.
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e = x1−x2

‖x1−x2‖2
φ(ω) = eTω − 1

2
eT [x1 + x2]︸ ︷︷ ︸

c
Π = {ω : ‖ω − x1‖2 = ‖ω − x2‖2} = {ω : φ(ω) = 0}

x1
x2

p1(·)↘ ↙ p2(·)

φ(ω) = 0φ(ω) > 0 φ(ω) < 0
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Corollary. Consider L hypotheses H` : P ∈ P`, ` = 1,2, ..., L, on the
distribution P of observation ω ∈ Ω, let ` 6= `′ and let P` ∈ P`, P`′ ∈ P`′.

The risk of any simple test T deciding on H1, ..., HL can be lower-bounded as

Risk[T |H1, ..., HL] ≥ 1
2

∫
Ω

min [P`(dω), P`′(dω)],

where, by convention, the integral in the right hand side is∫
Ω

min[p`(ω), p`′(ω)]Π(dω),

with p`, p`′ being the densities of P`, P`′ w.r.t. Π = P` + P`′.

Indeed, risk of T cannot be less than the risk of the naturally induced by T
simple test deciding on two simple hypotheses P = P`, P = P`′, specifically,
the simple test which, given observation ω accepts the hypothesis P = P`
whenever ` ∈ T (ω) and accepts the hypothesis P = P`′ otherwise.
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Extension: Euclidean separation

Given observation ω = x+ ξ with observation noise ξ ∼ N (0, I), we want to
decide on two composite hypotheses H1, and H2:

H1 : x ∈ X1, H2 : x ∈ X2,

where X1, X2 are nonempty nonintersecting, closed and convex sets, and
one of the sets is bounded.

Elementary fact: With X1, X2 as above, consider the convex minimization
problem

Opt = min
x1∈X1,x2∈X2

1
2
‖x1 − x2‖2.

The problem is solvable. Let (x1
∗ , x

2
∗) be an optimal solution, and let

φ(ω) = eTω − c, e =
x1
∗ − x2

∗
‖x1∗ − x2∗‖2

, c = 1
2
eT [x1

∗ + x2
∗]

Then the stripe {ω : −Opt ≤ φ(ω) ≤ Opt} separates X1 and X2:

φ(x1) ≥ φ(x1
∗) = Opt ∀x1 ∈ X1, φ(x2) ≤ φ(x2

∗) = −Opt∀x2 ∈ X2
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.
X1

X2

x1
∗

x2
∗

φ(ω) = Opt

φ(ω) = −Opt

φ(ω) = eTω − 1
2
eT [x1

∗ + x2
∗], e =

1

2Opt
[x1
∗ − x2

∗]

where [x1
∗ , x

2
∗] is an optimal solution to convex optimization problem

Opt = min
x1∈X1,x2∈X2

1
2
‖x1 − x2‖2

While optimal solution si not necessarily unique, φ(·) is uniquely defined by
X1, X2.
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X1

X2

x1
∗δ1

x2
∗

δ2

φ(ω) = Opt

φ(ω) = −Opt

↙φ(ω) = 1
2
[δ2 − δ1]

•Given δ1 ≥ 0, δ2 ≥ 0 with δ1 + δ2 = 2Opt, φ(·) specifies simple Euclidean
Separation Test T induced by X1, X2, δ1, δ2:

T (ω) =

{
{1}, φ(ω) ≥ 1

2[δ2 − δ1]
{2}, otherwise
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Observation: Let ξ ∼ N (0, I). Given observation ω = x+ ξ the Euclidean
Separation Test T decides on the hypotheses

H1 : x ∈ X1, H2 : x ∈ X2

with risks satisfying

Risk1[T |H1, H2] ≤ Probζ∼N(0,1) {ζ ≥ δ1} = 1
2
erfc(δ1/

√
2),

Risk2[T |H1, H2] ≤ Probζ∼N(0,1) {ζ ≥ δ2} = 1
2
erfc(δ2/

√
2).

In addition, when δ1 = δ2 = Opt, T is the minimum risk test deciding on H1,
H2. The risk of this test is

Risk[T |H1, H2] = Probζ∼N(0,1) {ζ ≥ Opt} = 1
2
erfc(Opt/

√
2).

Note: By Neyman-Pearson lemma, this risk is the smallest attainable under
circumstances.
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From Pairwise to Multiple Hypotheses Testing

Situation: We are given L families of probability distributions P`, 1 ≤ ` ≤ L,
on observation space Ω, and observe a realization of random variable ω ∼ P

taking values in Ω. Given ω, we want to decide on L hypotheses

H` : P ∈ P`, 1 ≤ ` ≤ L.

Our ideal goal would be to find a low-risk simple test deciding on these hy-
potheses.

Note: It may happen that the “ideal goal” is not achievable, for instance, when
some pairs of families P` have nonempty intersections. When P`∩P`′ 6= ∅ for
some ` 6= `′, there is no way to decide on the hypotheses with risk < 1/2.

Fortunately, impossibility to decide reliably on all L hypotheses “individually”
does not mean that no meaningful inferences can be done.
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When handling multiple hypotheses which cannot be reliably decided upon
“as they are,” it makes sense to speak about testing the hypotheses “up to
closeness.”
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ω ∼ P, H` : P ∈ P`, 1 ≤ ` ≤ L

Closeness relation C on L hypotheses H1, ..., HL is defined as a set of pairs
(`, `′) with 1 ≤ `, `′ ≤ L; we interpret the relation (`, `′) ∈ C as the fact that
the hypotheses H` and H ′` are close to each other.

We always assume that

• C contains all “diagonal pairs” (`, `), 1 ≤ ` ≤ L: (“every hypothesis is
close to itself”)
• (`, `′) ∈ C if and only if (`′, `) ∈ C (“closeness is symmetric”)

Note: By symmetry of C, the relation (`, `′) ∈ T is in fact a property of un-
ordered pair {`, `′}.
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“Up to closeness” risks
Let T be a test deciding on H1, ..., HL; given observation ω, T accepts all
hypotheses H` with indexes ` ∈ T (ω) and rejects all other hypotheses.

We say that `-th partial C-risk of test T is ≤ ε, if whenever H` is true: ω ∼ P ∈
P`, the P -probability of the event
T accepts H`: ` ∈ T (ω) and all hypotheses H`′ accepted by T are
C-close to H`: (`, `′) ∈ C ∀`′ ∈ T (ω)

is at least 1− ε.

`-th partial C-risk of T is the smallest ε with the outlined property:

RiskC` [T |H1, ..., HL] = sup
P∈P`

Probω∼P
{

[` 6∈ T (ω)] or [∃`′ ∈ T (ω) : (`, `′) 6∈ C]
}

C-risk of T is the largest of the partial C-risks of the test:

RiskC[T |H1, ..., HL] = max
1≤`≤L

RiskC` [T |H1, ..., HL].
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Multiple Hypothesis Testing via Pairwise Tests

Assume that for every unordered pair {`, `′} with (`, `′) 6∈C we are given a
simple test T{`,`′} deciding on H` vs. H`′ via observation ω.

Construction:
• For (`, `′) 6∈ C, so that ` 6= `′, we define function T``′(ω) as follows:

T``′(ω) =

{
1, T{`,`′}(ω) = {`}
−1, T{`,`′}(ω) = {`′} .

Since T{`,`′} is a simple test, T``′(·) is well defined and takes values ±1.

• For (`, `′) ∈ C, we set T``′(·) ≡ 0.
By construction, we have T``′(ω) ≡ −T`′`(ω), 1 ≤ `, `′ ≤ L.

• The test T is as follows: given observation ω, we build L × L matrix
T (ω) = [T``′(ω)] and accept exactly those of the hypotheses H` for which
`-th row in T (ω) is nonnegative, that is, all tests T{`,`′} with (`, `′) 6∈ C accept
H`, observation being ω.
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Example: L = 4, C = {(1,1), (2,2), (3,3), (4,4), {1,2}, {2,3}, {3,4}}
Suppose that given tests T{1,3}, T{1,4}, T{2,4} and observation ω:
• T{1,3} accepts H1, T{1,4} accepts H1, T{2,4} accepts H4, so we get

T (ω) =


0 0 +1 +1
0 0 0 −1
−1 0 0 0
−1 +1 0 0


⇒ Aggregated test T accepts H1

• when T{1,3} accepts H1, T{1,4} accepts H1, T{2,4} accepts H2, we get

T (ω) =


0 0 +1 +1
0 0 0 +1
−1 0 0 0
−1 −1 0 0


⇒ Aggregated test T accepts H1 and H2
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Observation: When T accepts some hypothesis H`, all hypotheses accepted
by T are C-close to H`.

Indeed, if `-th row in T (ω) is nonnegative and `′ is not C-close to `, we have

T``′(ω) ≥ 0 and T``′(ω) ∈ {−1,1}
⇒ T``′(ω) = 1
⇒ T`′`(ω) = −T``′(ω) = −1
⇒ `′-th row in T (ω) is not nonnegative⇒ `′ is not accepted

Risk analysis. For (`, `′) 6∈ C, let

ε``′ = Risk1[T{`,`′}|H`, H`′] = sup
P∈P`

Probω∼P{` 6∈ T{`,`′}(ω)}

= sup
P∈P`

Probω∼P{T``′(ω) = −1} = sup
P∈P`

Probω∼P{T`′`(ω) = 1}

= sup
P∈P`

Probω∼P{`′ ∈ T{`,`′}(ω)} = Risk2[T{`,`′}|H`′, H`].
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Proposition. One has

RiskC` [T |H1, ..., HL] ≤ ε` :=
∑

`′:(`,`′)6∈C
ε``′.

Indeed, let us fix `, and let H` be true. Let P ∈ P` be the distribution of
observation ω, and let I = {`′ ≤ L : (`, `′) 6∈ C}. For `′ ∈ I, let E`′ be the
event {ω : T``′(ω) = −1}. We have Probω∼P (E`′) ≤ ε``′ (by definition of
ε``′) ⇒ Probω∼P

(
∪`′∈IE`′︸ ︷︷ ︸
E

)
≤ ε`.

When the event E does not take place, we have T``′(ω) = 1 for all `′ ∈ I
⇒ T``′(ω) ≥ 0 for all `′, 1 ≤ `′ ≤ L
⇒ ` ∈ T (ω)

⇒ (by Observation) {` ∈ T (ω)}& {(`, `′) ∈ C ∀`′ ∈ T (ω)}.
By definition of partial C-risk, we get

RiskC` [T |H1, ..., HL] ≤ Probω∼P (E) ≤ ε`. �
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Testing Multiple Hypotheses via Euclidean Separation

Situation: We are given L nonempty, closed and bounded convex sets X` ⊂
Rd, 1 ≤ ` ≤ L and an observation ω = x+ ξ, so that
• x is a deterministic sequence of signals, and ξ ∼ N (0, I).

Given ωK , we want to decide up to closeness C on L hypothesesH` : x ∈ X`.

Equivalently: Sets X` ⊂ Rd specify L families of distributions

P` = {N (x, I) : x ∈ X`}, 1 ≤ ` ≤ L

Given ω, we want to decide, up to closeness C, on L hypotheses

H` : P ∈ P`, 1 ≤ ` ≤ L

on the distribution PK of observation ωK .

We intend to assemble pairwise Euclidean separation tests.

Standing Assumption: Whenever `, `′ are not C-close: (`, `′) 6∈C, the sets
X`, X`′ do not intersect.
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Building blocks. For (`, `′) 6∈ C, we solve convex optimization problems

Opt``′ = min
u∈X`,v∈X`′

1
2
‖u− v‖2. (P``′)

By Standing Assumption, Opt``′ > 0. Optimal solution (u∗, v∗) to (P``′)
defines affine functions

φ``′(ω) = eT``′ω − c``′ e``′ =
u∗ − v∗
‖u∗ − v∗‖2

, c``′ = 1
2
eT``′[u∗+ v∗]

Note: We have φ``′(·) ≡ −φ`′`(·) for all (`, `′) 6∈ C.

As we know, whenever δ``′ ≥ 0, δ`′` ≥ 0 satisfy

2Opt``′ = δ``′ + δ`′`

it holds

∀u ∈ X` : Probu
{
φ(u+ ξ) < 1

2
[δ`′` − δ``′]

}
≤ Γ(δ``′) :=

∞∫
δ``′

γ(s)ds,

∀v ∈ X`′ : Probv
{
φ(v + ξ) ≥ 1

2
[δ`′` − δ``′]

}
≤ Γ(δ`′`) :=

∞∫
δ`′`

γ(s)ds

where γ(·) is the standard normal density.
- 1.26 -



`, `′ : (`, `′) 6∈ C ⇒ Opt``′ = min
u∈X`,v∈X`′

1
2
‖u− v‖2 > 0 = Opt`′`

⇒ u∗, v∗, φ``′(ω) = eT``′ω − c``′≡ −φ`′`(ω)
[
e``′ = u∗−v∗

‖u∗−v∗‖2
, c``′ = 1

2
eT``′[u∗ + v∗]

]
δ``′ ≥ 0, δ`′` ≥ 0, 2Opt``′ = δ``′ + δ`′` (∗)

∀u ∈ X` : Probξ∼P
{
φ(u+ ξ) < 1

2
[δ`′` − δ``′]

}
≤ Γ(δ``′) :=

∞∫
δ``′

γ(s)ds

∀v ∈ X`′ : Probξ∼P
{
φ(v + ξ) ≥ 1

2
[δ`′` − δ``′]

}
≤ Γ(δ`′`) :=

∞∫
δ`′`

γ(s)ds

(!)

Assembling building blocks

• For `, `′ with (`, `′) 6∈ C we select δ``′ satisfying (∗), thus arriving at simple
tests

T{`,`′}(ω) =

 {`}, φ``′(ω) ≥ 1
2[δ`′` − δ``′]

{`′}, φ``′(ω) < 1
2[δ`′` − δ``′]

• Further, we use out general construction to assemble tests {T{`,`′} :

(`, `′) 6∈ C} into test T deciding on H1, ..., HL

Note: By (!), associated with tests T{`,`′} quantities ε``′ satisfy the relations

ε``′ ≤ Γ(δ``′) :=
∞∫
δ``′

γ(s)ds,whence RiskC` [T |H1, ..., HL] ≤
∑

`′:(`,`′) 6∈C
Γ(δ``′).
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`, `′ : (`, `′) 6∈ C⇒Opt``′ = min
u∈X`,v∈X`′

1
2
‖u− v‖2

⇒ δ``′ ≥ 0, δ`′` ≥ 0,2Opt``′ = δ``′ + δ`′`

⇒ T : RiskC` [T |H1, ..., HL] ≤
∑

`′:(`,`′) 6∈C
Γ(δ``′), Γ(δ) =

∞∫
δ

γ(s)ds

Refining the construction.
We can try to optimize the “profile” of (upper bounds on) partial C-risks of the
test T over the “free parameters” δ``′, (`, `′) 6∈ C, of the construction.

A model here may be as follows: given nonnegative weight matrix W and
nonnegative vectors α and β, we want to minimize “scale factor” t under the
constraint

W vec[RiskC` [T |H1, ..., HL]]L`=1 ≤ α+ tβ

This problem can be safely approximated by the optimization problem

min
{δ``′},t

{
t : W vec

[∑
`′: (`,`′) 6∈C Γ(δ``′)

]L
`=1
≤ α+ tβ

δ``′ ≥ 0, δ``′ + δ`′` = 2Opt``′, (`, `′) 6∈ C

}
(#)

Note: When γ(·) is nonincreasing on R+ (as is the case for Gaussian den-

sity), function Γ(δ) =
∞∫
δ
γ(s)ds is convex on R+

⇒ (#) is an explicit Convex Programming problem!
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HYPOTHESIS TESTING, II

• Detector-Based Tests

• Detectors & Detector-Based Pairwise Tests

• Testing “up to Closeness”

• Simple Observation Schemes

• Minimum Risk Detectors

• Near-Optimal Tests

• Applications

• Recovery of Functionals

• Sequential Hypothesis Testing

• Measurement Design



Detectors & Detector-Based Pairwise Tests

Situation: Given two families P1, P2 of probability distributions on a given
observation space Ω and an observation ω ∼ P with P known to belong to
P1 ∪ P2, we want to decide whether

P ∈ P1 (hypothesis H1) or P ∈ P2 (hypothesis H2).

Detectors. A detector is a function φ : Ω→ R. Risks of a detector φ w.r.t. P1

and P2 are defined as

Risk1[φ|P1,P2] = sup
P∈P1

∫
Ω

e−φ(ω)P (dω),

Risk2[φ|P1,P2] = sup
P∈P2

∫
Ω

eφ(ω)P (dω)

Risk1[φ|P1,P2] = Risk2[−φ|P2,P1]
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Simple test Tφ associated with detector φ, given observation ω,
• accepts H1 when φ(ω) ≥ 0

• accepts H2 when φ(ω) < 0.

Immediate observation:

Risk1[Tφ|H1, H2] ≤ Risk1[φ|P1,P2]

Risk2[Tφ|H1, H2] ≤ Risk2[φ|P1,P2]

Indeed, Probω∼P {ω : ψ(ω) ≥ 0} ≤
∫

eψ(ω)P (dω).
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Risk1[φ|P1,P2] = sup
P∈P1

∫
Ω

e−φ(ω)P (dω),

Risk2[φ|P1,P2] = sup
P∈P2

∫
Ω

eφ(ω)P (dω)

Elementary Calculus of Detectors

• Renormalization (shift): φ(·)⇒ φa(·) = φ(·)− a

⇒
{

Risk1[φa|P1,P2] = eaRisk1[φ|P1,P2]
Risk2[φa|P1,P2] = e−aRisk2[φ|P1,P2]

⇒What matters, is the product

[Risk[φ|P1,P2]]2 := Risk1[φ|P1,P2]Risk2[φ|P1,P2]

of partial risks of a detector. Shifting detector by a constant, we can redistribute
this product between factors as we want, e.g., make the detector balanced:

Risk[φ|P1,P2] = Risk1[φ|P1,P2] = Risk2[φ|P1,P2].
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Detectors are well-suited to passing to multiple observations.
For 1 ≤ k ≤ K, let

• P1,k,P2,k be families of probability distributions on observation spaces Ωk,
• φk be detectors on Ωk.

Families {P1,k,P2,k}Kk=1 give rise to families of product distributions

P⊕,Kχ =
K⊕
k=1

Pχ,k := {PK = P1 × ...× PK : Pk ∈ Pχ.k,1 ≤ k ≤ K}.

on ΩK = Ω1 × ...×ΩK , χ = 1,2. We call PKχ direct products of Pχ,k.

Detectors φ1, .., φK give rise to detector φK on ΩK :

φK(ω1, ..., ωK︸ ︷︷ ︸
ωK

) =
K∑
k=1

φk(ωk).

Observation: For χ = 1,2, we have

Riskχ[φK|P⊕,K1 ,P⊕,K2 ] =
K∏
k=1

Riskχ[φk|P1,k,P2,k].
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From pairwise detectors to detectors for unions. Assume that we are given
an observation space Ω along with
• R families Rr, r = 1, ..., R of “red” probability distributions on Ω,
• B families Bb, b = 1, ..., B of “brown” probability distributions on Ω,
• pairwise detectors φrb(·), 1 ≤ r ≤ R, 1 ≤ b ≤ B.

Let us aggregate the red and the brown families into 2 groups as follows

R =
R⋃
r=1

Rr, B =
B⋃
b=1

Bb

and assemble detectors φrb into a single detector

φ(ω) = max
r≤R

min
b≤B

φrb(ω).

•We have

Risk1[φ|R,B] ≤ max
r≤R

∑
b≤B

Risk1[φrb|Rr,Bb],

Risk2[φ|R,B] ≤ max
b≤B

∑
r≤R

Risk2[φrb|Rr,Bb].
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Risk1[φ|R,B] ≤ max
r≤R

∑
b≤B

Risk1[φrb|Rr,Bb],

Risk2[φ|R,B] ≤ max
b≤B

∑
r≤R

Risk2[φrb|Rr,Bb],

Indeed, because −maxr minb φrb(ω) = minr maxb−φrb(ω),

P ∈ Rr∗ ⇒
∫

e−φ(ω)P (dω) =
∫

eminr maxb[−φrb(ω)]P (dω)

≤
∫

emaxb[−φr∗b(ω)]P (dω) ≤
∑
b

∫
e−φr∗b(ω)P (dω)

≤
∑
bRisk1[φr∗b|Rr∗,Bb]

⇒ Risk1[φ|R,B] ≤ maxr≤R
∑
b≤BRisk1[φrb|Rr,Bb].

In the same way,

P ∈ Bb∗ ⇒
∫

eφ(ω)P (dω) =
∫

emaxr minb[φrb(ω)]P (dω) ≤
∫

emaxr φrb∗(ω)P (dω)

≤
∑
r

∫
eφrb∗(ω)P (dω) ≤

∑
r Risk2[φrb∗|Rr,Bb∗]

⇒ Risk2[φ|R,B] ≤ maxb≤B
∑
r≤RRisk2[φrb|Rr,Bb].
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Refinement: W.l.o.g. we may assume that the detectors φrb are balanced:
εrb := Risk[φrb|Rr,Bb] = Risk1[φrb|Rr,Bb] = Risk2[φrb|Rr,Bb].

Consider matrices

E =

 ε1,1 · · · ε1,B
... · · · ...

εR,1 · · · εR,B

 , F =

[
E

ET

]
Note: The maximal eigenvalue θ of F is the spectral norm ‖E‖2,2 of E, and
the leading eigenvector [g; f ] can be selected to be positive (Perron-Frobenius
theorem), and we have

θg = Ef θf = ETg

• Let us pass from the detectors φrb to shifted detectors ψrb = φrb − ln(fb/gr)

and assemble the shifted detectors into the detector

ψ(ω) = max
r≤R

min
b≤B

ψrb(ω)

By the previous observation
Risk1[ψ|R,B] ≤ maxr

∑
b Risk1(ψrb|Rr,Bb) = maxr

∑
bεrb(fb/gr) = maxr[(Ef)r/gr] = θ

Risk2[ψ|R,B] ≤ maxb
∑

r Risk2(ψrb|Rr,Bb) = maxr
∑

rεrb(gr/fb) = maxb[(ETg)b/fb] = θ

⇒ Partial risks of detector ψ on aggregated families R, B are ≤ θ = ‖E‖2,2.
- 2.7 -



Detector-Based Tests “Up to Closeness”

Situation: We are given
• L families of probability distributions P`, ` = 1, ..., L, on observation space
Ω, giving rise to L hypothesesH`, on the distribution P of random observation
ω ∈ Ω:

H` : P ∈ P`, 1 ≤ ` ≤ L;

• closeness relation C;
• system of balanced detectors{

φ``′ : ` < `′, (`, `′) 6∈ C
}

along with upper bounds ε``′ on the detector risks:

∀(`, `′ : ` < `′, (`, `′) 6∈ C) :

{ ∫
Ω e−φ``′(ω)P (dω) ≤ ε``′ ∀P ∈ P`∫
Ω eφ``′(ω)P (dω) ≤ ε``′ ∀P ∈ P`′

•Our goal is to build single-observation test deciding on hypothesesH1, ..., HL
up to closeness C.
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Construction:
•We set

φ``′(ω) =

{
−φ`′`(ω), ` > `′, (`, `′) 6∈ C,
0, (`, `′) ∈ C, ε``′ =

{
ε`′`, ` > `′, (`, `′) 6∈ C,
1, (`, `′) ∈ C,

thus ensuring that

φ``′(·) = −φ`′`(·), and ε``′ = ε`′`, 1 ≤ `, `′ ≤ L∫
Ω e−φ``′(ω)P (dω) ≤ ε``′ ∀(P ∈ P`, 1 ≤ `, `′ ≤ L)

• Given shifts a``′ = −a`′`, we specify test T as follows:

Given observation ω, T accepts all hypotheses H` such that

φ``′(ω) > a``′ ∀(`
′ : (`, `′) 6∈ C)

and rejects all other hypotheses.

Proposition. The C-risk of T can be upper-bounded as

RiskC[T |H1, ..., HL] ≤ max
`≤L

∑
`′:(`,`′) 6∈C

ε``′e
a``′

- 2.9 -



Optimal shifts: Consider the symmetric nonnegative matrix

E = [ε``′χ``′]
L
`,`′=1, χ``′ =

{
1, (`, `′) 6∈ C
0, (`, `′) ∈ C ,

and let θ = ‖E‖2,2 be the spectral norm of E, or, which is the same under the
circumstances, the largest eigenvalue of E.
By the Perron-Frobenius theorem, for every θ′ > θ there exists a positive vector
f such that

Ef ≤ θ′f ;

the same holds true for θ′ = θ, provided the leading eigenvector of E (which
always can selected to be nonnegative) is positive.

Observation: For α``′ = ln(f`′/f`), the risk bound from the proposition reads

RiskC[T |H1, ..., HL] ≤ θ′.

Thus, assembling the detectors φ``′ appropriately, one can get a test with C-
risk arbitrarily close to ‖E‖2,2.
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Utilizing repeated observations. We can apply the above construction to
• K-repeated observation ωK = (ω1, ..., ωK) in the role of ω,

• direct products P⊕,K` =
K⊕
k=1
P` in the role of families P`, and respective

hypotheses H⊕,K` in the role of hypotheses H`, ` = 1, ..., L,

• detectors φ(K)
``′ (ωK) =

∑K
k=1 φ``′(ωk) in the role of detectors φ``′, which

allows to replace ε``′ with εK``′.
As a result, we get K-observation test T K such that

RiskC[T K|H⊕,K1 , ..., H
⊕,K
L ] ≤ θ′K

where θ′K can be made arbitrarily close (under favorable circumstances, even
equal) to the quantity∣∣∣∣∣∣∣∣[εK``′χ``′]L`,`′=1

∣∣∣∣∣∣∣∣
2,2
, χ``′ =

{
1, (`, `′) 6∈ C
0, (`, `′) ∈ C

In particular, in the case when ε``′ < 1 whenever (`, `′) 6∈ C, we can ensure
that the C-risk of T K converges to 0 exponentially fast as K →∞.
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“Universality” of detector-based tests.

Proposition. Let Pχ, χ = 1,2, be two families of probability distributions on
observation space Ω, and let Hχ, χ = 1,2, be associate hypotheses on the
distribution of an observation.

Assume that there exists a simple deterministic or randomized test T deciding
on H1, H2 with risk ≤ ε ∈ (0,1/2). Then there exists a detector φ with

Risk[φ|P1,P2] ≤ ε+ := 2
√
ε[1− ε] < 1.
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Proof. 1o. Indeed, let T be deterministic, let Ωχ = {ω ∈ Ω : T (ω) = {χ}}, χ = 1,2, and
let

φ(ω) =

{
1
2

ln
(

[1−ε]
ε

)
, ω ∈ Ω1

1
2

ln (ε/1− ε)) , ω ∈ Ω2

Then for P ∈ P1 and ε′ =
∫

Ω2
P (dω) we have

⇒
∫

e−φ(ω)P (dω) =
√
ε/[1− ε](1− ε′) +

√
[1− ε]/ε ε′

=
√
ε/[1− ε] +

[√
[1− ε]/ε−

√
ε/[1− ε]

]
︸ ︷︷ ︸

≥0

ε′︸︷︷︸
≤ε

≤
√
ε/[1− ε] +

[√
[1− ε]/ε−

√
ε/[1− ε]

]
ε

= 2
√
ε[1− ε]

In the same way, when P ∈ P2 and ε′ =
∫

Ω1
P (dω),∫

eφ(ω)P (dω) =
√
ε/[1− ε](1− ε′) +

√
[1− ε]/ε ε′ = 2

√
ε[1− ε]

We conclude that
Riskχ[φ|P1,P2] ≤ 2

√
ε[1− ε].
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2o. Now let T be randomized. Setting P+
χ = {P × Uniform[0,1] : P ∈ Pχ}, χ = 1,2,

Ω+ = Ω× [0,1].

By the above there exists a bounded detector φ+ : Ω+ → R such that

∀(P ∈ P1) :
∫

Ω

[∫ 1
0 e−φ+(ω,s)ds

]
P (dω)ds ≤ ε̄ = 2

√
ε[1− ε],

∀(P ∈ P2) :
∫

Ω

[∫ 1
0 eφ+(ω,s)ds

]
P (dω) ≤ ε̄,

whence, setting φ(ω) =
∫ 1

0 φ(ω, s)ds and applying Jensen’s Inequality,

∀(P ∈ P1) :
∫

Ω e−φ(ω)P (dω) ≤ ε̄, ∀(P ∈ P2) :
∫

Ω eφ(ω)P (dω) ≤ ε̄ �

• Risk 2
√
ε[1− ε] of the detector-based test induced by simple test T is “much

worse” than the risk ε of T .

• However, when repeated observations are allowed, we can compensate for
risk deterioration ε→ 2

√
ε[1− ε] by passing in the detector-based test from a

single observation to a moderate number of them.
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Minimal risk detectors

inf
φ

{
Risk[φ|P1,P2] = min

{
ε :

∫
Ω e−φ(ω)P (dω) ≤ ε ∀(P ∈ P1)∫

Ω eφ(ω)P (dω) ≤ ε ∀(P ∈ P2)

}}
(!)

• Optimization problem specifying risk has constraints convex in (φ, ε)

• When passing from families Pχ, χ = 1,2, to their convex hulls, the risk of a
detector remains intact.

It would be nice to be able to solve (!), thus arriving at the lowest
risk detector-based tests.

However: (!) is an optimization problem with infinite-dimensional decision
“vector” and infinitely many constraints⇒ in general, (!) is intractable.

Simple observation schemes: Special cases where (!) is efficiently solvable
via Convex Optimization.
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Simple Observation Schemes

Simple Observation Scheme is a collection
O = ((Ω,Π), {pµ : µ ∈M},F),

where
• (Ω,Π) is a (complete separable metric) observation space Ω with (σ-finite
σ-additive) reference measure Π,

supp Π = Ω;
• {pµ(·) : µ ∈ M} is a parametric family of probability densities, taken w.r.t.
Π, on Ω, and
• M is a relatively open convex set in some Rn

• pµ(ω): positive and continuous in µ ∈M, ω ∈ Ω

• F is a finite-dimensional space of continuous functions on Ω containing con-
stants and such that

ln(pµ(·)/pν(·)) ∈ F ∀µ, ν ∈M.
• For φ ∈ F , the function

µ 7→ ln

(∫
Ω

eφ(ω)pµ(ω)Π(dω)

)
is finite and concave in µ ∈M.
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Example 1: Gaussian o.s., where (Ω,Π) is Rd with Lebesgue measure,

{pµ(·)= N (µ, Id) : µ ∈ Rd}, F = {affine functions on Ω}

⇒


ln(pµ(·)/pν(·)) ∈ F ,

ln

(∫
Ω

ea
Tω+bpµ(ω)Π(dω)

)
= aTµ+ b+ aTa

2 is concave in µ.

• Gaussian o.s. is the standard observation model in Signal Processing.

Example 2: Discrete o.s., where (Ω,Π) is finite set {1, ..., d} with counting
measure, pµ(ω) = µω, µ ∈M = {µ > 0 :

d∑
ω=1

µω = 1}


is the set of non-vanishing probability distributions on Ω, andF = {all functions on Ω}

⇒


ln(pµ(·)/pν(·)) ∈ F ,

ln

(∫
Ω

eφ(ω)pµ(ω)Π(dω)

)
= ln

(∑
ω∈Ω eφ(ω)µω

)
is concave in µ.
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Example 3: Poisson o.s., where (Ω,Π), is the nonnegative part Zd+ of inte-
ger lattice in Rd equipped with counting measure,pµ(ω) =

d∏
i=1

µ
ωi
i e−µi

ωi!
: µ ∈M := Rd++


is the family of distributions of random vectors with independent across i Pois-
son entries ωi ∼ Poisson(µi), and F = {affine functions on Ω}

⇒


ln(pµ(·)/pν(·)) ∈ F ,

ln

(∫
Ω

ea
Tω+bpµ(ω)Π(dω)

)
=
∑
i(eai − 1)µi is concave in µ.

• Poisson o.s. arises in Poisson Imaging, including
– Positron Emission Tomography,
– Large binocular Telescope,
– Nanoscale Fluorescent Microscopy.
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Example 4: Direct product of simple o.s.’s.

Simple o.s.’s

Ok =
(
(Ωk,Πk), {pµk,k(·) : µk ∈Mk},Fk

)
, 1 ≤ k ≤ K

give rise to their direct product
⊗K
k=1Ok defined as the o.s.

(
(ΩK,ΠK), {pµK(·) : µK ∈MK},FK

)
,

where
• ΩK = Ω1×, ...×ΩK , ΠK = Π1 × ...×ΠK

• MK =M1 × ...×MK , p(µ1,...,µK)(ω1, ..., ωK) =
K∏
k=1

pµk,k(ωk)

• FK = {φ(ω1, ..., ωK︸ ︷︷ ︸
ωK

) =
∑K
k=1 φk(ωk) : φk ∈ Fk, 1 ≤ k ≤ K}

• A direct product of simple o.s.’s is a simple o.s.
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Example 5: Power of a simple o.s.

When all K o.s.’s in product OK =
⊗K
k=1Ok are identical to each other:

Ok = O := ((Ω,Π), {pµ(·) : µ ∈M},F) , 1 ≤ k ≤ K,

we can “restrict OK to its diagonal,” arriving at K-th power O(K) of O:

O(K) =
(

(ΩK,ΠK), {p(K)
µ (·) : µ ∈M},F(K)

)
,

p
(K)
µ (ω1, ..., ωK) =

K∏
k=1

pµ(ωk),

F(K) = {φ(K)(ωK) =
K∑
k=1

φ(ωk) : φ ∈ F}

• K-th power of a simple o.s. is a simple o.s.
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ε∗(P1,P2) = min
φ(·),ε

{
ε :

∫
Ω e−φ(ω)P (dω) ≤ ε ∀(P ∈ P1)∫
Ω eφ(ω)P (dω) ≤ ε ∀(P ∈ P2)

}
(!)

Main Result. Let O = ((Ω,Π), {pµ(·) : µ ∈ M},F) be a simple o.s., and
let M1, M2 be two nonempty compact convex subsets ofM. These subsets
give rise to two families of probability distributions P1, P2 on Ω

Pχ = {P : the density of P is pµ with µ ∈Mχ}, χ = 1,2,

and two hypotheses on the distribution P of random observation ω ∈ Ω:

H1 : P ∈ P1 and H2 : P ∈ P2

Consider the function

Φ(φ;µ, ν) = 1
2

[
ln
(∫

Ω e−φ(ω)pµ(ω)Π(dω)
)

+ ln
(∫

Ω eφ(ω)pν(ω)Π(dω)
)]

:

F × [M1 ×M2]→ R.
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Then

• Φ(φ;µ, ν) is continuous on its domain, convex in φ ∈ F , concave in
(µ, ν) ∈M1 ×M2 and possesses saddle point (min in φ, max in (µ, ν)):

there exist (φ∗ ∈ F , (µ∗, ν∗) ∈M1 ×M2) such that

Φ(φ;µ∗, ν∗) ≥ Φ(φ∗;µ∗, ν∗)︸ ︷︷ ︸
=SadVal

≥ Φ(φ∗;µ, ν)

for all (φ ∈ F , (µ, ν) ∈M1 ×M2).

• The component φ∗ of a saddle point (φ∗, (µ∗, ν∗)) of Φ is an optimal solution
to (!), and

ε∗(P1,P2) = exp{Φ(φ∗;µ∗, ν∗)}.
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• A saddle point (φ∗, (µ∗, ν∗)) can be found as follows. We solve the opti-
mization problem

SadVal = max
µ∈M1,ν∈M2

ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)
(which is a solvable convex optimization problem), and take an optimal solution
to the problem as (µ∗, ν∗). We then set

φ∗(ω) = 1
2

ln
(
pµ∗(ω)/pν∗(ω)

)
,

thus getting an optimal detector φ∗ ∈ F .

• For this detector and the associated simple test Tφ∗,

Risk[Tφ∗|H1, H2] ≤ Risk[φ∗|P1,P2]
= Risk1[φ∗|P1,P2] = Risk2[φ∗|P1,P2]

= ε∗(P1,P2) = eSadVal =
∫
Ω

√
pµ∗(ω)pν∗(ω)Π(dω).
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SadVal = max
µ∈M1,ν∈M2

ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
(!)

Gaussian o.s. Pχ = {N (µ, Id) : µ ∈Mχ}, χ = 1,2:
• Optimization problem (!) reads

max
µ∈M1,ν∈M2

[
−1

8
‖µ− ν‖22

]
• The optimal balanced detector and its risk are given by

φ∗(ω) = 1
2
[µ∗ − ν∗]ω − c,[

(µ∗, ν∗) ∈ Argmin
µ∈M1,ν∈M2

||µ− ν‖22, c = 1
4
[µ∗ − ν∗]T [µ∗+ ν∗]

]
ε∗(P1,P2) = exp

{
−‖µ

∗−ν∗‖22
8

}
Note: We are in the “signal plus noise” model of observations with noise ∼
N (0, Id). The test Tφ∗ is nothing but the pairwise Euclidean separation test
associated with Xχ = Mχ, χ = 1,2.
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SadVal = max
µ∈M1,ν∈M2

ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
(!)

Poisson o.s. Pχ = {
d⊗

i=1
Poisson(µi) : µ = [µ1; ...;µd] ∈Mχ}, χ = 1,2:

• Problem (!) reads

max
µ∈M1,ν∈M2

[
−1

2

∑d

i=1
(
√
µi −

√
νi)

2
]

︸ ︷︷ ︸∑
i[
√
µiνi−1

2
µi−1

2
νi]

• The optimal balanced detector and its risk are given by

φ∗(ω) = 1
2

∑d
i=1[ln(µ∗i /ν

∗
i )ωi + ν∗i − µ

∗
i ],[

(µ∗, ν∗) ∈ Argmax
µ∈M1,ν∈M2

∑
i[
√
µiνi − 1

2
µi − 1

2
νi]

]
ε∗(P1,P2) = exp

{
−1

2

∑
i

(√
µ∗i −

√
ν∗i
)2
}
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SadVal = max
µ∈M1,ν∈M2

ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
(!)

Discrete o.s.

Pχ = {µ ∈Mχ},Mχ ⊂ ∆o
d = {µ ∈ Rd+ :

∑
ω µω = 1, µ > 0}, χ = 1,2

• Problem (!) reads

max
µ∈M1,ν∈M2

∑
ω

√
µωνω

• The optimal balanced detector and its risk are given by

φ∗(ω) = 1
2

ln(µ∗ω/ν
∗
ω), ω ∈ Ω = {1, ..., d}[

(µ∗, ν∗) ∈ Argmin
µ∈M1,ν∈M2

∑
ω
√
µωνω

]
ε∗(P1,P2) =

∑
ω

√
µ∗ων

∗
ω
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Direct product of simple o.s.’s. Let

Ok =
(
(Ωk,Πk), {pµk,k(·) : µk ∈Mk},Fk

)
, 1 ≤ k ≤ K,

be simple o.s.’s, and Mχ,k ⊂Mk, χ = 1,2, be nonempty convex compact
sets. Consider the simple o.s.

(
(ΩK,ΠK), { pµK : µK ∈MK},FK

)
=

K⊗
k=1

Ok

along with two compact convex sets

Mχ = Mχ,1 × ...×Mχ,K, χ = 1,2.

Question: What is the problem

max
µK∈M1,νK∈M2

ln
(∫

ΩK

√
pµK(ωK)pνK(ωK)ΠK(dωK)

)
responsible for the smallest risk detector for the families of distributions PKχ ,
PK2 associated in OK with the sets Mχ, χ = 1,2 ?
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Answer: This is the separable problem

max
{µk∈M1,k,νk∈M2,k}Kk=1

K∑
k=1

ln

(∫
Ωk

√
pµk,k(ωk)pνk,k(ωk)Πk(dωk)

)

⇒ Minimum risk balanced detector for PK1 , PK2 can be chosen as

φK∗ (ω1, ..., ωK) =
∑K
k=1 φ∗,k(ωk),

φ∗,k(ωk) = 1
2

ln
(
pµ∗k,k

(ω)/pν∗k,k
(ω)

)
(µ∗k, ν

∗
k) ∈ Argmax

µk∈M1,k,νk∈M2,k

ln
(∫

Ωk

√
pµk,k(ωk)pνk,k(ωk)Πk(dωk)

)
and

ε∗(PK1 ,P
K
2 ) =

K∏
k=1

ε∗(P1,k,P2,k),

where Pχ,k are the families of distributions associated in Ok with Mχ,k, χ =

1,2.
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Power of a simple o.s. Let

O = ((Ω,Π), {pµ(·) : µ ∈M},F)

be a simple o.s., and Mχ ⊂M, χ = 1,2, be nonempty convex compact sets.
Consider the K-th power of O, that is, the simple o.s.

O(K) =

(ΩK,ΠK), {p(K)
µ (ω1, ..., ωK) =

K∏
k=1

pµ(ωk) : µ ∈M},F(K)

.
Question: What is the problem

max
µ∈M1,ν∈M2

ln

(∫
ΩK

√
p

(K)
µ (ωK)p(K)

ν (ωK)ΠK(dωK)

)

responsible for the smallest risk detector for the families of distributions P(K)
χ

associated in O(K) with the sets Mχ, χ = 1,2 ?
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Answer: This is the separable problem

max
{µ∈M1,ν∈M2}Kk=1

K∑
k=1

ln
(∫

Ω

√
pµ(ωk)pν(ωk)Π(dωk)

)
︸ ︷︷ ︸

K ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)
⇒ Minimum risk balanced detector for P(K)

1 , P(K)
2 can be chosen as

φ
(K)
∗ (ω1, ..., ωK) =

∑K
k=1 φ∗(ωk),

φ∗(ωk) = 1
2

ln
(
pµ∗(ω)/pν∗(ω)

)[
(µ∗, ν∗) ∈ Argmax

µ∈M1,ν∈M2

ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)]
and

ε∗(P(K)
1 ,P(K)

2 ) = [ε∗(P1,P2)]K,

where Pχ are the families of distributions associated in O with Mχ, χ = 1,2.
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Near-Optimality of Detector-Based Tests in Simple O.S.

Proposition A. Let

O = ((Ω,Π), {pµ : µ ∈M},F)

be a simple o.s., Mχ ⊂M, χ = 1,2, be nonempty convex compact sets,
giving rise to families of distributions

Pχ = {P : P has density pµ(·) w.r.t. Π with µ ∈Mχ}, χ = 1,2,

hypotheses Hχ : P ∈ Pχ, χ = 1,2, on the distribution of a random observa-
tion ω ∈ Ω, and minimum risk detector φ∗ for P1, P2.
Assume that in the nature there exists a simple single-observation test, deter-
ministic or randomized, T with

Risk[T |H1, H2] ≤ ε < 1/2.

Then the risk of the simple test Tφ∗ accepting H1 when φ∗(ω) ≥ 0 and ac-
cepting H2 otherwise “is comparable” to ε:

Risk[Tφ∗|H1, H2] ≤ ε̄ := 2
√
ε(1− ε) < 1.
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Proof. From what we called “universality” of detector-based tests, there exists
a detector φ with Risk[φ|P1,P2] ≤ ε̄, and Risk[φ∗|P1,P2] can be only less
than Risk[φ|P1,P2]. �
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Proposition B. Let O = ((Ω,Π), {pµ : µ ∈M},F) be a simple o.s., and Mχ ⊂M, χ =
1,2, be nonempty convex compact sets, giving rise to families of distributions

Pχ = {P : P has density pµ(·) w.r.t. Π with µ ∈Mχ}, χ = 1,2

their powers
PKχ = {P × ...× P : P ∈ Pχ}, χ = 1,2, K = 1,2, ...

hypotheses
HK
χ : P ∈ PKχ , χ = 1,2, K = 1,2, ...

on the distribution of a random K-repeated observation ωK = (ω1, ...ωK) ∈ ΩK, and mini-
mum risk detector φ∗ for P1, P2.
Assume that “in the nature” there exists positive integer K∗ and a simple K∗-observation test,
deterministic or randomized, TK∗ capable to decide on the hypotheses HK∗

χ , χ = 1,2, with
risk ≤ ε < 1/2. Then the test Tφ∗,K deciding on HK

χ , χ = 1,2, by accepting HK
1 whenever

φ(K)(ωK) :=
K∑
k=1

φ∗(ωk) ≥ 0

and accepting HK
2 otherwise, satisfies

Risk[Tφ∗,|HK
1 , H

K
2 ] ≤ ε ∀K ≥ K̂∗ =

2

1− ln(4(1−ε))
ln(1/ε)

K∗.
(
K̂∗/K∗ → 2 as ε→ +0

)
.

Moreover, this risk bound remains true when the hypotheses HK
χ are extended to hypotheses

H⊕,Kχ stating that the distribution P of ωK belongs to the quasi direct K-th power of Pχ,
χ = 1,2.
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Proof. As we know, K∗-th power O(K) of O is simple o.s. along with O, and
φ

(K)
∗ is the minimum risk detector for the families PK∗χ , χ = 1,2, the risk of

this detector being [ε∗(P1,P2)]K . By Proposition A as applied to O(K) in the
role of O, we have

[ε∗(P1,P2)]K∗ ≤ 2
√
ε(1− ε)⇒ ε∗(P1,P2) ≤ [2

√
ε(1− ε)]1/K∗ < 1.

By Detector Calculus, it follows that for K = 1,2, ... it holds

Risk[φ(K)
∗ |P⊕,K1 ,P⊕,K2 ] ≤ [2

√
ε(1− ε)]K/K∗

and the right hand side is ≤ ε whenever K ≥ K̂∗. �
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Near-Optimality of Detector-Based Up to Closeness Testing

Situation: We are given a simple o.s.

O = ((Ω,Π), {pµ : µ ∈M},F)

and a collection of nonempty convex compact subsets M`, 1 ≤ ` ≤ L giving
rise to
• Families

P` = {P : P admits density pµ, µ ∈M` w.r.t. Π}, ` = 1, ..., L,

along with direct products P⊕,K` =
⊕K
k=1P` of P` and hypotheses H⊕,K` :

PK ∈ P⊕,K` on the distribution ofK-repeated observation ωK = (ω1, ..., ωK),
• minimum-risk balanced single-observation detectors φ``′(ω) for P`, P`′
along with their risks ε∗(P`,P`′), 1 ≤ ` < `′ ≤ L, and K-repeated versions

φK``′(ω
K) =

K∑
k=1

φ``′(ωk)

of φ``′ such that Risk[φ(K)
``′ |H

⊕,K
` , H

⊕,K
`′ ] ≤ [ε∗(P`,P`′)]K .
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• Assume that in addition to the above data, we are given a closeness relation
C on {1, ..., L}. Applying Calculus of Detectors, for every positive integer K,
setting

θK =

∣∣∣∣∣∣
∣∣∣∣∣∣
[
ε∗K(P`,P`′) ·

{
1, (`, `′) 6∈ C
0, (`, `′) ∈ C

]L
`,`′=1

∣∣∣∣∣∣
∣∣∣∣∣∣
2,2

we can assemble the outlined data, in a computationally efficient fashion, into
a K-observation test T K deciding on H⊕,K` , 1 ≤ ` ≤ L, with C-risk upper-
bounded as follows:

RiskC[T K|H⊕,K1 , ..., H
⊕,K
L ] ≤ κθK

(κ > 1 can be selected to be as close to 1 as we want).
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Proposition. In the just described situation, assume that for some ε < 1/2

and K∗ in the nature there exists a K∗-observation test T , deterministic or
randomized, deciding on the hypotheses

HK∗
` : ωK∗ = (ω1, ..., ωK∗) is an i.i.d. sample drawn from a P ∈ P`,

` = 1, ..., L, with C-risk ≤ ε. Then the test T K with

K ≥ 2

[
1 + ln(κL)/ ln(1/ε)

1− ln(4(1− ε))/ ln(1/ε)

]
︸ ︷︷ ︸

→1 as ε→+0

K∗

decides on H⊕,K` , ` = 1, ..., L, with C-risk ≤ ε as well.
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Proof. 1o Let us fix `, `′ such that (`, `′) 6∈ C, and let us convert T into a
simple K∗-observation test T̃`,`′ deciding on HK∗

` , HK∗
`′ as follows: whenever

` ∈ T (ωK), T̃`,`′ accepts HK∗
` and rejects HK∗

`′ , otherwise the test accepts

HK∗
`′ and rejects HK∗

` . It is immediately seen that

Risk[T̃`,`′|H
K∗
` , HK∗

`′ ] ≤ ε.

Indeed, let PK∗ = P × ...×P be the distribution of ωK∗. Whenever PK obeys
HK∗
` , T must accept the hypothesis with PK∗-probability ≥ 1− ε, whence

Risk1[T̃`,`′|H
K∗
` , HK∗

`′ ] ≤ ε.

If PK∗ obeys HK∗
`′ , the PK∗-probability of the event “T accepts HK∗

`′ and re-
jects HK∗

` ” is ≤ ε, since HK∗
`′ , H

K∗
` are not C-close to each other

⇒ PK∗-probability to reject HK∗
` is at least 1− ε

⇒ Risk2[T̃`,`′|H
K∗
` , HK∗

`′ ] ≤ ε.
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2o Because HK∗
`′ , H

K∗
` can be decided upon with risk ≤ ε < 1/2, by detector

calculus

ε∗(PK∗` ,PK∗
`′ ) ≤ 2

√
ε(1− ε) < 1

Since O is a simple o.s,

ε∗(P`,P`′) ≤
[
2
√
ε(1− ε)

]1/K∗
< 1,

We conclude that

θK ≤
[
2
√
ε(1− ε)

]K/K∗
L

and

RiskC[T K|H⊕,K1 , ..., H
⊕,K
L ] ≤ κθK ≤ ε

when
K

K∗
≥ 2

1 + ln(κL)/ ln(1/ε)

1− ln(4(1− ε))/ ln(1/ε)
. �
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Illustration: Selecting the Best in a Family of Estimates

Problem: we are given

• a simple o.s. O = ((Ω, π), {pµ : µ ∈M},F) and have access to sta-
tionary K-repeated observations

ωk ∼ pA(x∗)(·), k = 1, ...,K,

of unknown signal x∗ known to belong to a given convex compact set
X ⊂ Rn.
Here [x 7→ A(x): affine mapping such that A(X) ⊂M];
• M candidate estimates xi ∈ Rn, 1 ≤ i ≤M , of x∗,
• a norm ‖ · ‖ on Rn, and a reliability tolerance ε ∈ (0,1)
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x1

x2

x3

x4
x∗

X

Parameter space

Given observations ω1, ..., ωK we look to identify (1 − ε)-reliably the ‖ · ‖-
closest to x∗ point among x1, ..., xM .



Actual goal: given α ≥ 1, β ≥ 0 and a grid

Γ = {r0 > r1 > ... > rN > 0},

use observations ω1, ..., ωK to identify (1− ε)-reliably xi(ωK) such that

‖x∗ − xi(ωK)‖ ≤ αρ(x∗) + β

where

ρ(x) := min{r : r ∈ Γ, r ≥ min
i
‖x− xi‖}

is the “grid approximation” of mini ‖x− xi‖.
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x1

x2

X

Parameter space



A(x1)

A(x2)

A(x3)

A(x4)

A(x∗)

A(X)

Observation parameter space



Solution:
• Consider M(N + 1) hypotheses

Hij : ωk ∼ pA(x)(·) for some x ∈ Xij := {x ∈ X : ‖x− xi‖ ≤ rj}.

• Define closeness C = Cα,β:

[ij] is C-close to [i′j′] iff ‖xi − xi′‖ ≤ rj + rj′ + β.

• Build minimum risk pairwise detectors φij,i′j′, along with their risks εij,i′j′, for
hypotheses Hij.
• Choose β such that εij,i′j′ < 1 for all (ij, i′j′) 6∈ C.
• Find the smallest K = Kε(β) such that the K-observation detector-based
test T K decides on {Hij : i ≤M,0 ≤ j ≤ N} with C-risk ≤ ε.

• To build i(ωK),

• apply T K to observation ωK ,
• select Hi∗(ωK)j∗(ωK) with the largest j among accepted hypotheses Hij.
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Proposition. In the situation in question, assume that for some ε ∈ (0,1/2),
b ≥ 0 and positive integer K̄ in the nature there exists an inference ωK̄ →
i∗(ωK̄) such that, for all x∗ ∈ X,

Prob{‖x∗ − xi∗(ωK̄)
‖ ≤ ρ(x∗) + b} ≥ 1− ε.

• Then one can choose β = 2b.
• The resulting inference ωK 7→ i(ωK) satisfies

Prob{‖x∗ − xi(ωK)‖ ≤ 3ρ(x∗) + 2b} ≥ 1− ε.

for K ≥ Kε(2b), where

Kε(2b) ≤ Ceil

(
2 ln(M(N + 1))/ ln(1/ε)

1− ln(4(1− ε))/ ln(1/ε)
K̄

)
.
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Numerical illustration. Given noisy observation

ω = Ax+ σξ, ξ ∼ N (0, In)

of the “discretized primitive” Ax of a signal x = [x1; ...;xn] ∈ Rn:

[Ax]j =
1

n

j∑
s=1

xs, 1 ≤ j ≤ n,

for i = 1, ..., κ we have built Least Squares polynomial, of order i−1, approx-
imations xi of x:

xi = argminx∈Pi ‖Ax− ω‖
2
2[

Pi = {x = [x1; ...;xn] : xs is polynomial, of degree ≤ i− 1, in s}
]

and now want to use K additional observations to identify the nearly closest to
x∗, in the norm

‖u‖ =
1

n

n∑
i=1

|ui|

on Rn, among the points xi, 1 ≤ i ≤ κ.
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Numerical experiment [ε = 0.01, n = 128, σ = 0.01, κ = 5, β = 0.05]

0 20 40 60 80 100 120 140
-2

-1

0

1

2

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

Top: x∗ and xi. Bottom: the primitive of x∗

i 1 2 3 4 5
‖x− xi‖ 0.5348 0.33947 0.23342 0.16313 0.16885

distances from x∗ to xi
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• With K = 3 (computed value), for a sample of size 1000, the closest to
x∗ point was correctly identified in all simulations
• the same was true when K = 3 was replaced with K = 1;
• replacing K = 3 with K = 1 and increasing σ from 0.01 to 0.05, the

procedure started to make imperfect conclusions.
However, the exactly closest to x∗ point x4 was identified correctly in as
many as 96% of simulations, with estimated excess error

E{‖x∗ − xi(ω1)‖ − ρ(x∗)} ≤ 0.0024.
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Illustration: Recovering Linear-Fractional Function of a Signal

Problem: An unknown signal x known to belong to a given convex compact
set X ⊂ Rn is observed according to

ω = Ax+ σξ, ξ ∼ N (0, Id)

Our goal is to recover the value at x of a linear-fractional functional

F (z) =
fTz

eTz
, with eTz > 0, z ∈ X.

Illustration: We are given noisy measurements of voltages Vi at some nodes
i and currents Iij in some arcs (i, j) of an electric circuit, and want to recover
the resistance of a particular arc (̂i, ĵ):

r̂îj =
Vĵ − V̂i
Îîj
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Circuit with 8 nodes and 11 arcs

input node (# 1)

output node (# 8)

x = [voltages at nodes; currents in arcs]
Ax = [observable voltages; observable currents]

• Currents are measured in blue arcs only
• Voltages are measured in magenta nodes only
• We want to recover resistance of red arc

• X :


conservation of current, except for nodes ##1,8
zero voltage at node #1, nonnegative currents
current in red arc at least 1, total of currents at most 33
Ohm Law, resistances of arcs between 1 and 10
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Strategy: Given L,
• split the range

∆ = [min
x∈X

F (x), max
x∈X

F (x)]

into L consecutive bins ∆` of length δL = length(∆)/L,
• define convex compact sets

X` = {x ∈ X : F (x) ∈∆`}, M` = {Ax : x ∈ X`}, 1 ≤ ` ≤ L
Îîj

Vĵ − V̂i

a 2D projection of X and X1, ..., X8
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•We are to decide on L hypotheses

H` : P = N (µ, σ2I), µ ∈M`

about the distribution P of observation

ω = Ax+ σξ

up to closeness

C : “H` is close to H`′ if and only if |`− `′| ≤ 1”

• Estimate F (x) by the barycenter of accepted bins.

Fact: For the resulting test T , with probability

≥ 1−RiskC[T |H1, ..., HL]

the estimation error does not exceed δL.

- 2.50 -



Implementation and results: Given target risk ε and L, we select the largest
σ for which RiskC[T |H1, ..., HL] is ≤ ε.
• This is what we get for ε = 0.01: ∆ = [1,10]

L 8 16 32

δL 9/8 ≈ 1.13 9/16 ≈ 0.56 9/32 ≈ 0.28
σ 0.024 0.010 0.005

σopt/σ ≤ 1.31 1.31 1.33

σ 0.031 0.013 0.006
σopt/σ ≤ 1.01 1.06 1.08

• σopt – the largest σ for which “in the nature” there exists a test deciding on H1, ..., HL with
C-risk ≤ 0.01

• Red data: Risks ε``′ of pairwise tests are bounded via risks of optimal detectors, C-risk of T
is bounded by ∣∣∣∣∣∣[ε``′ · χ(`,`′)6∈C

]L
`,`′=1

∣∣∣∣∣∣
2,2

;

• Black data: Risks ε``′ of pairwise tests are bounded via error function, C-risk of T is bounded
by

max
`

∑
`′:(`,`′)6∈C

ε``′.
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Recovering N -Convex Functionals on Unions of Convex Sets

Fact: The construction used to recover linear-fractional function can be ex-
tended to recovering N -convex functionals.

Definition: Let X ⊂ Rn be a convex compact set, F : X → R be a contin-
uous function, and N be a positive integer. We say that F is N -convex, if for
every real a the sets

Xa,≥ = {x ∈ X : F (x) ≥ a}, Xa,≤ = {x ∈ X : F (x) ≤ a}

can be represented as the unions of at most N convex compact sets.

Example A: Fractional-linear function F (x) = e(x)
d(x) with positive onX denom-

inator is 1-convex:

{x ∈ X : F (x)
≥
≤
a} = {x ∈ X : e(x)− ad(x)

≥
≤

0}
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Example B: If Fi is Ni-convex on X, i = 1,2, then max[F1, F2] and
min[F1, F2] are max[N1 +N2, N1N2]-convex on X:

X
a,≥
i := {x ∈ X : Fi(x) ≥ a} =

Ni⋃
ν=1

Uaν,i

X
a,≤
i := {x ∈ X : Fi(x) ≤ a} =

Ni⋃
ν=1

V aν,i

, i = 1,2 [U, V : convex]

⇒


{x ∈ X : max[F1(x), F2(x)] ≥ a} =

[ ⋃
µ≤N1

Uaµ,1

]⋃ [ ⋃
ν≤N2

Uaν,2

]
{x ∈ X : max[F1(x), F2(x)] ≤ a} =

⋃
µ≤N1,ν≤N2

[
V aµ,1

⋂
V aν,2

]

Extension: If Fi isNi-convex onX, i = 1,2, ...,M , then max[F1, F2, ..., FM ]

and min[F1, F2, ..., FM ] are max[
∑
iNi,

∏
iNi]-convex on X.
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Problem of interest: Given

• convex compact set X ⊂ Rn,
• N -convex functional F : X → R,
• a collection Xj, j = 1, ..., J , of convex compact subsets of X,
• stationary K-repeated observations ω1, ..., ωK stemming, via simple o.s.,

from unknown signal x ∈
J⋃

j=1
Xj,

we want to recover F (x).
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Strategy: Given L, we
• split the range

∆ = [min
x∈X

F (x),max
x∈X

F (x)]

into L consecutive bins ∆` of length δL = length(∆)/L,

• and observe that by N -convexity of F , each set

{x ∈
⋃J

j=1
Xj : F (x) ∈∆`}

is the union of at most N2J convex compact sets Y `s ;

• Associate with nonempty sets Y `s the hypotheses “observation stems from a
signal from Y `s ”

• Define closeness C on the resulting collection of hypotheses H1, ..., HL,
L ≤ N2JL:

Hµ and Hν are C-close
iff both hypotheses stem from the same or from two consecutive bins ∆`
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• Use our gear for testing multiple convex hypotheses in simple o.s. to build a
test TK deciding on H1, ..., HL up to closeness C via K-repeated observation.

•We apply the test TK to observations ω1, ..., ωK and take as the estimate of
F (x) the center of masses of all bins associated with the hypotheses accepted
by the test.

Same as in the above fractional-linear example, it is immediately seen that

The probability for the recovery error to be > δL is at most the C-risk of TK .

In addition, with our estimate, the number of observationsK required to ensure
recovery error ≤ δL with a given reliability 1 − ε, ε � 1, is within logarithmic
in N, J, L factor off the “ideal” number of observations needed to achieve, with
reliability 1− ε, recovery error δL/2.
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Recovering Linear Functionals on Unions of Convex Sets
Revisited

Problem of interest: Given

• simple o.s. O = ((Ω,Π), {pµ(·) : µ ∈M},F)

• collection Xj, j = 1, ..., J , of nonempty convex compact sets in Rn

• affine sensing mappings Aj(·) such that

Aj(x) ∈M ∀x ∈ Xj
• linear function gTx on Rn,
• stationary K-repeated observation ωK = (ω1, ..., ωK), ωk ∼ pAjx(x),
stemming from unknown signal x ∈ X =

⋃
jXj, such that x ∈ Xjx

we want to estimate gTx.

Note: When all sensing mappings Aj(·) are identical to each other, our prob-
lem becomes a special case of recovering 1-convex function on the union of
convex sets. If, furthermore, J = 1 (there just one set X = X1), we come
back to the classical problem of linear functional estimation.
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Risk: We quantify the performance of an estimate ĝ(ωK) by its ε-risk:

Riskε[ĝ|X] = min

{
ρ : Prob

ωK∼pK
Aj(x)

{
|ĝ(ωK)− gTx| > ρ

}
≤ ε ∀(j ≤ J, x ∈ Xj)

}
— the smallest guaranteed size of (1− ε)-confidence interval of the estimate.
• ε ∈ (0,1): once for ever fixed tolerance.

We consider estimates which are aggregates of “pairwise” estimates of the
form

φ
(K)
ij (ωK) =

∑
k

φij(ωk)

with φij ∈ F .
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Question: Given φ ∈ F , δ ∈ (0,1), ρ > 0, and i, j, how to certify that

ProbωK∼pK
Ai(x)

{∑
k φ(ωk) > gTx+ ρ

}
≤ δ ∀x ∈ Xi (a)

ProbωK∼pK
Aj(y)

{∑
k φ(ωk) < gTy − ρ

}
≤ δ ∀y ∈ Xj (b)

Answer: Define the “aggregate”

ΦO(φ, µ) = ln
(∫

exp{φ(ω)}pµ(ω)Π(dω)
)

: F ×M→ R

By construction, ΦO(·, ·) is convex in φ and concave in µ.

A sufficient condition for (a) and (b) is existence of α > 0 such that

max
x∈Xi

[
KαΦO(φ/α,Ai(x))− gTx+ α ln(1/δ)

]
≤ ρ (c)

max
y∈Xj

[
KαΦO(−φ/α,Ai(x)) + gTy + α ln(1/δ)

]
≤ ρ (d)
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Indeed when (c) takes place and x ∈ Xi, we have

π := Prob
ωK∼pK

Ai(x)

∑
k

φ(ωk) > gTx+ ρ


≤ E

ωK∼pK
Ai(x)

exp

1

α

∑
k

φ(ωk)− gTx− ρ


= exp

(
−[gTx+ ρ]/α

) [
Eω∼pAi(x) {exp(φ(ω)/α)}

]K
= exp([gTx+ ρ]/α) exp{KΦO(φ/α,Ai(x))}

⇒ ln(π) ≤ KΦO(φ/α,Ai(x))− α−1[gTx+ ρ]
⇒ α ln(π) ≤ KαΦO(φ/α,Ai(x))− gTx− ρ

⇒ [by (c)] α ln(π) ≤ −α ln(1/δ)⇒ π ≤ δ

Thus, (c) implies (a); in the same way, (d) implies (b).
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O = ((Ω,Π), {pµ(·) : µ ∈M},F)
ΦO(φ, µ) = ln

(∫
exp{φ(ω)}pµ(ω)Π(dω)

)
: F ×M→ R{

maxx∈Xi

[
KαΦO(φ/α,Ai(x))− gTx+ α ln(1/δ)

]
≤ ρ (c)

maxy∈Xj

[
KαΦO(−φ/α,Ai(x)) + gTy + α ln(1/δ)

]
≤ ρ (d)

⇒

{
ProbωK∼pK

Ai(x)

{∑
k
φ(ωk) > gTx+ ρ

}
≤ ε/2 ∀x ∈ Xi (a)

ProbωK∼pK
Aj(y)

{∑
k
φ(ωk) < gTy − ρ

}
≤ ε/2 ∀y ∈ Xj (b)

Observation: Let ρ > 0, ψ ∈ F and α > 0 be such that

max
x∈Xi,y∈Xj

1
2

[
Kα [ΦO(ψ/α,Ai(x)) + ΦO(−ψ/α,Aj(y))] + gT [y − x]

]
+ α ln(1/δ) ≤ ρ (∗)

Then, setting

κ = 1
2K

[
max
y∈Xj

[
KαΦO(−ψ/α,Aj(y)) + gTy

]
︸ ︷︷ ︸

γ−

−max
x∈Xi

[
KαΦO(ψ/α,Ai(x))− gTx

]
︸ ︷︷ ︸

γ+

]
,

φ(·) = ψ(·) + κ

so that φ ∈ F , we ensure (c) and (d) and thus ensure (a), (b).
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Indeed, (∗) reads 1
2[γ+ + γ−] + α ln(1/δ) ≤ ρ, and clearly

ΦO(φ/α, ·) = ΦO(ψ/α, ·) + κ/α, ΦO(−φ/α, ·) = ΦO(−ψ/α, ·)− κ/α,

whence

maxx∈Xi
[
KαΦO(φ/α,Ai(x))− gTx+ α ln(1/δ)

]
= γ+ +Kκ + α ln(1/δ) = γ+ + 1

2[γ− − γ+] + α ln(1/δ)
= 1

2
[γ+ + γ−] + α ln(1/δ)≤ ρ,

and

maxy∈Xj
[
KαΦO(−φ/α,Ai(x)) + gTy + α ln(1/δ)

]
= γ− −Kκ + α ln(1/δ) = γ− − 1

2[γ− − γ+] + α ln(1/δ)

= 1
2[γ+ + γ−] + α ln(1/δ)≤ ρ
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Building the estimate: Consider convex optimization problems

Optij(K) = min
α>0,ψ∈F

{
max

x∈Xi,y∈Xj

1
2 [Kα [ΦO(ψ/α,Ai(x)) + ΦO(−ψ/α,Ai(y))]

+gT [y − x]
]

+ α ln(2J/ε)

}
.

Let αij, ψij be feasible solutions to the problems, and ρij be the corresponding
values of the objectives (the less, the better).
•We set

κij = 1
2K

[
maxy∈Xj

[
KαijΦO(−ψij/αij, Aj(y)) + gTy

]
−maxx∈Xi

[
KαijΦO(ψij/αij, Ai(x))− gTx

] ]
,

φij(·) = ψij(·) + κij, φ(K)
ij (ωK) =

∑
k φij(ωk),

thus ensuring

ProbωK∼pK
Ai(x)

{
φ(K)
ij (ωK) > gTx+ ρij

}
≤ ε

2J
, x ∈ Xi

ProbωK∼pK
Aj(y)

{
φ(K)
ij (ωK) < gTy − ρij

}
≤ ε

2J
, y ∈ Xj
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ProbωK∼pK
Ai(x)

{
φ(K)
ij (ωK) > gTx+ ρij

}
≤ ε

2J
, x ∈ Xi

ProbωK∼pK
Aj(y)

{
φ(K)
ij (ωK) < gTy − ρij

}
≤ ε

2J
, y ∈ Xj

• Given observation ωK , we build the matrix[
Eij := φ

(K)
ij (ωK)

]
i,j≤J

,

set
ri = maxj Eij, r = mini ri = minimaxj Eij,
cj = miniEij, c = maxj cj = maxj miniEij,

and specify the estimate ĝ(ωK) of gTx, x ∈ X = ∪jXj, as

ĝ(ωK) = 1
2
[r + c].

Theorem ε-Risk of the estimate ĝ satisfies

Riskε[ĝ|X] ≤ ρ := max
i,j

ρij.
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ProbωK∼pK
Ai(x)

{
φ(K)
ij (ωK) > gTx+ ρij

}
≤ ε

2J
, x ∈ Xi

ProbωK∼pK
Aj(y)

{
φ(K)
ij (ωK) < gTy − ρij

}
≤ ε

2J
, y ∈ Xj

(a)

Eij = φ(K)
ij (ωK) (b)

ri = maxj Eij, r = mini ri = mini maxj Eij, cj = miniEij, c = maxj cj = maxj miniEij (c)

ĝ(ωK) = 1
2
[r + c] (d)

Proof. 10. By (b),
ri ≥ Eij ≥ cj ⇒ ri ≥ cj ∀i, j (e)

20. Let observation ωK stem from signal x ∈ X`, let P be the distribution of ωK, and let E be
the event

φ(K)
`j (ωK) ≤ gTx+ ρ`j ∀j ≤ J and φ(K)

i` (ωK) ≥ gTx− ρ ∀i ≤ J,

so that by (a) and union bound,
P (E) ≥ 1− ε.

Let ∆ = [gTx− ρ, gTx+ ρ]. All we need to verify is that when ωK ∈ E , one has r, c ∈∆.

Indeed, when ωK ∈ E , we have

r`j ≤ gTx+ ρ`j ∀j ⇒ r` ≤ gTx+ ρ ⇒ r ≤ gTx+ ρ,

same as
ci` ≥ gTx− ρi` ∀i ⇒ c` ≥ gTx− ρ ⇒ c ≥ gTx− ρ.

Since r ≥ c by (e), we conclude that r, c ∈∆ whenever ωK ∈ E . �

- 2.65 -



Near-Optimality

Optij(K) = min
α>0,ψ∈F

{
max

x∈Xi,y∈Xj

1
2 [Kα [ΦO(ψ/α,Ai(x)) + ΦO(−ψ/α,Ai(y))]

+gT [y − x]
]

+ α ln(2J/ε)

}
.

(Pij)

Note: Every Optij(K) is either a real, or −∞. It is immediately seen that
Optii(K) is a nonnegative real, so that the quantity

Opt(K) = max
i,j

Optij(K)

is a nonnegative real. Properly selecting feasible solutions to the convex op-
timization problems (Pij), we can make the upper bound ρ on ε-risk of our
estimate arbitrarily close to Opt(K).

We are about to demonstrate that Opt(K) is nearly the optimal ε-risk in our
estimation problem

RiskOptε(K) = inf
ĝ

Riskε[ĝ|X],

the infimum being taken over all K-observation estimates.
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Theorem Let ε ∈ (0,1/2) and M be a positive integer. Then
(i) for every integer K satisfying

K

M
>

2 ln(2J/ε)

ln([4ε(1− ε)]−1)
[→ 2, as ε→ +0]

one has

Opt(K) ≤ RiskOptε(M).

(ii) In addition, in the special case where for every i, j there exists x̄ij ∈
Xi ∩Xj such that Ai(x̄ij) = Aj(x̄ij) one has

K ≥M ⇒ Opt(K) ≤
2 ln(2J/ε)

ln([4ε(1− ε)]−1)
RiskOptε(M).
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Optij(K) = inf
α>0,ψ∈F

{
max

x∈Xi,y∈Xj

1

2

[
Kα [ΦO(ψ/α,Ai(x)) + ΦO(−ψ/α,Ai(y))] + gT [y − x]

]
+ α ln(2J/ε)

}
Proof of (i): Let us fix i and j. Optij(K) is the saddle point value in the

saddle point problem

inf
α>0,ψ∈F

max
(x,y)∈Xi×Xj

[
1

2
Kα [ΦO(ψ/α,Ai(x)) + ΦO(−ψ/α,Ai(y))] +

1

2
gT [y − x] + α ln(2J/ε)

]
which is convex-concave with compact maximization domain
⇒ [by Sion-Kakutani Theorem]

Optij(K) = max
(x,y)∈Xi×Xj

QijK(x, y),

QijK(x, y) = inf
α>0,ψ∈F

[
1
2
Kα [ΦO(ψ/α,Ai(x)) + ΦO(−ψ/α,Ai(y))] + α ln(2J/ε)

]
+ 1

2
gT [y − x]

Setting φ = ψ/α, µ = Ai(x), ν = Aj(y), and recalling what ΦO is, we get

QijK(x, y) = inf
α>0

α
[

ln(2J/ε) + inf
φ∈F

K
2

[
ln
(∫

eφ(ω)pµ(ω)Π(dω)
)

+ ln
(∫

e−φ(ω)pν(ω)Π(dω)
)] ]

+1
2
gT [y − x].
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QijK(x, y) = inf
α>0

α

[
ln(2J/ε) + inf

φ∈F

K

2

[
ln

(∫
eφ(ω)pµ(ω)Π(dω)

)
+ ln

(∫
e−φ(ω)pν(ω)Π(dω)

)]]
+

1

2
gT [y−x]

We claim that the inner infφ is attained at

φ(ω) = φ∗(ω) := 1
2

ln(pν(ω)/pµ(ω))

(note that φ∗ ∈ F since O is simple).

Indeed, we have for φ(ω) = φ∗(ω) + δ(ω):

inf
φ∈F

K
2

[
ln
(∫

exp{φ(ω)}pµ(ω)Π(dω)
)

+ ln
(∫

exp{−φ(ω)}pν(ω)Π(dω)
)]

= inf
δ∈F

K
2

[
ln
(∫

exp{φ∗(ω) + δ(ω)}pµ(ω)Π(dω)
)

+ ln
(∫

exp{−φ∗(ω)− δ(ω)}pν(ω)Π(dω)
)]

= inf
δ∈F

[
ln

(∫
exp{δ(ω)}

√
pµ(ω)pν(ω)Π(dω)

)
+ ln

(∫
exp{−δ(ω)}

√
pµ(ω)pν(ω)Π(dω)

)
︸ ︷︷ ︸

f(δ)

]

f(δ) is convex and even function of δ ∈ F and as such achieves its minimum
at δ = 0.
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• By the above computation,

Optij(K) = max
x∈Xi,y∈Xj

QijK(x, y)

= max
x∈Xi,y∈Xj

[
1
2
gT [y − x] + inf

α>0
α
[
K ln

(∫ √
pAi(x)(ω)paj(y)(ω)Π(dω)

)
+ ln(2J/ε)

]]
= max

x,y

{
1
2
gT [y − x] : K ln

(∫ √
pAi(x)(ω)pAj(y)(ω)Π(dω)

)
+ ln(2J/ε) ≥ 0, x ∈ Xi, y ∈ Xj

}
• To complete the proof, it suffices to verify that

K

M
>

2 ln(2J/ε)

ln([4ε(1− ε)]−1)
⇒ Optij(K) ≤ RiskOptε(M) for all i, j.

Indeed, assuming the opposite, we can find i, j and x̄ ∈ Xi, ȳ ∈ Xj such that
setting p = pAi(x̄), q = pAj(ȳ), we have

1
2
gT [ȳ − x̄] > RiskOptε(M) (a)

K ln
(∫ √

p(ω)q(ω)Π(dω)
)

+ ln(2J/ε) ≥ 0 (b)
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1
2
gT [ȳ − x̄] > RiskOptε(M) (a)

K ln
(∫ √

p(ω)q(ω)Π(dω)
)

+ ln(2J/ε) ≥ 0 for some x̄ ∈ Xi, ȳ ∈ Xj (b)

• (a) implies that simple hypotheses

H1 : ωM ∼ pM , H2 : ωM ∼ qM

about distribution of ωM can be decided upon with risk ≤ ε, whence∫
min[pM(ωM), qM(ωM)]ΠM(dωM) ≤ 2ε

⇒
[∫ √

p(ω)q(ω)Π(dω)
]M

=
∫ √

pM(ωM), qM(ωM)ΠM(dωM)

=
∫ √

min[pM(ωM), qM(ωM)]
√

max[pM(ωM), qM(ωM)]ΠM(dωM)

≤
[∫

min[pM(ωM), qM(ωM)]ΠM(dωM)
]1/2 [∫

max[pM(ωM), qM(ωM)]ΠM(dωM)
]1/2

=
[∫

min[pM(ωM), qM(ωM)]ΠM(dωM)
]1/2 [∫

max[pM(ωM), qM(ωM)]ΠM(dωM)
]1/2

=
[∫

min[pM(ωM), qM(ωM)]ΠM(dωM)
]1/2

×
[∫ [

pM(ωM) + qM(ωM)−min[pM(ωM), qM(ωM)]
]

ΠM(dωM)
]1/2

≤
√

2ε(2− 2ε)

⇒
[∫ √

p(ω)q(ω)Π(dω)
]K
≤
[
2
√
ε(1− ε)

]K/M
<

ε

2J

[due to K
M >

2 ln(2J/ε)
ln([4ε(1−ε)]−1)

and ε < 1/2], what contradicts (b). �
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Illustration: Estimating Cumulative Distribution from Nosiy Observations

• Let X being convex and closed subset of ∆o
n, and let ζ ∼ x ∈ X be a

discrete random variable on {1, ..., n},
(i.e. P (ζ = i) = xi, i = 1, ..., n).

• Let ω ∈ {1, ..., d} be a discrete random variable, ω ∼ µ = Ax, where
A ∈ Rd×n++ is a given stochastic matrix.

Typical examples are

• Convolution model ω = ζ + ξ where ξ (the noise) is a discrete random
variable with known distribution
• Multiplicative noise model ω = ξζ

• Missing observations model
• ...

Our objective is, given a stationaryK-repeated observation ωK = [ω1 ... ωK],
estimate values Fi(x) = eTi x :=

∑i
j=1 xj of the c.d.f. of x.

Note: We are in the Discrete o.s. and can apply our apparatus to estimate the
value of linear functionals Fi(x)
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To compute the estimator F̂i(·) of Fi we proceed as follows.
•We find an optimal solution [x̄, ȳ] to the problem

max

{
1
2
eT(y − x) : x, y ∈ X, K ln

[
d∑

i=1

√
[Ax]i[Ay]i

]
+ ln(2/ε) ≥ 0

}
,

same as solving an equivalent conic quadratic problem

max
x,y∈X

{
1
2
eT(y − x) : x, y ∈ X,

d∑
i=1

√
[Ax]i[Ay]i ≥ (2/ε)1/K

}
. (∗)

• Let [x̄; ȳ] be an optimal solution to (∗). We set

F̂i(ω
K) = φT∗ p̂

K + c∗, [φ∗]i = ν

(
M∑
i=1

√
[Ax̄]i[Aȳ]i

)
ln

√
[Aȳ]i
[Ax̄]i

, c∗ = 1
2
gT(x̄+ ȳ),

where p̂K is the empirical distribution of ω:

p̂Ki =
1

K

K∑
k=1

1ωk=i,

and ν is the Lagrange multiplier of the conic constraint.

Theorem Let ε ∈ (0,1/2]. The risk of the estimator ĝ∗ satisfies:

Riskε[F̂i|X] ≤
2 ln(2/ε)

ln([4ε(1− ε)]−1)
RiskOptε(K). [→ 2, as ε→ +0]
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Application: Convolution Model

Goal: Suppose that r.v. η ∼ Fη, supp η ⊆ [−3,3], υ ∼ Fυ, with known Fυ.
Given n = 100 i.i.d. observations Yi of a r.v. η + υ, we want to recover Fη(t)

for a given t ∈ [−3,3].

• We split [−3,3] into n = 60 equal segments δi of length δ, with the
“sampled signal” xi = P (η ∈∆i). On suppose

xi − 2xi−1 + xi−2

∆2
≤ 1

(a “discrete approximation” of the density fη of η is twice differentiable with
|f ′′η (t)| ≤ 1).
• We cut the domaine of Y into d = 42 chunks γi (40 equal segments

between ]Ymin, Ymax[ and two “complements” in R. The distribution of
η + υ is approximated with µ = Ax, where

Aij = δ−1
i

∫
v∈γi

∫
u∈δj

fξ(v − u)dv du.
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Numerical illustration: Estimation of Fη(0), normal nuisance υ, n = 100 observations,
e = 0.05.
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Sequential Hypothesis Testing

Motivating example: Election Polls. Population-wide elections with L candi-
dates are to be held.
Preferences are represented by L-dimensional basic orth

[0; ...; 0; 1; 0; ...; 0]

with 1 in position ` meaning the vote is for candidate #`.

Equivalently: Preference ω of a voter is a vertex in the probabilistic simplex

∆L = {p ∈ RL : p ≥ 0,
∑
`

p` = 1}.

• The average µ = [µ1; ...;µL] of preferences of all voters “encodes” elec-
tion’s outcome: µ` is the fraction of voters supporting `-th candidate, and the
winner corresponds to the largest entry in µ (assumed to be uniquely defined).

µ is a probabilistic vector: µ ∈ ∆L. We think of µ as of a probability distribution
on the L-element set Ω = Ext(∆L) of vertices of ∆L.
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Our goal is to design election poll – to select K voters at random from the
uniform over the population distribution and to observe their preferences, in
order to predict, with reliability 1− ε, election’s outcome.

The model is drawing a stationaryK-repeated observation ωK = (ω1, ..., ωK),

ωk ∈ Ω, from distribution µ.

Assume once for ever that the elections never end with “near tie,” that is, the
fraction of votes for the winner is at least by a known margin δ larger than the
fraction of votes for every no-winner.
We introduce L hypotheses on the distribution µ of ω1, ..., ωK :

H` : µ ∈ P` = {µ ∈ ∆L : lµ` ≥ µ`′ + δ, ∀`′ 6= `}, ` = 1, ..., L

• Our goal is to specify K in a way which allows to decide on H1, ..., HL via
stationary K-repeated observations with risk ≤ ε.
• We are in the case of Discrete o.s., and can use our machinery to build a
near-optimal K-observation test deciding on H1, ..., HL up to trivial closeness

C : “H` is close to H`′ iff ` = `′”
and select the smallest K for which the C-risk of this test is ≤ ε.
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Illustration L = 2: In this case Ω is a two-point set of basic orths in R2, the
minimum risk single-observation detector is

φ∗(ω) =
1

2
ln
(

1 + δ

1− δ

)
[ω1 − ω2] : Ω→ R

and Risk[φ∗|P1,P2] = 1− δ2

⇒ K = Ceil
(

ln(1/ε)
ln(1/(1−δ2))

)
� 1

δ2 ln(1/ε).

δ 0.3162 0.1000 0.0316 0.0100
K, K 51, 88 534, 917 5379, 9206 53820, 92064

K: lower bound on optimal poll size, ε = .01

USA Presidential Elections-2016:

State Actual
margin

Poll size,
lower bound

Poll size,
upper bound

Wisconsin 0.0041 24 576 88 663
Pennsylvania 0.0038 28 978 104 545

Michigan 0.0012 281 958 1 017 227

Confidence level 95%
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K � 1
δ2 ln(1/ε)

δ 0.3162 0.1000 0.0316 0.0100
K, K 51, 88 534, 917 5379, 9206 53820, 92064

K: lower bound on optimal poll size, ε = .01

Required size of election poll grows rapidly as “winning margin” decreases.

Question: Can we do better?

Partial remedy: Let us pass to sequential tests, where we attempt to make
conclusion before all K respondents required by the worst-case-oriented anal-
ysis are interviewed.

If elections are about to be “landslide” (i.e., in unknown to us actual distribu-
tion µ∗ of voters’ preferences the winner beats all other candidates by margin
δ∗ � δ), the winner hopefully can be identified after a relatively small number
of interviews.
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Strategy. We select a number S of valuations and associate with valuation s
number K(s) of observations, K(1) < ... < K(S).
• the s-th valuation is complete when K(s) observations are collected; then,
we apply to the collected so far observation ωK(s) = (ω1, ..., ωK(s)) a test Ts
which, depending on ωK(s),
• either accepts exactly one of the hypothesesH1, ..., HL, in which case we

terminate,
• or claims that information collected so far is not sufficient to decide, in

which case we either collect more observations (when s < S) or terminate
(when s = S).

Specifications: We want the overall procedure to be
• conclusive: a decision should be made during one of the S valuations (thus,
inference should be guaranteed when valuation S is reached);
• reliable: whenever the true distribution µ∗ underlying observations obeys
one of our L hypotheses, the µ∗-probability for this hypothesis to be accepted
should be ≥ 1− ε, where ε ∈ (0,1) is a given in advance risk bound.
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Implementation: We select somehow the number of valuations S and set δs = δs/S so
that δ1 > δ2 > ... > δS = δ; we split risk bound ε into S parts εs: εs > 0, s ≤ S &

∑S
s=1 εs = ε;

• For s < S, we define 2L hypotheses

Hs
2`−1 = H` : µ ∈ Ps2`−1 = P` := {µ ∈ ∆L : µ` ≥ δS + max`′ 6=` µ`′}

“weak hypothesis”

Hs
2` =

{
µ ∈ Ps2` := {µ ∈ ∆L : µ` ≥ δs + max`′ 6=` µ`′} ⊂ P`

}
“strong hypothesis”

1 ≤ ` ≤ L, and assign Hs
2`−1 and Hs

2` with color `, 1 ≤ ` ≤ L.

• For s = S we consider L hypotheses HS
` = H`, ` = 1, ..., L, with HS

` assigned color `.

• For s < S, we introduce closeness relation Cs on the collection of hypotheses Hs
1, ..., H

s
2L

as follows:

• the only hypotheses close to a strong hypothesis Hs
2` are the hypotheses Hs

2` and Hs
2`−1

of the same color;
• the only hypotheses close to a weak hypothesis Hs

2`−1 are all weak hypotheses and the
strong hypothesis H2` of the same color as H2`−1.

• For s = S, the Cs-closeness is trivial: HS
` ≡ H` is CS-close to HS

`′ ≡ H`′ if and only if
` = `′.
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3-candidate hypotheses in the probabilistic simplex ∆3

[weak green] M1 dark green + light green: candidate A wins with margin ≥ δS
[strong green] Ms

1 dark green: candidate A wins with margin ≥ δs > δS
[weak red] M2 dark red + pink: candidate B wins with margin ≥ δS
[strong red] Ms

2 dark red: candidate B wins with margin ≥ δs > δS
[weak blue] M3 dark blue + light blue: candidate C wins with margin ≥ δS
[strong blue] Ms

3 dark blue: candidate C wins with margin ≥ δs > δS

• Hs
2`−1 : µ ∈M` [weak hypothesis]

weak hypothesis Hs
2`−1 is Cs-close to itself, to all other weak hypotheses

and to strong hypothesis Hs
2` of the same color as Hs

2`−1

• Hs
2` : µ ∈Ms

` [strong hypothesis]
strong hypothesis Hs

2` is S-close only to itself and to weak hypothesis
Hs

2`−1 of the same color as Hs
2`−1
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Note: We are in the case of stationary repeated observations in Discrete o.s.,
and the hypotheses Hs

j are of the form

“ i.i.d. observations ω1, ω2, ... are drawn from distribution µ ∈ Ms
j

with nonempty closed convex sets Ms
j ⊂ ∆L”, and sets Ms

j , Ms
j′ with

(j, j′) 6∈ Cs do not intersect

⇒ risks of the optimal pairwise detectors for Psj , Psj′, (j, j′) 6∈ Cs, are < 1

⇒ we can efficiently find the smallest K = K(s) for which a test T = Ts de-
ciding, via stationary K(s)-repeated observations, on the hypotheses {Hs

j}j
has Cs-risk ≤ εs.
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Our inference routine works as follows:

•we observe ωk, k = 1,2, ...,K(S) (i.e., carry interviews with one by one ran-
domly selected voters), and perform s-th valuation to make conclusion when
K(s) observations are acquired (K(s) interviews are completed).

• At s-th valuation, we apply the test Ts to observation ωK(s). If the test
does accept some of the hypotheses Hs

j and all accepted hypotheses have
the same color `, we accept `-th of our original hypotheses H1, ..., HL (i.e.,
predict that `-th candidate will be the winner) and terminate,

• otherwise we proceed to next observation round (i.e., next interviews) (when
s < S) or claim the winner to be, say, the first candidate and terminate (when
s = S).
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• The risk of the outlined sequential hypothesis testing procedure is ≤ ε:
whenever the distribution µ∗ underlying observations obeys hypothesisH`
for some ` ≤ L, the µ∗-probability of the event “H` is the only accepted
hypothesis” is at least 1− ε.

• The worst-case volume of observations K(S) is within logarithmic factor
from the minimal number of observations allowing to decide on the hy-
potheses H1, ..., HL with risk ≤ ε.

• Whenever the distribution µ∗ underlying observations obeys strong hy-
pothesis Hs

2` for some ` and s (“distribution µ∗ of voters’ preferences
corresponds to winning margin at least δs”), the conclusion, with µ∗-
probability ≥ 1− ε, will be made in course of the first s valuations (i.e., in
course of the first K(s) interviews).

Informally: In “landslide elections,” the winner will be predicted reliably after a
small number of interviews.
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Numerical Illustration: 2-Candidate Elections

Setup:
• # of candidates L = 2
• δs = 10−s/4

• range of # of valuations S: 1 ≤ S ≤ 8

Numerical Results:
S 1 2 4 5 6 8

δ = δS 0.5623 0.3162 0.1000 0.0562 0.0316 0.0100
K 25 88 287 917 9206 92098

K(S) 25 152 1594 5056 16005 160118

Volume K of non-sequential test, number of valuations S and worst-case volume K(S) of
sequential test as functions of winning margin δ = δS. Risk ε is set to 0.01.

Note that worst-case volume of sequential test is essentially worse than the volume of non-
sequential test.

But: When drawing the true distribution µ∗ of voters’ preferences at random from the uniform
distribution on the set of µ’s with winning margin ≥ 0.01, the typical size of observations used
by Sequential test with S = 8 prior to termination is� K(S):

Empirical Volume of Sequential test

median mean 60% 65% 75% 80% 85% 90% 95% 100%
177 9182 177 397 617 1223 1829 8766 87911 160118

Column ”X%”: empirical X%-quantile of test’s volume. Data over 1,000 experiments.
Empirical risk: 0.01
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Measurement Design

Observation: In our Hypothesis Testing setup, observation scheme is our “en-
vironment” and is completely out of our control. However, there are situations
where the observation scheme is under our partial control.

Example: Election Poll revisited. In our original problem, a particular voter
was represented by basic orth ω = [0; ...; 0; 1; 0; ...; 0] ∈ RL, with entry 1 in
position ` meaning that the voter prefers candidate ` to all other candidates.
Our goal was to predict the winner by observing preferences of respondents
selected at random from uniform distribution on voters’ population.

A modification: Imagine we can split voters in I non-intersecting groups (say,
according to age, education, gender, income, occupation,...) in such a way that
we have certain a priori knowledge of the distributions of preferences within the
group.
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In this situation, our poll can be reorganized:

•We assign groups with nonnegative weights qi summing up to 1

• To organize an interview, we first select at random one of the groups, with
probability qi to select group i, and then select a respondent from i-th group at
random, from uniform distribution on the group.

Note: When qi is equal to the fraction θi of group i in the entire population, the
above policy reduces to the initial one. It can make sense, however, to use qi
different from θi, with qi � θi if a priori information about preferences of voters
from i-th group is rich, and qi � θi if this information is poor. Hopefully, this
will allow us to make more reliable predictions with the same total number of
interviews.
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The model of outlined situation is as follows:

•We characterize distribution of preferences within group i by vector µi ∈ ∆L.
for 1 ≤ j ≤ L, j-th entry in µi is the fraction of voters in group i voting for can-
didate j;
The population-wide distribution of voters’ preferences is µ =

∑I
i=1 θiµ

i.

• A priori information on distribution of preferences of voters from group i is
modeled as the inclusion µi ∈M i, for some known subset M i ⊂ ∆L which
we assume to be nonempty convex compact set.

• Output of particular interview is pair (i, j), where i ∈ {1, ..., I} is selected
at random according to probability distribution q, and j is the candidate pre-
ferred by respondent selected from group i at random, according to uniform
distribution on the group.
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Observation (outcome of an interview) becomes

ω := (i, j) ∈ Ω = {1, ..., I} × {1, ..., L},
Prob{ω = (i, j)} = p(i, j) := qiµ

i
j.

Hypotheses to decide upon are

H`[q] : p ∈ P`[q] :=

{
{pij = qiµ

i
j}1≤i≤I,

1≤j≤L
:
µi ∈M i ∀i,[∑

i
θiµi
]
`
≥ δ +

[∑
i
θiµi
]
`′
∀(`′ 6= `)

}

H`[q], ` = 1, ..., L, states that the “signal” µ = [µ1; ...;µI] underlying dis-
tribution p of observations ω induces population-wide distribution

∑
i θiµ

i of
votes resulting in electing candidate ` with winning margin ≥ δ.
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H`[q] : p ∈ P`[q] :=

{
{pij = qiµij}1≤i≤I,

1≤j≤L
:
µi ∈M i ∀i,[∑

i
θiµi
]
`
≥ δ +

[∑
i
θiµi
]
`′
∀(`′ 6= `)

}
Hypotheses H`[q] are of the form

H`[q] = {p = A[q]µ : µ := [µ1; ...;µL] ∈M`},
[A[q]µ]ij = qiµ

i
j,

whereM`, ` = 1, ..., L, are nonempty nonintersecting convex compact sub-
sets in ∆L × ...×∆L︸ ︷︷ ︸

I
Note: Election Poll with K interviews corresponds to stationary K-repeated
observation in Discrete o.s. with IL-element observation space Ω

⇒ Given K, we can design a near-optimal detector-based test TK deciding
via stationary K-repeated observation (i.e., via the outcomes of K interviews)
on hypotheses H`[q], ` = 1, ..., L up to trivial closeness

H`[q] is close to H`′[q] iff ` = `′.

This test will predict the winner with reliability 1−Risk[TK|H1[q], ..., HL[q]].
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H`[q] = {p = A[q]µ : µ := [µ1; ...;µL] ∈M`},
[A[q]µ]ij = qiµij,

Setting χ``′ =

{
0, ` = `′

1, ` 6= `′
, we get

Risk[TK|H1[q], ..., HL[q]] ≤ εK[q] :=
∥∥∥∥[εK``′[q]χ``′]L`,`′=1

∥∥∥∥
2,2
,

where

ε``′[q] = max
µ∈M`,ν∈M`′

∑
i,j

√
[A[q]µ]ij[A[q]ν]ij

= max
µ∈M`,ν∈M`′

∑I

i=1
qi

[∑L

j=1

√
µijν

i
j

]
︸ ︷︷ ︸

Φ(q;µ,ν)

Observe that Φ(q;µ,ν) is linear in q.
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Let us carry out Measurement Design – optimize the value εK[q] in q.

Main observation: εK[q] = Γ(Ψ(q)), where

• Γ(Q) = ‖[(Q``′)Kχ``′]L`,`′=1‖2,2 is efficiently computable convex and
entrywise nondecreasing function on the space of nonnegative L×L ma-
trices
• Ψ(q) is matrix-valued function with efficiently computable convex in q and

nonnegative entries

Ψ``′(q) = max
µ∈M`,ν∈M`′

Φ(q;µ,ν)

⇒ Optimal selection of qi’s reduces to solving explicit convex problem

min
q

Γ(Ψ(q)) : q = [q1; ...; qI] ≥ 0,
I∑

i=1

qi = 1


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How it Works: Measurement Design in Election Polls

Setup:
• Election Poll problem with L candidates and winning margin δ = 0.05
• Reliability ε = 0.01
• A priori information on voters’ preferences in groups:

M i = {µi ∈ ∆L : pi` − ui ≤ µ
i
` ≤ p

i
` + ui, ` ≤ L}

• pi: randomly selected probabilistic vector • ui: uncertainty level

Sample of results:
L I

Group sizes θ
Uncertainty levels u Kini qopt Kopt

2 2 θ = [0.50; 0.50] 1212 [0.44; 0.56] 1194
u = [0.03; 1.00]

2 2 [0.50; 0.50] 2699 [0.00; 1.00] 1948
[0.02; 1.00]

3 3 [0.33; 0.33; 0.33] 3177 [0.00; 0.46; 0.54] 2726
[0.02; 0.03; 1.00]

5 4 [0.25; 0.25; 0.25; 0.25] 2556 [0.00; 0.13; 0.32; 0.55] 2086
[0.02; 0.02; 0.03; 1.00]

5 4 [0.25; 0.25; 0.25; 0.25] 4788 [0.25; 0.25; 0.25; 0.25] 4788
[1.00; 1.00; 1.00; 1.00]

Effect of measurement design. Kini and Kopt are the poll sizes required for
0.99-reliable prediction of the winner when qi = θi and q = qopt, respectively.
Note: Uncertainty= 1.00⇔ No a priori information
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• In numerous situations, we do have partial control of observation scheme
and thus can look for optimal Measurement Design.

• However, situations where optimal Measurement Design can be found effi-
ciently, like in design of Election Polls, are rare.

• Two other examples of such situation are Poisson o.s. and Gaussian o.s.
with time control.
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Poisson o.s. with time control.

Typical models where Poisson o.s. arises are as follows:

• there exists a “signal” x known to belong to some convex compact set ⊂ Rn

For example, in Positron Emission Tomography, x is (discretized) density of radioactive tracer
administered to patient

• We observe random vector ω ∈ Rm with independent entries ωi ∼
Poisson(aTi x), and want to make inferences on x.

In PET, patient is injected radioactive tracer which concentrates in areas we are interested
in. Tracer disintegrates, and every disintegration act results in pair of gamma-quants flying in
opposite directions along a randomly oriented line passing through disintegration point. This
line is registered when two detector cells are (nearly) simultaneously hit:
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The data acquired in PET study are the numbers ωi of lines registered in bins
(pairs of detector cells) i = 1, ...,m over a time horizon T . We have

ωi ∼ Poisson(T
∑n
j=1 pijxj)[

pij: probability for line emanating from voxel j = 1, ..., n
to cross pair i = 1, ...,m of detector cells

]
⇒ A = T

[
pij
]
i≤m,j≤n

In some situations, the sensing matrix A can be partially controlled:

A = A[q] := Diag{q}A∗
• A∗: given m× n matrix; • q ∈ Q: vector of control parameters.
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For instance, in a whole body PET scan the position of the patient w.r.t. the
scanner is updated several times to cover the entire body.

The data acquired in position ι form subvector ωι in the entire observation
ω = [ω1; ...;ωI]:

ωιi ∼ Poisson([tιAιx]i), 1 ≤ i ≤ m̄ = m/I[
Aι : given matrices; tι : duration of study in position ι

]
implying that A = Diag{q}A∗ with properly selected A∗ and q of the form

q =
[
t1; ...; t1︸ ︷︷ ︸

m̄

; ...; tI; ...; tI︸ ︷︷ ︸
m̄

]
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Hq
` : ωi ∼ Poisson([A[q]x]i) are independent across i ≤ m and x ∈ X`

A = A[q] := Diag{q}A∗
• A∗: given m× n matrix; • q ∈ Q: control parameters.

Our goal is to decide, up to a given closeness C, on L hypotheses on the distribution of
Poisson observation ω:

Hq
` : ω ∼ Poisson([A[q]x]1)× ...× Poisson([A[q]x]m)
x ∈ X`, X`: given convex compact sets, 1 ≤ ` ≤ L.

• By our theory, the (upper bound on the) C-risk of near-optimal test deciding on Hq
` , ` =

1, ..., L, is

ε(q) =
∣∣∣∣∣∣[exp{Opt``′(q)}χ``′]L`,`′=1

∣∣∣∣∣∣
2,2[

χ``′ =

{
0, (`, `′) ∈ C
1, (`, `′) 6∈ C ,Opt``′(q) = max

u∈X`,v∈X`′
−1

2

∑m
i=1

(√
[A[q]u]i −

√
[A[q]v]i

)2
]

Similarly to the Election Polls, ε(q) = Γ(Ψ(q)), where

• Γ(Q) = ‖ [exp{Q``′}χ``′]L`,`′=1 ‖2,2 is a convex entrywise nondecreasing function of L × L
matrix Q

• [Ψ(q)]``′ = exp

{
max

u∈X`,v∈X`′

∑m

i=1
qi

(√
[A∗u]i[A∗v]i − 1

2
[A∗u]i − 1

2
[A∗v]i

)}
Note: same as in the Election Polls case, [Ψ(q)]``′ is efficiently computable and convex in q

⇒ Assuming the set Q ⊂ Rm+ of allowed controls q is convex, optimizing ε(q) over q ∈ Q is

an explicit convex optimization problem.
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Measurement Design problem in Gaussian o.s.

ω = A[q]x+ ξ, ξ ∼ N (0, Im)
[• A[q] partially controlled sensing matrix; • q ∈ Q: control parameters.]

is efficiently solvable if
A[q] = Diag{√q1, ...,

√
qm}A∗,

Q ⊂ Rm+ is a convex compact set

In this case, minimizing Q-risk of test deciding up to closeness C on L hypotheses

Hq
` : ω ∼ N (A[q]x, Im), x ∈ X`, 1 ≤ ` ≤ L

associated with nonempty convex compact sets X` reduces to solving convex problem

min
q∈Q

Γ(Ψ(q))

where
Γ(Q) = ‖ [exp{Q``′/8}χ``′]`,`′≤L ‖2,2

is convex entrywise nondecreasing function of L× L matrix Q, and

[Ψ(q)]``′ = max
u∈X`,v∈X`′

[
−‖A[q](u− v)‖2

2

]
= − min

u∈X`,v∈X`′
(u− v)TAT∗Diag{q}A∗(u− v)

is efficiently computable convex function of q ∈ Q.
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Illustration: In some applications, “the physics” beyond Gaussian o.s. ω =
Ax+ ξ is as follows.

There are m sensors measuring analogous vector-valued continuous time signal x
(nearly constant on the observation horizon) in the presence of noise. The output
of sensor #i is

ωi = 1
|∆i|
∫

∆i
[aTi,∗x+Bi(t)]dt

• ∆i : continuous time interval
• Bi(t) : ”Brownian motion:” 1

|∆|

∫
∆
Bi(t)dt ∼ N (0, |∆|−1),∫

∆
Bi(t)dt,

∫
∆′ Bi(t)dt are independent when ∆ ∩∆′ = ∅

• Brownian motions Bi(t) are independent across i


•When all sensors work in parallel for unit time, we arrive at the standard Gaussian
o.s. ω = A∗x+ ξ, ξ ∼ N (0, Im).
•When sensors work on consecutive segments ∆1, ...,∆m of durations qi = |∆i|,
we arrive at

ωi = aTi,∗x+ q
−1/2
i ξi, ξi ∼ N (0,1) are independent across i

Rescaling observations according to ωi 7→
√
qiωi, we arrive at the desired partially controlled

observation scheme

oω = Diag{√q1, ...,
√
qm}A∗x+ ξ, ξ ∼ N (0, Im)

A natural selection of Q is, e.g., Q = {q ≥ 0 :
∑

i qi = m} (setting “time budget” to the same

value as in the case of consecutive observations of duration 1 each).
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HYPOTHESIS TESTING, III

• Beyond simple observation schemes

• Simple families of distributions

• What is affine? Quadratic lifting



Observation: A “common denominator” of minimum risk detectors for simple
o.s.’s is their affinity in observations:

• the optimal detectors in Gaussian and Poisson o.s.’s are affine “as
they are”
• encoding observation space Ω = {1, ..., d} of Discrete o.s. by
vertices ei, i = 1, ..., d, of the standard simplex ∆d = {x ∈ Rd : x ≥
0,
∑
j xj = 1}, every function on Ω becomes affine

⇒ we can treat optimal detector in Discrete o.s. as affine function on
Rd.
• operations with optimal detectors induced by taking direct products
of basic simple o.s.’s or passing to repeated observations preserve
affinity.

Claim: “Reasonable” (perhaps, sub-optimal) affine detectors can be found, in
a computationally efficient way, in many important situations which are beyond
simple o.s.’s.
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O = ((Ω,Π), {pµ(·) : µ ∈M},F)
ΦO(φ, µ) = ln

(∫
exp{φ(ω)}pµ(ω)Π(dω)

)
: F ×M→ R

convex in φ, concave in µ

In a simple o.s., our strategy to build a good detector for two hypotheses asso-
ciated with convex compact sets M1 ⊂M, M2 ⊂M was as follows:

In order to find minimum risk detector – to solve the optimization problem

min
φ∈F

max

[
max
µ∈M1

∫
exp{−φ(ω)}pµ(ω)Π(dω), max

ν∈M2

∫
exp{φ(ω)}pν(ω)Π(dω)

]
reduced to

min
φ∈F

1
2

[
max
µ∈M1

ln
(∫

exp{−φ(ω)}pµ(ω)Π(dω)
)

+ max
ν∈M2

ln
(∫

exp{φ(ω)}pν(ω)Π(dω)
)]

⇔ min
φ∈F

1
2

[
max
µ∈M1

ΦO(−φ, µ) + max
ν∈M2

ΦO(φ, ν)

]

•We intend to use the same scheme, but replace “φ ∈ F ” with “affine φ”, and
replace ΦO with convex in φ and concave in µ upper bound on

ln
(∫

exp{φ(ω)}pµ(ω)Π(dω)
)
.
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Setup

• Given an observation space Ω = Rd, consider a triple H,M,Φ, where

•H is a nonempty closed convex set in Ω symmetric w.r.t. the origin,
•M is a compact convex set in some Rn,
•Φ(h;µ) : H ×M → R is a continuous function convex in h ∈ H
and concave in µ ∈M.

• H,M, and Φ specify a family S[H,M,Φ] of probability distributions on Ω.
A probability distribution P belongs to the family iff there exists µ ∈M such
that

ln
(∫

Ω
eh

TωP (dω)
)
≤ Φ(h;µ) ∀h ∈ H (∗)

We refer to µ ensuring (∗) as to parameter of distribution P .
Warning: A distribution P may have many different parameters!
• We refer to triple H,M,Φ satisfying the above requirements as to regular
data, and to S[H,M,Φ] – as to the simple family of distributions induced by
these data.
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Example 1: Gaussian and sub-Gaussian distributions.

When M = {(u,Θ)} ⊂ Rd × int Sd+ is a convex compact set such that
Θ � 0 for all (u,Θ) ∈M, H = Rd and

Φ(h;u,Θ) = hTy + 1
2
hTΘh, S = S[H,M,Φ]

contains all probability distributions P which are sub-Gaussian with parame-
ters (u,Θ), meaning that

ln
(∫

Ω
eh

TωP (dω)
)
≤ hTu+

1

2
hTΘh ∀h, (1)

and, in addition, the “parameter” (u,Θ) belongs toM.

Note:

• N (u,Θ) ∈ S whenever (u,Θ) ∈M; for P = N (u,Θ), (1) is an identity

• Whenever P is sub-Gaussian with parameters (u,Θ), u is the expectation
of P
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Example 2: Poisson distributions.

WhenM⊂ Rd+ is a convex compact set, H = Rd and

Φ(h;µ) =
d∑

i=1

µi(ehi − 1),

S = S[H,M,Φ] contains distributions of all d-dimensional random vectors
ωi with independent across i entries

ωi ∼ Poisson(µi)

such that µ = [µ1; ...;µd] ∈M.
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Example 3: Discrete distributions.

When

M = {µ ∈ Rd : µ ≥ 0,
∑
j

µj = 1}

is the probabilistic simplex in Rd, H = Rd and

Φ(h;µ) = ln

 d∑
i=1

µie
hi

,
S = S[H,M,Φ] contains all discrete distributions supported on the vertices
of the probabilistic simplex.
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Example 4: Distributions with bounded support.

Let X ⊂ Rd be a nonempty convex compact set with support function φX(·):

φx(y) = max
x∈X

yTx : Rd → Rd.

WhenM = X, H = Rd and

Φ(h;µ) = hTµ+ 1
8
[φX(h) + φX(−h)]2, (2)

S = S[H,M,Φ] contains all probability distributions supported on X, and for
such a distribution P , µ =

∫
X ωP (dω) is a parameter of P .

Note: When G, 0 ∈ G, is a convex compact set, the conclusion in Example 4
remains valid when function (2) is replaced with the smaller function

Φ(h;µ) = min
g∈G

[
µT (h− g) + 1

8
[φX(h− g) + φX(g − h)]2 + φX(g)

]
.
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“Calculus” of simple families of probability distributions

• [summation] For 1 ≤ ` ≤ L, let λ` be reals, and let H`,M`,Φ` be regular
data with common observation space: H` ⊂ Ω = Rd. Setting

H = {h ∈ Rd : λ`h ∈ H`,1 ≤ ` ≤ L},
M = M1 × ...×ML,

Φ(h;µ1, ..., µL) =
∑L
`=1 Φ`(λ`h;µ`),

we get regular data with the following property:

Whenever random vectors ξ` ∼ P` ∈ S[H`,M`,Φ`], 1 ≤ ` ≤ L, are
independent across `, the distribution P of the random vector

ξ =
L∑
`=1

λ`ξ`

belongs to S[H,M,Φ]. Denoting by µ` parameters of P`, µ =

[µ1; ...;µL] can be taken as parameter of P .
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• [direct product] For 1 ≤ ` ≤ L, let H`,M`,Φ` be regular data with observa-
tion spaces Ω` = Rd`. Setting

H = H1 × ...×HL ⊂ Ω = Rd1+...+dL,
M = M1 × ...×ML,

Φ(h1, ..., hL;µ1, ..., µL) =
∑L
`=1 Φ`(h`;µ`),

we get regular data with the following property:

Whenever P` ∈ S[H`,M`,Φ`], 1 ≤ ` ≤ L, the direct product dis-
tribution P = P1 × ... × PL belongs to S[H,M,Φ]. Denoting by µ`
parameters of P`, µ = [µ1; ...;µL] can be taken as parameter of P .
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• [marginal] Let H,M,Φ be regular data with observation space Rd, and let

ω 7→ Aω + a : Rd 7→ Ω = Rδ.

Setting

H̄ = {h ∈ Rδ : ATh ∈ H}, Φ̄(h;µ) = hTa+ Φ(ATh;µ),

we get regular data H̄,M, Φ̄ with the following property:

Whenever ξ ∼ P ∈ S[H,M,Φ], the distribution P̄ of the random
variable ω = Aξ + a belongs to the simple family S[H̄,M, Φ̄], and
parameter of P is a parameter of P̄ as well.
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Main observation: When deciding on simple families of distributions, affine
tests and their risks can be efficiently computed via Convex Programming:

Theorem. Let Hχ,Mχ,Φχ, χ = 1,2, be two collections of regular data with compact
M1,M2 and H1 = H2 =: H, and let

Ψ(h) = max
µ1∈M1,µ2∈M2

1
2 [Φ1(−h;µ1) + Φ2(h, µ2)]︸ ︷︷ ︸

Φ(h;µ1,µ2)

: H → R

Then Ψ is efficiently computable continuous convex function, and for h ∈ H, setting

φh(ω) = hTω +
1

2

[
max
µ1∈M1

Φ1(−h;µ1)− max
µ2∈M2

Φ2(h;µ2)

]
︸ ︷︷ ︸

κ

,

one has

Risk[φ|P1,P2] ≤ exp{Ψ(h)}, where Pχ = S[H,Mχ,Φχ], χ = 1,2.

In particular, if convex-concave function Φ(h;µ1, µ2) possesses a saddle point h∗, (µ∗1, µ
∗
2)

on H× (M1 ×M2), the affine detector

φ∗(ω) = hT∗ ω + 1
2 [Φ1(−h∗;µ∗1)−Φ2(h∗;µ∗2)]

admits risk bound
Risk[φ|P1,P2] ≤ exp{Φ(h∗;µ∗1, µ2)}.
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Proof. Indeed, let h ∈ H, and let

µ∗1 ∈ Argmax
µ1∈M1

Φ1(−h;µ1), µ∗2 ∈ Argmax
µ2∈M2

Φ2(h;µ2).

When P ∈ P1 := S[H,M1,Φ1], there is µ1 ∈M1 such that

Eω∼P

{
e−h

TωP (dω)
}
≤ eΦ1(−h;µ1),

so that

Eω∼P

{
e−φ(ω)P (dω)

}
≤ eΦ1(−h;µ∗1)−κ = eΨ(h),

implying that

Risk1[φ|P1,P2] ≤ eΨ(h).

Similarly, when µ1 ∈M1, for some µ2 ∈M2 one has

Eω∼P

{
eh

TωP (dω)
}
≤ eΦ2(h;µ2),

Eω∼P

{
eφ(ω)P (dω)

}
≤ eΦ2(h;µ∗2)+κ = eΨ(h),

and
Risk2[φ|P1,P2] ≤ eΨ(h). �
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Numerical illustration. Given convex compact subsets X1 and X2 of X, and
observation

ω = Ax+ σADiag {√x1, ...,
√
xn} ξ [ξ ∼ N (0, In)]

of an unknown signal x known to belong to a given convex compact set X ⊂
Rn++, we want to decide on the hypotheses

Hχ : x ∈ Xχ, χ = 1,2

with risk ≤ 0.01.

Novelty: Noise intensity depends on the signal!
• Introducing regular data Hχ = Rn,Mχ = Xχ,

Φχ(h, µ) = hTAµ+ 1
2
σ2hT [ADiag{µ}AT ]h [χ = 1,2]

distribution of observations under Hχ belongs to S[H,Mχ,Φχ].

• An affine detector for families Pχ of distributions obeying Hχ, χ = 1,2, is
given by the saddle point of the function

Φ(h;µ1, µ2) := 1
2

[
hT [µ2 − µ1] + 1

2
σ2hTADiag{µ1 + µ2}ATh

]
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Data: n = 16, σ = 0.1, target risk 0.01,
• A = UDiag

{
0.01(i−1)/15, i ≤ 16

}
V T with random orthogonal U , V ,

• X1 =

{
x ∈ R16 :

0.001 ≤ x1 ≤ δ
0.001 ≤ xi ≤ 1, i ≥ 2

}
,

• X2 =

{
x ∈ R16 :

2δ ≤ x1 ≤ 1
0.001 ≤ xi ≤ 1, i ≥ 2

}
Results:
δ = 0.1⇒ Risk[φ∗|P1,P2] = 0.4346⇒ 6-repeated observation
δ = 0.01⇒ Risk[φ∗|P1,P2] = 0.9201⇒ 56-repeated observation

• Safe “Gaussian o.s. approximation” of the above observation scheme requires 37-repeated

observations to handle δ = 0.1 and 3685-repeated observation to handle δ = 0.01.
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Sub-Gaussian case. For χ = 1,2, let Uχ ⊂ Ω = Rd and Vχ ⊂ int Sd+ be
convex compact sets. Setting

Mχ = Uχ × Vχ, Φ(h;u,Θ) = hTu+ 1
2
hTΘh : H×Mχ → R,

the regular dataH = Rd,Mχ,Φ specify the familiesPχ = S[Rd, Uχ × Vχ,Φ]
of sub-Gaussian distributions with parameters from Uχ × Vχ.

Saddle point problem responsible for design of affine detector for P1,P2 reads

SadVal = min
h∈Rd

max
u1∈U1,u2∈U2

Θ1∈V1,Θ2∈V2

1
2

[
hT(u2 − u1) + 1

2
hT [Θ1 + Θ2]h

]
• Saddle point (h∗; (u∗1, u

∗
2,Θ

∗
1,Θ

∗
2)) does exist and satisfies

h∗ = [Θ∗1 + Θ∗2]−1[u∗1 − u∗2],

SadVal = −1
4
[u∗1 − u∗2][Θ∗1 + Θ∗2]−1[u∗1 − u∗2] = −1

4
hT∗ [u∗1 − u∗2]

• The associated affine detector and its risk are given by

φ∗(ω) = hT∗
[
ω − 1

2
[u∗1 + u∗2]

]
= [u∗1 − u∗2]T [Θ∗1 + Θ∗2]−1

[
ω − 1

2
[u∗1 + u∗2]

]
Risk[φ∗|P1,P2] ≤ exp{SadVal} = exp{−1

4
[u∗1 − u∗2][Θ∗1 + Θ∗2]−1[u∗1 − u∗2]}

Note: In the symmetric case V1 = V2 (h∗; (u∗1, u
∗
2,Θ

∗
1,Θ

∗
2)) can be selected

to have Θ∗1 = Θ∗2 =: Θ∗. In this case, the affine detector we end up with is
the minimum risk detector for P1, P2.
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What is “affine?” Quadratic Lifting

We have developed a technique for building reasonable affine detectors for
simple families of distributions.
Given observation ζ ∼ P , we can subject it to nonlinear transformation
ζ 7→ ω = ψ(ζ), e.g., to quadratic lifting

ζ 7→ ω = (ζ, ζζT )

and treat as our observation ω rather than ζ. Affine in ω detectors are nonlin-
ear in ζ.

Example: Detectors affine in the quadratic lifting ω = (ζ, ζζT ) of ζ are exactly
the quadratic functions of ζ.
• We can try to apply our machinery for building affine detectors to nonlinear
transformations of true observations, thus arriving at nonlinear detectors.

Bottleneck: To apply the outlined strategy to a pair P1,P2 of families of dis-
tributions of interest, we need to cover the families P+

1 , P+
2 of distributions of

ω = ψ(ζ) induced by distributions P ∈ Pχ of ζ, χ = 1,2, by simple families
of distributions.

What is ahead: Simple “coverings” of quadratic lifts of (sub)Gaussian distri-
butions.
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Situation: Given are:
• a compact nonempty set U ⊂ Rn

• an affine mapping u 7→ A(u) = A[u; 1] : Rn → Rd

• a convex compact set V ⊂ int Sd+.
• The above data specify families of probability distributions of random obser-
vations

ω = (ζ, ζζT ), ζ = A(u) + ξ ∈ Rd, (∗)

specifically,
— the family G[U,V] of all distributions of ω induced by deterministic u ∈ U
and Gaussian noise ξ ∼ N (0,Θ ∈ V)

— the family SG[U,V] of all distributions of ω induced by deterministic u ∈ U
and sub-Gaussian, with parameters (0,Θ ∈ V) noise ξ

Goal: To cover G (or SG) by a simple family of distributions.
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Gaussian case

Proposition. Given the above data U,A(u) = A[u; 1],V, let us select
• γ ∈ (0,1)
• a computationally tractable convex compact set

Z ⊂ Z+ = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1}

such that [u; 1][u; 1]T ∈ Z ∀u ∈ U
• A matrix Θ∗ ∈ Sd and δ ∈ [0,2] such that

∀(Θ ∈ V) : Θ � Θ∗ and ‖Θ1/2Θ−1/2
∗ − Id‖2,2 ≤ δ

Let us set

B =
[

A
0, ...,0,1

]
∈ R(d+1)×(n+1), M = V × Z

H = {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ }

ΦA,Z(h,H; Θ, Z) = −1
2

ln Det(I −Θ1/2
∗ HΘ1/2

∗ ) + 1
2
Tr([Θ−Θ∗]H)+δ(2+δ)‖Θ1/2

∗ HΘ1/2
∗ ‖2

F

2(1−‖Θ1/2
∗ HΘ1/2

∗ ‖)
[‖ · ‖F – Frobenius norm]

+1
2
Tr

(
ZBT

[[
H h
hT

]
+ [H,h]T

[
Θ−1
∗ −H

]−1
[H,h]

]
B

)
: H×M→ R

Then H,M,ΦA,Z is efficiently computable regular data, and

G[U,V] ⊂ S[H,M,ΦA,Z].
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Sub-Gaussian case

Proposition. Given the above data U,A(u) = A[u; 1],V, let us select
• γ, γ+ ∈ (0,1) with γ < γ+

• a computationally tractable convex compact set

Z ⊂ Z+ = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1}

such that [u; 1][u; 1]T ∈ Z ∀u ∈ U
• A matrix Θ∗ ∈ Sd and δ ∈ [0,2] such that

∀(Θ ∈ V) : Θ � Θ∗ and ‖Θ1/2Θ−1/2
∗ − Id‖2,2 ≤ δ

Let us set

B =
[

A
0, ...,0,1

]
∈ R(d+1)×(n+1),

H = {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ },M = Z

H+ = {(h,H,G) ∈ Rd × Sd × Sd : −γ+Θ−1
∗ � H � G � γ+Θ−1

∗ , 0 � G}

ΦA,Z(h,H;Z) = min
G:(h,H,G)∈H+

{
− 1

2
ln Det(I −Θ1/2

∗ GΘ1/2
∗ )

+1
2
Tr
(
ZBT

[[
H h
hT

]
+ [H,h]T

[
Θ−1
∗ −G

]−1
[H,h]

]
B
)}

: H×M→ R

Then H,M,ΦA,Z is efficiently computable regular data, and

SG[U,V] ⊂ S[H,M,ΦA,Z].
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How to specify Z? To apply the above construction, one should specify a
computationally tractable convex compact set

Z ⊂ Z+ = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1}

the smaller the better, such that u ∈ U → [u; 1][u; 1]T ∈ Z
• The ideal selection is

Z = Z[U ] = Conv{[u; 1][u; 1]T : u ∈ U}

However: Z[U ] usually is computationally intractable.

Important exception:

Q � 0, U = {u : uTQu ≤ 1} ⇒ Z[U ] = {Z ∈ Z+ : Tr(ZQ) ≤ 1}
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“Simple” case: When U is given by S quadratic inequalities:

U =
{
u ∈ Rn : [u; 1]TQs[u; 1] ≤ qs, 1 ≤ s ≤ S

}
we can set

Z =
{
Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1,Tr(QsZ) ≤ qs, 1 ≤ s ≤ S

}
. (∗)

Warning: (∗) can yield very conservative outer approximation of Z[U ]. This
conservatism with luck can be reduced by passing from the original descrip-
tion of U to an equivalent one, with emphasis on eliminating/updating linear
constraints. For example,
• a constraint of the form |aTx− c| ≤ r should be replaced with

(aTx− c)2 ≤ r2

Note: every linear constraint in the description of U can be written as
α− aTx ≥ 0 and augmented by redundant constraint aTx ≥ β, with appropri-
ately selected β. The resulting pair of constraints is equivalent to |aTx−c| ≤ r
with c = 1

2
[α+ β] and r = 1

2
[α− β].

• It could make sense to write the linear constraints in the description of U in
the form α− aTx ≥ 0 and add to these constraints their pairwise products.
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Quadratic Lifting – Does it Pay?

Situation: Assume that we are given

• convex compact sets Uχ ⊂ Rnχ, χ = 1,2

• affine mappings uχ 7→ Aχ(uχ) : Rnχ → Rd, χ = 1,2

• convex compact sets Vχ ⊂ int Sd+, χ = 1,2.

These data define families Gχ of Gaussian distributions:

Gχ = {N (Aχ(uχ),Θχ) : uχ ∈ Uχ,Θχ ∈ Vχ}
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We can build two types of detectors for G1, G2:

• Affine detector φaff yielded by the solution to the saddle point problem

SadValaff = min
h∈Rd

max
u1∈U1,u2∈U2

Θ1∈V1,Θ2∈V2

1
2

[
hT [A2(u2)−A1(u1)] + 1

2
hT [Θ1 + Θ2]h

]
,

Risk[φaff|G1,G2] ≤ exp{SadValaff}
• Quadratic detector φlift yielded by the solution to the saddle point problem

SadVallift = min
(h,H)∈H

max
Θ1∈V1
Θ2∈V2

1
2

[
ΦA1,Z1

(−h,−H; Θ1) + ΦA2,Z2
(h,H; Θ2)

]
,

Risk[φlift|G1,G2] ≤ exp{SadVallift}

Observation: Assume that sets Vχ contain �-largest elements. Then with
proper selection of the “design parameters” Zχ,Θ(χ)

∗ participating in the con-
struction of ΦAχ,Zχ, χ = 1,2, passing from affine to quadratic detectors
helps:

SadVallift ≤ SadValaff

- 3.23 -



Numerical illustration:
• U1 = U

ρ
1 = {u ∈ R12 : ui ≥ ρ,1 ≤ i ≤ 12},

• U2 = U
ρ
2 = −Uρ1,

• A1 = A2 ∈ R8×13;
• Vχ = {Θ(χ)

∗ = σ2
χI8}

ρ σ1 σ2
unrestricted
H and h H = 0 h = 0

0.5 2 2 0.31 0.31 1.00
0.5 1 4 0.24 0.39 0.62
0.01 1 4 0.41 1.00 0.41
Risk of quadratic detector φ(ζ) = hTζ + 1

2
ζTHζ + κ

• when deciding on families of Gaussian distributions with common covari-
ance matrix and expectations varying in associated with the families convex
sets, passing from affine to quadratic detectors does not help
• in general, both affine and purely quadratic components in a quadratic de-
tector are useful.
• when deciding on families of Gaussian distributions in the case where distri-
butions from different families can have close expectations, quadratic detectors
are useful, while affine ones are not.
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Illustration: Simple Change Point Detection
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Frames from a noisy “movie”

When the picture starts to change?
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Model: We observe one by one “vectors” (2D images)

ωt = xt + ξt,

• xt: deterministic image
• ξt ∼ N (0, σ2Id): independent across observation noises.

Note: We know the range [σ, σ] of σ, but perhaps do not know σ exactly.

• We know that x1 = x2 and want to check whether x1 = ... = xK (“no
change”) or there is a change.

Goal: Given an upper bound ε > 0 on the probability of false alarm, we want
to design a sequential change detection routine capable to detect change, if
any.
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Approach:
• Pass from observations ωt, 1 ≤ t ≤ K, to observations

ζt = ωt − ω1 = xt − x1︸ ︷︷ ︸
yt

+ ξt − ξ1︸ ︷︷ ︸
ηt

, 2 ≤ t ≤ K

• Test hypothesis H0 : y2 = ... = yK = 0 vs. alternative

K⋃
k=2

H
ρ
k , H

ρ
k : y2 = ... = yk−1 = 0, ‖yk‖2 ≥ ρ

via our machinery for testing
red hypothesis H0

vs.
brown hypotheses Hρ

2, , ..., H
ρ
K

via quadratic liftings ζtζTt of observations ζt up to closeness
C: all brown hypotheses are close to each other and are not close to the red hypothesis

•We intend to find the smallest ρ for which the C-risk of the resulting inference
is ≤ ε, and utilize this inference in change point detection.
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How It Works

Setup: dim y = 2562 = 65536, σ = 10, σ2/σ2 = 2, K = 9, ε = 0.01

Detector: At time t = 2, ...,K, compute

φ∗(ζt) = −2.7138
‖ζt‖22
105

+ 366.9548.

φ∗(ζt) < 0⇒ conclude that the change took place and terminate
φ∗(ζt) ≥ 0⇒ conclude that there was no change so far and proceed

to the next image, if any

• When red hypothesis H0 holds true, the probability not to claim change on
time horizon 2, ...,K is at least 0.99.
•When a brown hypothesisHρ

k holds true, the change at time≤ K is detected
with probability at least 0.99, provided ρ ≥ ρ∗ = 2716.6 (average per pixel
energy in yk at least by 12% larger than σ2)
• No test can 0.99-reliably decide via ζ1, ..., ζk on Hρ

k vs. H0, provided ρ/ρ∗ <
0.965.
• In the movie, the change which takes place at t = 3 is detected at t = 4.
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ESTIMATING SIGNALS IN GAUSSIAN O.S.
AND BEYOND

• Problem of interest

• Developing tools, Optimization

• Conic Programming

• Conic Duality

• Developing tools, Statistics

• Gauss-Markov Theorem

• Optimizing linear estimates

• Near-optimality of linear estimates

• Byproduct on Semidefinite Relaxation



Situation: “In the nature” there exists a signal x known to belong to a given
convex compact set X ⊂ Rn. We observe corrupted by noise affine image of
the signal:

ω = Ax+ σξ ∈ Ω = Rm

• A: given m× n sensing matrix
• ξ: random observation noise
Goal: To recover the image Bx of x under a given linear mapping
• B: given ν × n matrix.
Risk of a candidate estimate x̂(·) : Ω→ Rν is defined as

Risk[x̂|X ] = sup
x∈X

√
Eξ

{
‖Bx− x̂(Ax+ σξ)‖22

}
Risk2 is the worst-case, over x ∈ X , expected ‖ · ‖22 recovery error.

Ideal goal: To build the minmax optimal estimate x̂∗ achieving the minmax risk

RiskOpt[X ] = inf
x̂(·)

Risk[x̂|X ].
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Agenda: Under appropriate assumptions on X , we show that

• One can build, in a computationally efficient fashion, (nearly) the best, in
terms of risk, estimate in the family of linear estimates

x̂(ω) = x̂H(ω) = HTω [H ∈ Rm×ν]

• The resulting linear estimate is nearly optimal among all estimates, linear
and nonlinear alike.
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Why linear estimates?

As it was announced, a “nearly optimal” linear estimate can be built in a com-
putationally efficient fashion.

In contrast, Exactly minimax optimal estimate is unknown even in the simplest
case when the observation is

ω = x+ η

with η ∼ N (0, σ2) and x ∈ X = [−1,1]

Note: The statistical ”magic wand” – Maximum Likelihood Estimate – can be
heavily nonoptimal already in the Simple case.
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x ω

x̂ml(ω)

blue: X magenta: AX
• X = {x ∈ Rn : x2

n + ε−2
∑n−1

i=1 x
2
i ≤ 1}

• A = Diag{1/ε, ...,1/ε,1}, η ∼ N (0, σ2In), B = In
⇒ MLE: x̂ml(ω) = A−1 · argmin‖u‖2≤1 ‖ω − u‖2

When σ � 1, σ2n ≥ O(1), and ε ≤ O(σ), the risk of MLE is O(1), while the
risk of the linear estimate x̂(ω) = ωn is O(σ)� O(1).



ω = Ax+ σξ & x ∈ X ′ ⇒ x̂H(ω) := HTω ≈ Bx
Design of linear estimates: challenges

Fact: Unless A and B are simple – just diagonal, – analytical risk analy-
sis/design of linear estimates is problematic even in the Simple case where
ξ ∼ N (0, I) and X = {x ∈ Rn :

∑
i a

2
i x

2
i ≤ 1} is an ellipsoid.

Reason: Optimal minimax risk is determined by difficult to represent and ana-
lyze interplay between “geometries” of A,B,X :
• on one hand, poor conditioning of A can make impossible good recovery of
some components of x even in a low noise
• on the other hand, the geometries of X and/or B can make ”difficult to re-
cover” components of x irrelevant – these components can be a priori small
due to the geometry of the signal set X , or can be suppressed by B due to the
geometry of B.

Surprisingly, difficulties basically disappear when passing from descriptive
analytical to computationally efficient operational design and risk analysis of
estimates. Specifically, in Simple case with no assumptions on A,B (and even
far beyond) one can build in a computationally efficient fashion provably mini-
max optimal, up to logarithmic factors, linear estimates.
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Developing tools, Optimization: “structure-revealing” representation of
Convex Problems: Conic Programming

•When passing from a Linear Programming program

min
x

{
cTx : Ax− b ≥ 0

}
(∗)

to a nonlinear convex one, the traditional wisdom is to replace linear inequality
constraints

aTi x− bi ≥ 0
with nonlinear ones:

gi(x) ≥ 0 [gi are concave]

• There exists, however, another way to introduce nonlinearity, namely, to re-
place the coordinate-wise vector inequality

y ≥ z ⇔ y − z ∈ Rm+ = {u ∈ Rm : ui ≥ 0∀i} [y, z ∈ Rm]

with another vector inequality

y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

where K is a regular cone (i.e., closed, pointed and convex cone with a
nonempty interior) in Rm.
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y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

K: closed, pointed and convex cone in Rm with a nonempty interior.

Requirements on K ensure that ≥K obeys the usual rules for inequalities:

• ≥K is a partial order:

x ≥K x ∀x [reflexivity]
(x ≥K y & y ≥K x)⇒ x = y [antisymmetry]
(x ≥K y, y ≥K z)⇒ x ≥K z [transitivity]

• ≥K is compatible with linear operations: the validity of ≥K inequality is
preserved when we multiply both sides by the same nonnegative real and
add to it another valid ≥K-inequality;

• in a sequence of ≥K-inequalities, one can pass to limits:

{ai ≥K bi, i = 1,2, ... & ai → a & bi → b} ⇒ a ≥K b
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y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

K: closed, pointed and convex cone in Rm with a nonempty interior.

• one can define the strict version >K of ≥K:

a >K b⇔ a− b ∈ int K.

Arithmetics of >K and ≥K inequalities is completely similar to the arithmetics
of the usual coordinate-wise > and ≥.
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LP problem:

min
x

{
cTx : Ax− b ≥ 0

}
⇔ min

x

{
cTx : Ax− b ∈ Rm+

}
General Conic problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
• (A, b) – data of conic problem
• K - structure of conic problem

Remarks:
• Every convex problem admits equivalent conic reformulation
• With conic formulation, convexity is “built in”; with the standard MP formula-
tion convexity should be kept in mind as an additional property.

(??) A general convex cone has no more structure than a general convex func-
tion. Why conic reformulation is “structure-revealing”?

(!!) Just 3 types of cones allow to represent an extremely wide spectrum (“es-
sentially all”) of convex problems!
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min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
Three Magic Families of cones:

• LP: Nonnegative orthants Rm+ – direct products of m nonnegative rays
R+ = {s ∈ R : s ≥ 0}

giving rise to Linear Programming programs

min
s

{
cTx : aT` x− b` ≥ 0,1 ≤ ` ≤ q

}
.

• CQP: Direct products of Lorentz cones

Lp+ = {u ∈ Rp : up ≥
(∑p−1

i=1 u
2
i

)1/2
}

giving rise to Conic Quadratic programs

min
x

{
cTx : ‖A`x− b`‖2 ≤ cT` x− d`,1 ≤ ` ≤ q

}
.
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• SDP: Direct products of Semidefinite cones
Sp+ = {M ∈ Sp : M � 0}

giving rise to Semidefinite programs

min
x

{
cTx : λmin(A`(x)) ≥ 0︸ ︷︷ ︸

⇔A`(x)�0

, 1 ≤ ` ≤ q
}
.

where Sp is the space of p × p real symmetric matrices, A`(x) ∈ Sp are
affine in x and λmin(S) is the minimal eigenvalue of S ∈ Sp.

Note: Constraint A(x) � 0 stating that a symmetric matrix affinely depending
on decision variables is � 0 is called LMI – Linear Matrix Inequality.

For details, see https://www2.isye.gatech.edu/∼nemirovs/lmco run.pdf
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What can be reduced to LP/CQP/SDP ? Calculus of Conic Programs

Let K be a family of regular cones closed w.r.t. taking direct products.
Definition: A K-representation of a set X ⊂ Rn is a representation

X = {x ∈ Rn : ∃u ∈ Rm : Ax+Bu− b ∈ K} (∗)

where K ∈ K. X is called K-representable, if X admits a K-r.

Note: Minimizing a linear objective cTx over a K-representable set X reduces
to a conic program on a cone from K.
Indeed, given (∗), problem min

x∈X
cTx is equivalent to

Opt = min
x,u

{
cTx : Ax+Bu− b ∈ K

}
Definition: K-representation of a function f : Rn → R ∪ {+∞} is a K-
representation of the epigraph of f :

Epi{f} := {(x, t) : t ≥ f(x)} = {x, t : ∃v : Px+ pt+Qv − q ∈ K}, K ∈ K

f is called K-representable, if f admits a K-r.
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• A level set of a K-r. function is K-r.:

Epi{f} := {(x, t) : t ≥ f(x)} = {x, t : ∃v : Px+ pt+Qu− q ∈ K}
⇒ {x : f(x) ≤ c} = {x : ∃v : Px+Qu− [q − cp] ∈ K}

• Minimization of a K-r. function f over a K-r. set X reduces to a conic
program on a cone from K:{

x ∈ X ⇔ ∃u : Ax+Bu− b ∈ KX
t ≥ f(x) ⇔ ∃v : Px+ pt+Qv − q ∈ Kf

}
⇓

minx∈X f(x)
m

min
t,x,u,v

{
t : [Ax+Bu− b;Px+ pt+Qv − q] ∈ KX ×Kf︸ ︷︷ ︸

∈K

}
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• Investigating “expressive abilities” of generic Magic conic problems reduces
to answering the question

What are LP/CQP/SDP-r. functions/sets?

• “Built-in” restriction is convexity: AK-representable set/function must be con-
vex.

Good news: Convexity is, essentially, the only restriction: for all practical pur-
poses, all convex sets/functions arising in applications are SDP-r. Quite rich
families of convex functions/sets are LP/CQP-r.

Note: Nonnegative orthants are direct products of (1-dimensional) Lorentz
cones, and Lorentz cones are intersections of semidefinite cones and properly
selected linear subspaces⇒ LP ⊂ CQP ⊂ SDP.
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Let K be a family of regular cones closed w.r.t. taking direct products and
passing from a cone K to its dual cone:

K∗ = {λ : 〈λ, ξ〉 ≥ 0 ∀ξ ∈ K}

Note: K∗ is regular cone provided K is so, and

(K∗)∗ = K

Fact: K-representable sets/functions admit fully algorithmic calculus:

• all basic convexity-preserving operations with functions/sets, as applied to
K-r. operands, produce K-r. results, and the resulting K-r.’s are readily
given by K-r.’s of the operands.

• “Calculus rules” are independent of what K is.

⇒ Starting with “raw materials” (characteristic forK elementaryK-r. sets/functions)
and applying calculus rules, we can recognize K-representability and get ex-
plicit K-r.’s of sets/functions of interest.
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“Calculus of K-representability” basics:

Sets: If X1, ..., Xk are K-r. sets, so are their
• intersections, • direct products,
• images under affine mappings, • inverse images under affine mappings.

Functions: If f1, ..., fk are K-r. functions, so are their
• linear combinations with nonnegative coefficients,
• superpositions with affine mappings.

Moreover, if F, f1, ..., fk areK-r. functions, so is the superposition F (f1(x), ..., fk(x))

provided that F is monotonically nondecreasing in its arguments.
More advanced convexity-preserving operations preserve K-representability
under (pretty mild!) regularity conditions. This includes
For sets: taking conic hulls and convex hulls of (finite) unions and passing
from a set to its recessive cone, or polar, or support function
For functions: partial minimization, projective transformation, and taking
Fenchel dual.

Note: Calculus rules are simple and algorithmic ⇒ Calculus can be run in a
compiler [used in CVX].
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Illustration
min cTx+ dTy

y ≥ 0, Ax+By ≤ b
2y
−7

2
1 y−3

2 y
−1
5

3 + 3y
−3

2
2 y

−2
3

4 ≤ eTx+ 4y
1
5
1y

2
5
2y

2
5
3 + 5y

1
3
3y

2
5
4 x1 − x2 x3 + x2

x3 + x2 x2 − x4 x5 − 6
x5 − 6 x6 + x7 −x8

−x8 x5

 � 0 x1 x2 x3 x4 x5
x2 x6 x7 x8 x9
x3 x7 x10 x11 x12
x4 x8 x11 x13 x14
x5 x9 x12 x14 x15

 � 0

Det


 x1 x2 x3 x4 x5

x2 x6 x7 x8 x9
x3 x7 x10 x11 x12
x4 x8 x11 x13 x14
x5 x9 x12 x14 x15


 ≥ 1

Sum of 2 largest singular values of

 x1 x2 x3
x4 x5 x6
x7 x8 x9
x10 x11 x12
x13 x14 x15

 is ≤ 6

1−
∑6

i=1
[xi − xi+1]si ≤ 0, 3

2
≤ s ≤ 6∑4

i=1
x2i cos(iφ)−

∑4

i=1
xi sin(iφ) ≤ 1, π

3
≤ φ ≤ π

2

• blue part is in LP
• blue-magenta part of the problem is in CQP (can be approximated, in a polynomial time, by LP)
• entire problem is in SDP
• reductions to LP/CQP/SDP are “fully algorithmic.”
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Conic Duality

Conic Program admits nice Duality Theory completely similar to LP Duality.
Primal problem:

min
x

{
cTx : Ax− b ≥K 0, Rx = r

}
m [passing to primal slack ξ = Ax− b]

min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
[
e : AT e+RTf = c for some f, L = {Au : Ru = 0}

]
Dual problem:

max
y,z

{
bTy : ATy +RTz = c, y ≥K∗ 0

}
m

max
y

{
bTy : y ∈ [L⊥+ e]

⋂
K∗

]

[K∗: cone dual to K]
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Primal problem:

min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
[
e : AT e+RTf = c for some f , L = {Au : Ru = 0}

]
Dual problem:

max
y

{
bTy : y ∈ [L⊥+ e]

⋂
K∗

}
[K∗: cone dual to K]

Note:

• the dual problem is conic along with primal
• the duality is completely symmetric
• Cones from Magic Families are self-dual, so that the dual of a Linear/Conic

Quadratic/Semidefinite program is of exactly the same type.
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Deriving the dual problem

Primal problem:

Opt(P ) = min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

Goal: find a systematic way to bound Opt(P ) from below.

Observation: When yi ∈ Ki
∗, the scalar inequality yTi Aix ≥ y

T
i bi is a conse-

quence of the constraint Aix− bi ∈ Ki.
If z is a vector of the same dimension as r, the scalar inequality zTRx ≥ zT r

is a consequence of the constraint Rx = r.
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⇒ Whenever yi ∈ Ki
∗ for all i and z is a vector of the same dimension as r,

the scalar linear inequality

[
∑
i

ATi yi +RTz]Tx ≥
∑
i

bTi yi + rTz

is a consequence of the constraints in (P )

⇒ Whenever yi ∈ Ki
∗ for all i and z is a vector of the same dimension as r

such that ∑
i

ATi yi +RTz = c,

the quantity
∑
i b
T
i yi + rTz is a lower bound on Opt(P ).

Dual problem:

Opt(D) = max
yi,z

∑
i

bTi yi + rTz :
yi ∈ Ki

∗, i ≤ m∑
i
ATi yi +RTz = c

 (D)

is exactly the problem of maximizing this lower bound on Opt(P ).
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Definition A conic problem

min
x

cTx :
Aix− bi ∈ Ki, i ≤ m
Ax ≥ b
Rx = r

 (C)

is called strictly feasible, if there exists a feasible solution x̄ where all conic and
≤ constraints are strictly satisfied:

Aix̄− bi ∈ int Ki ∀i & Ax̄ > b.

It is called essentially strictly feasible, if there exists a feasible solution x̄ where
all non-polyhedral constraints are strictly satisfied:

Aix̄− bi ∈ int Ki ∀i.
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Conic Duality Theorem Consider a conic problem

Opt(P ) = min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

along with its dual

Opt(D) = max
yi,z

∑i b
T
i yi + rTz :

yi ∈ Ki
∗, i ≤ m∑

i
ATi yi +RTz = c

 (D)

Then

• [Symmetry] Duality is symmetric: the dual problem is conic, and its dual
is (equivalent to) the primal problem;
• [Weak duality] One has Opt(D) ≤ Opt(P );
• [Strong duality] Let one of the problems be essentially strictly feasible

and bounded. Then the other problem is solvable, and

Opt(D) = Opt(P ).

In particular, if both problems are essentially strictly feasible, both are solvable
with equal optimal values.
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min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

↑↓

max
yi,z

{∑
i b
T
i yi + rTz :

yi ∈ Ki
∗, i ≤ m∑

iA
T
i yi +RTz = c

}
(D)

Conic Programming Optimality Conditions

Let both (P ) and (D) be essentially strictly feasible. Then a pair (x, [{yi}, z])
of primal and dual feasible solutions is comprised of optimal solutions to the
respective problems if and only if

[Zero Duality Gap] DualityGap(x, [{yi}, z]) := cTx− [
∑
i b
T
i yi + rTz] = 0

Indeed,

DualityGap(x, [{yi}, z]) = [cTx−Opt(P )]︸ ︷︷ ︸
≥0

+ [Opt(D)− [
∑

i
bTi yi + rTz]]︸ ︷︷ ︸

≥0

[Complementary Slackness] [Aix− bi]Tyi = 0, i ≤ m
Indeed,∑

i [Aix− bi]
Tyi︸ ︷︷ ︸

≥0

= [
∑

iA
T
i yi]x−

∑
i b
T
i yi = [c−RTz]Tx︸ ︷︷ ︸

=cTx−rTz

−
∑

i b
T
i yi = cTx− [

∑
i b
T
i yi + rTz]

= DualityGap(x, [{yi}, z])
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• Conic Duality, same as the LP one, is

• fully algorithmic: to write down the dual, given the primal, is a purely me-
chanical process
• fully symmetric: the dual problem “remembers” the primal one

• Cf. Lagrange Duality:

min
x
{f(x) : gi(x) ≤ 0, i = 1, ...,m} (P )

⇓
max
y≥0

L(y) (D)[
L(y) = min

x

{
f(x) +

∑
i
yigi(x)

}]

• Dual “exists in the nature”, but is given implicitly; its objective, typically, is
not available in a closed form
• Duality is asymmetric: given L(·), we, typically, cannot recover f and gi...
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Developing Tools, Optimization: Schur Complement Lemma

Lemma Symmetric block matrix
[
P ST

S R

]
with R � 0 is positive semidefinite

if and only if the matrix P − STR−1S is so.

Proof:
[
P ST

S R

]
� 0 iff

0 ≤ min
u,v

[uTPu+ 2uTSTv + vTRv]

= min
u

[
min
v

[uTPu+ 2uTSTv + vTRv]︸ ︷︷ ︸
achieved when v = −R−1Su

]
= min

u
uT
[
P − STR−1S

]
u. �
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Developing Tools, Statistics:
Bayesian Risk and Gauss-Markov Theorem

An alternative to the worst-case risk (the worst over the signals of interest,
performance of a statistical procedure) is average performance, with the aver-
age taken over some prior probability distribution on the signals.

In the problem of ‖ · ‖2-recovering Bx via noisy observation

ω = Ax+ σξ, ξ ∼ P

this alternative reads as follows:

(!) Given a probability distribution Π of signal x ∈ Rn, find an estimate
x̂(·) which minimizes

Risk2[x̂|Π] :=
∫

Π

{∫
Rm
‖Bx− x̂(Ax+ σξ)‖22P (dξ)

}
Π(dx)

– the average, over the distribution Π of signals x, of expected ‖ · ‖22
recovery error of Bx via observation Ax+ σξ.
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(!) Given a probability distribution Π of signal x ∈ Rn, find an estimate x̂(·) which minimizes

Risk2[x̂|Π] :=

∫
Π

{∫
Rm

‖Bx− x̂(Ax+ σξ)‖2
2P (dξ)

}
Π(dx)

– the average, over the distribution Π of signals x, of expected ‖ · ‖2
2 recovery error of Bx via

observation Ax+ σξ.

• Q: joint distribution of (x, ω = Ax + σξ) induced by distributions Π and P
of independent r.v.’s x, ξ

• Rω: conditional distribution of x, given ω of x,

•W : marginal distribution of ω.

We have

Risk2[x̂|Π] =
∫

Rnx×Rmω

‖Bx− x̂(ω)‖22Q(dx, dω)

=
∫
Rm

{∫
Rn
‖Bx− x̂(ω)‖22Rω(dx)

}
W (dω)
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Evident Fact: Assuming that a probability distribution S on Rn possesses
finite second moments, one has

min
c∈Rν

∫
Rn ‖Bx− c‖22S(dx) =

∫
Rn ‖Bx− c∗‖22S(dx),

c∗ =
∫
RnBxS(dx).

⇒ An optimal, in terms of Risk2[x̂|Π], estimate x̂(·) of Bx via ω = Ax + σξ

is

x̂∗(ω) =
∫
Rn
BxRω(dx)

Gauss-Markov Theorem [Normal Correlation Theorem] Let x ∈ Rn and ξ ∈
Rm be independent zero mean Gaussian random vectors. Assuming σ > 0

and the covariance matrix of ξ to be positive definite, an optimal solution x̂(·)
to the risk minimization problem

min
x̂(·)

Ex,ξ
{
‖Bx− x̂(Ax+ σξ)‖22

}
exists and can be selected as a linear function of ω = Ax+ σξ.
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Under the premise of Gauss-Markov Theorem, with x ∼ N (0, Q) and ξ ∼
N (0, Im), direct computation shows that

x̂∗(ω) =
[
[σ2Im +AQAT ]−1AQBT

]
ω

Risk2[x̂∗|N (0, Q)] = Tr(BQBT −BQAT [σ2Im +AQAT ]−1AQBT )
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Optimizing linear estimates

Situation: “In the nature” there exists a signal x known to belong to a given
convex compact set X ⊂ Rn. We observe corrupted by noise affine image of
the signal:

ω = Ax+ σξ ∈ Ω = Rm

where

• A is a given m× n sensing matrix
• ξ is a random noise

Goal: To recover the image Bx of x where

• B: given ν × n matrix.

Risk of a candidate estimate x̂(·) : Ω→ Rν is

Risk[x̂|X ] = sup
x∈X

√
Eξ

{
‖Bx− x̂(Ax+ σξ)‖22

}
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Assumption on noise: ξ is zero mean with unit covariance matrix.

⇒ The risk of a linear estimate x̂H(ω) = HTω is given by

Risk2[x̂H |X ] = max
x∈X

Eξ
{
‖[B −HTA]x− σHT ξ‖22

}
= max

x∈X

{
‖[B −HTA]x‖22 + σ2Eξ{Tr(HT ξξTH)}

}
= σ2Tr(HTH) + max

x∈X
xT [B −HTA]T [B −HTA]x︸ ︷︷ ︸

Ψ(H)

.

Note: Ψ is convex ⇒ building the minimum risk linear estimate reduces to
solving convex minimization problem

Opt = min
H

[
Ψ(H) + σ2Tr(HTH)

]
. (∗)

However: Convex function Ψ is given implicitly and can be difficult to compute,
making (∗) difficult as well.
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Opt = minH
[
σ2Tr(HTH) + Ψ(H)

]
Ψ(H) = max

x∈X
xT [B −HT ]T [B −HTA]x

(∗)

Fact: Basically, the only cases when (∗) is known to be easy are those when

• X is given as a convex hull of finite set of moderate cardinality
• X is an ellipsoid.

When X is a box, computing Ψ is NP-hard...

• When Ψ is difficult to compute, we can to replace Ψ in the design problem
(∗) with an efficiently computable convex upper bound Ψ+(H).

We are about to consider a family of sets X – ellitopes – for which reasonably
tight bounds Ψ+ of desired type are available.
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A basic ellitope is a set Y ⊂ RN given as

Y = {y ∈ RN : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

where

• Sk � 0 are positive semidefinite matrices with
∑
k Sk � 0

• T is a convex compact subset of K-dimensional nonnegative orthant RK+
such that
• T contains some positive vectors
• T is monotone: if 0 ≤ t′ ≤ t and t ∈ T , then t′ ∈ T as well.

An ellitope X is linear image of a basic ellitope:

X = {x ∈ Rn : ∃y ∈ RN , t ∈ T :x = Fy, yTSky ≤ tk, k ≤ K}

• F is a given n×N matrix,

Note: Every ellitope is a symmetric w.r.t. the origin convex compact set.
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Examples of basic ellitopes

A. Ellipsoid centered at the origin

(K = 1, T = [0; 1])

B. (Bounded) intersection of K ellipsoids/elliptic cylinders centered at the ori-
gin

(T = {t ∈ RK : 0 ≤ tk ≤ 1, k ≤ K})

C. Box {x ∈ Rn : −1 ≤ xi ≤ 1}

(T = {t ∈ Rn : 0 ≤ tk ≤ 1, k ≤ K = n}, xTSkx = x2
k)

C′. Dual ball of Vasershtein norm B∗ = {u ∈ Rn : |ui − uj| ≤ dij, i, j ≤ n}

B∗ =
{
u ∈ Rn : uTSiju ≤ 1,1 ≤ i ≤ j ≤ n

}
, Sij =

{
d−2
ij [ei − ej][ei − ej]T , i < j ≤ n,

4[maxij dij]−2eieTi , i = j ≤ n

where ei, ej are canonic orths of Rn.
D. `p-ball X = {x ∈ Rn : ‖x‖p ≤ 1} with p ≥ 2

(T = {t ∈ Rn+ : ‖t‖p/2 ≤ 1}, xTSkx = x2
k, k ≤ K = n)
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Ellitopes admit fully algorithmic calculus:
if Xi, 1 ≤ i ≤ I, are ellitopes, so are their

• intersection
⋂
iXi

• direct product X1 × ...×XI
• arithmetic sum X1 + ...+ XI
• linear images {Ax : x ∈ Xi}
• inverse linear images {y : Ay ∈ Xi} under linear embeddings A
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Observation: Let

X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk, k ≤ K} (∗)
be an ellitope. Given a quadratic form xTWx, W ∈ Sn, we have

max
x∈X

xTWx ≤ min
λ

φT (λ) : λ ≥ 0,
K∑
k=1

λkSk � FTWF


where

φT (λ) = max
t∈T

tTλ

is the support function of T .

Indeed, assume that λ ≥ 0 and F TWF �
∑

k λkSk. By definition of the ellitope, if x ∈ X ,

∃(t ∈ T , y) : yTSky ≤ tk ∀k ≤ K, x = Fy

We have xTWx = yTF TWFy, but

yTF TWFy ≤
∑
k

λky
TSky ≤

∑
k

λktk ≤ max
t∈T

tTλ = φT (λ),

and we conclude that
xTWx ≤ φT (λ).
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Where does it come from: Semidefinite Relaxation

Ψ = max
x∈X

xTWx, X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk, k ≤ K} (∗)

• Let us denote X = xxT , then (∗) can be rewritten equivalently:

max

{
Tr(WX) :

∃(t ∈ T , Q ∈ Sn) : X = FQFT , Tr(SkQ) ≤ tk, k ≤ K,
Q � 0, Rank(Q) = 1

}
Then Ψ ≤ Ψ where

Ψ = max
Q∈Q

Tr(FTWF︸ ︷︷ ︸
=:V

Q), Q = {Q � 0 : ∃t ∈ T : Tr(SkQ) ≤ tk, k ≤ K} (∗1)

Note that (∗1) is a convex program, it is instructive to write it as Conic Pro-
gramming.
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• Conic representation of constraint t ∈ T .

• Let

T + =
{

[t; 1] ∈ RK+1 : t ∈ T
}
, T = {λs ∈ RK+1, λ ≥ 0, s ∈ T +}.

sets T , T + and cone T

t-plane

• T is a regular cone (since T is a convex compact set with a nonempty
interior)
• T = {t : [t; 1] ∈ T}
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The dual cone to T = R+ × {[t; 1] : t ∈ T } is{
[y; s] ∈ Rk+1 : s ≥ φT (−g)

}

Indeed, if T∗ is the cone dual to T,

{[y; s] ∈ T∗} ⇔ {yT t+ sτ ≥ 0 ∀[t; τ ] ∈ T}
⇔ {yT t+ s ≥ 0 ∀t : [t; 1] ∈ T} ⇔ s ≥ −yT t ∀t ∈ T ⇔ s ≥ max

t∈T
[−y]T t

⇔ {s ≥ φT (−y)}

Bottom line: We have

Ψ = max
Q,t
{Tr(V Q) : [t; 1] ∈ T, Q � 0,Tr(SkQ) ≤ tk ∀k} (∗1)

Question: What is the conic dual to (∗1)?

- 4.39 -



• To pass from (∗1) to the dual problem we associate Lagrange multiplyers to
the constraints:

[t; 1] ∈ T︸ ︷︷ ︸
[g; s] ∈ T∗

, Q � 0︸ ︷︷ ︸
P � 0

, tk −Tr(QSk) ≥ 0︸ ︷︷ ︸
λk ≥ 0

∀k ≤ K

• Taking inner products of the constraints with Lagrange multipliers and sum-
ming up the results, we get the consequence of the constraints of (∗1):

gT t+ s · 1 + Tr(PQ) +
∑
k λk[tk −Tr(QSk)] ≥ 0

↓↑

Tr ([
∑
k λkSk − P ]Q)− [g + λ]T t ≤ s, [s ≥ φT (−g), P � 0, λ ≥ 0]
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• To get the dual problem, we impose on Lagrange multiplies the requirement
that the body of the aggregated constraint, as a function of Q, t, is identically
equal to the objective Tr(V Q) of (∗1):

Ψ = min
g,s,λ,P

{
s :

g + λ = 0,
∑
k λkSk − P = V

s ≥ φT (−g), P � 0, λ ≥ 0

}
m

Ψ = min
g,s,λ,P

{
s :

g = −λ,
∑
k λkSk−P = V

s ≥ φT (−g), P � 0, λ ≥ 0

}

= min
s,λ

{
s :

∑
k λkSk � V

s ≥ φT (λ), λ ≥ 0

}

= min
λ

{
φT (λ) :

∑
k

λkSk � V︸ ︷︷ ︸∑
k λkSk�FTWF

, λ ≥ 0
}
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X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk , k ≤ K} (∗)

Corollary Let X be the ellitope (∗). Then the function

Ψ(H) = max
x∈X

xT [(BT −ATH)(B −HTA)]x

can be upper-bounded: Ψ(H) ≤ Ψ(H) where

Ψ(H) := min
λ

{
φT (λ) : λ ≥ 0, FT [BT −ATH][B −HTA]F �

∑
k
λkSk

}
[Schur Complement Lemma]

= min
λ

{
φT (λ) : λ ≥ 0,

[ ∑
k λkSk FT [BT −ATH]

[B −HTA]F Iν

]
� 0

}

The function Ψ(H) is real-valued and convex, and is efficiently computable
whenever φT is so, that is, whenever T is computationally tractable.
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Bottom line: Given matrices A ∈ Rm×n, B ∈ Rν×n and an ellitope

X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk, k ≤ K} (∗)

contained in Rn, consider the convex optimization problem

Opt = min
H,λ

{
φT (λ) + σ2Tr(HTH) : λ ≥ 0,

[ ∑
k
λkSk F T [BT −ATH]

[B −HTA]F Iν

]
� 0

}
[
φT (λ) = maxt∈T t

Tλ : support function of T
]

Assuming the noise ξ in observation ω = Ax + σξ zero mean with unit co-
variance matrix, the risk of the linear estimate x̂H∗(·) induced by the optimal
solutionH∗ to the problem (this solution clearly exists provided σ > 0) satisfies
the risk bound

Risk[x̂H∗|X ] ≤
√

Opt.

What is ahead: We are about to prove that in the case of ξ ∼ N (0, Im),√
Opt is “nearly” the same as the ideal minimax risk

RiskOpt = inf
x̂(·)

Risk[x̂|X ],

where inf is taken w.r.t. all (not necessarily linear) estimates x̂(·).
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How it works: Inverse Heat Equation

Square plate is heated at time 0 and is rest to cool; the temperature at the
plate’s boundary is kept 0 all the time.
Given given noisy measurements, taken alongm points, of plate’s temperature
at time t1, we want to recover distribution of temperature at time a given time
t0, 0 < t0 < t1.
The model: The temperature field u(t; p, q) evolves according to Heat Equa-
tion

∂
∂tu(t; p, q) =

[
∂2

∂p2 + ∂2

∂q2

]
u(t; p, q), t ≥ 0, (p, q) ∈ S

• t: time • S = {(p, q),−1 ≤ p, q ≤ 1}: the plate

with boundary conditions u(t; p, q)
∣∣∣
(p,q)∈∂S

≡ 0.

• It is convenient to represent u(t; p, q) by its expansion

u(t; p, q) =
∑
k,` xk`(t)φk(p)φ`(q), (∗)

φk(s) =

{
cos(ω2i−1s), ω2i−1 = (i− 1/2)π, k = 2i− 1
sin(ω2is), ω2i = iπ, k = 2i

Note: φk(s) are harmonic oscillations vanishing at s = ±1.
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u(t; p, q) =
∑

k,` xk`(t)φk(p)φ`(q), (∗)

φk(s) =

{
cos(ω2i−1s), ω2i−1 = (i− 1/2)π, k = 2i− 1
sin(ω2is), ω2i = iπ, k = 2i

• {φk`(p, q) = φk(p)φ`(q)}k,` form an orthonormal system in L2(S)

• φk`(·) meet the boundary conditions
φk`(p, q)

∣∣∣
(p,q)∈∂S

= 0

• in terms of the coefficients xk`(t), the Heat Equation becomes

d
dtxk`(t) = −[ω2

k + ω2
` ]xk`(t)⇒ xk`(t) = e−[ω2

k+ω2
` ]txk`(0).

We select integer discretization parameter N and
• restrict (∗) to terms with 1 ≤ k, ` ≤ 2N − 1

• discretize the spatial variable (p, q) to reside in the grid

GN =
{
Pij = (pi, pj) =

(
i

N
− 1,

j

N
− 1

)
, 1 ≤ i, j ≤ 2N − 1

}
Note: Restricting functions φk`(·, ·), 1 ≤ k, ` ≤ 2N − 1 on grid GN , we get
orthogonal basis in R(2N−1)×(2N−1).
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We arrive at the model as follows:
• The signal x underlying observation is

x = {xk` := xk`(t0), 1 ≤ k, ` ≤ 2N − 1} ∈ R(2N−1)×(2N−1)

• The observation is

ω = Ax+ σξ ∈ Rm, ξ ∼ N (0, Im)

[Ax]ν =
2N−1∑
k,`=1

xk`e
−[ω2

k+ω2
` ][t1−t0]φk(pi(ν))φ`(pj(ν))

• (pi(ν), pj(ν)) ∈ S, 1 ≤ ν ≤ m : measurement points

•We want to recover the restriction Bx of u(t0; p, q) to some grid, say, square grid

GK =

{(
ri =

i

K
− 1, rj =

j

K
− 1

)
, 1 ≤ i, j ≤ 2K − 1

}
⊂ S,

resulting in

[Bx]ij =
∑2N−1

k,`=1
φk(ri)φ`(rj)xk`

•We assume that the initial distribution of temperatures [u(0; pi, pj)]2N−1
i,j=1 satisfies ‖u‖2 ≤ R,

for some given R, implying that x resides in the ellitope, namely, the ellipsoid

X =

{xk`} ∈ R(2N−1)×(2N−1) :
∑
k,`

[
e[ω2

k+ω2
` ]t0xk`

]2
≤ R2


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u(t; pi, pj) =
∑

k,` e−[ω2
k+ω2

` ][t−t0]φk(pi)φ`(pj)xk`
[A(x)]ν =

∑2N−1
k,`=1 xk`e

−[ω2
k+ω2

` ][t1−t0]φk(pi(ν))φ`(pj(ν))xk`

0 500 1000 1500 2000 2500 3000 3500 4000
10-200

10-150

10-100

10-50

100

Plots of e−(ω2
k+ω2

` )t for t = 0.02 (red) and t = 0.01 (blue)
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Bad news: contributions of high frequency (with large ω2
k + ω2

` ) components
xk`(0) to A(x) decrease exponentially fast with high decay rate as t! grows
⇒ High frequency components xk`(0) are impossible to recover from obser-
vations at time t1, unless t1 is very small (red curve, t = 0.02)

Good news: Contributions of high frequency components xk`(0) to B(x) are
very small, provided t0 is not too small
⇒ There is no need to recover well high frequency components, provided they
are not huge (blue curve, t = 0.01)

Numerical results N = 32, m = 125, K = 6, t0 = 0.01, t1 = 0.02,
σ = 0.001,

X = {x ∈ R63×63 : ‖{u(0; pi, pj)}63
i,j=1‖2 ≤ 15}.

• Minimax risk of optimal linear estimate: 0.1707
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63× 63 grid G63 and m = 125 measurement points
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Near-optimality of linear estimates

X = {x ∈ Rn : ∃y ∈ RN , t ∈ T : x = Fy, yTSky ≤ tk ∀k ≤ K}

Simple observation: When recovering Bx, x ∈ X , from observation ω =

Ax+ σξ, we lose nothing when assuming that the signal is

y ∈ Y =
{
y : ∃t ∈ T : yTSky ≤ tk ∀k ≤ K

}
the observation is ω = [AF ]y + σξ, and the entity to be recovered is [BF ]y.

With this transformation, families of all estimates, all linear estimates and their
risks remain intact

⇒We lose nothing when assuming that F is the identity, and

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ∀k ≤ K}
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ∀k ≤ K} ⇒We can build linear estimate satisfying

Risk2[x̂|X ] ≤ Opt = min
H,λ

{
φT (λ) + σ2Tr(HTH) : λ ≥ 0,

[ ∑
k
λkSk BT −ATH

B −HTA Iν

]
� 0
}

Our course of actions is as follows.
A. Suppose that we can specify Gaussian prior N (0, Q) for the signal x to be
supported on X . Then by Gauss-Markov Theorem the quantity

ψ(Q) = Tr(BQBT −BQAT [σ2Im +AQAT ]−1AQBT )

would be a lower bound on RiskOpt2.

B. While N (0, Q) cannot be supported on the bounded set X for a nonzero
Q, we can select Q to enforce η ∼ N (0, Q) to “sit in X with overwhelming
probability,” so that a “slightly reduced” ψ(Q) will become a lower bound on
RiskOpt2.
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C. We have Eη∼N (0,Q){ηTSη} = Tr(SQ)

⇒ Selecting Q � 0 according to

∃t ∈ T : Tr(QSk) ≤ tk, k ≤ K

we ensure that η ∼ N (0, Q) “sits in X on average”

⇒We may expect that imposing on Q � 0 the restriction

∃t ∈ T : Tr(QSk) ≤ ρtk, k ≤ K, [ρ > 0]

we enforce η ∼ N (0, Q) to take values in X with probability controlled by ρ
and approaching 1 as ρ→ +0.
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ∀k ≤ K} ⇒We can build linear estimate satisfying

Risk2[x̂|X ] ≤ Opt = min
H,λ

{
φT (λ) + σ2Tr(HTH) : λ ≥ 0,

[ ∑
k
λkSk BT −ATH

B −HTA Iν

]
� 0
}

D. The above considerations give rise to parametric optimization problem

Opt∗(ρ) = max
Q�0

{ψ(Q) : ∃t ∈ T : Tr(QSk) ≤ ρtk ∀k ≤ K} (∗ρ)

We can expect that for small ρ “slightly corrected” Opt∗(ρ) is a lower bound
on RiskOpt2.

Fact: By Conic Duality , Opt∗(ρ) ≥ ρOpt

⇒ Lower bounds on RiskOpt2 can be expressed via Opt, resulting in
√

Opt ≤ O
(√

ln(1/RiskOpt) RiskOpt
)

provided RiskOpt is small.
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From (∗1) to its dual

Opt∗(1) = max
Q,t

{
Tr(BQBT −BQAT [σ2Im +AQAT ]−1AQBT) :

t ∈ T , Q � 0,Tr(QSk) ≤ tk ∀k
}

Step 1: Passing to linear objective

Opt∗(1)︷ ︸︸ ︷
max
Q,t

{
Tr(BQBT −BQAT [σ2Im +AQAT ]−1AQBT) :

t ∈ T , Q � 0,
Tr(QSk) ≤ tk ∀k

}

= max
Q,t,G

{
Tr(BQBT)−Tr(G) :

G−BQAT [σ2Im +AQAT ]−1AQBT � 0
t ∈ T , Q � 0,Tr(QSk) ≤ tk ∀k

}
[Schur Complement Lemma]

= max
Q,t,G

{
Tr(BQBT)−Tr(G) :

[
G BQAT

AQBT σ2Im +AQAT

]
� 0

t ∈ T , Q � 0,Tr(QSk) ≤ tk ∀k

}

Step 2: Using the conic representation of T we get

Opt∗(1) = max
Q,t,G

Tr(BQBT)−Tr(G) :

[
G BQAT

AQBT σ2Im +AQAT

]
� 0

[t; 1] ∈ T, Q � 0, Tr(QSk) ≤ tk ∀k

 (∗)

Note: (∗) is clearly strictly feasible and solvable.
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Opt∗(1) = max
Q,t,G

{
Tr(BQBT)−Tr(G) :

[
G BQAT

AQBT σ2Im +AQAT

]
� 0

Q � 0, [t; 1] ∈ T, tk −Tr(QSk) ≥ 0 ∀k ≤ K

}
(∗)

Step 3: passing from (∗) to the dual problem. We start with associating Lagrange multiplyers
to the constraints (recall what T∗ is):[

G BQAT

AQBT σ2Im +AQAT

]
︸ ︷︷ ︸[

U V T

V W

]
� 0

� 0, [t; 1] ∈ T︸ ︷︷ ︸
[g; s] ∈ T∗

, Q � 0︸ ︷︷ ︸
P � 0

, tk −Tr(QSk) ≥ 0︸ ︷︷ ︸
λk ≥ 0

∀k ≤ K

• Taking inner products of the constraints of (∗) with Lagrange multipliers and summing up
the results, we get the consequence of the constraints of (∗):

Tr(UG) + 2Tr(V TAQBT) + Tr(W [σ2I +AQAT ])

+gT t+ s+ Tr(PQ) +
∑

k λk[tk −Tr(QSk)] ≥ 0

m

−Tr(UG) + Tr
([∑

k λkSk − P −ATWA−BTV TA−ATV B
]
Q
)
−[g + λ]T t ≤ s+ σ2Tr(W )[[

U V T

V W

]
� 0, s ≥ φT (−g), P � 0, λ ≥ 0

]
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−Tr(UG) + Tr
([∑

k λkSk − P −ATWA−BTV TA−ATV B
]
Q
)
−[g + λ]T t≤ s+ σ2Tr(W )[[

U V T

V W

]
� 0, s ≥ φT (−g), P � 0, λ ≥ 0

]
• To get the dual problem, we impose on Lagrange multiplies the requirement that the body
of the aggregated – the red – constraint, as a function of G,Q, t, is identically equal to the
objective

Tr(BQBT)−Tr(G)

of (∗), and minimize under this restriction (and the red constraints on the multipliers) the right
hand side of the aggregated constraint.

By Conic Duality Theorem, we get

Opt∗(1) = min
U,V,W,g,s,λ,P

s+ σ2Tr(W ) :

U = Iν, g = −λ∑
k λkSk − P −ATWA−BTV TA−ATV B = BTB[
U V T

V W

]
� 0, s ≥ φT (−g), P � 0, λ ≥ 0


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Opt∗(1) = min
U,V,W,g,s,λ,P

s+ σ2Tr(W ) :

U = Iν, g = −λ∑
k λkSk−P −ATWA−BTV TA−ATV B = BTB[
U V T

V W

]
� 0, s ≥ φT (−g), P � 0,λ ≥ 0



= min
V,W,λ

φT (λ) + σ2Tr(W ) :

BTB +ATWA+BTV TA+ATV B �
∑

k λkSk[
Iν V T

V W

]
� 0︸ ︷︷ ︸

⇔W�V V T

, λ ≥ 0


= min

V,λ

φT (λ) + σ2Tr(V V T) :
BTB +ATV V TA+BTV TA+ATV B︸ ︷︷ ︸

=(BT+ATV )(B+V TA)

�
∑

k λkSk

λ ≥ 0


by Schur complement lemma

= min
V,λ

{
φT (λ) + σ2Tr(V V T) :

[ ∑
k λkSk BT +ATV

B + V TA Iν

]
� 0, λ ≥ 0

}

= min
H[:=−V ],λ

{
φT (λ) + σ2Tr(HTH) :

[ ∑
k λkSk BT −ATH

B −HTA Iν

]
� 0, λ ≥ 0

}
=: Opt
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ∀k ≤ K}⇒We can build linear estimate satisfying

Risk2[x̂|X ] ≤ Opt = min
H,λ

{
φT (λ) + σ2Tr(HTH) : λ ≥ 0,

[ ∑
k
λkSk BT −ATH

B −HTA Iν

]
� 0
}

= Opt∗(1)

Opt∗(ρ) = max
Q,t
{ψ(Q) : Q � 0, t ∈ T ,Tr(QSk) ≤ ρtk ∀k} (∗ρ)[√

ψ(Q) : optimal Bayesian risk of recovering Bx when x ∼ N (0, Q)

]
Easy fact: When 0 < ρ ≤ 1, one has

Opt∗(ρ) ≥ ρOpt∗(1) = ρOpt.

Indeed, recall that

ψ(Q) = Tr(BQBT −BQAT [σ2Im +AQAT ]−1AQBT).

It follows immediately that ψ(ρQ) ≥ ρψ(Q), 0 ≤ ρ ≤ 1.
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Fact: If Qρ stems from optimal solution to (∗ρ), then the probability for
ξ ∼ N (0, Qρ) to be outside of X approaches zero fast as ρ decreases:

π(ρ) := Probξ∼N (0,Qρ)

{
ξ 6∈ X

}
≤ K exp

{
−

1− ρ+ ρ ln(ρ)

2ρ

}

ρ 0.10 0.05 0.04 0.03 0.02 0.01
π(ρ) ≤ 1.0e0 3.4e−2 3.1e−3 5.5e−5 1.6e−8 3.2e−18

K = 100

⇒ For reasonably small ρ, everything is as if N (0, Qρ) were supported on X ,
so that, say, 0.99Opt∗(ρ) ≥ 0.99ρOpt is a lower bound on RiskOpt2.
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Theorem Let us associate with ellitope

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ∀k ≤ K}
the convex compact set

Q = {Q ∈ Sn : Q � 0, ∃t ∈ T : Tr(QSk) ≤ tk, k ≤ K},
and the quantity

M∗ = max
Q∈Q

√
Tr(BQBT).

Then the linear estimate x̂H∗(ω) = HT
∗ ω of Bx, x ∈ X , via observation ω = Ax + σξ,

ξ ∼ N (0, Im), given by the optimal solution to the convex optimization problem

Opt = min
H,λ

{
φT (λ) + σ2Tr(HTH) :

[ ∑
k λkSk BT −ATH

B −HTA Iν

]
� 0, λ ≥ 0

}
satisfies the risk bound

Risk[x̂H∗|X ] ≤
√

Opt ≤ 4

√√√√ln

(
6M2

∗
√
K

Risk2
Opt[X ]

)
RiskOpt[X ],

where

RiskOpt[X ] = inf
x̂(·)

sup
x∈X

√
Eξ∼N (0,Im)

{
‖Bx− x̂(Ax+ σξ)‖2

2

}
inf being taken with respect to all, linear and nonlinear alike, estimates x̂(·), is the optimal

minimax risk.
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How it works: numerical illustration

In these experiments

• B is n× n identity matrix,
• n×n sensing matrixA is a randomly rotated matrix with singular values λj,

1 ≤ j ≤ n, forming a geometric progression, with λ1 = 1 and λn = 0.01.

• In the first experiment the signal set X1 is an ellipsoid:

X1 = {x ∈ Rn :
n∑

j=1

j2x2
j ≤ 1},

that is, K = 1, S1 =
∑n
j=1 j

2eje
T
j (ej are basic orths), and T = [0,1].

Theoretical “suboptimality factor” in the interval [31.6, 73.7] in this experi-
ment.

• In the second experiment, the signal set X is the box:

X = {x ∈ Rn : j|xj| ≤ 1, 1 ≤ j ≤ n}
[K = n, Sk = k2eke

T
k , k = 1, ...,K, T = [0,1]K].

Theoretical “suboptimality factor” in the interval [73.2, 115.4].
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Extension: Relative Risks

When “very large” signals are allowed, it might make sense to switch from the
usual risk to its relative version – “S-risk” defined as follows:

RiskS[x̂|X ] = min

{
√
τ : Eξ

{
‖Bx− x̂(Ax+ σξ)‖22

}
≤ τ [1 + xTSx]∀x ∈ X

}
S : fixed positive semidefinite “risk calibrating” matrix

Note: Setting S = 0 recovers the usual “plain” risk.

Results on design of near-optimal, in terms of plain risk, linear estimates ex-
tend to the case of S-risk.
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Design of near optimal linear estimate x̂H∗(ω) = HT
∗ ω is given by an optimal

solution (H∗, τ∗, λ∗) to the convex optimization problem

Opt = min
H,τ,λ

τ :

[ ∑
k λkSk + τS BT −ATH
B −HTA Iν

]
� 0,

σ2Tr(HTH) + φT (λ) ≤ τ, λ ≥ 0


For the resulting estimate, it holds RiskS[x̂H∗|X ] ≤

√
Opt.

Near-optimality properties of the estimate x̂H∗ remain the same as in the
case of plain risk:
When ξ ∼ N (0, Im), one has

RiskS[x̂H∗|X ] ≤ 4

√√√√ln

(
6M2
∗
√
K

RiskS2
Opt[X ]

)
RiskSOpt[X ],

where

M∗ = max
Q

{√
Tr(BQBT ) : Q � 0, ∃t ∈ T : Tr(QSk) ≤ tk ∀k ≤ K

}
and

RiskSOpt[X ] = inf
x̂(·)

RiskS[x̂|X ].
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In the special case X = Rn, the best linear estimate is yielded by optimal
solution to the convex problem

Opt = min
H,τ

{
τ :

[
τS BT −ATH

B −HTA Iν

]
� 0, σ2Tr(HTH) ≤ τ

}
(∗)

A feasible solution τ,H to (∗) gives rise to linear estimate x̂H(ω) = HTω

such that

RiskS[x̂H |Rn] ≤
√
τ ,

provided ξ is zero mean and with unit covariance matrix.

Proposition Assume that B 6= 0 and (∗) is feasible. Then the problem
is solvable, and its optimal solution Opt, H∗ gives rise to linear estimate
x̂H∗(ω) = HT

∗ ω with S-risk
√

Opt. When ξ ∼ N (0, Im), this estimate is
minimax optimal:

RiskS[x̂H∗|R
n] =

√
Opt = RiskSOpt[Rn].
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A Byproduct: accuracy of Semidefinite Relaxation

Theorem Let C be a symmetric n× n matrix and X be an ellitope:

X = {x ∈ Rn : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk ∀k ≤ K}.

Then the efficiently computable quantity

Opt = minλ
{
φT (λ) : λ ≥ 0, FTCF �

∑
k λkSk

}[
φT (λ) = maxt∈T λ

T t
]

is an upper bound on

Opt∗ = max
x∈X

xTCx.

The above bound is tight, namely,

Opt∗ ≤ Opt ≤ 4 ln(5K)Opt∗.

Note: Opt∗ is difficult to compute within 4% accuracy when X is as simple as
the unit box in Rn.
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Let X be given by quadratic inequalities:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K} 6= ∅
[T : nonempty convex compact set]

We have

Opt∗ := max
x∈X

xTCx≤min
λ

φT (λ) : λ ≥ 0, C �
∑
k

λkSk

︸ ︷︷ ︸
=:Opt

≤Θ Opt∗

Question: What can be said about the tightness factor Θ ?

A. When K = 1, assuming Slater condition: x̄TS1x̄ < t for some x̄ and some
t ∈ T , one can set Θ = 1. [the celebrated S-Lemma]

B. Assuming that xTSkx = x2
k , k ≤ K = dimx, T = [0; 1]K , and C is

Laplacian of a graph (i.e., off-diagonal entries in C are nonpositive and all row
sums are zero), one can set Θ = 1.1382... [MAXCUT Theorem of Goemans
and Williamson, 1995]
Note: Laplacian of a graph always is � 0
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C. When C � 0 and all matrices Sk are diagonal, one can set

Θ =
π

2
= 1.5708...

[π2 Theorem, Nesterov, 1998]

D. Assuming X is an ellitope (i.e., Sk � 0,
∑
k Sk � 0 and T contains a posi-

tive vector), one can set Θ = 4 ln(5K)

Note: In the case of D, Θ indeed can be as large as O(ln(K))
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A byproduct of the theorem is the following useful fact:
Theorem [upper-bounding of operator norms] Let ‖·‖x be a norm on RN such
that the unit ball X of the norm is an ellitope:

X := {x : ‖x‖x ≤ 1} = {x : ∃(t ∈ T , y) : x = Py, yTSky ≤ tk, k ≤ K}
Let, further, ‖ · ‖ be a norm on RM such that the unit ball B∗ of the norm ‖ · ‖∗
conjugate to ‖ · ‖ is an ellitope:

B∗ := {u ∈ Rm : uTv ≤ 1∀(v, ‖v‖ ≤ 1)}
= {u : ∃(r ∈ R, z) : u = Qz, zTR`z ≤ r`, ` ≤ L}

Then the efficiently computable quantity

Opt(C) = minλ,µ

{
φT (λ) + φR(µ) : λ ≥ 0, µ ≥ 0,

[ ∑
`
µ`R`

1
2
QTCP

1
2
P TCTQ

∑
k
λkSk

]
� 0

}
[
C ∈ RM×N

]
is a convex in C upper bound on the operator norm

‖C‖‖·‖x→‖·‖ = max
x
{‖Cx‖ : ‖x‖x ≤ 1}

of the mapping x 7→ Cx, and this bound is reasonably tight:

‖C‖‖·‖x→‖·‖ ≤ Opt(C) ≤ 4 ln(5(K + L))‖C‖‖·‖x→‖·‖.
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Indeed, the operator norm in question is the maximum of a quadratic form over
an ellitope:

‖C‖‖·‖x→‖·‖ = max
x∈X ,u∈B∗

[x;u]T
[

1
2
C

1
2
CT

]
[x;u]

= max
[y;z]∈W

[y; z]T
[

1
2
QTCP

1
2
P TCTQ

]
[y; z]

whereW is the basic ellitope given by

W =
{

[y; z] : ∃[t; r] ∈ T ×R : yTSky ≤ tk, k ≤ K, zTR`z ≤ r`, ` ≤ L
}
.
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Inside Semidefinite Relaxation

Opt∗ = max
x,t

{
xTCx : xTSkx ≤ tk, k ≤ K, t ∈ T

}
(∗)

Fact: Semidefinite relaxation admits an alternative description as follows:

Let us associate with (∗) another optimization problem where instead
of deterministic candidate solutions (x, t) we are looking for random
solutions (ξ, τ) satisfying the constraints on average:

Opt+ = max
ξ,τ

{
E{ξTCξ} :

E{ξTSkξ} ≤ E{τk}
E{τ} ∈ T

}
(!)

Immediate observation: Property of a random solution (ξ, τ) to be feasible
for (!) depends solely on the matrix Q = E{ξξT} and the vector t = E{τ},
so that

Opt+ = max
Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q � 0, t ∈ T

}
= max

Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q � 0, [t; 1] ∈ T

}
(#)
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Opt∗ = max
x,t

{
xTCx : ∃(t ∈ T ) : xTSkx ≤ tk

}
(∗)

Opt+ = max
Q,t
{Tr(CQ) : Tr(SkQ) ≤ tk, Q � 0, [t; 1] ∈ T} (#)

Note: (#) is strictly feasible and bounded, and the problem

Opt = min
λ

φT (λ) : λ ≥ 0, C �
∑
k

λkSk


specifying Semidefinite Relaxation upper bound on Opt is nothing but the
conic dual to (#)

⇒ Opt+ = Opt.
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(#) suggests the following recipe for quantifying the conservatism of the up-
per bound Opt on Opt∗:

• Find an optimal solution Q∗, t∗ to (#) and treat Q∗ � 0 as the matrix of
second moments of random vector ξ (many options!)
• Random solutions (ξ, t∗) satisfy (∗) “at average.” Try to “correct” them

to get feasible solutions to (∗) and look how “costly” this correction is in
terms of the objective.

For example, in Goemans-Williamson MAXCUT and in Nesterov’s π/2 theo-
rems, where xTCx is maximized over the unit box {‖x‖∞ ≤ 1}, one selects
ξ ∼ N (0, Q∗) and “corrects” ξ according to ξ 7→ sign[ξ].



Opt∗ = max
x,t

{
xTCx : ∃(t ∈ T ) : xTSkx ≤ tk

}
(∗)

Opt+ = max
Q,t
{Tr(CQ) : Tr(SkQ) ≤ tk, Q � 0, [t; 1] ∈ T} (#)

This is how the above recipe works in the general ellitopic case:
A. Let (Q∗, t∗) be an optimal solution to (#). Set

C̄ := Q
1/2
∗ CQ

1/2
∗ = UDUT

(U is orthogonal, D is diagonal).
B. Let ξ = Q

1/2
∗ Uζ with Rademacher r.v. ζ (ζi take values ±1 with probability

1/2 and are independent across i), so that E{ξξT} = Q∗. Note that

ξTCξ = ζTUT [Q
1/2
∗ CQ

1/2
∗ ]Uζ = ζTDζ ≡ Tr(D)

= Tr(Q
1/2
∗ CQ

1/2
∗ ) ≡ Tr(CQ∗)= Opt,

E{ξTSkξ} = E{ζTUTQ1/2
∗ SkQ

1/2
∗ Uζ} = Tr(UTQ

1/2
∗ SkQ

1/2
∗ U)

= Tr(Q
1/2
∗ SkQ

1/2
∗ ) = Tr(SkQ∗) ≤ t∗k, k ≤ K
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ξTCξ ≡ Opt (a) E{ξTSkξ} ≤ t∗k, k ≤ K (b)

C. Since Sk � 0 and ξ is “light-tail” (it comes from Rademacher random vec-
tor), simple bounds on probabilities of large deviations combine with (b) to
imply that

∀(γ ≥ 0, k ≤ K) : Prob{ξ : ξTSkξ > γt∗k} ≤ O(1) exp{−O(1)γ}

⇒ with γ∗ = O(1) ln(K + 1), there exists a realization ξ̂ of ξ such that

ξ̂TSkξ̂ ≤ γ∗t∗k, k ≤ K

⇒
(
ξ∗ = ξ̂√

γ∗
, t∗

)
is feasible for

Opt∗ = max
x,t

{
xTCx : ∃(t ∈ T ) : xTSkx ≤ tk

}
(∗)

⇒Opt∗ ≥ γ−1
∗ ξ̂TCξ̂ = γ−1

∗ Opt (look at (a)!)
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A simple bounds on deviation probabilities stems from the following

Mini-Lemma Let P be positive semidefinite N ×N matrix with trace ≤ 1 and
ζ be N -dimensional Rademacher random vector. Then

E
{

exp
{
ζTPζ/3

}}
≤
√

3 ⇒ Prob{ζTPζ > γ}≤
√

3e−γ/3

Mini-Lemma⇒ bounds: We have
ξTSkξ = ζT UTQ

1/2
∗ SkQ

1/2
∗ U︸ ︷︷ ︸

=:t∗kPk

ζ

with Tr(Pk) = Tr(Q
1/2
∗ SkQ

1/2
∗ )/t∗k = Tr(SkQ∗)/t

∗
k≤ 1

⇒ [Mini-Lemma] Prob{ζTPkζ > 3ρ} ≤
√

3e−ρ

⇒ Prob{ξTSkξ > γt∗k} = Prob{ζTPkζ > γ}≤
√

3e−γ/3.
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Proof of the lemma: Let P =
∑

i σifif
T
i be the eigenvalue decomposition of P , so that

fTi fi = 1, σi ≥ 0, and
∑

i σi ≤ 1. The function

F (σ1, ..., σN) = E
{
e

1

3

∑
i
σiζTfif Ti ζ

}
is convex on the simplex {σ ≥ 0,

∑
i σi ≤ 1} and thus attains it maximum over the simplex at

a vertex, implying that for some h = fi, hTh = 1, it holds

E
{
e

1

3
ζTPζ

}
≤ E

{
e

1

3
(hTζ)2

}
.

Let ξ ∼ N (0,1) be independent of ζ. We have

Eζ

{
e

1

3
(hTζ)2

}
= Eζ

{
Eξ

{
exp{[

√
2/3hTζ]ξ}

}}
= Eξ

{
Eζ

{
exp{[

√
2/3hTζ]ξ}

}}
= Eξ

{
N∏
s=1

Eζ

{
exp{

√
2/3ξhsζs}

}}

= Eξ

{
N∏
s=1

cosh(
√

2/3ξhs)

}
≤ Eξ

{
N∏
s=1

exp{ξ2h2
s/3}

}
= Eξ

{
exp{ξ2/3}

}
=
√

3 �
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Extensions

So far, we have considered a problem of recovering Bx from observation

ω = Ax+ η

where

• x is unknown signal known to belong to a given basic ellitope

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}

• A ∈ Rm×n and B ∈ Rν×n are given matrices
• η ∼ N (0, σ2Im) is observation noise

item (squared) risk of a candidate estimate is the worst-case, over x ∈ X ,
expected squared ‖ · ‖2-norm of recovery error:

Risk2[x̂|X ] = sup
x∈X

E
{
‖Bx− x̂(Ax+ η)‖22

}
.
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We are about to extend our results to the situation where

• Noise η not necessary is zero mean Gaussian; we allow the distribution P
of noise to be unknown in advance and to depend on signal x.
Assumption: The matrix of second moments of P admits a known upper
bound:

V[P ] := Eη∼P{ηηT} � Q

for a given Q � 0

• We measure recovering error in a given norm ‖ · ‖, not necessarily the
Euclidean one, and define risk of a candidate estimate x̂(·) as

RiskQ,‖·‖[x̂|X ] = sup
x∈X

sup
P :Var[P ]�Q

Eη∼P {‖Bx− x̂(Ax+ η)‖}

Assumption: The unit ball B∗ of the norm conjugate to ‖ · ‖ is an ellitope:

‖u‖ = max
h∈B∗

hTu,

B∗ = {h : ∃(y ∈ RM , r ∈ R) : h = Fy, yTR`y � r` ∀` ≤ L}
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Building linear estimate

We have

RiskQ,‖·‖[x̂H |X ] = sup
x∈X

sup
P :Var[P ]�Q

Eη∼Q
{
‖Bx−HT [Ax+ η]‖

}
≤ sup

x∈X
sup

P :Var[P ]�Q
Eη∼Q

{
‖[B −HTAx]‖+ ‖HTη]‖

}
≤ Φ(H) + ΨQ[H],Φ(H) = max

x∈X
‖[B −HTA]x‖, ΨQ(H) = sup

P :Var[P ]�Q
Eη∼P

{
‖HTη‖

}
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Next,

B∗ = {u = My : y ∈ Y}, Y = {y : ∃r ∈ R : yTR`y ≤ r` ∀` ≤ L}

whence

Φ(H) := max
x∈X

‖[B −HTA]x‖

= max
[u;x]∈B∗×X

[u;x]T
[

1
2
[B −HTA]

1
2
[BT −ATH]

]
[u;x]

= max
[y;x]∈Y×X

[y;x]T
[

1
2
F T [B −HTA]

1
2
[BT −ATH]Fy

]
[y;x]

[semidefinite relaxation; note that Y × X is an ellitope]

Thus,

Φ(H) ≤ Φ(H) := min
λ,µ

φT (λ) + φR(µ) :

[ ∑
`
µ`R`

1
2
F T [HTA−B]

1
2
[ATH −BT ]F

∑
k
λkSk

]
� 0

λ ≥ 0, µ ≥ 0

[
φT (λ) = max

t∈T
λT t, φR(µ) = max

r∈R
µT r

]
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Lemma One has

ΨQ(H)≤ ΨQ(H) := min
Θ,κ

{
Tr(QΘ) + φR(κ) : κ ≥ 0,

[ ∑
`
κ`R` 1

2
F THT

1
2
HF Θ

]
� 0︸ ︷︷ ︸

(∗)

}

Indeed, let (κ,Θ) be feasible for the right hand side problem, and let V[P ] � Q

‖HTξ‖ = max
u∈B∗

[−uTHTξ] = max
y∈Y

[−yTF THTξ]

≤ max
y∈Y

[
yT [
∑

` κ`R`]y + ξTΘξ
]

[by (∗)]

= max
r∈R,y

{
yT [
∑

` κ`R`]y + ξTΘξ : yTR`y ≤ r`, ` ≤ L
}

≤ max
r∈R

{∑
` κ`r` + ξTΘξ

}
≤ φR(κ) + ξTΘξ = φR(κ) + Tr(Θ[ξξT ]).

Taking expectation in ξ, the conclusion of Lemma follows. �

Illustration: When ‖ · ‖ = ‖ · ‖p, p ∈ [1,2], Lemma states that whenever

V[P ] � Q, one has

Eη∼P
{
‖HTη‖p

}
≤
∥∥∥[‖Col1[Q1/2H]‖2; ...; ‖Colν[Q1/2H]‖2

]∥∥∥
p
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Summary: Consider convex optimization problem

Opt = min
H,λ,µ,κ,Θ


φT (λ) + φR(µ) + φR(κ) + Tr(QΘ) :

[ ∑
`
µ`R`

1
2
F T [HTA−B]

1
2
[ATH −BT ]F

∑
k
λkSk

]
� 0[ ∑

`
κ`R` 1

2
F THT

1
2
HF Θ

]
� 0

λ ≥ 0, µ ≥ 0,κ ≥ 0


The problem is solvable, and theH-componentH∗ of its optimal solution yields
linear estimate

x̂H∗(ω) = HT
∗ ω

such that

RiskQ,‖·‖[x̂H∗|X ] ≤ Opt.

In the case of zero mean Gaussian observation noise, the estimate x̂H∗ is
near-optimal.
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Theorem We have

RiskQ,‖·‖[x̂H∗|X ] ≤ Opt ≤ C

√√√√√ln(2L) ln

 2M2
∗K

RiskOpt2
Q,‖·‖

RiskOptQ,‖·‖.

Here
• C is a positive absolute constant,

• RiskOptQ,‖·‖ = inf
x̂(·)

[
sup
x∈X

Eη∼N (0,Q){‖Bx− x̂(Ax+ η)‖}
]
,

the infimum being taken over all estimates, is the minimax optimal ‖ · ‖-risk
corresponding to N (0, Q) observation noise,

• K, L are the “sizes” of ellitopes X and B∗ := FY:

X = {x : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}, Y = {y : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L},

•M2
∗ = max

W

{
Eη∼N (0,In)‖BW1/2η‖2 : W ∈ Q

}
, where

Q := {W : W � 0, ∃t ∈ T : Tr(SkW ) ≤ tk, k ≤ K}
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A key fact underlying near-optimality is important by its own right:

Proposition When the unit ball B∗ of the norm ‖ · ‖∗ conjugate to ‖ · ‖ is an
ellitope:

B∗ = {u : ∃r ∈ R, y : u = Fy, yTR`y ≤ r`, ` ≤ L}

and η ∼ N (0, Q), the upper bound

Eη{‖HTη‖} ≤ ΨQ(H) := min
Θ,κ

Tr(QΘ) + φR(κ) :

[ ∑
`
κ`R` 1

2
F THT

1
2
HF Θ

]
� 0

κ ≥ 0


is tight:

Eη{‖HTη‖} ≤ ΨQ(H) ≤ O(1)
√

ln(2L)Eη{‖HTη‖}.
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Variation: Recovery of partially random signals

So far, we have considered the problem of recovering the image Bx of un-
known deterministic signal x known to belong to a given signal set X from
noisy observations

ω = Ax+ ξ

of linear image of the signal.

In some applications, it makes sense to consider similar problem when the
signal has a random component.

- 4.84 -



Example: Kalman Filter. Consider linear dynamical system

y0 = ζ0
yt+1 = Ptyt + ut + ζt,
ωt = Ctyt + ξt

, t = 1, ..., T

• yt ∈ Rn: states • ut: controls
• ωt ∈ Rm: observations • ζt: random “process noise”
• ξt: random observation noise • Pt, Ct: known matrices.

We want is to recover from observations ω1, ..., ωT linear image

z := R[y0; ...; yT+1]

of the state trajectory, e.g., yT (“filtering”) or yT+1 (“forecast”), etc

Note: In the classical Kalman Filter,

• ζ0, ..., ζT are independent of each other zero mean Gaussian
• ξ1, ..., ξT are independent of each other and of ζt’s zero mean Gaussian
• u1, ..., uT are deterministic and known (reduces to the case when ut ≡ 0)
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• When modeling the situation as an estimation problem, we can use state
equation to express the states yt as known linear functions of controls ut and
process noises ζt, thus arriving at the model

ω = A[u; ζ] + ξ, z = B[u; ζ]

[u = [u1; ...;uT ], ζ = [ζ0; ...; ζT ], ξ = [ξ1; ...; ξT ]]

• When quantifying the performance of a candidate estimate x̂(ω), one can
consider risk of the form

Risk[x̂] = sup
u

Eξ,ζ {‖B[u; ζ]− x̂(A[u; ζ] + ξ)‖} .
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Situation: We observe noisy linear image

ω = A[u; ζ] + ξ = Adu+Asζ + ξ

of “signal” x = [u; ζ] with deterministic component u and stochastic compo-
nent ζ. We assume that

• u is “uncertain-but-bounded” – is known to belong to a given set U
• ζ and ξ have partially known distributions.

Specifically, for given Qζ � 0, Qξ � 0 it holds

V[ξ] = E{ξξT} � Qξ, V[ζ] = E{ζζT} � Qζ

Given matrix B = [Bd, Bs] and a norm ‖ ·‖ on the image space of B, we want
to recover B[u; ζ] = Bdu + Bsζ, quantifying the recovery error in ‖ · ‖. The
performance of a candidate estimate x̂(·) is quantified by

Risk[x̂] = sup
u∈U

sup
P∈P

E[ξ;ζ]∼P {‖B[u; ζ]− x̂(A[u; ζ] + ξ)‖}[
P : probability distributions such that E[ξ;ζ]∼P

{
ξξT
}
� Qξ, E[ξ;ζ]∼P

{
ζζT

}
� Qζ

]
Goal: Build “presumably good” linear estimate x̂H(ω) = HTω.
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Assumption: U is a basic ellitope, and the unit ball of the norm ‖ · ‖∗ dual to
‖ · ‖ is an ellitope:

U = {u : ∃t ∈ T : uTSku ≤ tk, k ≤ K}
{v : ‖v‖∗ ≤ 1} = {v : ∃r ∈ R, w : v = Mw,wTR`w ≤ r`, ` ≤ L}

• For a candidate linear estimate x̂H(ω) = HTω, u ∈ U , and a distribution P
of [ξ; ζ] satisfying the bounds on the matrices of second moments of ξ and ζ
we have

E[ξ,ζ]∼P
{
‖Bdu+Bsζ −HT [Adu+Asζ + ξ]‖

}
≤ ‖Bd −HTAd]u‖+ E[ξ;ζ]∼P

{
‖HT ξ‖

}
+ E[ξ;ζ]∼P

{
‖[Bs −HTAs]ζ‖

}
As we know,

u ∈ U ⇒‖[Bd −HTAd]u‖ ≤ min
λ≥0,ν≥0

{
φT (λ) + φR(ν) :

[ ∑
`
ν`R`

1
2
MT [Bd −HTATd ]

1
2
[BT

d −A
T
dH]

∑
k
λkSk

]
� 0

}
V[ξ] � Qξ ⇒Eξ

{
‖HTξ‖

}
≤ min

µ≥0,G

{
Tr(GQξ) + φR(µ) :

[
G 1

2
HM

1
2
MTHT

∑
`
µ`R`

]
� 0

}

V[ζ] � Qζ ⇒Eζ

{
‖[Bs −HTAs]ζ‖

}
≤ min

µ≥0,G


Tr(GQξ) + φR(µ) :[

G 1
2
[BT

s −ATsH]M
1
2
MT [Bs −HTAs]

∑
`
µ`R`

]
� 0


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Bottom line: In the situation, consider the convex optimization problem

Opt = min
H,λ,ν,

µ,µ′,G,G′

{
φT (λ) + φR(ν) + φR(µ) + φR(µ′) + Tr(QξG) + Tr(QζG

′) :

λ ≥ 0, ν ≥ 0, µ ≥ 0, µ′ ≥ 0,
[ ∑

`
ν`R`

1
2
MT [Bd −HTATd ]

1
2
[BT

d −A
T
dH]

∑
k
λkSk

]
� 0[

G 1
2
HM

1
2
MTHT

∑
`
µ`R`

]
� 0,

[
G′ 1

2
[BT

s −ATsH]M
1
2
MT [Bs −HTAs]

∑
`
µ′`R`

]
� 0


The problem is efficiently solvable, and the H-component H∗ of its optimal
solution gives rise to linear estimate x̂H∗(Ω) = HT

∗ ω such that

Risk[x̂H∗] ≤ Opt.
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How it works

System: Discretized pendulum ẍ = −ẋ− κx:[
xt+1

vt+1

]
=

[
0.9990 0.0951
−0.0190 0.9039

][
xt
vt

]
+ (ut + ζt)

[
0.0048
0.0951

]
, 1 ≤ t ≤ 128

ωt = xt[[
x1
v1

]
∼ N (0, I), ζt ∼ N (0,0.052), ξ ∼ N (0,0.052), |ut| ≤ 0.1

]
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- 4.90 -



Recovery under uncertain-but-bounded noise

So far, we have considered recovering Bx, x ∈ X , from observation

ω = Ax+ η

affected by random noise η. Let us now assume that η is “uncertain-but-
bounded:” all we know is that

η ∈ N

with a given convex and compact set H.

Risk: In the case in question, natural definition of risk of a candidate estimate
x̂(·) is

RiskH,‖·‖[x̂(·)|X ] = sup
x∈X ,η∈H

‖Bx− x̂(Ax+ η)‖.
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Observation: Signal recovery under uncertain-but-bounded noise reduces to
the situation where there is no observation noise at all.

Indeed, let us treat as the signal underlying observation the pair z = [x; η] ∈ Z := X ×H
and replace A with Ā = [A, I] and B with B̄ = [B,0], so that

ω = Ā[x; η] & Bx = B̄[x; η],

thus reducing signal recovery to recovering B̄z, z ∈ Z, from noiseless observation Āz.

From now on, let us focus on the problem of recovering the image Bx ∈ Rν of
unknown signal x ∈ Rn known to belong to signal set X ⊂ Rn via observation

ω = Ax ∈ Rm.

Given norm ‖ · ‖ on Rν, we quantify the performance of an estimate x̂(·) :

Rm → Rν by its ‖ · ‖-risk

Risk‖·‖[x̂|X ] = sup
x∈X
‖Bx− x̂(Ax)‖.
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Observation: Assuming that X is computationally tractable convex compact
set and ‖ · ‖ is computationally tractable, it is easy to build an efficiently com-
putable optimal within factor 2 nonlinear estimate:

Given ω, let us solve the convex feasibility problem

Find y ∈ Y[ω] := {y ∈ X : Ay = ω}.

and take, as x̂(ω), the vector By, where y is (any) solution to the
feasibility problem.

Note: When ω stems from a signal x ∈ X , the set Y[ω] contains x
⇒ x̂(·) is well defined
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x ∈ X , ω = Ax ⇒ x̂(ω) = By [y ∈ Y[ω] = {y ∈ X : Ay = ω}]
Performance analysis: Denote

R = max
y,z

{
1
2
‖B[y − z]‖ : y, z ∈ X , A[y − z] = 0

}
= 1

2
‖B[y∗ − z∗]‖ [y∗, z∗ ∈ X , A[y∗ − z∗] = 0]

Claim A: For every estimate x̃(·) it holds Risk‖·‖[x̃|X ] ≥ R.

Indeed, the observation ω = Ay∗ = Az∗ stems from both y∗ and z∗, whence
the ‖ · ‖-risk of every estimate is at least 1

2‖By∗ −Bz∗‖ = R.

Claim B: One has Risk‖·‖[x̂|X ] ≤ 2R.

Indeed, let ω = Ax with x ∈ X , and let x̂(ω) = Bŷ with ŷ ∈ Y[ω]. Then both
x, ŷ belong to Y[ω]

⇒ 1
2‖B[x− ŷ]‖ ≤ R.
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Question: We have built optimal, within factor 2, estimate. How to upper-
bound its ‖ · ‖-risk?

Let X and the unit ball B∗ of the norm ‖ · ‖∗ conjugate to ‖ · ‖ be ellitopes:

X =
{
x = Py : y ∈ Y := {y : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

}
B∗ =

{
u = Qv : v ∈ V := {v : ∃r ∈ R : vTR`v ≤ r`, ` ≤ L}

}
Then the ‖ · ‖-risk of the optimal, within factor 2, efficiently computable nonlin-
ear estimate x̂(·) can be tightly lower- and upper-bounded as follows.

• Assume that KerA ∩ X 6= {0} (otherwise the risk is zero), the set
XA = {x ∈ X : Ax = 0} is an ellitope:

XA =
{
x = Fw,w ∈ W := {w : ∃t ∈ T : wTTkw ≤ tk, k ≤ K}

}
Indeed, setting E = {y : APy = 0}, the set

YA = {y ∈ E : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

is a basic ellitope in some RN ′ ⇒ XA = {Py : y ∈ YA} is an ellitope.
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• Consequently,

R := max
x′,x′′∈X

{
1
2
‖B[x′ − x′′]‖ : A[x′ − x′′] = 0

}
= max

x∈XA
‖Bx‖ = max

w∈W
‖BFw‖

= ‖BF‖‖·‖w→‖·‖ [‖ · ‖w: norm with the unit ballW],

and

R ≤ Opt ≤ 4 ln(5[K + L])R

where the efficiently computable quantity Opt is given by

Opt = min
λ,µ

φT (λ) + φR(µ) :
λ ≥ 0, µ ≥ 0[ ∑

`
µ`R`

1
2
QTBF

1
2
F TBTQ

∑
k
λkTk

]
� 0

 .
⇒ The optimal ‖ · ‖-risk is ≥ R ≥ Opt

4 ln(5[K+L]), and

Risk‖·‖[x̂|X ] ≤ 2R ≤ 2Opt.
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In fact, under mild assumptions a linear estimate is near-optimal:

Theorem Consider the problem of recovering Bx in ‖ · ‖, x ∈ X , via observa-
tion ω = Ax. Let the signal set X be an ellitope, and the unit ball B∗ of the
norm conjugate to ‖ · ‖ be a basic ellitope:

X =
{
x = Py : y ∈ Y := {y : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

}
,

B∗ = {u : ∃r ∈ R : uTR`u ≤ r`, ` ≤ L}

Then the linear estimate x̂(ω) = HT
∗ ω yielded by theH-component of optimal

solution to the efficiently solvable optimization problem

Opt = min
λ,µ,H

φT (λ) + φR(µ) :
λ ≥ 0, µ ≥ 0,[ ∑

`
µ`R`

1
2
[B −HTA]P

1
2
P T [BT −ATH]

∑
k
λkSk

]
� 0


is near-optimal:

Risk‖·‖[x̂H∗|X ] ≤ Opt ≤ 4 ln(5[K + L])RiskOpt‖·‖[X ],

where RiskOpt‖·‖[X ] = inf
x̂(·)

Risk‖·‖[x̂|X ]. is the minimax risk.
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Sketch of the proof:
A. The ‖ · ‖-risk of a linear estimate x̂H(ω) = HTω is

Risk‖·‖[x̂H|X ] = max
x∈X
‖[B −HTA]x‖ = max

y∈Y
‖[B −HTA]Py‖

which is nothing but ‖[B −HTA]P‖‖·‖y→‖·‖, where ‖ · ‖y is the norm with the unit ball Y.
By the theorem on upper-bounding operator norms, we have

Risk‖·‖[x̂H|X ] ≤ min
λ,µ

{
φT (λ) + φR(µ) :

λ ≥ 0, µ ≥ 0[ ∑
`
µ`R`

1
2
[B −HTA]P

1
2
P T [BT −ATH]

∑
k
λkSk

]
� 0

}
⇒ Risk‖·‖[x̂H∗|X ] ≤ Opt.

B. As we have seen, the quantity

R = max
x
{‖Bx‖ : Ax = 0, x ∈ X}

is a lower bound on the minimal optimal ‖ · ‖-risk Risk∗‖·‖[X ], and R can be tightly (within

factor 4 ln(5[K + L])) upper-bounded by the optimal value in an explicit conic problem. On

the closest inspection, utilizing conic duality, the optimal value in question turns out to be equal

to Opt

⇒ The (upper bound on the) ‖ ·‖-risk of the linear estimate x̂H∗ is within the factor 4 ln(5[K+

L]) of the lower bound R on the minimax optimal ‖ · ‖-risk.
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