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Sliced Inverse Regression for datastreams:
An introduction

Stéphane Girard

Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK,
38000 Grenoble, France

Abstract
In this tutorial, we focus on data arriving sequentially by block in

a stream. A semiparametric regression model involving a common EDR
(Effective Dimension Reduction) direction β is assumed in each block. Our
goal is to estimate this direction at each arrival of a new block. A simple
direct approach consists of pooling all the observed blocks and estimating
the EDR direction by the SIR (Sliced Inverse Regression) method. But in
practice, some disadvantages become apparent such as the storage of the
blocks and the running time for high dimensional data. To overcome these
drawbacks, we propose an adaptive SIR estimator of β. The proposed
approach is faster both in terms of computational complexity and running
time, and provides data storage benefits. A graphical tool is provided in
order to detect changes in the underlying model such as a drift in the
EDR direction or aberrant blocks in the data stream. This is a joint work
with Marie Chavent, Vanessa Kuentz-Simonet, Benoit Liquet, Thi Mong
Ngoc Nguyen and Jérôme Saracco.

1 Sliced Inverse Regression (SIR)

1.1 Multivariate regression
Let Y ∈ R and X ∈ Rp. The goal is to estimate G : Rp → R such that

Y = G(X) + ξ where ξ is independent of X.

• Unrealistic when p is large (curse of dimensionality).

• Dimension reduction : Replace X by its projection on a subspace of
lower dimension without loss of information on the distribution of Y given
X.

• Central subspace : smallest subspace S such that, conditionally on the
projection of X on S, Y and X are independent.
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1.2 Dimension reduction
• Assume (for the sake of simplicity) that dim(S) = 1 i.e. S =span(b), with
b ∈ Rp =⇒ Single index model:

Y = g(< b,X >) + ξ

where ξ is independent of X.

• The estimation of the p-variate function G is replaced by the estimation
of the univariate function g and of the direction b.

• Goal of SIR [Li, 1991] : Estimate a basis of the central subspace. (i.e.
b in this particular case.)

1.3 SIR
Idea:

• Find the direction b such that < b,X > best explains Y .

• Conversely, when Y is fixed, < b,X > should not vary.

• Find the direction b minimizing the variations of < b,X > given Y .

In practice:

• The support of Y is divided into h slices Sj .

• Minimization of the within-slice variance of < b,X > under the constraint
var(< b,X >) = 1.

• Equivalent to maximizing the between-slice variance under the same con-
straint.
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1.4 Illustration

1.5 Estimation procedure
Given a sample {(X1, Y1), . . . , (Xn, Yn)}, the direction b is estimated by

b̂ = argmax
b

b′Γ̂b such that b′Σ̂b = 1. (1)

where Σ̂ is the empirical covariance matrix and Γ̂ is the between-slice covariance
matrix defined by

Γ̂ =

h∑
j=1

nj
n

(X̄j − X̄)(X̄j − X̄)′, X̄j =
1

nj

∑
Yi∈Sj

Xi,

where nj is the number of observations in the slice Sj .
The optimization problem (1) has a closed-form solution: b̂ is the eigenvector
of Σ̂−1Γ̂ associated to the largest eigenvalue.

1.6 Illustration
Simulated data.

• Sample {(X1, Y1), . . . , (Xn, Yn)} of size n = 100 with Xi ∈ Rp, dimension
p = 10 and Yi ∈ R, i = 1, . . . , n.

• Xi ∼ Np(0,Σ) where Σ = Q∆Q′ with

– ∆ =diag(p2, . . . , 22, 12),
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– Q is an orientation matrix drawn from the uniform distribution on
the set of orthogonal matrices.

• Yi = g(< b,Xi >) + ξi where

– g is the link function g(t) = sin(πt/2),

– b is the true direction b = 5−1/2Q(1, 1, 1, 1, 1, 0, . . . , 0)′,

– ξ ∼ N1(0, 9.10−4)

Blue: Yi versus the projections <
b,Xi > on the true direction b,
Red: Yi versus the projections <
b̂,Xi> on the estimated direction b̂,
Green: < b̂,Xi > versus < b,Xi >.

2 SIR for data streams

2.1 Context
• We consider data arriving sequentially by blocks in a stream.

• Each data block t = 1, . . . , T is an i.i.d. sample (Xi, Yi), i = 1, . . . , n from
the regression model Y = g(< b,X >) + ξ.

• Goal: Update the estimation of the direction b at each arrival of a new
block of observations.

2.2 Method
• Compute the individual directions b̂t on each block t = 1, . . . , T using

SIR.
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• Compute a common direction as

b̂ = argmax
||b||=1

T∑
t=1

cos2(b̂t, b) cos2(b̂t, b̂T ).

Idea: If b̂t is close to b̂T then b̂ should be close to b̂t.
Explicit solution: b̂ is the eigenvector associated to the largest eigenvalue
of

MT =

T∑
t=1

b̂tb̂
′
t cos2(b̂t, b̂T ).

2.3 Advantages of SIRdatastream
• Computational complexity O(Tnp2) v.s. O(T 2np2) for the brute-force

method which would consist in applying regularized SIR on the union of
the t first blocks for t = 1, . . . , T .

• Data storage O(np) v.s. O(Tnp) for the brute-force method.

(under the assumption n >> max(T, p)).

• Interpretation of the weights cos2(b̂t, b̂T ).

2.4 Illustration on simulations
2.4.1 Scenario 1: A common direction in all the 60 blocks.
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Left: cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR estimators at each
time t. Right: cos2(b̂t, b̂T ). The lighter (yellow) is the color, the larger is the
weight. Red color stands for very small squared cosines.
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2.4.2 Scenario 2: The 10th block is different from the other ones.
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Left: cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR estimators at each
time t. Right: cos2(b̂t, b̂T ). The lighter (yellow) is the color, the larger is the
weight. Red color stands for very small squared cosines.

2.4.3 Scenario 3: A drift occurs from the 10th block (b to b̃)

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of blocks

q
u

a
li
ty

 m
e

a
s
u

re

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of blocks

q
u

a
li
ty

 m
e

a
s
u

re

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of blocks

q
u

a
li
ty

 m
e

a
s
u

re

Current block

P
re

v
io

u
s
 b

lo
c
k

5
9

5
6

5
3

5
0

4
7

4
4

4
1

3
8

3
5

3
2

2
9

2
6

2
3

2
0

1
7

1
4

1
1

8
6

4
2

2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Left: cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR estimators at each
time t. Right: cos2(b̂t, b̂T ). The lighter (yellow) is the color, the larger is the
weight. Red color stands for very small squared cosines.
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Left: cos2(b̂, b̃) for SIRdatastream and SIR brute-force. Right: cos2(b̂, b̃)

2.4.4 Scenario 4: From the 10th block to the last one, there is no
common direction.
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Left: cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR estimators at each
time t. Right: cos2(b̂t, b̂T ). The lighter (yellow) is the color, the larger is the
weight. Red color stands for very small squared cosines.

3 Application to real data

3.1 Estimation of Mars surface physical properties from
hyperspectral images

Context:

• Observation of the south pole of Mars at the end of summer, collected
during orbit 61 by the French imaging spectrometer OMEGA on board
Mars Express Mission.

• 3D image: On each pixel, a spectra containing p = 184 wavelengths is
recorded.
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• This portion of Mars mainly contains water ice, CO2 and dust.

Goal: For each spectra X ∈ Rp, estimate the corresponding physical parameter
Y ∈ R (grain size of CO2).

3.2 An inverse problem
Forward problem.

• Physical modeling of individual spectra with a surface reflectance model.

• Starting from a physical parameter Y , simulate X = F (Y ).

• Generation of n = 12, 000 synthetic spectra with the corresponding pa-
rameters.

=⇒ Learning database.
Inverse problem.

• Estimate the functional relationship Y = G(X).

• Dimension reduction assumption G(X) = g(< b,X >).

• b is estimated by SIR, g is estimated by a nonparametric one-dimensional
regression.

3.3 Estimated function g

Estimated function g between the projected spectra < b̂,X > on the first axis
of SIR and Y , the grain size of CO2.
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3.4 Estimated CO2 maps

Grain size of CO2 estimated with SIR on a hyperspectral image of Mars.
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