Images can be stored on public, private repos, on any host machine that has previously pulled the package from a repo

Docker Containers

A container is a running instance -read-write -of an image

You can run containers on Linux, Windows 10, Windows Server 2016, Cloud (AWS, Google…)

Containers should be as ephemeral as possible.

You should expect them to go down at any time and lose all data stored inside:

• Don't store data in containers • Don't run more than one process in a single container • Use custom created volumes Type": "volume", "Name": "fdc5bd0de90688d590b38f9f931eb011c4de9c4032d49...", "Source": "/var/lib/docker/volumes/fdc5bd0de90...a54b/_data", "Destination": "/sharing", "Driver": "local", "Mode": "", "RW": true, "Propagation": "" }],

What about my data ?

If the host directory/file is omitted, a data container (read-write mode per default) is created The volume specified, here /sharing, is created inside the container user@host:~$ touch /var/lib/docker/volumes/fdc5bd0d.../_data/msg.txt user@host:~$ docker exec yoyo ls /sharing msg.txt

Sharing data between containers

Run the dong container user@host:~$ docker run -d -it --volumes-from yoyo --name dong alpine user@host:~$ docker inspect dong ... "Mounts": [{ "Type": "volume", "Name": "fdc5bd0de90688d590b38f9f931eb011c4de9c40...4a54b", "Source": "/var/lib/docker/volumes/fdc5bd0de90...54b/_data", "Destination": "/sharing", "Driver": "local", "Mode": "", "RW": true, "Propagation": "" }],

What about my data ? You see all changes applied to the read-write layer, the container itself -useful before executing the commit instruction

Display container changes

Docker Networking Services Bridge Host

Share host interfaces

No more network isolation the host and containers

Should be used very carefully

Macvlan Bridge

Unique MAC address

Allows you to configure slave/sub-interfaces of a parent, physical ethernet interface, each with its own unique MAC address

None

No network ! Going deeper in docker bridge default mode user@host:~$ docker inspect bob "NetworkSettings": { "Bridge": "", ... "Gateway": "172.17.0.1", "IPAddress": "172.17.0.4", "IPPrefixLen": 16, "MacAddress": "02:42:ac:11:00:04", ... } user@host:~$ docker inspect alice "NetworkSettings": { "Bridge": ... "Gateway": "172.17.0.1", "IPAddress": "172.17.0.3", "IPPrefixLen": 16, "MacAddress": "02:42:ac:11:00:03", . Step 2/4 : RUN apk update && apk upgrade ---> Using cache ---> fd105816bcb9

Overlay

Step

•

 docker : the Docker user CLI • dockerd : engine daemon ○ Create image, pass it to containerd • containerd : runtime daemon ○ Core container runtime for Docker ○ Manage the complete container lifecycle (stop, start, transfer, supervision, storage, network) • This model gives the ability to restart or upgrade Docker Engine without breaking the running containers Docker images, An image is a read-only group of layers of other images. It includes everything an application needs to run: binaries, libraries, config files… Each image is made of a base image (e.g. debian, ubuntu, alpine) plus a collection of diffsintermediate images/layers -that adds the required features (e.g. emacs, apache).

 Image is similar to a read-only template • A Docker Container is an writable instance of a Docker Image • Each Docker Container has its own read-write layer -thus its own data -that sits on one or more Docker image removal, reproducibility : the same code runs everywhere Orchestration complexity Large ecosystem -lot of official and unofficial images -Ideal for development team (test, pre-prod, prod) Docker Containers -Pros and Cons Docker repository (version 18.09) user@host:~$ sudo apt-get update && apt-get install apt-transport-https ca-certificates curl gnupg2 software-properties-common user@host:~$ sudo curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key adduser@host:~$ sudo apt-Docker Release (CE deb) <docker@docker.com> sub rsa4096 2017-02-22 [S] user@host:~$ sudo add-apt-repository "deb https://download.docker.com/linux/debian stretch stable" user@host:~$ sudo apt-get update && apt-get install docker.ce user@host:~$ sudo usermod -aG docker <user> && newgrp docker

 user@host:~$ docker exec -it myweb /bin/bash root@8807f82f280b:/# ls /etc/nginx/ && exit conf.d fastcgi_params koi-utf koi-win mime.types modules nginx.conf ...Stop and Remove your Appuser@host:~$ docker rm -f myweb myweb root@host:/tmp# docker ps -docker image rm image docker image prune[--all] Backup and restore an image (tarball) docker save -o archive.tar image docker load < archive.tar Inspect the content of an image docker inspect image docker stop container docker container stop container docker ps [--all] docker container ls [--all] List all containers [re]Start an inactive container docker [re]start container docker container [re]start container Stop an active container [stop and] Remove a container docker rm [-f] container docker container rm [-f] containerExecute a command in an active container / Get a shell console docker exec container command docker exec -it container /bin/bash Inspect the content of a container docker inspect container docker create image docker run image docker commit container [REPO[:TAG]] Create an image from a container Show the logs of a container docker logs container Create a new container Backup and restore a container (tarball) docker export container > archive.tar docker import -container < archive.tar 1 -Get alpine image user@host:~$ docker pull alpine 2 -Run it user@host:~$ docker run -d -it --name myapp alpine 3 -Edit a file in the container user@host:~$ docker exec myapp \ sh -c 'echo "Hello, France!" > /root/msg.txt' 4 -Stop the container user@host:~$ docker stop myapp 5 -Start the container user@host:~$ docker start myapp 6 -Check user@host:~$ docker exec myapp less /root/msg.txt Hello, France What about my data ? 7 -Stop then remove the container user@host:~$ docker rm -f myapp 8 -Run again a container user@host:~$ docker run -d -it --name myapp alpine 9 -Check user@host:~$ docker exec myapp less /root/msg.txt more: can't open '/root/msg.txt': No such file or directory Remember that each container has is own read-write layer When you instantiate an image, the new container starts with a clean filesystem Run it user@host:~$ echo "Hello, Nantes!" > ~/msg.txt && docker run -d -it -v ~/msg.txt:/root/hop.txt --name mydata alpine Check user@host:~$ docker exec mydata ls /root hop.txt user@host:~$ docker exec mydata less /root/hop.txt Hello, Nantes! What about my data ? Run another docker based on alpine user@host:~$ docker run -d -it -v ~/msg.txt:/root/hop.txt --name mydatb alpine Edit the message user@host:~$ echo "Hello, Centrale!" > ~/msg.txt Check user@host:~$ docker exec mydata less /root/hop.txt Hello, Centrale! user@host:~$ docker exec mydatb less /root/hop.txt Hello, Centrale! Sharing data in your docker host with containers Use the -v option : -v [HOST-DIR]:[CONTAINER-DIR] It creates a bind mount exposing the host directory/host file to the container directory/By default, Docker mounts the volume in read-write mode Sharing data in your docker host with containers Instruction to share data in read-only mode user@host:~$ docker run -d -it -v ~/msg.txt:/root/hop.txt:ro --name mydata alpine Run the yoyo container user@host:~$ docker run -d -it -v /sharing --name yoyo alpine user@host:~$ docker inspect yoyo .

 user@host:~$ docker exec yoyo ls /sharing Msg.txt user@host:~$ docker exec dong ls /sharing Msg.txt user@host:~$ docker exec dong touch /sharing/msg2.txt user@host:~$ docker exec yoyo ls /sharing msg.txt Msg2.txt user@host:~$ ls /var/lib/docker/volumes/fdc5bd0de90688d5.../_data msg2.txt msg.txt Sharing data between containers user@host:~$ docker image lsuser@host:~$ docker run -d -it --name ding alpine user@host:~$ docker exec -it ding / # apk update apk upgrade fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/main/x86_64/APKINDEX.tar.gz fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/community/x86_64/APKINDEX.tar.gz v3.8.1-133-g80b45d6920 [http://dl-cdn.alpinelinux.org/alpine/v3.8/main] v3.8.1-133-g80b45d6920 [http://dl-cdn.alpinelinux.org/alpine/v3.8/community] OK: 9546 distinct packages available OK: 4 MiB in 13 packages / # exit user@host:~$ docker commit ding alpine:201812 sha256:4acef3925b22e668e0e1755a3fa5ab6004889cacee28c8a487c5754ea105be70 user@host:~$ docker image ls -

First

 addresses user@host:~$ docker run --name alice -p 8080:80 -d nginx user@host:~$ docker run --name bob -p 8081:80 -d nginx user@host:~$ docker ps CONTAINER ID :~$ ip add ... 3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default link/ether 02:42:2d:1a:26:30 brd ff:ff:ff:ff:ff:ff inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0 valid_lft forever preferred_lft forever 7: vetha53c999@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP group default link/ether be:71:06:64:64:8f brd ff:ff:ff:ff:ff:ff link-netnsid 1 11: veth856faee@if10: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP group default link/ether b2:6c:95:08:43:c0 brd ff:ff:ff:ff:ff:ff link-netnsid 2 ...

 .. }Going deeper in docker bridge default mode Docker assigns a dynamic IP address for both containers user@host:~$ iptables -

Product License: Community Engine

	Installing Docker Community Edition (CE) Installing Docker Community Edition (CE)
	On debian 9 (stretch) host -from the netinst image -On debian 9 (stretch) host -from the netinst image -
	Check for correct installation
	user@host:~$ docker info
	...
	Server Version: 18.09.0
	Storage Driver: overlay2
	Backing Filesystem: extfs
	Supports d_type: true
	Native Overlay Diff: true
	...
	Runtimes: runc
	Default Runtime: runc
	Kernel Version: 4.9.0-8-amd64
	Operating System: Debian GNU/Linux 9 (stretch)
	...
	Docker Root Dir: /var/lib/docker
	...

Search for an official nginx image...

	user@host:~$

docker search nginx NAME DESCRIPTION STARS OFFICIAL AUTOMATED nginx Official build of Nginx. 10386 [OK] jwilder/nginx-proxy Automated Nginx reverse proxy for docker con… 1473 [OK] richarvey/nginx-php-fpm Container running Nginx + PHP-FPM capable of… 652 [OK] ... Download the image from the official Docker Registry user@host:~$ docker pull nginx Using default tag: latest latest: Pulling from library/nginx

	Run Your First Docker Application
	a5a6f2f73cd8: Pull complete
	1ba02017c4b2: Pull complete
	33b176c904de: Pull complete
	Digest: sha256:5d32f60db294b5deb55d078cd4feb410ad88e6fe77500c87d3970eca97f54dba
	Status: Downloaded newer image for nginx:latest