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Neuron response to a stimulus

https://www.plasticitylab.com/methods/
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Neuron response to a stimulus

Izhikevich, E., IEEE Trans Neural Netw , 15 (5), 10631070, (2004).
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Network response to a stimulus

1 How does an input/ stimulation applied to a subgroup of
neurons in a population affect the dynamics of the whole
network ?

2 How to measure the influence of a stimulated neuron on
another neuron ?

3 How does this ”effective connectivity” relates to :

(a) Synaptic connectivity;
(b) Pairwise correlations;
(c) ”Information” transport.
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1 From firing rate neurons dynamics to linear response.

2 From spiking neurons dynamics to linear response.

3 General conclusions

4 Appendix: Linear response theory in physics vs linear response
in neuronal networks
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From firing rate neurons dynamics to linear
response.
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Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

dVi

dt
= −µVi +

N∑
j=1

Jij f (Vj(t)) + Si (t); i = 1 . . .N. (1)

Network

Ex: Jij ∼ N
(

0, J
2

N

)
(Sompolinsky et al, 1988)

Non linearity

Ex: f (x) = 1
2 ( 1 + tanh(gx) ),

f (x) = tanh(gx).
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Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

d ~V

dt
= −µ~V + J .f ( ~V ) + ~S(t); i = 1 . . .N. (1)

Network
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2

N
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Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

d ~V

dt
= −µ~V + J .f ( ~V )︸ ︷︷ ︸

~G( ~V )

+~S(t); i = 1 . . .N. (1)

Network

Ex: Jij ∼ N
(

0, J
2

N

)
(Sompolinsky et al, 1988)

Non linearity

Ex: f (x) = 1
2 ( 1 + tanh(gx) ),

f (x) = tanh(gx).
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Low gain g dynamics

Theorem. If g is small enough ~G is contractive.

∀ ~V , ~V ′ ∈M, ‖ ~G ( ~V ′)− ~G ( ~V )‖ ≤ η‖ ~V ′ − ~V ‖, 0 < η < 1

⇒

For ~S = 0, there is a unique stable fixed point ~V ∗, ~G ( ~V ∗) = ~0.
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Low gain g dynamics

Small perturbation of the fixed point. ~V = ~V ∗ + ~ξ.

d~ξ

dt
= DG ~V ∗ .

~ξ + ~S(t) + O
(
‖~ξ‖2

)
~ξ(t) =

∫ t

−∞
eDG~V∗ (t−s).~S(s)ds

Λ = P−1.DG~V∗ .P; ~ξ = P~ξ′; ~S = P~S′ ⇒ ~ξ′(t) =

∫ t

−∞
eΛ(t−s).~S ′(s)ds

ξ′k(t) =

∫ t

−∞
eλk (t−s).S ′k(s)ds
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Low gain g dynamics

Harmonic perturbation. S ′k(t) = A′ke
iωt .

λk = λk,r + iλk,i ; ω = ωr + iωi .

The integral is finite if ωi < −λk,r .

ξ′k(t) = χ̂′k(ω)e iωt .

Complex susceptibility matrix.

~ξ(t) = χ̂(ω).~Se iωt . (2)
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Low gain g dynamics
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Low gain g dynamics

Example 1. f (x) = tanh(gx) ⇒

~V ∗ = ~0; DG ~V ∗ = −µI + gJ

Let sk ≡ sk,r + isk,i eigenvalues of J .

λk = −µ+ g sk,r︸ ︷︷ ︸
λk,r

±i g sk,i︸ ︷︷ ︸
λk,i

When J is random, Jij ∼ N (0, J
2

N ) the probability distribution of
eigenvalues is known.

(Girko, V. L., Theory Probab. Appl. 29, 694-706, 1984. ).
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Low gain g dynamics

Example 2. f (x) = 1+tanh(gx)
2 ⇒

~V ∗ ≡ ~V ∗(J ); DG ~V ∗ = −µI + gD( ~V ∗)J

where D( ~V ∗) = diag(
1−tanh2(gV ∗i )

2 ).

The eigenvalues of D( ~V ∗)J cannot be determined from the

eigenvalues of J . However, when J is random, Jij ∼ N (0, J
2

N ) the
probability distribution of eigenvalues can be determined.

(Girko, V. L. Theory of Random Determinants. Boston, MA: Kluwer, 1990).
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Low gain g dynamics

Summary:

The linear response to a signal of weak amplitude is controlled
by the Jacobian matrix DG ~V ∗ .

Eigenvalues of DG ~V ∗ ⇒ Poles of the complex susceptibility ⇒
Resonances.

What is the phenomenological/neuronal interpretation of
DG ~V ∗ ?
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The linear response to a signal of weak amplitude is controlled
by the Jacobian matrix DG ~V ∗ .
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Resonances.

What is the phenomenological/neuronal interpretation of
DG ~V ∗ ?

DG ~V ∗ = − µI︸︷︷︸
Leak

+ g︸︷︷︸
Gain

D( ~V ∗)︸ ︷︷ ︸
f ′

J︸︷︷︸
Synapses
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Expansion/Contraction

Saturation Amplification
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Linear response in a dynamical regime

dVi

dt
= −µVi +

N∑
j=1

Jij f (Vj(t)) + Ii (t); i = 1 . . .N.

Vi (t + dt) = Vi (t)(1− µdt) +
N∑
j=1

Jij f (Vj(t))dt + Si (t)dt

Vi (t + 1) =
N∑
j=1

Jij f (Vj(t)) + Si (t). (3)
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Linear response in the chaotic regime

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

~V (t + 1) = J .f ( ~V (t))︸ ︷︷ ︸
~G( ~V (t))

+ε~S(t)

f (x) = tanh(g x)
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Transition to chaos by quasi periodity as g increases

g
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Doyon B. et al, International Journal Of Bifurcation and Chaos, Vol. 3, Num. 2, 279-291 (1993)

Cessac B. et al, Physica D, 74, 24-44 (1994)
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Chaotic dynamics and strange attractors
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Chaotic dynamics and strange attractors

https://upload.wikimedia.org/wikipedia/commons/a/ac/

Hénon map

{
x(t + 1) = 1− ax2(t) + y(t)
y(t + 1) = bx(t)

a = 1.4; b = 0.3
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Chaotic dynamics and strange attractors

http://www.demonstrations.wolfram.com/OrbitDiagramOfTheHenonMap/HTMLImages/index.en/

Hénon map

{
x(t + 1) = 1− ax2(t) + y(t)
y(t + 1) = bx(t)

a = 1.4; b = 0.3
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Chaotic dynamics and strange attractors

http://www.sfu.ca/ rpyke/335/W00/

Hénon map

{
x(t + 1) = 1− ax2(t) + y(t)
y(t + 1) = bx(t)

a = 1.4; b = 0.3
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Chaotic dynamics and strange attractors

Expansive

Positive Lyapunov exponent
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Time dependent perturbation

~V (t + 1) = ~G ( ~V (t)); ~V ′(t + 1) = ~G ( ~V ′(t)) + ε~S(t)

Switch the stimulus on at time t0; ~V (t0) = ~V ′(t0).

~δ(t) = ~V ′(t)− ~V (t)⇒ ~δ(t0 + 1) = ~V ′(t0 + 1)− ~V (t0 + 1) = ε~S(t0)

~δ(t0 + 2) = ~G ( ~V ′(t0 + 1)) + ε~S(t0 + 1)− ~G ( ~V (t0 + 1))

~δ(t0 + 2) = ~G ( ~V (t0 + 1) + ε~S(t0)) + ε~S(t0 + 1)− ~G ( ~V (t0 + 1))

~δ(t0 + 2) = ε
[
DG~V (t0+1).

~S(t0) + ~S(t0 + 1)
]

+ ε2~η(t0 + 1)

~δ(t) = ε
t−1∑
τ=t0

DG t−τ+1
~V (t0+1)

.~S(τ) + ε2 ~R(t)
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Time dependent perturbation

~δ(t) = ε

t−1∑
τ=t0

(
DF~V

)t−τ+1
.~S(τ)︸ ︷︷ ︸+ε

2 ~R(t)
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Time dependent perturbation
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Λij = f ′(g uj) δij
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Time dependent perturbation

~δ(t) = ε

t−1∑
τ=t0

DF t−τ+1
~V (t+1)

.~S(τ)︸ ︷︷ ︸
Expansive

Positive Lyapunov exponent

+ε2 ~R(t)
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Time dependent perturbation

~δ(t) = ε

t−1∑
τ=t0

DF t−τ+1
~V (t+1)

.~S(τ)︸ ︷︷ ︸+ε
2 ~R(t)

Linear response vs chaotic

Butterfly effect
Van Kampen objection

The linear expansion provided by
the positive Lyapunov exponent

prevents linear response theory.
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The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

lim
T→∞

1

T

T∑
t=1

Φ( ~G t( ~V )) = lim
T→∞

1

T

T∑
t=1

Φ( ~G t( ~V + ~δ))

µL Lebesgue measure on the phase-space.

µ
w
= lim

t→+∞
~G ∗tµL, SRB measure

lim
T→∞

1

T

T∑
t=1

Φ
[
~G t( ~V )

]
µL a.s.

=

∫
Ω

Φ( ~V )µ(dX)

Natural notion of averaging ”on” the attractor.
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Out of equilibrium SRB state

D. Ruelle, J. Stat. Phys., 1998

µt = µ+ δtµ = lim
n→+∞

~G ′t . . .
~G ′t−nµ

δtµ [Φ] = ε

t−1∑
τ=−∞

∫
µ(d ~V )D ~G t−τ−1

~V
~Sτ
[
~G−1( ~V )

]
.∇~V (t−τ−1)Φ + NL

δtµ[Φ] = ε
∑
σ

〈
κσ ~St−σ−1 ◦ ~G−1|Φ

〉
eq
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Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

δtρ[ui ] = ε [χ ∗ S ]i (t)

= ε

N∑
j=1

t∑
σ=−∞

χi ,j(σ)Sj(t−σ− 1)

Linear response
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= ε
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t∑
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Linear response

χi ,j(σ) =
∑

γij (σ)

∏σ
l=1 Jklkl−1
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l=1 f

′(ukl−1
(l − 1))

〉
eq
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Resonances

Power spectrum
Ruelle resonances

Ruelle-Pollicott resonances: In the
power spectrum. Absolutely
continuous part of the SRB
measure.

Exotic resonances. Not in the
power spectrum. Singular part of
the SRB measure.

Predicted by D. Ruelle (J. Stat.
Phys, 1999)

Exhibited in B. Cessac, J.A.
Sepulchre, PRE, 2004.
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Resonances

Complex susceptibility
Ruelle resonances

Ruelle-Pollicott resonances: In the
power spectrum. Absolutely
continuous part of the SRB
measure.

Exotic resonances. Not in the
power spectrum. Singular part of
the SRB measure.

Predicted by D. Ruelle (J. Stat.
Phys, 1999)

Exhibited in B. Cessac, J.A.
Sepulchre, PRE, 2004.
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Response to a time-dependent stimulus

Connectivity matrix

Response matrix
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Response to a time-dependent stimulus
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Main conclusions

Linear response is possible in a chaotic neural network.

Convolution kernel depending on synaptic graph and dynamics
built on equilibrium (SRB) correlations.

The response graph is different from the synaptic weights
graph and depends on the stimulus.
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From spiking neurons dynamics to linear response.
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Linear response in spiking neuronal networks with
unbounded memory

B. Cessac, R.Cofré, J. Math. Neuro. submitted, 2018

How are spike correlations modified by a time-dependent stimulus ?



An Integrate and Fire neural network model with chemical
and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Spikes

Voltage dynamics is
time-continuous.

Spikes are time-discrete
events (time resolution δ > 0).

Spike state ωk(n) ∈ 0, 1.

Spike pattern ω(n).

Spike block ωn
m.
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A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

Ck
dVk

dt
= −gL,k(Vk − EL)

−
∑
j

gkj(t, ω)(Vk − Ej)

+Sk(t) + σBξk(t)

Synapses

αkj(t) =
t

τ
e
− t
τkj H(t),
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A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Wkj
def
= GkjEj

αkj(t, ω) =
∑
n≥0

αkj(t−nδ)ωj(n)

ik(t, ω) = gL,kEL+
∑
j

Wkjαkj(t, ω)+Sk(t)+σBξk(t)



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du

Vk (t, ω) = V
(sp)
k

(t, ω) + V
(S)
k

(t, ω) + V
(noise)
k

(t, ω)



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du

Vk (t, ω) = V
(sp)
k

(t, ω) + V
(S)
k

(t, ω)︸ ︷︷ ︸
V

(det)
k

(t,ω)

+V
(noise)
k

(t, ω)



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du

Vk (t, ω) = V
(sp)
k

(t, ω) + V
(S)
k

(t, ω)︸ ︷︷ ︸
V

(det)
k

(t,ω)

+V
(noise)
k

(t, ω)

V
(sp)
k

(t, ω) = V
(syn)
k

(t, ω) + V
(L)
k

(t, ω),



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du

Vk (t, ω) = V
(sp)
k

(t, ω) + V
(S)
k

(t, ω)︸ ︷︷ ︸
V

(det)
k

(t,ω)

+V
(noise)
k

(t, ω)

V
(sp)
k

(t, ω) = V
(syn)
k

(t, ω) + V
(L)
k

(t, ω),

V
(syn)
k (t, ω) =

1

Ck

N∑
j=1

Wkj

∫ t

τk (t,ω)
Γk(t1, t, ω)αkj(t1, ω)dt1



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Ck
dVk

dt
+ gk ( t, ω )Vk = ik(t, ω).

Linear in V .

Spike history-dependent.

Dynamics integration

Γk(t1, t, ω) = e
− 1

Ck

∫ t
t1∨τk (t,ω) gk ( u,ω ) du

Vk (t, ω) = V
(sp)
k

(t, ω) + V
(S)
k

(t, ω)︸ ︷︷ ︸
V

(det)
k

(t,ω)

+V
(noise)
k

(t, ω)

V
(sp)
k

(t, ω) = V
(syn)
k

(t, ω) + V
(L)
k

(t, ω),

V
(syn)
k (t, ω) =
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A conductance-based Integrate and Fire model

Variable length Markov chain

Pn

[
ω(n)

∣∣ωn−1
−∞

]
≡ Π

(
ω(n),

Vth − V
(det)
k (n − 1, ω)

σk(n − 1, ω)

)
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Response to stimuli

How is the average of an observable f (ω, t) affected by the
stimulus ?

If S is weak enough: δµ [ f (t) ] = [κf ∗ S ] ( t ) , (linear
response).
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Response to stimuli

How is the average of an observable f (ω, t) affected by the
stimulus ?

If S is weak enough: δµ [ f (t) ] = [κf ∗ S ] ( t ) , (linear
response).

κk,f ( t − t1 ) =
1

Ck

[ t−t1 ]∑
r=−∞

C (sp)

[
f (t − t1, .),

H(1)
k (r , .)

σk(r − 1, .)
Γk(0, r − 1, .)

]
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Response to stimuli

How is the average of an observable f (ω, t) affected by the
stimulus ?

If S is weak enough: δµ [ f (t) ] = [κf ∗ S ] ( t ) , (linear
response).

κk,f ( t − t1 ) =
1

Ck

[ t−t1 ]∑
r = −∞

C sp

[
f (t − t1, .),

H(1)
k (r , .)

σk(r − 1, .)
Γk(0, r − 1, .)

]

History dependence.
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Response to stimuli

How is the average of an observable f (ω, t) affected by the
stimulus ?

If S is weak enough: δµ [ f (t) ] = [κf ∗ S ] ( t ) , (linear
response).

κk,f ( t − t1 ) =
1

Ck

[ t−t1 ]∑
r=−∞

C (sp)

[
f (t − t1, .),

H(1)
k (r , .)

σk(r − 1, .)
Γk(0, r − 1, .)

]

History dependence, observable
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Response to stimuli

How is the average of an observable f (ω, t) affected by the
stimulus ?

If S is weak enough: δµ [ f (t) ] = [κf ∗ S ] ( t ) , (linear
response).

κk,f ( t − t1 ) =
1

Ck

[ t−t1 ]∑
r=−∞

C (sp)
[
f (t − t1, .),

H(1)
k (r ,.)

σk (r−1,.) Γk(0, r − 1, .)
]

History dependence, observable, network dynamics
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Response to stimuli

How is the average of an observable f (ω, t) affected by the
stimulus ?

If S is weak enough: δµ [ f (t) ] = [κf ∗ S ] ( t ) , (linear
response).

κk,f ( t − t1 ) =
1

Ck

[ t−t1 ]∑
r=−∞

C (sp)

[
f (t − t1, .),

H(1)(r ,.)
k

σk(r − 1, .)
Γk(0, r − 1, .)

]
,

History dependence, (spontaneous) correlation between observable
and network dynamics
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Response to stimuli in a mean-field limit

Characteristic time

τd ,k =
Ck

gL +
∑N

j=1 Gkjνjτkj

Approximations

(i) Replace τk(r − 1, .) by −∞;

(ii) Replace Γk(t1, r − 1, ω) = e
− 1

Ck

∫ r−1
t1

gk ( u,ω ) du
by e

− (r−1−t1)
τd,k .
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Response to stimuli in a mean-field limit

δ(1)µ [ f (t) ] =

− 2
σB

∑N
k=1

1√
τd,k

∑n=[ t ]
r=−∞

  (Sk ∗ ed,k ) (r − 1)

ed,k(u) = e
− u
τd,k
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Response to stimuli in a mean-field limit

δ(1)µ [ f (t) ] =

− 2
σB

∑N
k=1

1√
τd,k

∑n=[ t ]
r=−∞

  (Sk ∗ ed,k ) (r − 1)

Markov approximation with memory depth 1
γ

(1)
k C(sp) [ f (t, ·), ωk(r) ]

+
∑N

i=1 γ
(2)
k;i C(sp) [ f (t, ·), ωk(r)ωi (r − 1) ]

+
∑N

i,j=1 γ
(3)
k;ij C(sp) [ f (t, ·), ωk(r)ωi (r − 1)ωj(r − 1) ]

+ · · ·
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Response to stimuli in a mean-field limit

Ex: Firing rate of neuron m

δ(1)µ [ωm(t) ] =

− 2
σB

∑N
k=1

1√
τd,k

∑n=[ t ]
r=−∞


γ

(1)
k
C(sp) [ωm(t), ωk (r)

]
+
∑N

i=1 γ
(2)
k;i
C(sp) [ωm(t), ωk (r)ωi (r − 1)

]
+
∑N

i,j=1 γ
(3)
k;ij
C(sp)

[
ωm(t), ωk (r)ωi (r − 1)ωj (r − 1)

]
+ · · ·


(
Sk ∗ ed,k

)
(r − 1)
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From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Conclusions

Linear response in a spiking neural network.

Convolution kernel depending on synaptic graph and dynamics
built on equilibrium correlations.

Link with receptive fields for sensory neurons ?

Further steps. Handle this equation ... in a simple numerical
example.
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General conclusions
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Network response to a stimulus
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Network response to a stimulus

1 How does an input/ stimulation applied to a subgroup of
neurons in a population affect the dynamics of the whole
network ?

2 How to measure the influence of a stimulated neuron on
another neuron ?

3 How does this ”effective connectivity” relates to :

(a) Synaptic connectivity;
(b) Pairwise correlations;
(c) ”Information” transport.
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From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions Appendix: Linear response theory in physics vs linear response in neuronal networks

Network response to a stimulus

Spontaneous dynamics ⇒ complex, noise, chaos, non linear.

Stimulus effect ⇒ requires to filter the spontaneous part ⇒
suitable averaging.

Linear response. The response to the stimulus is obtained in terms
of correlations computed with respect to spontaneous activity

(Kubo like relations).

Information transport ? Requires a suitable probabilitic
characterization (entropy transport, Granger causality, ...).
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Linear response theory in physics

Equilibrium stat. phys.
(Max. Entropy Principle).

Non equilibrium stat. phys.
Onsager theory.

Green-Kubo relations.

P [ S ] = 1
Z e
−βH{S}

H {S} =
∑
α λαXα {S}

λαXα ∼ E , P × V , µ× N, h × M, . . .

PV = nRT , ...
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Green-Kubo relations.

~jα = ~Fα(~∇λ1, . . . , ~∇λβ, . . . )

~jα ∼
∑
β

Lαβ ~∇λβ + . . .

~jel = −σE ~∇V ; ~jQ = −λ~∇T , . . .



Linear response theory in physics

Equilibrium stat. phys.
(Max. Entropy Principle).

Non equilibrium stat. phys.
Onsager theory.

Green-Kubo relations.

~jα = ~Fα(~∇λ1, . . . , ~∇λβ, . . . )

~jα ∼
∑
β

Lαβ ~∇λβ + . . .

~jel = −σE ~∇V ; ~jQ = −λ~∇T , . . .

Linear transport coefficients
←

equilibrium correlations of
currents.
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Linear response theory in physics

Onsager theory in non equilibrium statistical mechanics.

gradients ⇒ fluxes

Linear relation between ”small” gradients and fluxes.
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Linear response theory in physics

Onsager-Ruelle - . . . theory in dynamical systems.

Perturbation ⇒ response

Linear relation between ”small” perturbations and response.
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Gibbs distribution

Equilibrium stat. phys.
(Max. Entropy Principle).

Non equ. stat. phys. Onsager
theory.

Ergodic theory, chaotic
systems.

The Sinai-Ruelle-Bowen measure
is a Gibbs measure

H = − log det ΠuDFX



Gibbs distribution

Equilibrium stat. phys.
(Max. Entropy Principle).

Non equ. stat. phys. Onsager
theory.

Ergodic theory.

Markov chains - finite memory.

Chains with complete
connections - infinite memory
(Left Interval Specification).

P [ω ] = 1
Z e
−βH(ω )

H (ω ) =
∑
α λαXα (ω )

Xα(ω) = Product of spike events

Hammersley, Clifford, unpublished, 1971

O. Onicescu and G. Mihoc. CRAS Paris, 1935

R. Fernandez, G. Maillard, A. Le Ny, J.R. Chazottes, ...
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Thanks !!
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