Low gain g dynamics

V * = 0; DG V * = -µI + g J Let s k ≡ s k,r + is k,i eigenvalues of J . λ k = -µ + g s k,r λ k,r ±i g s k,i λ k,i
When J is random, J ij ∼ N (0, J 2 N ) the probability distribution of eigenvalues is known.

(Girko, V. L., Theory Probab. Appl. 29, 694-706, 1984. ).

Bruno Cessac

Linear response in neuronal networks: from neurons dynamics Low gain g dynamics

Example 2. f (x) = 1+tanh(gx) 2 ⇒ V * ≡ V * (J ); DG V * = -µI + gD( V * )J where D( V * ) = diag ( 1-tanh 2 (gV * i ) 2
).

The eigenvalues of D( V * )J cannot be determined from the eigenvalues of J . However, when J is random, J ij ∼ N (0, J 2 N ) the probability distribution of eigenvalues can be determined.

(Girko, V. L. Theory of Random Determinants. Boston, MA: Kluwer, 1990).

V (t + 1) = G ( V (t)); V (t + 1) = G ( V (t)) + S(t) Switch the stimulus on at time t 0 ; V (t 0 ) = V (t 0 ).

δ(t) = V (t) -V (t) ⇒ δ(t 0 + 1) = V (t 0 + 1) -V (t 0 + 1) = S(t 0 ) δ(t 0 + 2) = G ( V (t 0 + 1)) + S(t 0 + 1) -G ( V (t 0 + 1)) δ(t 0 + 2) = G ( V (t 0 + 1) + S(t 0 )) + S(t 0 + 1) -G ( V (t 0 + 1)) δ(t 0 + 2) = DG V (t0+1) . S(t 0 ) + S(t 0 + 1) + 2 η(t 0 + 1) Bruno Cessac
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Bruno Cessac Linear response in neuronal networks: from neurons dynamics

From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions A Time dependent perturbation

δ(t) = t-1 τ =t 0 DF V t-τ +1 . S(τ ) + 2 R(t)
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δ(t) = t-1 τ =t 0 DF V t-τ +1 . S(τ ) Controlled by the spectrum of DF V * + 2 R(t)
Linear stability analysis

G ( V ) = J f (g V ) DF V = g J Λ( V ) Λ ij = f (g u j ) δ ij Bruno Cessac
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Linear stability analysis

G ( V ) = J f (g V ) DF V = g J Λ( V ) Λ ij = f (g u j ) δ ij
The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation. lim

T →∞ 1 T T t=1 Φ( G t ( V )) = lim T →∞ 1 T T t=1 Φ( G t ( V + δ))
µ L Lebesgue measure on the phase-space.

µ w = lim t→+∞ G * t µ L , SRB measure lim T →∞ 1 T T t=1 Φ G t ( V ) µ L a.s. = Ω Φ( V )µ(dX)
Natural notion of averaging "on" the attractor.
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Out of equilibrium SRB state D. Ruelle, J. Stat. Phys., 1998 Convolution Convolution Convolution

µ t = µ + δ t µ = lim n→+∞ G t . . . G t-n µ δ t µ [Φ] = t-1 τ =-∞ µ(d V )D G t-τ -1 V S τ G -1 ( V ) .∇ V (t-τ -1) Φ + NL δ t µ[Φ] = σ κ σ S t-σ-1 • G -
δ t ρ[u i ] = [ χ * S ] i (t) = N j=1 t σ=-∞ χ i,j (σ)S j (t -σ -1)
δ t ρ[u i ] = [ χ * S ] i (t) = N j=1 t σ=-∞ χ i,j (σ)S j (t -σ -1) χ i,j (σ) = γ ij (σ) σ l=1 J k l k l-1 σ l=1 f (u k l-1 (l -1))
δ t ρ[u i ] = [ χ * S ] i (t) = N j=1 t σ=-∞ χ i,j (σ)S j (t -σ -1)
Linear response Convolution

χ i,j (σ) = γ ij (σ) σ l=1 J k l k l-1 σ l=1 f (u k l-1 (l -1))
δ t ρ[u i ] = [ χ * S ] i (t) = N j=1 t σ=-∞ χ i,j (σ)S j (t -σ -1)
Linear response

χ i,j (σ) = γ ij (σ) σ l=1 J k l k l-1 σ l=1 f (u k l-1 (l -1)) eq
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δ t ρ[u i ] = [ χ * S ] i (t) = N j=1 t σ=-∞ χ i,j (σ)S j (t -σ -1)
Linear response Sub-threshold dynamics: Sub-threshold dynamics: Sub-threshold dynamics: 

χ i,j (σ) = γ ij (σ) σ l=1 J k l k l-1 σ l=1 f (u k l-1 (l - 1 
C k dV k dt = -g L,k (V k -E L ) - j g kj (t, ω)(V k -E j ) Synapses α kj (t) = t τ e -t τ 
C k dV k dt = -g L,k (V k -E L ) - j g kj (t, ω)(V k -E j )
C k dV k dt = -g L,k (V k -E L ) - j g kj (t, ω)(V k -E j )
g kj (t) = G kj n≥0 α kj (t -t (n) j )
A conductance-based Integrate and Fire model Sub-threshold dynamics: Sub-threshold dynamics: 

C k dV k dt = -g L,k (V k -E L ) - j g kj (t, ω)(V k -E j )
C k dV k dt = -g L,k (V k -E L ) - j g kj (t, ω)(V k -E j ) +S k (t) + σ B ξ k (t
g kj (t, ω) = G kj n≥0 α kj (t-nδ)ω j (n)
A conductance-based Integrate and Fire model Sub-threshold dynamics:

C k dV k dt + g k ( t, ω ) V k = i k (t, ω). W kj def = G kj E j α kj (t, ω) = n≥0 α kj (t-nδ)ω j (n) i k (t, ω) = g L,k E L + j W kj α kj (t, ω)+S k (t)+σ B ξ k (t)
A conductance-based Integrate and Fire model Sub-threshold dynamics:

C k dV k dt + g k ( t, ω ) V k = i k (t, ω).
Linear in V .

Spike history-dependent.

Dynamics integration

Γ k (t 1 , t, ω) = e -1 C k t t 1 ∨τ k (t,ω) g k ( u,ω ) du
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Dynamics integration
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A conductance-based Integrate and Fire model

Variable length Markov chain

P n ω(n) ω n-1 -∞ ≡ Π ω(n), V th -V (det) k (n -1, ω) σ k (n -1, ω)

Response to stimuli

How is the average of an observable f (ω, t) affected by the stimulus ?

If S is weak enough: δµ [ f (t) ] = [ κ f * S ] ( t ) , (linear response). κ k,f ( t -t 1 ) = 1 C k [ t-t 1 ] r =-∞ C (sp) f (t -t 1 , .), H (1) 
k (r , .) σ k (r -1, .) Γ k (0, r -1, .)
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History dependence.
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History dependence, observable
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Response to stimuli

How is the average of an observable f (ω, t) affected by the stimulus ?

If S is weak enough: δµ [ f (t) ] = [ κ f * S ] ( t ) , (linear response). κ k,f ( t -t 1 ) = 1 C k [ t-t 1 ] r =-∞ C (sp) f (t -t 1 , .), H (1) 
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History dependence, observable, network dynamics
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Response to stimuli

How is the average of an observable f (ω, t) affected by the stimulus ?

If S is weak enough: δµ [ f (t) ] = [ κ f * S ] ( t ) , (linear response). κ k,f ( t -t 1 ) = 1 C k [ t-t 1 ] r =-∞ C (sp) f (t -t 1 , .), H (1)(r ,.) k σ k (r -1, .) Γ k (0, r -1, .)

History dependence, (spontaneous) correlation between observable and network dynamics
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Response to stimuli in a mean-field limit Characteristic time

τ d,k = C k g L + N j=1 G kj ν j τ kj Approximations (i) Replace τ k (r -1, .) by -∞; (ii) Replace Γ k (t 1 , r -1, ω) = e -1 C k r -1 t 1 g k ( u,ω ) du by e - (r -1-t 1 ) τ d,k
.
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Response to stimuli in a mean-field limit

δ (1) µ [ f (t) ] = -2 σ B N k=1 1 √ τ d,k n=[ t ] r =-∞     ( S k * e d,k ) (r -1) e d,k (u) = e -u τ d,k
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Response to stimuli in a mean-field limit

δ (1) µ [ f (t) ] = -2 σ B N k=1 1 √ τ d,k n=[ t ] r =-∞     ( S k * e d,k ) (r -1)
Markov approximation with memory depth 1

     γ (1) k C (sp) [ f (t, •), ω k (r ) ] + N i=1 γ (2) k;i C (sp) [ f (t, •), ω k (r ) ω i (r -1) ] + N i,j=1 γ (3) k;ij C (sp) [ f (t, •), ω k (r ) ω i (r -1) ω j (r -1) ] + • • •     
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Response to stimuli in a mean-field limit 
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Linear response in the firing rate neural network B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006);Physica D (2006) Convolution

Network response to a stimulus 1 How does an input/ stimulation applied to a subgroup of neurons in a population affect the dynamics of the whole network ?

2 How to measure the influence of a stimulated neuron on another neuron ?

3 How does this "effective connectivity" relates to : 

Gibbs distribution

Equilibrium stat. phys.

(Max. Entropy Principle).

Non equ. stat. phys. Onsager theory.

Ergodic theory, chaotic systems.

The Sinai-Ruelle-Bowen measure is a Gibbs measure

Gibbs distribution

Equilibrium stat. phys.

(Max. Entropy Principle).

Non equ. stat. phys. Onsager theory.

Ergodic theory.

Markov chains -finite memory.

X α (ω) = Product of spike events Hammersley, Clifford, unpublished, 1971 Gibbs distribution Equilibrium stat. phys.

(Max. Entropy Principle).

Non equ. stat. phys. Onsager theory.

Ergodic theory.

Markov chains -finite memory.

Chains with complete connections -infinite memory (Left Interval Specification). From firing rate neurons dynamics to linear response. From spiking neurons dynamics to linear response. General conclusions A

Thanks !!
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