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Neuron response to a stimulus

record changes in
membrane potential

inject current into
the cell

action potentials

—

CA2 Pyramidal Cell

https://www.plasticitylab.com/methods/
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Neuron response to a stimulus
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Izhikevich, E., IEEE Trans Neural Netw , 15 (5), 10631070, (2004).
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Network response to a stimulus
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Network response to a stimulus

Bruno Cessac Linear response in neuronal networks: from neurons dynamics



Network response to a stimulus

© How does an input/ stimulation applied to a subgroup of
neurons in a population affect the dynamics of the whole
network 7

Bruno Cessac Linear response in neuronal networks: from neurons dynamics



Network response to a stimulus

© How does an input/ stimulation applied to a subgroup of
neurons in a population affect the dynamics of the whole
network 7

@ How to measure the influence of a stimulated neuron on
another neuron ?
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Network response to a stimulus

© How does an input/ stimulation applied to a subgroup of

neurons in a population affect the dynamics of the whole
network ?

@ How to measure the influence of a stimulated neuron on
another neuron ?

© How does this "effective connectivity” relates to :

(a) Synaptic connectivity;
(b) Pairwise correlations;
(c) "Information” transport.
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@ From firing rate neurons dynamics to linear response.
@ From spiking neurons dynamics to linear response.

© General conclusions

@ Appendix: Linear response theory in physics vs linear response
in neuronal networks
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From firing rate neurons dynamics to linear response.

From firing rate neurons dynamics to linear
response.

Bruno Cessac Linear response in neuronal networks: from neurons dynamics



From firing rate neurons dynamics to linear response.

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

N

= —uVi+ > JLf (Vi) +Si(t); i=1...N. (1)
j=1

dvi
dt
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From firing rate neurons dynamics to linear response.

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

N

= —uVi+ > JLf (Vi) +Si(t); i=1...N. (1)
j=1

T,

dvi
dt

2
Ex: JUNN(O,JW) Ex: f(x) = 3 (14 tanh(gx)),
(Sompolinsky et al, 1988) f(X) = tanh(gX)-
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From firing rate neurons dynamics to linear response.

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

—

%:—u\7+j.f(\7)+§(t); i=1...N. (1)

Network Non linearity

2
Ex: J,-J-NN(O,JW> Ex: f(x) = 3 (1+ tanh(gx)),
(Sompolinsky et al, 1988) ) f(X) = tanh(gx)_

v
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From firing rate neurons dynamics to linear response.

Amari-Wilson-Cowan model

Amari, 1971; Wilson-Cowan, 1972; Cohen-Grossberg, 1983; Sompolinsky et al, 1988; ...

dv - PN
CTt:_MV+j.f(V)JrS(t); i=1...N. (1)
N ——
G(V)

Network Non linearity

Ex: f(x) = 3 (1+ tanh(gx)),
f(x) = tanh(gx).
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Theorem. If g is small enough G is contractive.

—

VWV e M, |G(V) =GV <V = V|, 0<n<1
=

For S = 0, there is a unique stable fixed point V* G(V*) = 0.
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

— —

Small perturbation of the fixed point. V=Vt £.

® o pG,.E1§

= (+0(I€1?)

£(t) = / t ePCu+(t=2) S(s5)ds

t
A=PLDGy, P €= P& §=P5 = g(t) - / eA(t_S)'Sl(s)ds
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Harmonic perturbation. S| (t) = A e/“*.

Ak = /\k,r + I.)\kﬂ'; w=w,+ iw;.

The integral is finite if w; < — A ,.

Ek(t) = R(w)e™".

Complex susceptibility matrix.

£(t) = R(w).Se. (2)
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

25
(@) 5

(el
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

45
40
35
30

b (@) 2
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Example 1. f(x) = tanh(gx) =

\_/'*

0; DGy.=—puI+gJ
Let sy = sk, + Isk,; eigenvalues of 7.

Ak = =+ g Sk,r i g Sk,
—_——
Ai,r Ak,i

’

When J is random, Jj; ~ N(0, J—,;) the probability distribution of
eigenvalues is known.

(Girko, V. L., Theory Probab. Appl. 29, 694-706, 1984. ).
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Example 2. f(x) = Htanfh(gx) N

V*=V*(J); DGy.=—uI+gD(V*)J
where D(V*) = diag(%z(gvi*)).

The eigenvalues of D(V*)7 cannot be determined from the

eigenvalues of 7. However, when [J is random, J;; ~ N(O, J—,\j) the
probability distribution of eigenvalues can be determined.

(Girko, V. L. Theory of Random Determinants. Boston, MA: Kluwer, 1990).
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Summary:

@ The linear response to a signal of weak amplitude is controlled
by the Jacobian matrix DG, .

@ Eigenvalues of DG, = Poles of the complex susceptibility =
Resonances.

@ What is the phenomenological /neuronal interpretation of
DGy, 7
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Summary:

@ The linear response to a signal of weak amplitude is controlled
by the Jacobian matrix DG;..

e Eigenvalues of DG;, = Poles of the complex susceptibility =
Resonances.

@ What is the phenomenological /neuronal interpretation of
DGy, 7

b(vs) J
——
Leak Gain f! Synapses
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From firing rate neurons dynamics to linear response.

Low gain g dynamics

Summary:

@ The linear response to a signal of weak amplitude is controlled
by the Jacobian matrix DG, .

o Eigenvalues of DG, = Poles of the complex susceptibility =
Resonances.

@ What is the phenomenological /neuronal interpretation of
DG, 7

D(v*) J
——
Leak Gain ! Synapses
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From firing rate neurons dynamics to linear response.

Expansion /Contraction

VAN
7

Saturation Amplification
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From firing rate neurons dynamics to linear response.

Expansion /Contraction
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From firing rate neurons dynamics to linear response.

Expansion /Contraction
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From firing rate neurons dynamics to linear response.

Expansion /Contraction
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From firing rate neurons dynamics to linear response.

Expansion /Contraction
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From firing rate neurons dynamics to linear response.

Linear response in a dynamical regime

dv; N

o= —hVi +J§_;J,Jf Vi(t)) + hi(t); i=1...N.
N
Vi(t + dt) = Vi(£)(1 — pdt) + > Jyf(Vi(t))dt + Si(t)dt
j=1
N
Vi(t +1) =Y Jf(Vi(2)) + Si(¢). (3)
j=1
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From firing rate neurons dynamics to linear response.

Linear response in the chaotic regime

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Linear response in neuronal networks: from neurons dynamics

Bruno Cessac



From firing rate neurons dynamics to linear response.

Transition to chaos by quasi periodity as g increases

; ”‘ ,:‘A‘A(J.’J.‘AVA)‘;.‘;.'; g 5‘»;,‘\,1‘,/,&;‘;_

A

Doyon B. et al, International Journal Of Bifurcation and Chaos, Vol. 3, Num. 2, 279-291 (1993)

Cessac B. et al, Physica D, 74, 24-44 (1994)
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

0,5 :
¢35.1,-0.158
0,00
050
3
H
1,00 o
1,50 4
2 | L | I
7200 150 .00 050 0,00 050
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

inkial conditions
y—f——%
w——f—un

e———ium
i—f——&un
aditonal controls
magnficaion -—J— %

precision —J— 2 0|

Hénon map

{ x(t+1) =1—ax?(t)+y(t)
y(t+1) = bx(t)

a=14b=0.3

Wolfram §§ Demonstrations Projec demonstrations walfram com

https://upload.wikimedia.org/wikipedia/commons/a/ac/
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

Hénon map

/ x(t4+1) =1—ax®(t) + y(t)
g y(t+1) = bx(t)
a=14b=0.3

https://upload.wikimedia.org/wikipedia/commons/a/ac/
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

Hénon map

5 x(t+1) =1—ax?(t)+y(t)
y(t+1) = bx(t)

a=14b=0.3

http://www.demonstrations.wolfram.com/OrbitDiagramOfTheHenonMap/
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

Decomposition of Hénon's |
Transformation |

‘The grdded square in te upper left
s transformed in hree steps: a non-
Tinear bending (upper right) in the
y-direction, the contraction towards
the y-axis (lower left) and a reflec-
tion at the diagonal (lower righ).
The region shown is ~2.2 < z <
22ad -22<y<22

Hénon map

{ x(t+1) =1—ax?(t)+ y(t)
y(t+1) = bx(t)

a=14,b6=03

http://www.sfu.ca/ rpyke/335/W00/
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

05
T
£=35.1,=0.158
000
050+
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€
4001 o
4501 i
2 ! ! I I
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

Lyapunov spectrum, g=3.5

Expansive T T T T T T
o o s i
e 1
Positive Lyapunov exponent 0158 0759
Y 0l
bt
2 . 4
o,
050+
= al Q. s
£ ] \
E \
1,00 T o o
180 il
8- i
-8.98
2, L L L L E L 1 L L L
72,00 -1,50 -1,00 -0,50 0,00 050 b’} 2 4 6 8
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From firing rate neurons dynamics to linear response.

Chaotic dynamics and strange attractors

Evolution d’une perturbation: Lyapunov spectrum, g=3.5
Directions d'Oseledec 12,3

1 T T T T T . i ; 3
L O-. e

7 ps
2 4

o= 4
S b s
L &
S o
100~ - A v
o 10 sk i
ki | 898
L L L 3 L 1 L 1 1
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

V(t+1)=G(V(t); V'(t+1)=G(V'(t))+eS(t)
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

V(t+1)=G(V(t); V'(t+1)=G(V'(t))+eS(t)

Switch the stimulus on at time to; V(to) = V/(to).
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

V(t+1)=G(V(t)); V'(t+1)=G(V'(t))+€S(t)
Switch the stimulus on at time to; V(to) = V/(to).

5(t) = V'(t) = V(t) = 8(to + 1) = V/(to + 1) — V(to + 1) = €5(to)
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

V(t+1)=G(V(t)); V'(t+1)=G(V'(t))+€S(t)
Switch the stimulus on at time to; V(to) = V/(to).

(t) = V'(t) = V(t) = 6(to+ 1) = V'(to + 1) — V(to + 1) = €5(to)

—

(to+2) = G(V'(to+ 1))+ €S(to + 1) — G(V(to + 1))
5(to +2) = G(V(to + 1) + €S(to)) + €S(to + 1) — G(V(to + 1))

1 Sal

(o]

g(to + 2) =€ DG\7(t0+1)'§(t0) + §(t0 + 1)} + 627_]'(1'.'0 + 1)
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

V(t+1)=G(V(t); V'(t+1)=G(V'(t))+eS(t)

Switch the stimulus on at time to; V(to) = V'(to).

(t) = V'(t) = V(t) = 0(to + 1) = V/(tg + 1) — V(to + 1) = S(to)
(to+2) = G(V'(to + 1)) + eS(to + 1) — G(V(to + 1))

5(

to+2) = (\7(t0 +1) +€S(to)) + €S(to + 1) — G(V(to + 1))

1011

(o]

5(tg+2) =€ (t0+1).§(t0)+§(t0+1)} + e2ij(ty + 1)

t—7+1 H 25
_ezt DGV(to—H )—l—e R(t)
T=1o
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

t—1
3(t)=€>_ (DFy) ™ .5(r) +R(t)
T=ty
0,0 T
IN=g
0,051 B
0,10 {4 -
2-0“57 B
E
O
020~ J -
g o1 =
0,25 1 -
n'QD 50 100
Il Il ! L Il

Bruno Cessac Linear response in neuronal networks: from neurons dynamics



From firing rate neurons dynamics to linear response.

Time dependent perturbation

t—1
g(t) =€ Z ( DF\7 )t—7‘+1 §(7_) +€2ﬁ(t)
T=ty
' NS ‘Controlled ‘ - .
0051 by the spectrum 4 Stablllty ana |yS|S

—

of DFge & G(V)=Jf(gV)

m(te1)
T
L

DF; = g TN(V)
0201 270“77—. B /\U — f‘/(g uj) (51_/

0251 4
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

t—1 . s o
5(t) = ¢ Z (DFy) ™ .5(r) +R(t) Linear stability analysis

- - —
T=to G(V) = jf(g V)
L 1 T —
Controlled
g IN=8
0051 by the spectrum b
of DF - .
o0l v 4
2018 4
£

o

020 | 4
F1F 9

0251 1 g
ol L

0 50 100
t
| | I |
025 020 15 010 005 000
mt)
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

t—1 . s o
5(t) = ¢ Z (DFy) ™ .5(r) +R(t) Linear stability analysis

S =
7=t G(V)=Jf(gV)
L 1 T —
Controlled
g IN=8
0051 by the spectrum B
of DF - .
0101 v i
2018 4
£ %

o

0201 I i
F1F B ——
0251 1 g
ol L
0 50 100
t
I I I I
025 020 015 010 005 000
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

*eZDFt "1 5(r) + €R(t)

V(t+1)

T=tgy 6(\7):jf(g )+9
DF; = gIN(V)
0001~ g:lSS.N:S‘ A /\U — f/(g u_l) 61_]
mARAANAN |
= / | {\( T
J
% Ao,‘ 15 : rn.‘m Y 0,05 o“oo
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

*eZDFt "1 5(r) + €R(t)

V(t+1)

T !
0001 oy 55, N=g /\U _ f (g u.’

T 1 {1 Q f
A I ﬁ LA

02 I
%0 015 010 005 000 =0
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

5(t)=e Z DFL "t §(7) +€2R(t)

V(t+1)
T=ty
05
g T T
£35,1,=0.168
000
050
2z
H
1,00 -
150 il
2 I I I I
2,00 -1,50 -1,00 -0,50 0,00 050
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

t—1
fo)=c Y DR IISG) 4eR@) e

T=tg o ouss 0758
2b = |
080————— [ °.
o i
4=35,1,=0.15¢ =T
. @
0,001 Expansive ° %
L. s
Positive Lyapunov exponent [ .
0501~ 3 = 0 s
2z
E
1001 -
Evolution d'une perturbation:
Direstions ¢Oseledec 1.2.3
T T T
1501 i
2 L
2,00 -1,50 -1,00 -0,50 0,00 050

L
5 EJ 700 i3 Z00

m neurons dynar
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

6(1'.') — ¢ Z DFt T+1 S(T) —|—62I$(t) Lyapuncvspeclrum.g:ﬁ,‘S

V(t+1)  Earerr—
T=tg [ o5 TR aree

: o

o . i
05 ; ; r ;

= o i

4=35.1,=0.158 =T ‘

6 <
000 L

s

L ssn
0501~ 3 = 0 s
2z
E
1001 -
Evolution d'une perturbation:
Direstions ¢Oseledec 1.2.3
T T T
1501 i
2 I I I I
2,00 -1,50 -1,00 -0,50 0,00 050 I
) -
100} 2. 4
, |
s % T Te 200

'om neurons dynam S
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

3(t)=e Z DF 4 -5(r) +€R(t)
T=ty

T T
435.1,=0.158
0,00

Linear response vs chaotic

Butterfly effect
Van Kampen objection

m(te1)

vl By WWMM‘M ] The linear expansion provided by
i the positive Lyapunov exponent
R prevents linear response theory.
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From firing rate neurons dynamics to linear response.

Time dependent perturbation

Linear response vs chaotic

17.0
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From firing rate neurons dynamics to linear response.

The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

T

1
T'i“oo72¢( (V) = im TZCD V +34))

t=1

11 Lebesgue measure on the phase-space.

p= lim G*t 1, SRB measure
t—+o00
1 T
. 4 2ty ] HL_2s =
lim — ;—1 ® [G (V)} /ch(V)p(dX)

Natural notion of averaging "on" the attractor.
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From firing rate neurons dynamics to linear response.

The Sinai-Ruelle-Bowen measure

Time averaging is robust to perturbation.

lim Z P( G (V) lim

T—oo T

1y Lebesgue measure on the phase-space.

ug lim 5”;”, SRB measure
t—+oo
e
Ftoy] BL2S
| — d |G V S(V)pu(dX
pim =300 6] "2 [ euta

Natural notion of averaging "on" the attractor.

Bruno Cessac

Temporal diagram

a6

'
|
!
T
[fanant i

M
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From firing rate neurons dynamics to linear response.

The Sinai-Ruelle-Bowen measure

Decomposition of Hénon’s
Transformation
The gridded square in the upper left

is transformed in three steps: a non-
Tinar bending (upper rght) in the

Time averaging is robust to perturbation.

1T edirecion, the contructon fowads

=t ) the y-axis (lower left) and a reflec-

lim ZQ G (V) lim — Z‘D(G (V+9)) tion at the diagonal (lower right).
T— o0 T T—oo T Ny B

=1 The region shown is 22 < z <

22ad -22<y <22

1y Lebesgue measure on the phase-space.

lim G*tuL, SRB measure |

» t—+oo |

[ \ ‘

Lim = Zd) [¢' )] "= /ﬂd)(\7)p(dx) |

Natural notion of averaging "on" the attractor. Figue 123 - ke
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From firing rate neurons dynamics to linear response.

Out of equilibrium SRB state

D. Ruelle, J. Stat. Phys., 1998

pe=pt o= lim Gi... G

t—1
51.'[1, [(D] = € Z //l,(d\?)DC?\t?_T_IST [671(\7)} 'v\7(7:—7'—1)q> + NL

T=—00

Sep[®] =€) <”°G§f—f’—1 ° Gﬁfl‘¢>

[ea

eq
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From firing rate neurons dynamics to linear response.

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

deplui] = e[x * ST; (¥)

N ot
:62 Z Xij(0)Sj(t—o—1)

j=1lo0=—
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From firing rate neurons dynamics to linear response.

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution

deplui] = e[ x * S]; (t)

N t

GZ Z Xij (t—o—1)

j=1 o0=—00

Xij(o) = Z’y,-j(a') 171 ks <H7:1 F' (g, (1= 1))>eq
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From firing rate neurons dynamics to linear response.

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution :
Linear response

deplui] = e[ x * S]; (t)

N t

GZ Z Xij (t—o—1)

j=1 o0=—00

Xij(o) = Z’y,-j(a') 171 ks <H7:1 F' (g, (1= 1))>eq
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From firing rate neurons dynamics to linear response.

Linear response in the firing rate neural network
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From firing rate neurons dynamics to linear response.

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution Linear response

deplui] = e[ x * ST, (t)

}“:V,‘: by f
d WM\
\1 [ /Jm

J

N
:ez Z Xij(0)Sj(t—o—1) 7
Jj=1 Y_/_J g

43

XI,J( ) ZVU )H7:1 Jk/k/—1 <H7:1 f/(uk/—1(/ - 1))>eq
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From firing rate neurons dynamics to linear response.

Linear response in the firing rate neural network

B. Cessac, J.A. Sepulchre, PRE (2004); Chaos (2006); Physica D (2006)

Convolution Linear response

deplui] = e[ x * S]; (t) ~ Kk
Q Iy

N t ; Kl by
SOIPIRUCEITE YA

43

Xij(o) = Z'y,-j(a) 171 ks <H7:1 F' (g, (1= 1))>eq
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From firing rate neurons dynamics to linear response.

Resonances

Ruelle resonances

Power spectrum @ Ruelle-Pollicott resonances: In the
power spectrum. Absolutely
continuous part of the SRB
measure.

leas(@]
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From firing rate neurons dynamics to linear response.

Resonances

Ruelle resonances

Complex susceptibility @ Ruelle-Pollicott resonances: In the
power spectrum. Absolutely
continuous part of the SRB
measure.

@ Exotic resonances. Not in the
power spectrum. Singular part of
the SRB measure.

@ Predicted by D. Ruelle (J. Stat.
Phys, 1999)

@ Exhibited in B. Cessac, J.A.
Sepulchre, PRE, 2004.
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From firing rate neurons dynamics to linear response.
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v namics to linear response

Response to a time-dependent stimulus
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From firing rate neurons dynamics to linear response.

Response to a time-dependent stimulus
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From firing rate neurons dynamics to linear response.

Response to a time-dependent stimulus

N
u,,,, = E,I.Uf(u“ ) + ecos(m,, 1)sin(ar) (£ ~107%)
7

0.1

0,05 | —

0,05

0.1 "

I<,, e >l (e=0)

< Us,,, >= £ X5 (0)COS(m,, 1) SINDE + Pyo () + O(E™)
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From firing rate neurons dynamics to linear response.

Main conclusions

@ Linear response is possible in a chaotic neural network.

@ Convolution kernel depending on synaptic graph and dynamics
built on equilibrium (SRB) correlations.

@ The response graph is different from the synaptic weights
graph and depends on the stimulus.
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From spiking neurons dynamics to linear response.

From spiking neurons dynamics to linear response.
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Linear response in spiking neuronal networks with

unbounded memory

B. Cessac, R.Cofré, J. Math. Neuro. submitted, 2018
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How are spike correlations modified by a time-dependent stimulus 7



An Integrate and Fire neural network model with chemical
and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Y
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An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

@ Voltage dynamics is

3
f time-continuous.
- @ Spikes are time-discrete
k(t) events (time resolution ¢ > 0).
t
N N

Vires t,((l) € [n5, (n aF 1)(5[
=
wi(n) =1

wy(n) [0]0]1[0J0J0JoT1 0]0]1]0]




An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

A B 0

e Voltage dynamics is

time-continuous.

MHM. @ Spikes are time-discrete

events (time resolution ¢ > 0).

i @ Spike state wi(n) €0, 1.
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An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

@ Voltage dynamics is

time-continuous.

@ Spikes are time-discrete
events (time resolution ¢ > 0).

@ Spike state wi(n) €0, 1.
@ Spike pattern w(n).

MEeuren number

a0
Time (ms)



An Integrate and Fire neural network model with chemical

and electric synapses

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

@ Voltage dynamics is
time-continuous.

Spikes are time-discrete
events (time resolution ¢ > 0).

Spike state wx(n) €0, 1.
Spike pattern w(n).
Spike block wy),.

MEeuren number

Time {ms)



A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

5

Sub-threshold dynamics:
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A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

AN =
dVi N =
Gy = —8Lk(Vie — EL) W \

SN
> gii(t,w)(Vi — ) \’ \
j -

Sub-threshold dynamics:

o

8ii(t) = gii(t) + Gijoug(t — t))

t>t




A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

Sub-threshold dynamics: "

009

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013
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A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

T
o —

dV, :zz A
Gt = —g.x(Vi — Ep) ﬂ \

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

13

o |
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k
dt W
o |
=D _8(t,w)(Vi - B) 0 \/
: |

gkj(t,w) = ij Z akj(t—né)wj(n
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A conductance-based Integrate and Fire model

M. Rudolph, A. Destexhe, Neural Comput. 2006, (GIF model)

T
o —

dV, :zz A
Gt = —g.x(Vi — Ep) ﬂ \

R.Cofré, B. Cessac, Chaos, Solitons and Fractals, 2013

Sub-threshold dynamics:

13

o |
0

k
dt W
o |
=D _8(t,w)(Vi - B) 0 \/
: |

+Sk(t) + oB8k(t)
gkj(t,w) = ij Z akj(t—né)wj(n
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A conductance-based Integrate and Fire model

Sub-threshold dynamics:

dV, .
de—k—kgk(t w) Vi = /k(t,w).

def

ag(t,w) = Zakjt né)w;(n)
n>0

i(t,w) = gLiEL+ Y Wigoug(t, w)+Si(t)+os8i(t)
J



A conductance-based Integrate and Fire model

Sub-threshold dynamics:

Dynamics integration

dV, )
Ck Ttk + 8k ( t,w) Vi = Ik(t,w).
Ce(tr, tow) = e G Juvry e BLuw) du
@ Linearin V.

@ Spike history-dependent.




A conductance-based Integrate and Fire model

Dynamics integration

Sub-threshold dynamics:

Me(t, £ 0) = e G Javrw Bl vw) du
dVi _
Ck g +ak (t,w) Vi = ik(t,w).
0
@ Linearin V. Vi(t) JJ
@ Spike history-dependent. e t

wi(n) [0]0[1]0]o[0J0[1]0[0]1]0]




A conductance-based Integrate and Fire model

Sub-threshold dynamics:

dVi, _ i
Co— T (60) Vi = ik(t,0). Ty(ty, t,w) = e G Javntem L0 e

@ Linearin V. 4
Vi(t, w) = V,ESP)(t,w) + V‘ES)(t,w) + V,E"""e)(t,w)

@ Spike history-dependent.




A conductance-based Integrate and Fire model

| P ——
Sub.threshold dynamics:

g
Cx % +ai(t,w) Vi = ik(t,w). Ti(tr,t,w)=e % Jepvmytesn 86 )

du

@ Linearin V. Vilt, w) = V‘SSp)(nw)Jr V[ES)(tyw)+v}£noise)(t7w)

—_—
V‘Edet)(t,w)

@ Spike history-dependent.




A conductance-based Integrate and Fire model

Dynamics integration

Sub-threshold dynamics:

=&l gk(u,w)du
dVi . rk(tl, t7w) — e G Juvr(tw) )
Ck ? + gk ( t,w) Vi = Ik(t,w).
o Linearin V Vi(t, ) = VP (2, w) + VD (1, 0) + V% (1, )
. N e’
@ Spike history-dependent. V9 (¢ )

vE(, w) = vt w) + VD (e, w),




A conductance-based Integrate and Fire model

1t
V, Mi(t1, t,w) =€ % Jarv (e 8x( ) du

d .
C d—tk—i—gk(t,w) Vi = ik(t, w).

Sub-threshold dynamics:

Vi(t, w) = V‘SSP)(t, w) + V‘ES)(t, w) +V‘E"°"se)(t, w)

@ Linearin V.

der)(f,w)

@ Spike history-dependent. vi

VIt w) = VDt w) + VD (E, w),

n 1
vlfsy )(t,w) = ? Z ij / Fk(tl, t,w)akj(tl,w)dtl
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A conductance-based Integrate and Fire model

1t
V, Mi(t1, t,w) =€ % Jarv (e 8x( ) du

d .
C d—tk—i—gk(t,w) Vi = ik(t, w).

Sub-threshold dynamics:

Vi(t, w) = V‘SSP)(t, w) + V‘ES)(t, w) +V‘E"°"se)(t, w)

@ Linearin V.

der)(f,w)

@ Spike history-dependent. vi

VIt w) = VDt w) + VD (E, w),

n 1
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A conductance-based Integrate and Fire model

1t
V, Mi(t1, t,w) =€ % Jarv (e 8x( ) du

d .
C d—tk—i—gk(t,w) Vi = ik(t, w).

Sub-threshold dynamics:

Vi(t, w) = V‘SSP)(t, w) + V‘ES)(t, w) +V‘E"°"se)(t, w)

@ Linearin V.

der)(f,w)

@ Spike history-dependent. vi

VIt w) = VDt w) + VD (E, w),

n 1
Vlfsy )(t,w) — FZ ij/ I'k(tht,w)akj(tl,w)dﬁ



A conductance-based Integrate and Fire model

Variable length Markov chain

Neuron index
past
present

Time (ms)



From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w,t) affected by the
stimulus ?
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From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w,t) affected by the
stimulus ?

If S is weak enough: S [f(t)] =[rexS]|(t) , (linear
response).
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From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w, t) affected by the
stimulus 7

If S is weak enough: dp[f(t)] =[rer*xS]|(t) , (linear

response).
[t—t1] (1)
ki f(t—t1) = Z cls) t—tl,-),H(kErl))rk(O -1,.)
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From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w, t) affected by the
stimulus ?

If S is weak enough:  dp[f(t)] =[rexS]|(t) , (linear
response).

[t—t1]

K/k’f(t—t]_) = ?k Z (Ohi f(t—l’l,.),

r = —0o0

(1)
M, (r,.) r

nr—1.9 O

History dependence.
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From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w, t) affected by the
stimulus ?

If S is weak enough: S [f(t)] =[rexS]|(t) , (linear

response).
_ - = sp _ - —
kkr(t—t) ? r:z_:oo COP | f(t—1,)), 1) M(0,r—1,.)

History dependence, observable
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From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w, t) affected by the
stimulus ?

If S is weak enough: S [f(t)] =[rexS]|(t) , (linear

response).
[t—t1]

Hk,f(t_tl = Z Csp)|: t_t].?'):;{( (rl))rk(O,r—l,.)}
r=—o0

History dependence, observable, network dynamics
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From spiking neurons dynamics to linear response.

Response to stimuli

How is the average of an observable f(w, t) affected by the
stimulus ?

If S is weak enough:  dpu[f(t)] =[rexS]|(t) , (linear

response).
=y 2 00)
K/k’f(t—tl) = a Z C(SP) f(t—tl,.),hrk(o,r_l,.)

History dependence, (spontaneous) correlation between observable
and network dynamics
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From spiking neurons dynamics to linear response.

Response to stimuli in a mean-field limit

Characteristic time
Ck
N
8L+ 2 i1 GiivjTij

Tdk =

Approximations

(i) Replace 7(r —1,.) by —o0;
_(r—l—tl)

1t
(i) Replace [k(t1,r—1,w)=e % Jo g uw) du by e  Tdk
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From spiking neurons dynamics to linear response.

Response to stimuli in a mean-field limit

SOl (2)] =

N n—=
2 Vi A Ttk (Si*eqn)(r—1)

u

ed,k(u) = e Tdk
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From spiking neurons dynamics to linear response.

Response to stimuli in a mean-field limit

SO (1)] =

N n—=
DR Vs (Sk*eai)(r—1)

Markov approximation with memory depth 1

) e CEPI[f(t,-), wk(r)]
) e [F(t, ), wi(r) wilr —1)]
3C(sp [f(t, ) (r)w,-(r— l)LUj(f— 1)]

(
N
+ Z,Nzl E
+2=1 e
_|_
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From spiking neurons dynamics to linear response.

Response to stimuli in a mean-field limit

Markov approximation with memory depth 1

e £(t, ), wi(r)]
w0 el [f(e ) wir) wilr — 1)]
G cEP [£(t, ), wi(r) wir — D wi(r — 1)]

N
+2i=1 Thg
_|_ P
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From spiking neurons dynamics to linear response.

Response to stimuli in a mean-field limit

Markov approximation with memory depth 1

A R [£(t, ), wi(r)]
+YN A2l (L), wi(r)wilr — 1)]
+ N AL CEP[F(t, ) wi(r) wi(r — 1) wi(r — 1]
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From spiking neurons dynamics to linear response.

Response to stimuli in a mean-field limit

Ex: Firing rate of neuron m

MW pfwm®)] =
A1 6P [wim(e), wi(n)]

2 w1 s=le] | sl A3 el [wm(0), wh () witr — D]
Tog Tk=l rg Zr=—oo i=1 ki i (Sk*edi)(r=1)
5 VT T w5V Al [wm®), w0 wilr — Vs — 1]
N Tk
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From spiking neurons dynamics to linear response.

Conclusions

Linear response in a spiking neural network.

Convolution kernel depending on synaptic graph and dynamics
built on equilibrium correlations.

@ Link with receptive fields for sensory neurons ?
@ Further steps. Handle this equation ... in a simple numerical
example.
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General conclusions

General conclusions
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General conclusions

Network response to a stimulus
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General conclusions

Network response to a stimulus

© How does an input/ stimulation applied to a subgroup of

neurons in a population affect the dynamics of the whole
network ?

@ How to measure the influence of a stimulated neuron on
another neuron ?

© How does this "effective connectivity” relates to :

(a) Synaptic connectivity;
(b) Pairwise correlations;
(c) "Information” transport.
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General conclusions

Network response to a stimulus

Spontaneous dynamics = complex, noise, chaos, non linear.
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General conclusions

Network response to a stimulus

Spontaneous dynamics = complex, noise, chaos, non linear.

Stimulus effect = requires to filter the spontaneous part =
suitable averaging.
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General conclusions

Network response to a stimulus

Spontaneous dynamics = complex, noise, chaos, non linear.

Stimulus effect = requires to filter the spontaneous part =
suitable averaging.

Linear response. The response to the stimulus is obtained in terms

of correlations computed with respect to spontaneous activity
(Kubo like relations).
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General conclusions

Network response to a stimulus

Spontaneous dynamics = complex, noise, chaos, non linear.

Stimulus effect = requires to filter the spontaneous part =
suitable averaging.

Linear response. The response to the stimulus is obtained in terms
of correlations computed with respect to spontaneous activity

(Kubo like relations).

Information transport 7 Requires a suitable probabilitic
characterization (entropy transport, Granger causality, ...).
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Linear response theory in physics

P[S] = 1e A}
o Equilibrium stat. phys.
(Max. Entropy Principle). H{S} =3, AaXa {S}

AaXa ~E,P XV, u XN, hx M, ...

PV = nRT, ...




Linear response theory in physics

@ Equilibrium stat. phys.
(Max. Entropy Principle).

@ Non equilibrium stat. phys.
Onsager theory.

Jo = Fa(VAL, ..., VAg,...)

Fome S LagAs
B

-

Jo = —0eVV; jo=—-AVT,...




Linear response theory in physics

JTA:fa(ﬁ)\l,...,ﬁ)\g,...)

@ Equilibrium stat. phys. Ja ~ Z LogVAg+...
(Max. Entropy Principle). B
@ Non equilibrium stat. phys.

Onsager theory. = = = 5
=—0eVYV, =-AVT,...
@ Green-Kubo relations. Jel = JQ ’

Linear transport coefficients
%
equilibrium correlations of
currents.




Linear response theory in physics

Onsager theory in non equilibrium statistical mechanics.
gradients = fluxes

Linear relation between "small” gradients and fluxes.
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Linear response theory in physics

Onsager-Ruelle - ... theory in dynamical systems.
Perturbation = response

Linear relation between "small” perturbations and response.
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Gibbs distribution

@ Equilibrium stat. phys.
(Max. Entropy Principle). The Sinai-Ruelle-Bowen measure
@ Non equ. stat. phys. Onsager is a Gibbs measure
theory.
@ Ergodic theory, chaotic H = —logdet N“DFx
systems. )




Gibbs distribution

@ Equilibrium stat. phys.

(Max. Entropy Principle). Plw] = Le PH(w)
@ Non equ. stat. phys. Onsager H _ X
theory. (W) =220 daXa (@)
@ Ergodic theory. Xa(w) = Product of spike events

] Markov chains = flnlte memory. Hammersley, Clifford, unpublished, 1971




Gibbs distribution

@ Equilibrium stat. phys.
(Max. Entropy Principle). Plw] = Le PH(w)
@ Non equ. stat. phys. Onsager H
w)= AaXo (W
theory. (@) =220 AaXa (w)
@ Ergodic theory. Xa(w) = Product of spike events
] Markov chains = flnlte memory. Hammersley, Clifford, unpublished, 1971
@ Chains with complete 0. Onicescu and G. Mihoc. CRAS Paris, 1935
connections - infinite memory _
(Left Interval Specification). R. Fernandez, G. Maillard, A. Le Ny, J.R. Chazottes, ... )
v




Thanks !!
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