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Foreword

• Shape optimization is about the minimization of an objective function J(Ω),
depending on a shape Ω of R2 or R3, under certain constraints.

• Such problems have come up early in the history of sciences, and they are
ubiquitous in nature.

• Nowadays, they arouse a tremendous enhusiasm in engineering.

• They are at the interface between mathematics, physics, mechanical
engineering and computer science.

• Shape optimization is a burning field of research!
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Contents (I)

• The present course is composed of

• 6 hours of lectures, covering the main theoretical aspects;

• A hands-on session of 6 hours, dedicated to the numerical implementation of
basic shape and topology optimization algorithms in FreeFem++.

• All the material from the course (slides of the lectures, subjects and solution
programs for the hands-on session) is available on the GitHub repository:

https://github.com/dapogny/GDR-MOA-Course

• Feel free to contact me for any comment, suggestion or question:

charles.dapogny[AT]univ-grenoble-alpes.fr
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Dido’s problem (I)

• Dido’s problem is reported in the myth of the foundation of Carthage by
Phœnician princess Dido, in 814 B.C. (cf. Virgil’s Aeneid, ≈ 100 B.C.).

• Dido fled Tyr (actual Lebanon) after her husband got murdered by her brother
Pygmalion.

• Accompanied by here fellows, she landed on the Tunisian shore, where she
required a land from local king Jarbas...

•
... They came to this spot, where to-day you can behold the mighty
Battlements and the rising citadel of New Carthage,
And purchased a site, which was named ’Bull’s Hide’ after the bargain
By which they should get as much land as they could enclose with a bull’s hide...

[Virgil, Aeneid]
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Dido’s problem (II)

W. Turner: ‘Dido Building Carthage’ or ‘The Rise of the Carthaginian Empire’ (1815).
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Dido’s problem (III)

Using modern terminology:

How to surround the largest possible area A with a given contour length `?

`

A

`0

A0

(Left) The solution to Dido’s problem in the case where the surrounded domain is limited by
the sea; (right) an ‘unconstrained’ version of Dido’s problem.
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The isoperimetric inequality (I)

• Incidentally, Queen Dido had just discovered the isoperimetric inequality:

Let Ω ⊂ R2 be a domain with ‘smooth enough’ boundary ∂Ω. Let A be the area
covered by Ω, and ` be the length of ∂Ω. Then,

4πA ≤ `2,

where equality holds if and only if Ω is a disk.

• Equivalently,

Among all domains Ω ⊂ R2 with prescribed area, that with minimum perime-
ter is the disk.

• Other versions of this problem exist.

Example: One may impose that the boundary of Ω should contain a non
optimizable region (a segment).
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The isoperimetric inequality (II)

• This fact was first proved in 1838 by J. Steiner, ... but the proof was false!
Actually, J. Steiner proved that, assuming that an optimal shape exist... it
should then be a disk.

• However, many shape optimization problems do not have a solution, for deep
mathematical and physical reasons.

• Only in 1860 did K. Weierstrass complete the proof of the isoperimetric
inequality in two dimensions.

• The isoperimetric inequality holds in more general contexts, for instance in
three space dimensions (H. Schwarz, 1884):

Among all domains Ω ⊂ R3 with prescribed volume, that with minimum
surface is the ball.
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Another occurrence of the isoperimetric inequality

Medieval cities often have a circular shape so as to minimize the perimeter of the
necessary fortifications around a given population (i.e. their area).

Map of Paris during the Dark Ages.
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The quest of architects for optimal design (I)

• Structural optimization has long been a central
concern in architectural design.

• One crucial step towards modern design: the
Hooke’s theorem (1675)

“As hangs the flexible chain, so but inverted will
stand the rigid arch.”

• •

(Left) A chain hanging in equilibrium under the action of gravity and tension forces; (right)
an arch standing in equilibrium under gravity and compression forces.
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The quest of architects for optimal design (II)

• A. Gaudi sketched the plans of the church of the Colònia Güell (1889-1914) by
relying on a funicular model so as to determine a stable assembly of columns
and vaults.

(Left) Gaudi’s experimental device, (right) model of the Colònia Güell (Photo credits:
http://www.gaudidesigner.com).
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The quest of architects for optimal design (III)

Since then, optimal design concepts have attracted the attention of world-renowned
architects: Heinz Isler, Gustave Eiffel, Frei Otto, etc.

• They allow to model complex geometric criteria, related to the æstethics, the
constructibility, and the mechanical performance of structures.

• Optimized shapes with respect to mechanical considerations have often
‘elegant’ outlines: their organic nature is very appreciated by architects.

(Left) A soap-film structure, coined by Frei Otto, (right) interior view of the Manheim
Garden festival.
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The quest of architects for optimal design (IV)

• Nowadays, modern structural optimization techniques are currently employed
for the design of large-scale buildings.

(Left) Entrance of the Qatar National Convention Center, in Doha [Sasaki et al]. (Right)
Sketch of a 288m high skyscraper in Australia by Skidmore, Owings & Merrill.
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Towards ‘modern’ shape and topology optimization (I)

• More advanced shape optimization
methods have emerged from the 1960’s,
mainly due to

• The development of efficient numerical tools
for analyzing complex physical phenomena
(notably the finite element method);

• The increase in computational power.

• One of the first fields involved is
aeronautics, where engineers were
motivated to optimize airfoils so as to

• Minimize the drag of aircrafts;

• Increase their lift.

Sketch of the wing of an aircraft

lift

drag

An airfoil subjected to the reaction of air

19 / 211



Towards ‘modern’ shape and topology optimization (II)

Concurrently, such computer-aided methods have aroused a great enthusiasm in civil
and mechanical engineering.

Optimization of a torque arm (from

[KiWan])

Optimization of an arch bridge (from [ZhaMa])

20 / 211



Towards ‘modern’ shape and topology optimization (III)

• Since then, much headway has been made in the mathematical and algorithmic
practice of shape and topology optimization.

• Nowadays, shape and topology optimization techniques are consistently used in
industry in a wide variety of situations.

• Several industrial softwares are available: OptiStruct, Ansys, Tosca, etc.

Optimization of a hip prosthesis (Photo credits:

[Al])

Optimization of an automotive chassis
(from [CaBa])
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What is a shape optimization problem? (I)

• A typical shape optimization problem arises under the form:

min
Ω∈Uad

J(Ω), s.t. C(Ω) ≤ 0,

where

• Ω is the shape, or the design variable;

• J(Ω) is an objective function to be minimized;

• C(Ω) is a constraint function;

• Uad is a set of admissible shapes;

• In mechanical or physical applications, J(Ω) and C(Ω) often depend on Ω via a
state uΩ, solution to a PDE posed on Ω (e.g. the linear elasticity system, or
Stokes equations).
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What is a shape optimization problem? (II)

• A shape optimization process is the combination of:

• A physical model, most often based on PDE (e.g. the linear elasticity equations,
Stokes system, etc...) for describing the mechanical behavior of shapes,

• A mathematical description of shapes and their variations (e.g. as sets of
parameters, density functions, etc...),

• A numerical description of shapes (e.g. by a mesh, a spline representation, etc...)

• These choices are strongly inter-dependent and they are often guided by the
particular application.

• Roughly speaking, shape and topology optimization problems fall intro three
main categories: parametric, geometric and topology optimization.

• This classification is quite arbitrary; it mainly reflects a point of view about
what is important in the problem. The associated mathematical and numerical
methods share a lot of common features.
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Various settings for shape optimization (I)

I. Parametric optimization

The considered shapes are described by means of a set of physical parameters
{pi}i=1,...,N , typically thicknesses, curvature radii, etc...

•
•

••

•

•
•

•

•

pi

S
• x

h(x)

Description of a wing by NURBS; the parame-
ters of the representation are the control points
pi .

A plate with fixed cross-section S is
parametrized by its thickness function h :

S → R.
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Various settings for shape optimization (II)

• The parameters describing shapes are the only optimization variables, and the
shape optimization problem rewrites:

min
{pi}∈Pad

J(p1, ..., pN),

where Pad is a set of admissible parameters.

• Parametric shape optimization is eased by the fact that it is straightforward to
account for variations of a shape {pi}i=1,...,N :

{pi}i=1,...,N → {pi + δpi}i=1,...,N .

• However, the variety of possible designs is severely restricted, and the use of
such a method implies an a priori knowledge of the sought optimal design.
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Various settings for shape optimization (III)

II. Geometric shape optimization

• The topology of shapes is fixed (i.e. their
number of holes in 2d).

• The whole boundary ∂Ω of shapes Ω is the
optimization variable.

• Geometric optimization allows more freedom
than parametric optimization, since no a
priori knowledge of the relevant regions of
shapes to act on is required.

@⌦

⌦

Optimization of Ω via ‘free’ perturba-
tions of the boundary ∂Ω.
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Various settings for shape optimization (IV)

III. Topology optimization

• In many applications, the suitable topology of
shapes is unknown, and it is also subject to
optimization.

• In this context, it is often preferred not to
describe the boundaries of shapes, but to resort
to different representations which allow for a
more natural account of topological changes.

Example Describing shapes Ω as density
functions h : D → [0, 1].

⌦

Optimizing a shape by acting on
its topology.
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Disclaimer

Disclaimer

I This course is very introductory, and by no means exhaustive, as well for
theoretical as for numerical purposes.

I See the (non exhaustive) References section to go further.
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A simplified, academic example (I)

A cavity D ⊂ Rd is filled with a material with ther-
mal conductivity h : D → R.

• A region ΓD ⊂ ∂D is kept at temperature 0.

• A heat flux g is applied on ΓN := ∂D \ ΓD .

• A heat source or sink f : D → R is acting
inside D.

The temperature uh : D → R within the cavity is
solution to the conductivity equation:

−div(h∇uh) = f in D,
uh = 0 on ΓD ,

h ∂uh
∂n

= g on ΓN .
.

Parametric optimization problem: the design vari-
able is the conductivity distribution h ∈ Uad, where

Uad = {h ∈ L∞(D), α ≤ h(x) ≤ β, x ∈ D} .

�D

�N

D

g

The considered cavity
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A simplified, academic example (II)

Examples of objective functions:

• The compliance C(h) of the cavity D:

C(h) =

∫
D

h|∇uh|2dx =

∫
ΓN

guh ds,

as a measure of the heat power inside D, or of the work of the heat flux on D.

• A least-square error between uh and a target temperature u0:

D(h) =

(∫
D

k(x)|uh − u0|αdx
) 1
α

,

where α is a fixed parameter, and k(x) is a weight factor.

• The opposite of the first eigenvalue of the cavity:

−λ1(h), where λ1(h) = min
u∈H1(D)
u=0 on ΓD

∫
D

|∇u|2 dx∫
Ω

u2 dx
,

which characterizes the decay rate of the heat inside D in the transient version
of the conductivity equation.
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A simplified, academic example (III)

This problem has a geometric optimization variant:
the conductivity inside D equals

• A high value β inside a region Ω ⊂ D;

• A low value α inside D \ Ω;

that is:
hΩ = α + χΩ(β − α),

where χΩ is the characteristic function of Ω.

The temperature uΩ : D → R is solution to the
conductivity equation:

−div(hΩ∇uΩ) = f in D,
uΩ = 0 on ΓD ,

hΩ
∂uΩ
∂n

= g on ΓN .
.

Geometric optimization problem: the design variable
is the geometry Ω of the good conducting phase.

�D

�N

D

g

⌦

The two-phase conductivity
setting
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Shape optimization in structure mechanics (I)

We consider a structure Ω ⊂ Rd , that is, a bounded
domain which is

• fixed on a part ΓD ⊂ ∂Ω of its boundary,

• submitted to surface loads g , applied on
ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is governed
by the linear elasticity system:
−div(Ae(u)) = 0 in Ω

u = 0 on ΓD

Ae(u)n = g on ΓN

Ae(u)n = 0 on Γ := ∂Ω \ (ΓD ∪ ΓN)

,

where e(u) = 1
2 (∇uT + ∇u) is the strain tensor field,

and A is the Hooke’s law of the material.

�D
�N

•

g

A ‘Cantilever’ beam

The deformed cantilever

34 / 211



Shape optimization in structure mechanics (II)

Examples of objective functions:

• The work of the external loads g or compliance C(Ω) of domain Ω:

C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ)dx =

∫
ΓN

g .uΩ ds

• A least-square discrepancy between the displacement uΩ and a target
displacement u0 (useful when designing micro-mechanisms):

D(Ω) =

(∫
Ω

k(x)|uΩ − u0|αdx
) 1
α

,

where α is a fixed parameter, and k(x) is a weight factor.
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Shape optimization in structure mechanics (III)

Examples of constraints:

• A constraint on the volume Vol(Ω), or on the perimeter Per(Ω) of shapes.

Vol(Ω) =

∫
Ω

dx , Per(Ω) =

∫
∂Ω

ds.

• A constraint on the total stress developped in shapes:

S(Ω) =

∫
Ω

||σ(uΩ)||2 dx ,

where σ(u) = Ae(u) is the stress tensor.

• Geometric constraints, e.g.

• Constraints on the minimal and maximum thickness of shapes;

• Constraints on their curvature radii;

such constraints are often imposed by the manufacturing process.
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Shape optimization in fluid mechanics (I)

An incompressible fluid with kinematic viscosity ν occupies a domain Ω ⊂ Rd .

• The flow uin through the input boundary Γin is known.

• A pressure profile pout is imposed on the exit boundary Γout.

• No slip boundary conditions are considered on the free boundary
∂Ω \ (Γin ∪ Γout).

The velocity uΩ : Ω→ Rd and pressure pΩ : Ω→ R of the fluid satisfy Stokes
equations: 

−2νdiv(D(u)) +∇p = f in Ω
div(u) = 0 in Ω
u = uin on Γin

u = 0 on Γ
σ(u)n = −pout on Γout

,

where D(u) = 1
2 (∇uT +∇u) is the symmetrized gradient of u.
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Shape optimization in fluid mechanics (II)

Model problem I: Optimization of the shape of a pipe.

• The shape subject to optimization is a
pipe, connecting the (fixed) input area Γin

and output area Γout .

• One is interested in minimizing the total
work of the viscous forces inside the shape:

J(Ω) = 2ν
∫

Ω

D(uΩ) : D(uΩ) dx .

• A constraint on the volume Vol(Ω) of the
pipe is enforced.

�in

�out

�

⌦
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Shape optimization in fluid mechanics (III)

Model problem II: Reconstruction of the shape of an obstacle.

• An obstacle of unknown shape ω is immersed in a fixed domain D filled by the
considered fluid.

• Given a mesure umeas of the velocity uΩ of the fluid inside a small observation
area O, one aims at reconstructing the shape of ω.

• The optimized domain is Ω := D \ ω, and only the part ∂ω of ∂Ω is optimized.
One then minimizes the least-square criterion:

J(Ω) =

∫
O
|uΩ − umeas |2 dx .

⌦

!�in �out

D

O
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More examples

• Optimization of the shape of an airfoil: reducing the drag acting on airplanes
(even by a few percents) has been a tremendous challenge in aerodynamic
industry for decades.

• Optimization of the microstructure of composite materials: in linear elasticity,
one is interested in the design of negative Poisson ratio materials, etc...

• Optimization of the shape of wave guides (e.g. optical fibers), in order to
minimize the power loss of conducted electromagnetic waves.

• etc...
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Why are shape optimization problems difficult?

• From the modelling viewpoint: difficulty to describe the physical problem at
stake by a model which is relevant (thus complicated enough), yet tractable
(i.e. simple enough).

• From the theoretical viewpoint: often, optimal shapes do not exist, and shape
optimization problems enjoy at most local optima.

• From both theoretical and numerical viewpoints: the optimization variable is
the domain! Hence the need for of a means to differentiate functions depending
on the domain, and before that, to parametrize shapes and their variations.

• On the numerical side: difficulty to represent shapes and their evolutions.

• On the numerical side: shape optimization problems may be very sensitive and
can be completely dominated by discretization errors.
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The finite element method: variational formulations (I)

• As a model problem, we consider the Laplace equation:

Search for u ∈ H1
0 (D) s.t.

{
−∆u = f in D,
u = 0 on ∂D,

where f ∈ L2(D) is a given source.

• The associated variational formulation reads:

Search for u ∈ V s.t. ∀v ∈ V , a(u, v) = `(v),

where

• The Hilbert space V is the Sobolev space H1
0 (D);

• a(·, ·) is the bilinear form on V given by: a(u, v) =

∫
D

∇u · ∇v dx ;

• `(·) is the linear form on V defined by: `(v) =

∫
D

fv dx .

• The above variational problem has a unique solution u ∈ V owing to the
Lax-Milgram theorem.
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The finite element method: variational formulations (II)

• The finite element method advocates to search for an approximation uh to h
inside a finite-dimensional subspace Vh ⊂ V .

• The exact variational problem is replaced by:

Search for uh ∈ Vh s.t. ∀vh ∈ Vh, a(uh, vh) = `(vh),

which is also well-posed owing to the Lax-Milgram theorem.

• The subscript h refers to the sharpness of the approximation: as h→ 0, it is
expected that Vh ≈ V and uh ≈ u.
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Construction of the finite element space Vh (I)

• The domain D is discretized by means of a mesh Th, i.e. a covering by triangles
in 2d, tetrahedra in 3d.

• The parameter h is the typical size of an element in the mesh.
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Construction of the finite element space Vh (II)

A basis {ϕ1, ..., ϕNh} of finite element functions is introduced on the mesh Th.

Example:

• Nh is the number of vertices a1, ..., aNh of the mesh:

• For i = 1, ...,Nh, ϕi is affine in restriction to each triangle T ∈ Th and

ϕi (ai ) = 1 and ϕi (aj) = 0 for j 6= i .
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The finite element method in a nutshell (I)

Introducing the (sought) decomposition of the (sought) function uh on this basis:

uh =

Nh∑
i=1

uiϕi ,

the variational problem becomes a Nh × Nh linear system:

KU = F ,

where

• U =

 u1
...

uNh

 is the unknown vector,

• K is the stiffness matrix, defined by its entries Kij = a(ϕj , ϕi ),

• F is the right-hand side vector: Fi = `(ϕi ).
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The finite element method in a nutshell (II)

Resolution of the Laplace equation with the finite element method on several domains D,
using various meshes T .
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The finite element method in a nutshell (III)

• This paradigm extends (with some work!) to various frameworks:

• Mixed variational formulations, like in the case of the Stokes equations;

• Eigenvalue problems;

• non linear PDE, such as the Navier-Stokes equations, or the non linear elasticity
system.

• To go further, see the introductory and references monographs [All] and
[ErnGue].
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A model problem involving the conductivity equation (I)

• We turn back to the problem of optimizing
the thermal conductivity h : D → R.

• The temperature uh is the solution in H1(D)
to the equation:

−div(h∇uh) = f in D,
uh = 0 on ΓD ,

h ∂uh
∂n

= g on ΓN ,

where f ∈ L2(D) and g ∈ L2(ΓN).

�D

�N

D

g

The considered cavity

• The set Uad of design variables is:

Uad = {h ∈ L∞(D), α ≤ h(x) ≤ β a.e. x ∈ D} ⊂ L∞(D),

where 0 < α < β are fixed bounds.
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A model problem involving the conductivity equation (II)

• Our purpose is to consider a problem of the form:

min
h∈Uad

J(h), where J(h) =

∫
D

j(uh) dx ,

and j : R→ R is a smooth function satisfying growth conditions:

∀s ∈ R, |j(s)|≤ C(1 + |s|2), and j ′(s) ≤ C(1 + |s|).

• Many variants are possible, e.g. including constraints on h or uh.

• In this simple setting, the state uh is evaluated on the same domain D,
regardless of the actual value of the design variable h ∈ Uad.

• Even in this simple case, the optimization problem has no (global) solution in
general...
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Non existence of optimal design (I)

• This counter-example is discussed in details in [All] §5.2.

• The considered cavity is the unit square D = (0, 1)2.

• We consider two physical situations:
−div(h∇uh,1) = 0 in D,
h
∂uh,1
∂n

= e1 · n in ΓN,1,

h
∂uh,1
∂n

= 0 in ΓN,2,

and


−div(h∇uh,2) = 0 in D,

h
∂uh,2
∂n

= 0 in ΓN,1,

h
∂uh,2
∂n

= e2 · n in ΓN,2.

D

�N,1

�N,2

D D

uh,1 uh,2

(Left) Boundary conditions, (middle) boundary data for uh,1; (right) boundary data for uh,2.
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Non existence of optimal design (II)

The optimization problem of interest is:

min
h∈Uad

J(h),

where the considered objective function is:

J(h) =

∫
ΓN,1

e1 · n uh,1 ds −
∫

ΓN,2

e2 · n uh,2 ds,

and the set Uad of admissible designs is augmented with a volume constraint:

Uad =

{
h ∈ L∞(D),

α < h(x) < β a.e. x ∈ D,∫
D
h dx = VT

}
.

In other terms, one aims to

• Minimize the temperature difference between the left and right sides in Case 1.

• Maximize the temperature difference between the top and bottom sides in Case 2.
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Non existence of optimal design (III)

Theorem 1.
The parametric optimization problem min

h∈Uad
J(h) does not have a global solution.

Hint of the proof: The proof unfolds in three stages:

Step 1: One calculates a lower bound m on the values of J(h), h ∈ Uad:

∀h ∈ Uad, J(h) ≥ m.

Step 2: One proves that this lower bound is not attained by an element in Uad:

∀h ∈ Uad, J(h) > m.

Step 3: One constructs a minimizing sequence of designs hn ∈ Uad:

J(hn)
n→∞−−−→ m.

Hence, m is the infimum of J(h) over Uad but it is not attained by any h ∈ Uad.
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Non existence of optimal design (IV)

The minimizing sequence is constructed as a laminate, i.e. a succession of layers with
maximum and minimum conductivities.

· · ·
1

n

↵

�

Two elements in the minimizing sequence hn of conductivities.

Homogenization effect: To get more optimal, designs tend to create very thin
structures, at the microscopic level.
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Non existence of optimal design (V)

• In general, shape optimization problems, even under their simplest forms, do
not have optimal solutions, for deep physical reasons.

• See [Mu] for many such examples of non existence of optimal design in optimal
control problems.

• To retrieve existence of an optimal shape, two solutions are generally
considered:

• Relaxation: the set Uad of admissible designs is enlarged so that it contains
‘microscopic designs’: this is the essence of the Homogenization method for
optimal design [All2].

• Restriction: the set Uad is restricted to, e.g. more regular designs.

• In practice, we shall be interested in the search of local minimizers of such
problems, which is e.g. ‘close’ to an initial design inspired by intuition.
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Numerical algorithms
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Derivative of the objective function (I)

Let us return to our (still simplified) problem:

min
h∈Uad

J(h),

where
J(h) =

∫
D

j(uh) dx ,

the set of admissible designs is:

Uad = {h ∈ L∞(D), α ≤ h(x) ≤ β a.e. x ∈ D} ,

and the temperature uh is the solution in H1
0 (D) to:{

−div(h∇uh) = f in D,
uh = 0 on ∂D.

Remark For simplicity, we omit constraints on h or uh.

�D

D
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Derivative of the objective function (II)

To solve this program numerically, we intend to apply a gradient-based algorithm, of
the form:

Initialization: Start from an initial design h0,

For n = 0, ... convergence:

1. Calculate the derivative J ′(hn) of the mapping h 7→ J(h) at h = hn;

2. Select an appropriate time step τ n > 0;

3. Update the design as: hn+1 = hn − τ nJ ′(hn).

The cornerstone in the practice of any such method is the calculation of the
derivative of J(h).
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Derivative of the objective function (III)

Theorem 2.
The objective function

J(h) =

∫
D

j(uh) dx

is Fréchet differentiable at any h ∈ Uad, and its derivative reads

∀ĥ ∈ L∞(D), J ′(h)(ĥ) =

∫
D

(∇uh · ∇ph)ĥ dx ,

where the adjoint state ph ∈ H1
0 (D) is the unique solution to the system:{

−div(h∇ph) = −j ′(uh) in D,
ph = 0 on ∂D.
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Derivative of the objective function (IV)

Proof: The proof decomposes into two steps:

1. At first, we prove that the mapping

Uad 3 h 7−→ uh ∈ H1
0 (D)

is Fréchet differentiable, with derivative ĥ 7→ u′h(ĥ).

(Here the fact that all the uh belong to a fixed functional space is handy)

2. Then, we calculate the derivative of J(h) using the chain rule, and we introduce
the adjoint state ph to eliminate u′h(ĥ).

Step 1: Differentiability of h 7→ uh:

For any h ∈ Uad, uh is the unique solution in H1
0 (D) to the variational problem:

∀v ∈ H1
0 (D),

∫
D

h∇uh · ∇v dx =

∫
D

fv dx .
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Derivative of the objective function (V)

Let
F : Uad × H1

0 (D)→ H−1(D)

be the mapping defined by:

F(h, u) : v 7→
∫
D

h∇u · ∇v dx −
∫
D

fv dx .

One verifies that

• F is a function of class C1;

• For given h ∈ Uad, uh is the unique solution to the equation

F(h, u) = 0.

• The differential of the partial mapping u 7→ F(h, u) reads:

H1
0 (D) 3 û 7−→

[
v 7→

∫
D

h∇û · ∇v dx

]
∈ H−1(D);

it is an isomorphism, owing to the Lax-Milgram theorem.
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Derivative of the objective function (VI)

The implicit function theorem guarantees that the mapping h 7→ uh is of class C1.

To calculate the derivative ĥ 7→ u′h(ĥ), we return to the variational formulation for uh:
for v ∈ H1

0 (D), ∫
D

h∇uh · ∇v dx =

∫
D

fv dx .

Differentiating with respect to h in a direction ĥ ∈ H1
0 (D) yields:∫

D

ĥ∇uh · ∇v dx +

∫
D

h∇u′h(ĥ) · ∇v dx = 0,

and so

∀v ∈ H1
0 (D),

∫
D

h∇u′h(ĥ) · ∇v dx = −
∫
D

ĥ∇uh · ∇v dx .
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Derivative of the objective function (VII)

Step 2: Calculation of the derivative of J(h):

Since h 7→ uh is of class C1, the chain rule yields immediately:

∀ĥ ∈ H1
0 (D), J ′(h)(ĥ) =

∫
D

j ′(uh)u′h(ĥ) dx .

• This expression is awkward: the dependence ĥ 7→ J ′(h)(ĥ) is not explicit and it
is difficult to find a descent direction, i.e. a vector ĥ ∈ H1

0 (D) such that:

J ′(h)(ĥ) < 0.

• Fortunately, the expression of J ′(h) can be simplified thanks to the
introduction of the adjoint state ph.
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Derivative of the objective function (VIII)

The adjoint state ph is the unique solution in H1
0 (D) to the variational problem:

∀v ∈ H1
0 (D),

∫
D

h∇ph · ∇v dx = −
∫
D

j ′(uh)v dx .

Then, we calculate:

J ′(h)(ĥ) =

∫
D

j ′(uh)u′h(ĥ) dx ,

= −
∫
D

h∇ph · ∇u′h(ĥ) dx ,

= −
∫
D

h∇u′h(ĥ) · ∇ph dx ,

=

∫
D

ĥ∇uh · ∇ph dx .

where the last line uses the variational formulation of u′h(ĥ) with ph as test function.

Remark: From the last expression, one obviously obtains a descent direction:

ĥ = −∇uh · ∇ph ⇒ J ′(h)(ĥ) < 0.
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About the adjoint state

• The adjoint state ph satisfies{
−div(h∇ph) = −j ′(uh) in D,

ph = 0 on ∂D.

It is therefore a ‘virtual temperature’ driven by a source (or sink) equal to the
rate of change of the integrand of J(h) at the state described by uh.

• The descent direction:
ĥ = −∇uh · ∇ph

can be interpreted as the power induced by the ‘virtual temperature’ ph.

• We shall see soon a second interpretation of ph as the Lagrange multiplier
associated to the PDE constraint if we formulate our optimization problem as:

min
(h,u)

∫
D

j(u) dx , s.t.
{
−div(h∇u) = f in D,

u = 0 on ∂D.
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The formal method of Céa

The method of Céa is a formal way to calculate the derivative of J(h). It Assumes
that the mapping h 7→ uh is differentiable.

Let the Lagrangian
L : Uad × H1

0 (D)× H1
0 (D)→ R

be defined by:

L(h, u, p) =

∫
D

j(u) dx︸ ︷︷ ︸
Objective function at stake

+

∫
D

h∇u · ∇p dx −
∫
D

fp dx︸ ︷︷ ︸
Enforcement of the PDE constraint −∆u=f

with a Lagrange multiplier p

.

In particular, for any p̂ ∈ H1
0 (D),

J(h) = L(h, uh, p̂).

For a given h ∈ Uad, we search for the saddle points (u, p) of L(h, ·, ·).
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The formal method of Céa

• Imposing the partial derivative of L with respect to p to vanish amounts to

∀p̂ ∈ H1
0 (D),

∫
D

h∇u · ∇p̂ dx −
∫
D

f p̂ dx = 0;

this is the variational formulation for u = uh.

• Imposing the partial derivative of L with respect to u to vanish amounts to

∀û ∈ H1
0 (D),

∫
D

h∇p · ∇û dx = −
∫
D

j ′(u)û dx ;

since u = uh, we recognize the variational formulation for p = ph.
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The formal method of Céa

• Recall that, for arbitrary p̂ ∈ H1
0 (D),

J(h) = L(h, uh, p̂).

• Since we have assumed that h 7→ uh is differentiable, the chain rule yields:

J ′(h)(ĥ) =
∂L
∂h

(h, uh, p̂)(ĥ) +
∂L
∂u

(h, uh, p̂)(u′h(ĥ)).

• Now taking p̂ = ph, the last term in the above right-hand side vanishes:

J ′(h)(ĥ) =
∂L
∂h

(h, uh, ph)(ĥ).

• The above derivative is simply that of the mapping h 7→
∫
D
h∇u · ∇p dx for

given u, p. Hence:

J ′(h)(ĥ) =

∫
D

ĥ∇uh · ∇ph dx .
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The formal method of Céa: intuition

u

u

p

J(u)

L(↵, u, p)

•

u↵

p↵

(u↵, p↵)
J(u↵)

J(u↵) •
•

•

Physical intuition: The function J(h) is ‘twisted’ into the value L(h, uh, ph) at the
parametrized saddle point L(h, ·, ·), which is easy to differentiate with respect to the
parameter.
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Numerical algorithms (I)

We solve the optimization problem:

min
h∈Uad

J(h), where J(h) =

∫
D

j(uh) dx + `

∫
D

h dx ;

in there:

• The set Uad reads: Uad = {h ∈ L∞(D), α < h(x) < β a.e. x ∈ D};

• A constraint on the high values of the h is added by a fixed penalization.

A basic projected gradient algorithm then reads:

Initialization: Start from an initial design h0,

For n = 0, ... convergence:

1. Calculate the state uhn and the adjoint phn at h = hn;

2. Calculate the descent direction ĥn = −∇uhn · ∇phn − `.

3. Select an appropriate time step τ n > 0;

4. Update the design as: hn+1 = min(β,max(α, hn − τ nĥn)).
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Numerical algorithms (II)

In practice,

• The domain D is equipped with a fixed mesh T , composed e.g. of triangles.

• The sought conductivity h is discretized on this mesh, e.g. as a P0 or P1 finite
element function.

• For a given value of h, the solutions uh and ph to the state and adjoint
equations are calculated by the finite element method on the mesh T .
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One first example: the optimal radiator (I)

We consider the problem:

min
h∈Uad

J(h), where J(h) =

∫
D

uh dx + `

∫
D

h dx ;

that is,

• The mean temperature inside D is minimized;

• A constraint on the high values of the conductivity is added by a fixed
penalization of the objective function.

D
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One first example: the optimal radiator (II)

Optimized density in the thermal radiator problem.
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One first example: the optimal radiator (III)

• This oscillatory behavior is actually not surprising: the algorithm tries to
reproduce the ‘homogenized’ behavior of solutions.

• It is however highly undesirable in practice.

• One remedy consists in acting on the selected descent direction, by changing
inner products, a general idea which fulfills many other purposes.

• Other solutions are presented later in the course.
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Changing inner products (I)

By definition of the Fréchet derivative, the following expansion holds:

J(h + τ ĥ) = J(h) + τJ ′(h)(ĥ) + o(τ),

and a descent direction for J from h is any ĥ ∈ L∞(D) such that J ′(h)(ĥ) < 0.

The formula for the derivative

J ′(h)(ĥ) =

∫
D

ĥ∇uh · ∇ph dx

makes it very natural to take as a descent direction the L2(D) gradient of J ′(h):

ĥ = −∇uh · ∇ph,

i.e. the gradient associated to the differential J ′(h) via the L2(D) dual pairing.

Other, more adapted choices of a descent direction are possible, as gradients of J ′(h)
obtained with other inner products than that of L2(D).
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Changing inner products (II)

Let H be a Hilbert space with inner product 〈·, ·〉H.

Solve the following identification problem: Search for V ∈ H such that:

∀w ∈ H, 〈V ,w〉H = J ′(h)(w) =

∫
D

w∇uh · ∇ph dx .

Then −V is also a descent direction for J(h), since for τ > 0 small enough:

J(h − τV ) = J(h)− τJ ′(h)(V ) + o(τ)
= J(h)− 〈V ,V 〉H + o(τ)
< J(h).

Example: A descent direction which is more regular than that supplied by the

L2(D) inner product is obtained with the choice:

H = H1(D), and 〈u, v〉H =

∫
D

(α2∇u · ∇v + uv) dx ,

for α ‘small’ (of the order of the mesh size).
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The optimal radiator again

Optimized density for the thermal radiator problem using the ‘change of inner product’ trick.
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Another example: design of a ‘heat lens’ (I)

As proposed in [Che], the problem

min J(h) where J(h) =

∫
ω

∣∣∣∣α∂uh∂x1

∣∣∣∣2 dx + `

∫
D

h dx

is considered:

• The horizontal heat flux through a non optimizable region ω is minimized;

• A penalization on the high values of the conductivity h is added.

D�in

�out

!
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Another example: design of a ‘heat lens’ (II)

Optimized heat lens under a penalization of high values of the conductivity.
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Remarks

• The above strategy to impose a constraint on the amount of high conductivity
material is very crude. Other constrained optimization algorithms may be used,
such as the Augmented Lagrangian algorithm.

• This parametric optimization framework lends itself to the use of:

• Quasi-Newton methods, such as the Gauss-Newton or the BFGS algorithms;

• ‘True’ second-order algorithms, based on the Hessian of the mapping h 7→ J(h).

• Density-based methods for topology optimization problems often rely on an
adaptation of this parametric framework.
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Geometric shape optimization

We are now able to optimize shapes provided they are parametrized, be it:

• Via a set of parameters in a finite-dimensional space (thickness, etc.)

• By a function h in an adapted vector (Banach) space h 7→ J(h).

Asset: This is a very appealing setting, when available (methods from
mathematical programming are readily available).

Drawbacks:

• This induces a strong bias in the sought shapes.

• It may be very difficult, and in practice cumbersome, to find which are the
relevant parameters of shapes.

• Observe that we have only considered the (simpler) case where the state uh
lives in a fixed computational domain.

⇒ One needs to consider shape optimization problems in term of the geometry of
shapes Ω:

min J(Ω) s.t. C(Ω) ≤ 0.
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Differentiation with respect to the domain: Hadamard’s method (I)

Hadamard’s boundary variation method
describes variations of a reference, Lips-
chitz domain Ω of the form:

Ω 7→ Ωθ := (Id + θ)(Ω),

for ‘small’ vector fields θ ∈W 1,∞(Rd ,Rd).

⌦

⌦✓

✓

Lemma 3.
For θ ∈W 1,∞(Rd ,Rd) with norm ||θ||W 1,∞(Rd ,Rd )< 1, the mapping (Id + θ) is a
Lipschitz diffeomorphism.
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Differentiation with respect to the domain: Hadamard’s method (II)

Definition 1.
Given a smooth domain Ω, a scalar function Ω 7→ J(Ω) ∈ R is said to be shape
differentiable at Ω if the function

W 1,∞(Rd ,Rd) 3 θ 7→ J(Ωθ)

is Fréchet-differentiable at 0, i.e. the following expansion holds in the vicinity of 0:

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o
(
||θ||W 1,∞(Rd ,Rd)

)
.

The linear mapping θ 7→ J ′(Ω)(θ) is the shape derivative of J at Ω.
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First examples of shape derivatives (I)

Theorem 4.

Let Ω ⊂ Rd be a bounded Lipschitz domain, and let f ∈W 1,1(Rd) be a fixed
function. Consider the functional:

J(Ω) =

∫
Ω

f (x) dx ;

then J is shape differentiable at Ω and its shape derivative is:

∀θ ∈W 1,∞(Rd ,Rd), J ′(Ω)(θ) =

∫
∂Ω

f (θ · n) ds.
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First examples of shape derivatives (II)

⌦
⌦✓

•

•

•

xx + ✓(x)

Physical intuition: J(Ωθ) is obtained from J(Ω) by adding the blue area, where θ · n > 0, and
removing the red area, where θ ·n < 0. The process is ‘weighted’ by the integrand function f .
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First examples of shape derivatives (III)

Remarks:

• This result is a particular case of the Transport (or Reynolds) theorem, used to
derive the equations of motion from conservation principles in fluid mechanics.

• It allows to calculate the shape derivative of the volume functional

Vol(Ω) =

∫
Ω

1 dx ;

Indeed, one has:

∀θ ∈W 1,∞(Rd ,Rd), Vol′(Ω)(θ) =

∫
∂Ω

θ · n ds =

∫
Ω

divθ dx .

In particular, if divθ = 0, the volume is unchanged (at first order) when Ω is
perturbed by θ.
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First examples of shape derivatives (IV)

Proof: The formula proceeds from a change of variables; see Theorem 12:

J(Ωθ) =

∫
(Id+θ)(Ω)

f (x)dx =

∫
Ω

|det(Id +∇θ)| f ◦ (Id + θ) dx .

• The mapping θ 7→ det(Id +∇θ) is Fréchet differentiable, and:

det(Id +∇θ) = 1 + divθ + o(θ),
o(θ)

||θ||W 1,∞(Rd ,Rd

θ→0→ 0.

• If f ∈W 1,1(Rd), θ 7→ f ◦ (Id + θ) is also Fréchet differentiable and:

f ◦ (Id + θ) = f +∇f · θ + o(θ).

• Combining those three identites and Green’s formula leads to the result.

Remark: This idea of

1. Using the change of variables Ω→ (Id + θ)(Ω) to map everything on the
reference domain Ω,

2. Differentiating with respect to the deformation θ,

is the ‘standard’ way to calculate shape derivatives.
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First examples of shape derivatives (V)

Theorem 5.
Let Ω ⊂ Rd be a bounded domain of class C2, and let g ∈W 2,1(Rd) be a fixed
function. Consider the functional:

J(Ω) =

∫
∂Ω

g(x) ds;

then J is shape differentiable at Ω and its shape derivative is:

J ′(Ω)(θ) =

∫
∂Ω

(
∂g

∂n
+ κg

)
(θ · n) ds,

where κ stands for the mean curvature of ∂Ω.

Example: The shape derivative of the perimeter Per(Ω) =
∫
∂Ω

1 ds is:

Per′(Ω)(θ) =

∫
∂Ω

κ (θ · n) ds.
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First examples of shape derivatives (VI)

⌦

⌦✓

✓•

•

•
•

Physical intuition: θ = −κn is a descent direction for the perimeter P(Ω): the perimeter is
reduced by smearing the bumps of ∂Ω (i.e. θ · n < 0 when κ > 0), and sealing its holes (i.e.
θ · n > 0 when κ < 0).

95 / 211



Structure of shape derivatives (I)

Idea: The shape derivative J ′(Ω)(θ) of a ‘regular’ functional J(Ω) only depends on
the normal component θ · n of the vector field θ.

⌦

✓⌦✓

At first order, a tangential vector field θ, (i.e. θ · n = 0) only results in a convection of the
shape Ω, and it is expected that J′(Ω)(θ) = 0.
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Structure of shape derivatives (II)

Lemma 6.
Let Ω be a domain of class C1. Assume that the mapping

C1,∞(Rd ,Rd) 3 θ 7→ J(Ωθ) ∈ R

is of class C1. Then, for any vector field θ ∈ C1,∞(Rd ,Rd) such that θ · n = 0 on ∂Ω,
one has: J ′(Ω)(θ) = 0.

Corollary 7.
Under the same hypotheses, if θ1, θ2 ∈ C1,∞(Rd ,Rd) have the same normal
component, i.e. θ1 · n = θ2 · n on ∂Ω, then:

J ′(Ω)(θ1) = J ′(Ω)(θ2).
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Structure of shape derivatives (III)

Actually, the shape derivatives of ‘many’ integral objective functionals J(Ω) can be
put under the form:

J ′(Ω)(θ) =

∫
∂Ω

vΩ (θ · n) ds,

where vΩ : ∂Ω→ R is a scalar field which depends on J and on the current shape Ω.

This structure lends itself to the calculation of a descent direction: letting θ = −tvΩn,
for a small enough descent step t > 0 in the definition of shape derivatives yields:

J(Ωtθ) = J(Ω)− t

∫
∂Ω

v2
Ω ds + o(t) < J(Ω).
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Shape derivatives of PDE constrained functionals

• Hitherto, we have studied the shape derivatives of functionals of the form

F1(Ω) =

∫
Ω

f (x) dx , and F2(Ω) =

∫
∂Ω

g(x) ds(x),

where f , g : Rd → R are given, smooth enough functions.

• We now intend to consider functions of the form

J1(Ω) =

∫
Ω

j(uΩ(x)) dx , or J2(Ω) =

∫
∂Ω

k(uΩ(x)) ds(x),

where j , k : R→ R are given, smooth enough functions, and uΩ : Ω→ R is the
solution to a PDE posed on Ω.

• Doing so borrows techniques from optimal control theory.
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The considered framework

• Henceforth, we rely on the simplified model of the Laplace equation: the state
uΩ is solution to the system

−∆u = f in Ω
u = 0 on ∂Ω (Dirichlet B.C)
∂u
∂n

= 0 on ∂Ω (Neumann B.C)

where
∫

Ω
f dx = 0 in the Neumann case.

• The associated variational formulation reads:

∀v ∈ H1
0 (Ω)/H1(Ω),

∫
Ω

∇u · ∇v dx −
∫

Ω

fv dx = 0.

• We aim at calculating the shape derivative of

J(Ω) =

∫
Ω

j(uΩ) dx ,

where j : R→ R is a ‘smooth enough’ function.
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Eulerian and Lagrangian derivatives (I)

The rigorous way to address this problem requires a notion of differentiation of
functions Ω 7→ uΩ, which to a domain Ω associate a function defined on Ω.
One could think of two ways of doing so:

The Eulerian point of view:

For a fixed x ∈ Ω, u′Ω(θ)(x) is the
derivative of the mapping

θ 7→ uΩθ (x).

•x

⌦

⌦✓

u⌦✓

u⌦

The Lagrangian point of view:

For a fixed x ∈ Ω, ůΩ(θ)(x) is the
derivative of the mapping

θ 7→ uΩθ ((Id + θ)(x)).

•x

⌦

⌦✓

✓(x)

• x + ✓(x)
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Eulerian and Lagrangian derivatives (II)

• The Eulerian notion of shape derivative, however more intuitive, is more
difficult to define rigorously. In particular, differentiating the boundary
conditions satsified by uΩ is awkward:

Even for ‘small’ θ, uΩθ (x) may not make any sense if x ∈ ∂Ω!

• The Lagrangian derivative ůΩ(θ) can be rigorously defined, and lends itself to
easier mathematical analysis.

• The Eulerian derivative u′Ω(θ) is defined from the Lagrangian derivative ůΩ(θ),

u′Ω(θ) = ůΩ(θ)−∇uΩ(x) · θ,

so that the expected chain rule holds for the expression u(Id+θ)(Ω) ◦ (Id + θ):

∀x ∈ Ω, ůΩ(θ)(x) = u′Ω(θ)(x) +∇uΩ(x) · θ(x).
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Eulerian and Lagrangian derivatives (III)

Let Ω 7→ uΩ ∈ H1(Ω) be a function which to a domain Ω, associates a function uΩ

defined on Ω.

Definition 2.
The mapping u : Ω 7→ uΩ admits a material, or Lagrangian derivative ůΩ(θ) at a
given domain Ω provided the transported function

W 1,∞(Rd ,Rd) 3 θ 7−→ u(θ) := uΩθ ◦ (Id + θ) ∈ H1(Ω),

defined in the neighborhood of 0 ∈W 1,∞(Rd ,Rd), is differentiable at θ = 0.
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Eulerian and Lagrangian derivatives (IV)

This allows to define the notion of Eulerian derivative.

Definition 3.
The mapping u : Ω 7→ uΩ has a Eulerian derivative u′Ω(θ) at a given domain Ω in the
direction θ ∈W 1,∞(Rd ,Rd) if it admits a material derivative ůΩ(θ) at Ω, and
∇uΩ · θ ∈ H1(Ω). One defines then:

u′Ω(θ) = ůΩ(θ)−∇uΩ · θ ∈ H1(Ω).
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Eulerian and Lagrangian derivatives (V)

Proposition 8.
Let Ω ⊂ Rd be a smooth bounded domain, and suppose that Ω 7→ uΩ has a
Lagrangian derivative ůΩ at Ω. If j : R→ R is regular enough, the function

J(Ω) =

∫
Ω

j(uΩ) dx

is then shape differentiable at Ω, and:

∀θ ∈W 1,∞(Rd ,Rd), J ′(Ω)(θ) =

∫
Ω

(
j ′(uΩ)ůΩ(θ) + (divθ)j(uΩ)

)
dx .

If Ω 7→ uΩ has a Eulerian derivative u′Ω at Ω, one has the ‘chain rule’:

J ′(Ω)(θ) =

∫
∂Ω

j(uΩ) θ · n ds︸ ︷︷ ︸
Derivative of Ω 7→

∫
Ω j(uΩ)

with respect to its first dependency

+

∫
Ω

j ′(uΩ)u′Ω(θ) dx︸ ︷︷ ︸
Derivative of Ω 7→

∫
Ω j(uΩ)

with respect to its second dependency

.
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Eulerian and Lagrangian derivatives (VI)

Idea of the proof: As usual, a change of variable yields:

J(Ωθ) =

∫
(Id+θ)(Ω)

j(uΩθ ) dx =

∫
Ω

|det(I +∇θ)|j(u(θ)) dx .

• The mapping θ 7→ |det(I +∇θ)| is Fréchet differentiable at θ = 0 and

|det(I +∇θ)|= 1 + divθ + o(θ);

• The mapping θ 7→ u(θ) is Fréchet differentiable at θ = 0 and

u(θ) = uΩ + ůΩ(θ) + o(θ);

Then, using the chain rule, θ 7→ J(Ωθ) is Fréchet differentiable at θ = 0, and:

J ′(Ω)(θ) =

∫
Ω

((divθ)j(uΩ) + j ′(uΩ)ůΩ(θ)) dx .

Then using the definition u′Ω(θ) = ůΩ(θ)−∇uΩ · θ, with the Green formula:

J ′(Ω)(θ) =

∫
∂Ω

j(uΩ) θ · n ds +

∫
Ω

j ′(uΩ)u′Ω(θ) dx .
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Eulerian and Lagrangian derivatives (VII)

Let us return to our problem of calculating the shape derivative of:

J(Ω) =

∫
Ω

j(uΩ) dx , where
{
−∆uΩ = f in Ω,
uΩ = 0 on ∂Ω.

The following result characterizes the Lagrangian derivative of Ω 7→ uΩ. Its proof can
be adapted to many different PDE models:

Theorem 9.
Let Ω ⊂ Rd be a smooth bounded domain. The mapping Ω 7→ uΩ ∈ H1

0 (Ω) has a
Lagrangian derivative ůΩ(θ), and for any θ ∈W 1,∞(Rd ,Rd), ůΩ(θ) ∈ H1

0 (Ω) is the
unique solution Y in H1

0 (Ω) to:{
−∆Y = div(f θ)− div((div(θ)I−∇θ −∇θT )∇uΩ) in Ω,

Y = 0 on ∂Ω.
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Eulerian and Lagrangian derivatives (VIII)

Idea of the proof: The variational problem satisfied by uΩθ is:

∀v ∈ H1
0 (Ωθ),

∫
Ωθ

∇uΩθ · ∇v dx =

∫
Ωθ

fv dx .

By a change of variables, the transported function u(θ) := uΩθ ◦ (Id + θ) satisfies:

∀v ∈ H1
0 (Ω),

∫
Ω

A(θ)∇u(θ) · ∇v dx =

∫
Ω

|det(I +∇θ)|f v dx ,

where

A(θ) := |det(I +∇θ)|(I +∇θ)−1 (I +∇θ)−T and f = f ◦ (Id + θ).

This variational problem features a fixed domain and a fixed function space H1
0 (Ω),

and only the coefficients of the formulation depend on θ.
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Eulerian and Lagrangian derivatives (IX)

• The problem can now be written as an equation for u(θ):

F(θ, u(θ)) = G(θ),

for appropriate definitions of the operators:

• F : W 1,∞(Rd ,Rd )× H1
0 (Ω)→ H−1(Ω),

• G : W 1,∞(Rd ,Rd )→ H−1(Ω).

• The implicit function theorem shows that θ 7→ u(θ) is differentiable at θ = 0.

• The derivative ůΩ(θ) of the transported function u(θ) can now be computed by
differentiating inside the variational formula:

∀v ∈ H1
0 (Ω),

∫
Ω

∇ůΩ(θ) · ∇v dx =

∫
Ω

div(f θ) dx

−
∫

Ω

(div(θ)I−∇θ −∇θT )∇uΩ · ∇v dx .
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Eulerian and Lagrangian derivatives (X)

Remark: The Eulerian derivative of uΩ can now be computed from its Lagrangian
derivative. It satisfies: {

−∆U = 0 in Ω

U = −(θ · n) ∂uΩ
∂n

on ∂Ω
.

Notice that, in particular:

∀v ∈ H1
0 (Ω),

∫
Ω

∇u′Ω(θ) · ∇v dx = 0.

Using this formula in combination with:

J ′(Ω)(θ) =

∫
∂Ω

j(uΩ) θ · n ds +

∫
Ω

j ′(uΩ)u′Ω(θ) dx

will allow to express J ′(Ω)(θ) as a completely explicit expression of θ: this is the
adjoint method from optimal control theory.
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Eulerian and Lagrangian derivatives (XI): the adjoint method

Idea: ‘lift up’ the term of J ′(Ω)(θ) which features the Eulerian derivative of
uΩ by introducing an adequate auxiliary problem.

• Let pΩ ∈ H1
0 (Ω) be defined as the solution to the problem:{

−∆p = −j ′(uΩ) in Ω
p = 0 on ∂Ω

.

• Multiplying this equation by an arbitrary function v ∈ H1(Ω), integrating over
Ω and using Green’s formula yields:∫

Ω

∇pΩ · ∇v dx −
∫
∂Ω

∂pΩ

∂n
v ds = −

∫
Ω

j ′(uΩ) v dx ,

• ... to be compared with:

J ′(Ω)(θ) =

∫
∂Ω

j(uΩ) θ · n ds +

∫
Ω

j ′(uΩ)u′Ω(θ) dx .
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Eulerian and Lagrangian derivatives (XII): the adjoint method

Thus,

J ′(Ω)(θ) =

∫
∂Ω

j(uΩ) θ · n ds +

∫
Ω

j ′(uΩ)u′Ω(θ) dx

=

∫
∂Ω

j(uΩ) θ · n ds−
∫

Ω

∇pΩ · ∇u′Ω(θ) dx+

∫
∂Ω

∂pΩ

∂n
u′Ω(θ) ds

=

∫
∂Ω

j(uΩ) θ · n ds −
∫
∂Ω

∂pΩ

∂n

∂uΩ

∂n
θ · n ds

,

where we used the variational characteristics of u′Ω:

∀v ∈ H1
0 (Ω),

∫
Ω

∇u′Ω(θ) · ∇v dx = 0, and u′Ω(θ) = −∂uΩ

∂n
θ · n on ∂Ω.

Eventually, we obtain:

∀θ ∈W 1,∞(Rd ,Rd), J ′(Ω)(θ) =

∫
∂Ω

(
j(uΩ)− ∂uΩ

∂n

∂pΩ

∂n

)
θ · n ds,
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Eulerian and Lagrangian derivatives: summary

• Mathematically speaking, it is the rigorous way to assess the differentiability of
shape functionals.

• The techniques presented above (in particular the adjoint technique) exist in
much more general frameworks than shape optimization, and pertain to the
framework of optimal control theory.

• Calculating shape derivatives by these means requires tedious calculations.

• In practice, a version of Céa’s method will allow for a formal, much simpler way
to calculate shape derivatives.
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Céa’s method

As we have seen, the philosophy of Céa’s method comes from optimization theory:

Write the problem of minimizing J(Ω) as that of searching for the saddle points
of a Lagrangian functional:

L(Ω, u, p) =

∫
Ω

j(u) dx︸ ︷︷ ︸
Objective function at stake

+

∫
Ω

(−∆u − f )p dx︸ ︷︷ ︸
u=uΩ is enforced as a constraint

by penalization with the Lagrange multiplier p

,

where the variables Ω, u, p are independent.

This method is formal: in particular, it assumes that we already know that Ω 7→ uΩ is
differentiable.
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Céa’s method: the Neumann case (I)

We first consider the case of Neumann boundary conditions:{
−∆u + u = f in Ω

∂u
∂n

= 0 on ∂Ω
,

where the +u term is added for commodity, so that the system is well-posed in
H1(Ω) without any further assumption on f .

Consider the following Lagrangian functional:

L(Ω, v , q) =

∫
Ω

j(v) dx︸ ︷︷ ︸
Objective function

where uΩ is replaced by v

+

∫
Ω

∇v · ∇q dx +

∫
Ω

vq dx −
∫

Ω

fq dx︸ ︷︷ ︸
Penalization of the ’constraint’ v=uΩ:∫

Ω (−∆v+v−f )q dx=0

,

which is defined for any shape Ω ∈ Uad , and for any v , q ∈ H1(Rd), so that the
variables Ω, v and q are independent.
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Céa’s method: the Neumann case (II)

By construction, evaluating L with v = uΩ, it comes:

∀q ∈ H1(Rd), L(Ω, uΩ, q) =

∫
Ω

j(uΩ) dx = J(Ω).

For a fixed shape Ω, we search for the saddle points (u, p) ∈ Rd × Rd of L(Ω, ·, ·).
The first-order necessary conditions read:

• ∀q ∈ H1(Rd),
∂L
∂q

(Ω, u, p)(q) = ∫
Ω

∇u · ∇q dx +

∫
Ω

uq dx −
∫

Ω

fq dx = 0.

• ∀v ∈ H1(Rd),
∂L
∂v

(Ω, u, p)(v) =∫
Ω

j ′(u) · v dx +

∫
Ω

∇v · ∇p dx +

∫
Ω

vp dx = 0.
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Céa’s method: the Neumann case (III)

Step 1: Identification of u:

∀q ∈ H1(Rd),

∫
Ω

∇u · ∇q dx +

∫
Ω

uq dx −
∫

Ω

fq dx = 0.

• Taking q as any C∞ function ψ with compact support in Ω yields:

∫
Ω

∇u · ∇ψ dx +

∫
Ω

uψ dx −
∫

Ω

f ψ dx = 0 ⇒ −∆u + u = f in Ω .

• Now taking q as any C∞ function ψ and using Green’s formula:

∫
∂Ω

∂u

∂n
ψ ds = 0 ⇒ ∂u

∂n
= 0 on ∂Ω .

Conclusion: u = uΩ.
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Céa’s method: the Neumann case (IV)

Step 2: Identification of p:

∀v ∈ H1(Rd),

∫
Ω

j ′(u)v +

∫
Ω

∇v · ∇p dx +

∫
Ω

vp dx = 0.

• Taking v as any C∞ function ψ with compact support in Ω yields:

∫
Ω

∇p · ∇ψ dx +

∫
Ω

vp dx +

∫
Ω

j ′(u)ψ dx = 0 ⇒ −∆p = −j ′(uΩ) in Ω .

• Now taking v as any C∞ function ψ and using Green’s formula:

∫
∂Ω

∂p

∂n
ϕ ds = 0 ⇒ ∂p

∂n
= 0 on ∂Ω .

Conclusion: p = pΩ, solution to
{
−∆p + p = −j ′(uΩ) in Ω

∂p
∂n

= 0 on ∂Ω
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Céa’s method: the Neumann case (V)

Step 3: Calculation of the shape derivative J ′(Ω)(θ):

• We go back to the fact that:

∀q ∈ H1(Rd), L(Ω, uΩ, q) =

∫
Ω

j(uΩ) dx = J(Ω).

• Differentiating with respect to Ω yields:

∀θ ∈W 1,∞(Rd ,Rd), J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, q)(θ) +
∂L
∂v

(Ω, uΩ, q)(u′Ω(θ)),

where u′Ω(θ) is the Eulerian derivative of Ω 7→ uΩ (assumed to exist).

• Now, choosing q = pΩ produces, since ∂L
∂v

(Ω, uΩ, pΩ) = 0:

J ′(Ω)(θ) = ∂L
∂Ω

(Ω, uΩ, pΩ)(θ).
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Céa’s method: the Neumann case (VI)

This last (partial) derivative amounts to the shape derivative of a functional of the
form:

Ω 7→
∫

Ω

f (x) dx ,

where f is a fixed function.

Using Theorem 4, we end up with:

∀θ ∈W 1,∞(Rd ,Rd),

J ′(Ω)(θ) =

∫
∂Ω

(j(uΩ) +∇uΩ · ∇pΩ + uΩpΩ − fpΩ) θ · n ds.
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Céa’s method: the Dirichlet case (I)

• We now consider the problem of derivating:

J(Ω) =

∫
Ω

j(uΩ) dx , where
{
−∆u = f in Ω
u = 0 on ∂Ω

.

• Warning: When the state uΩ satisfies essential boundary conditions, i.e.
boundary conditions that are tied to the definition space of functions (here,
H1

0 (Ω)), an additional difficulty arises.

• We can no longer use the Lagrangian

L(Ω, v , q) =

∫
Ω

j(v) dx +

∫
Ω

∇v · ∇q dx −
∫

Ω

fv dx ,

since it would have to be defined for v , q ∈ H1
0 (Ω).

• In this case, the variables Ω, v , q would not be independent.
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Céa’s method: the Dirichlet case (II)

Solution: Add an extra variable µ ∈ H1(Rd) to the Lagrangian to penalize the
boundary condition: for all v , q, µ ∈ H1(Rd);

L(Ω, v , q, µ) =

∫
Ω

j(v) dx︸ ︷︷ ︸
Objective function

where uΩ is replaced by v

+

∫
Ω

(−∆v − f )q dx︸ ︷︷ ︸
penalization of the
‘constraint’−∆v=f

+

∫
∂Ω

µv ds︸ ︷︷ ︸
penalization of the

‘constraint’ v=0 on ∂Ω

.

By Green’s formula, L rewrites:

L(Ω, v , q, µ) =

∫
Ω

j(v) dx +

∫
Ω

∇v · ∇q dx −
∫

Ω

fq dx +

∫
∂Ω

(
µv − ∂v

∂n
q

)
ds.

Of course, evaluating L with v = uΩ, it comes:

∀q, µ ∈ H1(Rd), L(Ω, uΩ, q) =

∫
Ω

j(uΩ) dx .
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Céa’s method: the Dirichlet case (III)

For a fixed shape Ω, we look for the saddle points (u, p, λ) ∈ (H1(Rd))3 of the
functional L(Ω, ·, ·, ·). The first-order necessary conditions are:

• ∀q ∈ H1(Rd),
∂L
∂q

(Ω, u, p, λ)(q) =∫
Ω

∇u · ∇q dx −
∫

Ω

fq dx +

∫
∂Ω

∂u

∂n
q ds = 0.

• ∀v ∈ H1(Rd),
∂L
∂v

(Ω, u, p, λ)(v) =∫
Ω

j ′(u) · v dx +

∫
Ω

∇v · ∇p dx +

∫
∂Ω

(
λv − ∂v

∂n
p

)
ds = 0.

• ∀µ ∈ H1(Rd),
∂L
∂µ

(Ω, u, p, λ)(µ) =

∫
∂Ω

µu ds = 0.
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Céa’s method: the Dirichlet case (IV)

Step 1: Identification of u:

∀q ∈ H1(Rd),

∫
Ω

∇u · ∇q dx −
∫

Ω

fq dx +

∫
∂Ω

∂u

∂n
q ds = 0.

• Taking q as any C∞ function ψ with compact support in Ω yields:

∀ψ ∈ C∞c (Ω),

∫
Ω

∇u · ∇ψ dx =

∫
Ω

f ψ dx ⇒ −∆u = f in Ω .

• Using ∂L
∂µ

(Ω, u, pλ)(µ) = 0 for any µ = ψ ∈ C∞c (Rd) yields:

∀ψ ∈ C∞c (Rd),

∫
∂Ω

ψu dx = 0 ⇒ u = 0 on ∂Ω .

Conclusion: u = uΩ.
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Céa’s method: the Dirichlet case (V)

Step 2: Identification of p:

∀v ∈ H1(Rd),

∫
Ω

j ′(u) · v dx +

∫
Ω

∇v · ∇p dx +

∫
∂Ω

(
λv − ∂v

∂n
p

)
ds = 0.

• Taking q as any C∞ function ψ with compact support in Ω yields:

∀ψ ∈ C∞c (Ω),

∫
Ω

∇p · ∇ψ dx +

∫
Ω

j ′(u) · ψ dx = 0

⇒ −∆p = −j ′(uΩ) in Ω .

• Now taking v as a C∞ function ψ and using Green’s formula:

∀ψ ∈ C∞c (Rd),

∫
∂Ω

∂p

∂n
ψ ds +

∫
∂Ω

(
λψ − ∂ψ

∂n
p

)
ds = 0.
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Céa’s method: the Dirichlet case (VI)

Step 2 (continued):

• Varying the normal trace ∂ψ
∂n

while imposing ψ = 0 on ∂Ω, one gets:

p = 0 on ∂Ω .

Conclusion: p = pΩ, solution to
{
−∆p = −j ′(uΩ) in Ω

p = 0 on ∂Ω

• In addition, varying the trace of ψ on ∂Ω while imposing ∂ψ
∂n

= 0:

λΩ = − ∂pΩ
∂n

on ∂Ω.
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Céa’s method: the Dirichlet case (VII)

Step 3: Calculation of the shape derivative J ′(Ω)(θ):

• We go back to the fact that:

∀q, µ ∈ H1(Rd), L(Ω, uΩ, q, µ) =

∫
Ω

j(uΩ) dx .

• Differentiating with respect to Ω yields, for all θ ∈W 1,∞(Rd ,Rd):

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, q, µ)(θ) +
∂L
∂v

(Ω, uΩ, q, µ)(u′Ω(θ)),

where u′Ω(θ) is the Eulerian derivative of Ω 7→ uΩ.

• Taking q = pΩ, µ = λΩ produces, since ∂L
∂v

(Ω, uΩ, pΩ, λΩ) = 0:

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, uΩ, pΩ, λΩ)(θ).
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Céa’s method: the Dirichlet case (VIII)

Again, this (partial) derivative amounts to the shape derivative of a functional of the
form:

Ω 7→
∫

Ω

f (x) dx ,

where f is a fixed function.

Using Theorem 4 (and after some calculation), we end up with:

∀θ ∈W 1,∞(Rd ,Rd), J ′(Ω)(θ) =

∫
∂Ω

(
j(uΩ)− ∂uΩ

∂n

∂pΩ

∂n

)
θ · n ds,
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The generic numerical algorithm

Initialization: Start from an initial shape Ω0.

For n = 0, ... convergence,

1. Calculate the state uΩn (and the adjoint pΩn if need be) on Ωn.

2. Compute the shape derivative J ′(Ωn) by evaluating the mathematical
formula, and infer a descent direction θn for J(Ω).

3. Advect the shape Ωn along the displacement field θn, for a small
pseudo-time step τ n, so as to obtain

Ωn+1 = (Id + τ nθn)(Ωn).
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One possible implementation

• Each shape Ωn is represented by a simplicial mesh T n (i.e. composed of
triangles in 2d and of tetrahedra in 3d).

• The Finite Element method is used on T n for computing uΩn (and pΩn ).

• The descent direction θn is thence calculated by using the theoretical formula
for the shape derivative J ′(Ω).

• The shape advection step Ωn (I+τnθn)7−→ Ωn+1 is performed by pushing the nodes of
T n along τ nθn, to obtain the new mesh T n+1.

Deformation of a mesh by relocating its nodes to a prescribed final position.

134 / 211



Numerical examples (I)

• In the context of linear elasticity, one aims at minimizing the compliance C(Ω)
of a cantilever beam:

C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx .

• An equality constraint on the volume Vol(Ω) of shapes is imposed.
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Numerical examples (II)

• In the context of fluid mechanics (Stokes equations), one aims at minimizing
the viscous dissipation D(Ω) in a pipe:

D(Ω) = 2ν
∫

Ω

D(uΩ) : D(uΩ) dx .

• A volume constraint is imposed by a fixed penalization of the function D(Ω).
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Numerical examples (III)

• Still in fluid mechanics, the viscous dissipation D(Ω) of a double pipe system is
minimized.

• A volume constraint is imposed.
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Numerical issues and difficulties (I)

I - Existence of many local minimizers:

• In ‘most’ shape optimization problems, no ‘true’ global minimizer exists: the
latter would have to be searched as a homogenized design;

• However, there exist many local minimizers;

• In practice, shape optimization algorithms are very sensitive to the initial
design, to the size of the computational mesh, etc.

Several optimized cantilever beams associated to different initial designs.
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Numerical issues and difficulties (II)

II - The difficulty of mesh deformation:

• When the shape is explicitly meshed, an update of the mesh is necessary at
each step Ωn 7→ (I + θn)(Ωn) = Ωn+1: the new mesh T n+1 is obtained by
relocating each node x ∈ T n to x + τ nθn(x).

• This may prove difficult, partly because it may cause inversion of elements,
resulting in an invalid mesh.

Pushing nodes according to the velocity field may result in an invalid configuration.

• For this reason, mesh deformation methods are generally preferred for
accounting for ‘small displacements’.
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Numerical issues and difficulties (II)

III - Velocity extension:

• A descent direction θ = −vΩn from a shape Ω is inferred from the formula:

J ′(Ω)(θ) =

∫
∂Ω

vΩ(θ · n) ds.

• The new shape (Id + θ)(Ω) only depends on these values of θ on ∂Ω.

• For many reasons, in numerical practice, it is crucial to extend θ to Ω (or even
Rd) in a ‘clever’ way.

(for instance, deforming a mesh of Ω using a ‘nice’ vector field θ defined on the
whole Ω may considerably ease the process)

• The ‘natural’ extension of the formula θ = −vΩn, which is only legitimate on
∂Ω may not be a ‘good’ choice.
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Numerical issues and difficulties (III)

IV - Velocity regularization:

• Taking θ = −vΩn on ∂Ω may produce a very irregular descent direction,
because of

• numerical artifacts arising during the finite element analyses.

• an inherent lack of regularity of J′(Ω) for the problem at stake.

• In numerical practice, it is often necessary to smooth this descent direction so
that the considered shapes stay regular.

Irregularity of the shape derivative in the very sensitive problem of drag minimization of an airfoil (Taken from [MoPir]). In
one iteration, using the unsmoothed shape derivative of J(Ω) produces large undesirable artifacts.
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Numerical issues and difficulties (IV)

A popular idea: extend AND regularize the velocity field

• Suppose we aim at extending the scalar field vΩ : ∂Ω→ R to Ω.

• Idea: (≈ Laplacian smoothing) Trade the ‘natural’ inner product over L2(∂Ω)
for a more regular inner product over functions on Ω.

• Example: Search the extended / regularized scalar field V as:
Find V ∈ H1(Ω) s.t. ∀w ∈ H1(Ω),

α

∫
Ω

∇V · ∇w dx +

∫
Ω

Vw dx =

∫
∂Ω

vΩw ds.

• The regularizing parameter α controls the balance between the fidelity of V to
vΩ and the intensity of smoothing.
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Numerical issues and difficulties (IV)

• The resulting scalar field V is inherently defined on Ω and more regular than vΩ.

• Multiple other regularizing problems are possible, associated to different inner
products or different function spaces.

• A similar process allows:

• to extend vΩ to a large computational box D (an inner product over functions
defined on D is used),

• to extend the vector velocity θ = −vΩn to Ω / D (an inner product over vector
functions is used, e.g. that of linear elasticity).
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Part IV
Geometric optimization

problems

The method of Hadamard and shape derivatives
Shape derivatives of PDE-constrained functionals
Shape derivatives using Eulerian and material derivatives: the
rigorous way
Céa’s method for calculating shape derivatives
Numerical aspects of geometric methods
The level set method for shape optimization
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The level set method

A paradigm: the motion of an evolving domain is conveniently described in an implicit
way.

A domain Ω ⊂ Rd is equivalently defined by a function φ : Rd → R such that:

φ(x) < 0 if x ∈ Ω ; φ(x) = 0 if x ∈ ∂Ω ; φ(x) > 0 if x ∈ cΩ

A domain Ω ⊂ R2 (left), some level sets of an associated level set function (right).
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Level set functions and geometry (I)

If φ : Rd → R is a level set function of class C2 for Ω, such that ∇φ(x) 6= 0 on a
neighborhood of ∂Ω,

• The normal vector n to ∂Ω pointing outward Ω reads:

∀x ∈ ∂Ω, n(x) =
∇φ(x)

|∇φ(x)| .

n(x)

x
⌦

•

Normal vector to a domain Ω; some isolines of the function φ are dotted.
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Level set functions and geometry (II)

• The second fundamental form II of
∂Ω is:

∀x ∈ ∂Ω, II(x) = ∇
(
∇φ(x)

|∇φ(x)|

)
.

• The mean curvature κ of ∂Ω is:

∀x ∈ ∂Ω, κ(x) = div
(
∇φ(x)

|∇φ(x)|

)
.

•x

n(x)

v

@⌦

Tx@⌦

IIx(v , v) is the curvature of a curve
drawn on ∂Ω with tangent vector v at x .
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Evolution of domains with the level set method

• Let Ω(t) ⊂ Rd be a domain moving along a
velocity field v(t, x) ∈ Rd .

• Let φ(t, x) be a level set function for Ω(t).

• The motion of Ω(t) translates in terms of φ as
the level set advection equation:

∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0

• If v(t, x) is normal to the boundary ∂Ω(t), i.e.:

v(t, x) := V (t, x)
∇φ(t, x)

|∇φ(t, x)| ,

this rewrites as a Hamilton-Jacobi equation:

∂φ

∂t
(t, x) + V (t, x)|∇φ(t, x)| = 0

Ω(t) = [φ(t, .) < 0]

Ω(t + dt) = [φ(t + dt, .) < 0]

v(t, x)

x
•

•

•
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The level set method in the context of shape optimization (I)

• A fixed computational domain D is meshed once and
for all (e.g. with triangular or quadrilateral elements).

• Each shape Ωn is represented by a level set function
φn, defined at the nodes of the mesh.

• As soon as a descent direction θn from Ωn is
available, the advection step

Ωn 7→ Ωn+1 = (Id + τ nθn)(Ωn)

is achieved by solving the advection-like equation{
∂φ
∂t

+ θn · ∇φ = 0 t ∈ (0, τ n), x ∈ D
φ(0, ·) = φn

or if θn = vnn is normal, the Hamilton-Jacobi
equation:{

∂φ
∂t

+ vn|∇φ|= 0 t ∈ (0, τ n), x ∈ D
φ(0, ·) = φn

74 G. ALLAIRE, F. de GOURNAY, F. JOUVE, A.-M. TOADER

Figure 8. Optimal mast in 2-d: boundary conditions and iterations 6, 11, 16,
21 and 100

of a stiff material and excluded from optimization. In the formula for J2, the
localization coefficient k(x) is non-zero (equal to 1) only at the boundary and the
target displacement u0 is (0, 1) on the top boundary, (0, −1) on the bottom one
and (0, 0) on the lateral ones. The Lagrange multiplier is ! = 0. Starting from a
full domain initialization we perform 500 iterations with the coupling parameter
ntop = 15 (see Fig. 9). As usual, the convergence is slower than for compliance
minimization (see Fig. 10). Furthermore, the computed optimal design is very
sensitive to all parameters of the algorithm including the stiffness ratio between
the weak ersatz material and the true material (which is here equal to 10−2),
the coupling parameter ntop, and the initialization. Different choices of these
parameters lead to different topologies with similar performances.

Our second example is a gripping mechanism. Fig. 11 shows the boundary
conditions and the target displacement. A small force, parallel to the target
displacement in the opposite direction, is also applied on the jaws of the me-

Shape accounted for by a
level set description (from

[AlJouToa])
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The level set method in the context of shape optimization (II)

Problem: At each iteration n, no mesh of Ωn is available to solve the finite element
problems needed in the calculation of the shape gradient.

Solution: The state and adjoint PDE problems posed on Ωn are approximated by a
problem posed on the whole box D

⇒ Use of a Fictitious domain method.
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Example: the ersatz material approximation in linearized elasticity (I)

In the linear elasticity context, when the optimized part of the boundary Γ (i.e. that
represented with the level set method) is traction-free, the ersatz material method
approximates the elastic displacement uΩ : Ω→ Rd by that uΩ,ε : D → Rd of the
total domain D when the void D \ Ω has been filled with a very ‘soft’ material:


−div(Ae(uΩ)) = 0 in Ω,

uΩ = 0 on ΓD ,
Ae(uΩ)n = g on ΓN ,
Ae(uΩ)n = 0 on Γ.

≈


−div(Aεe(uΩ,ε)) = 0 in D,

uΩ,ε = 0 on ΓD ,
Aεe(uΩ,ε)n = g on ΓN ,
Ae(uΩ,ε)n = 0 on ∂D \ (ΓD ∪ ΓN),

(Problem posed on Ω) (Problem posed on D)

where the approximate Hooke’s tensor Aε reads:

Aε = χΩA + (1− χΩ)εA, ε� 1.
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Example: the ersatz material approximation in linearized elasticity (II)

�N

�D

�

Physical situation of a bridge Deformed configuration of the bridge

Implicit definition of the bridge on a mesh of D Deformed configuration of the domain D
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Example: optimization of a 2d bridge using the level set method

• In the context of linear elasticity, the compliance of a bridge is minimized

C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx .

• A constraint on the volume Vol(Ω) of shapes is imposed.
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Part V

Topology optimization

Topological derivatives
A glimpse of mathematical homogenization
Density-based topology optimization problems
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Topological derivatives (I)

• The previous algorithms feature an update process of the shape by deformation
of its boundary.

• In the mathematical framework, the shapes produced during the process are all
diffeomorphic to one another; in particular, they have the same topology.

• With a little abuse of the mathematical theory (depending on the numerical
representation), it is possible that holes merge during the process.

• However, holes cannot spring up.

• This may be enabled owing to the use of topological derivative, which measure
the dependance of a function J(Ω) with respect to the nucleation of a small
hole inside Ω.
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Topological derivatives (II)

Topological derivatives appraise variations of a
domain Ω of the form:

Ωx,r := Ω \ B(x , r),

where B(x , r) is the open ball centered at x ∈ Ω
with radius r.

x
r

⌦

•

Definition 4.

A functional J(Ω) of the domain has a topological derivative at a point x ∈ Ω if there
exists gT

Ω (x) ∈ R such that the following asymptotic expansion holds around r = 0:

J(Ωx,r ) = J(Ω) + rdgT
Ω (x) + o(rd), where

|o(rd)|
rd

r→0−−−→ 0.
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Topological derivatives (III)

• Intuition: The value of J(Ω) decreases if a ‘small’ hole, centered at some point
x where gT

Ω (x) < 0, is nucleated inside Ω.

• The mathematical calculation of topological derivatives is difficult. Fortunately,
formulas for such derivatives have been achieved in a wide variety of situations;
see for instance [Am, NoSo].

Example: In the context of 2d linearly elastic shapes, the topological
derivative of the compliance reads:

∀x ∈ Ω, gT
Ω (x) =

π(λ+ 2µ)

2µ(λ+ µ)
(4µAe(uΩ) : e(uΩ)

+ (λ− µ)tr(Ae(uΩ))tr(e(uΩ))) (x).

• This information is easily introduced into shape derivative-based algorithms: for
instance, at every ntop iteration, a small hole is nucleated inside the shape Ωn

instead of modifying its boundary.
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Topological derivatives (IV)

Initialization: Start from an initial shape Ω0,

For n = 0, ... convergence,

• Calculate the state uΩn (and possibly the adjoint pΩn ) on Ωn;

• If n mod ntop = 0:

1. Calculate the topological derivative gT
Ω (x) at every point x ∈ Ω;

2. The new shape Ωn+1 is obtained as:

Ωn+1 = Ωn \ B(x0, r),

where gT
Ω (x0) is minimum at x0, and r > 0 is a ‘small’ parameter.

• Else:

1. Calculate J′(Ωn), and infer a descent direction θn for J(Ω).

2. Advect the shape Ωn along θn for a small pseudo-time step τn:

Ωn+1 = (Id + τnθn)(Ωn).
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The bridge example using topological derivatives
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Part V

Topology optimization

Topological derivatives
A glimpse of mathematical homogenization
Density-based topology optimization problems
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Mathematical homogenization (I)

Let us consider again the two-phase conductivity
setting:

min
Ω∈Uad

J(Ω), where J(Ω) =

∫
D

j(uΩ) dx ,

and uΩ : D → R is the solution to the conductivity
equation: −div(AΩ∇uΩ) = f in D,

uΩ = 0 on ΓD ,
(AΩ∇uΩ)n = g on ΓN ,

where
AΩ = βχΩ + (α− β)χΩ.

�D

�N

D

g

⌦

As we have seen, ‘most’ such optimization problems do not have a solution.

161 / 211



Mathematical homogenization (II)

The main reason for this non existence of optimal solution is the homogenization
effect: better and better values of J(Ω) are achieved by sequences of shapes showing
smaller and smaller features.

· · ·
1

n

↵

�

One sequence of shapes showing smaller and smaller features, making J(Ω) better and
better.
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Mathematical homogenization (III)

The homogenization method features shapes as couples (h(x),A∗(x)), where:

• For x ∈ D, h(x) is the local fraction of materials α and β;

• For x ∈ D, A∗(x) is the diffusion tensor describing the microscopic arrangement
of α and β near x .

D

↵ �

x•

Around x ∈ D, the structure behaves as a microscopic arrangement of materials α and β in
fraction h(x); this amounts to an effective diffusion described by the tensor A∗(x).
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Mathematical homogenization (IV)

In the case of ‘many’ objective functions J(Ω), one proves that

inf
Ω∈Uad

J(Ω) = inf
(h,A∗)∈Dad

J∗(h,A∗),

where:

• Dad is the set of all couples (h,A∗) such that

• h ∈ L∞(Ω, [0, 1]),

• For all x ∈ D, A∗(x) belongs to the set Gh(x) of diffusions tensors which can be
obtained as a microscopic arrangement of α and β in proportion h(x).

• The relaxed functional J∗(h∗,A∗) reads:

J∗(h,A∗) =

∫
D

j(uh,A∗) dx ,

where uh,A∗ is the solution to the equation: −div(A∗∇u) = f in D,
u = 0 on ΓD ,

(A∗∇uΩ)n = g on ΓN .
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Mathematical homogenization (V)

• The homogenized problem

min
(h,A∗)∈Dad

J∗(h,A∗)

is a relaxation of the original one: the set of admissible designs is enlarged.

• The homogenized version of the problem has a global solution!

• Unfortunately, this problem is very difficult to solve, since in general, the set Gh
cannot be characterized easily.

• This problem has some very convenient simplifications in some cases however.

• It also inspires very popular, formal variants for topology optimization,
including the SIMP method.
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Part V

Topology optimization

Topological derivatives
A glimpse of mathematical homogenization
Density-based topology optimization problems
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Density-based topology optimization (I)

We take up again the two-phase conductivity setting:

min
Ω⊂D

J(Ω), where J(Ω) =

∫
D

j(uΩ) dx .

In here, the temperature uΩ is the solution to:
−div(hΩ∇uΩ) = f in D,

uΩ = 0 on ΓD ,

hΩ
∂uΩ
∂n

= g on ΓN ,

where the diffusion hΩ reads:

hΩ = α + χΩ(β − α).

The ideas presented here extend readily to the contexts
of linearized elasticity and (with some work) fluid me-
chanics.

�D

�N

D

g

⌦
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Density-based topology optimization (II)

• The (sought) ‘black-and-white’ characteristic function χΩ : D → {0, 1} of Ω, is
replaced by a ‘greyscale’ density function h : D → [0, 1].

• The properties (diffusion) of a region with intermediate density h are coined via
an empiric interpolation law ζ(h) between the extreme values α and β:

ζ(0) = α, and ζ(1) = β.

• The problem rewrites:

min
h∈Uad

J(h), where Uad = L∞(D, [0, 1]), J(h) =

∫
D

j(uh) dx ,

and uh is the solution to: −div(ζ(h)∇uh) = f in D,
uh = 0 on ΓD ,

(ζ(h)∇uh)n = g on ΓN .

• It is a simplified and empiric version of the homogenized problem, where the
microstructure tensor A∗ is omitted.
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Density-based topology optimization (III)

The resulting density-based problem is within the remit of parametric optimization!

Theorem 10.
The objective function

J(h) =

∫
D

j(uh) dx

is Fréchet differentiable at any h ∈ Uad, and its derivative reads

∀ĥ ∈ L∞(D), J ′(h)(ĥ) =

∫
D

ζ′(h)(∇uh · ∇ph)ĥ dx ,

where the adjoint state ph ∈ H1(D) is the unique solution to the system:
−div(ζ(h)∇ph) = −j ′(uh) in D,

ph = 0 on ∂D,
ζ(h) ∂ph

∂n
= 0 on ΓN .

The same numerical methods as for parametric optimization may be used.
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The interpolation profile

• The interpolation profile ζ(h) endows regions with (fictitious) intermediate
densities with material properties (diffusion, etc.).

• In the practice of the Solid Isotropic Method with Penalization (SIMP), a power
law of the form

ζ(h) = α + hp(β − α)

is used (often, p = 3).

• This has the effect to penalize the presence of ‘greyscale’ intermediate regions,
and to urge the optimized density towards a ‘black-and white’ function.

• This interpolation law is empiric: there is not even a guarantee that a material
with such properties does exist!

• In the article [Am2], other choices for ζ(h) are discussed, which are more
consistent from the physical viewpoint.
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Density filters (I)

• Often, desired properties (regularity, etc.) are imposed on h by filtering: h
appears in the state (and adjoint) equations under the form Lh, where

L : L∞(D, [0, 1])→ L∞(D, [0, 1])

is the filter operator.

• The problem rewrites:

min
h∈Uad

J(h), where J(h) =

∫
D

j(uh) dx ,

and uh is the solution to: −div(ζ(Lh)∇uh) = f in D,
uh = 0 on ΓD ,

(ζ(Lh)∇uh)n = g on ΓN .

• The calculation of the derivative of J(h) now yields:

J ′(h)(ĥ) =

∫
D

ζ′(h)(∇uh · ∇ph)(Lĥ) dx ,

=

∫
D

LT (ζ′(h)(∇uh · ∇ph)
)
ĥ dx .
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Density filters (II)

Here are two examples of regularizing filters:

• Convolution-based filter: For ε ‘small’ (ε ≈ mesh size), one defines:

Lεh = h ∗ ηε,

where ηε is a mollifying kernel; i.e. ηε(x) = 1
εd
η( x
ε

),

η ∈ C∞c (Rd), supp(η) ⊂ B(0, 1), and
∫
Rd

η dx = 1.

• PDE-based filter: For ε small,
Lεh = q,

where q is the unique solution in H1(D) to the problem:{
−ε2∆q + q = h in D,

∂q
∂n

= 0 on ∂D.

See for instance [WanSig] for many other examples of filters.
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Sensitivity filters

• As in the parametric optimization context, the derivative:

∀ĥ ∈ L∞(D), J ′(h)(ĥ) =

∫
D

ζ′(h)(∇uh · ∇ph)ĥ dx

lends itself to a straightforward choice of a descent direction:

ĥ = −ζ′(h)(∇uh · ∇ph),

that is, ĥ is the L2(D) gradient of J ′(h).

• Other choices are possible (and often more adequate) by changing inner
products:

ĥ = −V ,

where V solves:
∀w ∈ H, 〈V ,w〉H = J ′(h)(w),

for an adapted choice of Hilbert space and inner product H and 〈·, ·〉H.

• This stage is often called sensitivity filtering in density-based methods.
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Density-based relaxation

• As the result of a density-based topology optimization process, a density
function h is obtained, which may present greyscale values.

• However, in general, a real ‘black-and-white’ design is expected.

• Hence there is the need to threshold the density h, i.e. to find the adequate
value ρ ∈ (0, 1) such that:

• Regions where 0 ≤ h(x) ≤ ρ are considered to be ‘void’;

• Regions where ρ < h(x) ≤ 1 are considered to be ‘full of material’.

• So as to stir the optimized density towards values 0 and 1 during the
optimization, one may use a Heaviside filter:

H̃β,ηh =
tanh(βη) + tanh(β(h − η))

tanh(βη) + tanh(β(1− η))
,

where β and η are user-defined parameters which may be updated in the course
of the process.
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Example: the cantilever benchmark

• In the context of linearized elasticity, the compliance of a cantilever beam is
minimized:

C(h) =

∫
D

ζ(h)Ae(uh) : e(uh) dx .

• A constraint on the volume Vol(h) =
∫
D
h dx of material is added.
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Part VI

Further numerical results
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Optimization of the shape of a pylon (I)

• A pylon Ω is fixed on a region ΓD of its boundary;

• Several load scenarii may occur, depending on the conditions of the ambient
medium (wind, etc.);

• The physical behavior of Ω is described by the linearized elasticity equations;

• The mean compliance of Ω under the various possible scenarii is minimized,
under a volume constraint.
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Optimization of the shape of a pylon (II)

(Top / bottom) Two optimized pylons associated to various sets of constraints.
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An example in fluid mechanics (I)

• A fluid is flowing through a pipe D with a given incoming velocity profile.

• An obstacle Ω occupies the pipe, which contains a non optimizable region.

• The fluid is governed by the Navier-Stokes equations, and the behavior of the
obstacle is described by the linearized elasticity system.

• The work of the fluid on Ω is minimized under a volume constraint.

D

⌦

v0
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An example in fluid mechanics (II)

Optimized reinforcement of a pillar subjected to the pressure of a fluid (Thanks: Florian Feppon).
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An example in electromagnetism (I)

• An electromagnetic wave is conveyed by a waveguide.

• Its eletric and magnetic fields fuflill the Maxwell equations.

• A demultiplexer is a device aimed to steer the incoming wave to different
output ports depending on its wavelength.

• The aim is to optimize the distribution Ω of silica in the demultiplexer so as to
impose this behavior?

⌦
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An example in electromagnetism (II)

Optimized shape of a demultiplexer (Thanks: Nicolas Lebbe).
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Part VII

Current challenges in shape
and topology optimization

Shape optimization and robustness
Additive manufacturing shape and topology optimization
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Shape optimization and robustness

• The physical situations in which shape optimization problems arise are
characterized by data :

• The magnitude of the applied loads on an elastic structure;

• The location where they are applied;

• The wavelength of a wave conveyed by a guide;

• The viscosity of a fluid passing through a channel.

• Often, these data are estimated, or measured, in a quite imprecise way.

• It is therefore natural to require that a shape be robust with respect to small
perturbations on these data.
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A revealing example [deGAlJou] (I)

• A cantilever beam is submitted to a
horizontal load.

• ‘Small’ vertical perturbations are expected on
this load.

• The shape of the beam is optimized under a
volume constraint.

• In this particular situation, uncertainties can
be taken into account in a rigorous way.

•

Optimized shape of the beam
without taking into account
uncertainties on the load.
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A revealing example [deGAlJou] (II)

Optimized shape of the cantilever beam under larger and larger uncertainties on the vertical
component of the load.
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Part VII

Current challenges in shape
and topology optimization

Shape optimization and robustness
Additive manufacturing shape and topology optimization
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Manufacturing the optimized shapes

• Optimized shapes are often too complex to be manufactured by traditional
fabrication processes (milling, casting, etc.); for instance:

• They show thin bars, which are likely to break in the course of the assembly;
• They contain thick regions, where the cooling of the molten material is difficult.

• One burning challenge is to model the constraints imposed by the fabrication
process on the optimized shape Ω

• The modern additive manufacturing (or 3d printing) techniques are expected to
allow much more freedom in terms of the constructible designs.

(Left) One ‘optimized’ shape; (right) one shape assembled by additive manufacturing.
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Additive manufacturing in a nutshell (I)

• All additive manufacturing techniques begin with a slicing procedure: the shape
is converted into a series of horizontal layers.

• These 2d layers are constructed one atop the other, according to the selected
technology.

The slicing procedure, initiating any additive manufacturing process.

• In principle, these techniques allow to construct ‘arbitrarily complex’ shapes.
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Additive manufacturing in a nutshell (II)

Two of the most popular additive manufacturing technologies are:

• Material extrusion methods (e.g. FDM): they proceed by depositing a molten
filament of polymer (e.g. ABS) under the form of rasters.

• Powder bed fusion methods (e.g. EBM, SLS) are mainly used to process metal.
The construction of each 2d layer starts by spreading metallic powder inside the
build chamber, which is then selectively molten owing to a laser.

Sketch of the (left) FDM technology, and (right) EBM process.
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Additive manufacturing in a nutshell (III)

One machine tool for the FDM process in action.
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New challenges in connection with additive manufacturing!

• It is difficult to erect large overhanging regions with these techniques.

(Left) One ‘small’ and (right) one ‘large’ overhang.

• Materials assembled by additive
manufacturing do not have the
exact same physical properties
as those predicted by theory.

One 2d layer of a structure produced by FDM.
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Part VIII

Conclusions and take-home
messages
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Conclusions and take-home messages

• Shape and topology optimization methods arise in a wide range of physical
contexts: heat conduction, structure mechanics, fluid mechanics,
electromagnetism, etc. They are also used in imaging, or shape reconstruction.

• Several vantages are available: parametric, geometric or topology optimization,
depending on the nature of the sought design, and on the available means
(data, CPU, etc.).

• Accordingly, various notions of shape sensitivity exist: ‘classical’ Fréchet
derivatives, shape derivatives, topological derivatives,...

• ... paving the way to multiple numerical frameworks: parametric optimization
algorithms, algorithms featuring an evolving mesh, fixed mesh level set
methods, etc.

• Recent, burning challenges have arisen in this thriving field of mathematics,
physics and computer science!
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Thank you for your attention!
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Technical appendix
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Change of variable formulas (I)

The next theorem is an extension of the usual change of variables formula (involving
a C1 diffeomorphism) to the case of a Lipschitz diffeomorphism; see [EGar], Chap. 3.

Theorem 11 (Lipschitz change of variables in volume integrals).

Let Ω ⊂ Rd be a Lipschitz bounded domain, and ϕ : Ω→ Rd be a Lipschitz
diffeomorphism of Rd . Then, for any function f ∈ L1(ϕ(Ω)), f ◦ ϕ is in L1(Ω) and:∫

ϕ(Ω)

f dx =

∫
Ω

|det(∇ϕ)|f ◦ ϕ dx .

Remark: The Jacobian determinant |det(∇ϕ)| exists a.e. in Ω, as a consequence of
the Rademacher theorem:

A Lipschitz function f : Rd → R is almost everywhere differentiable.

197 / 211



Change of variable formulas (II)

The following theorem is a version of the change of variables formula adapted to
surface integrals; see [HenPi], Prop. 5.4.3.

Theorem 12 (Change of variables in surface integrals).

Let Ω ⊂ Rd be a bounded domain of class C1 with boundary Γ and unit normal
vector n pointing outward Ω. Let ϕ : Ω→ Rd be a C1 diffeomorphism of Rd . Then,
for any function g ∈ L1(ϕ(Γ)), g ◦ ϕ belongs to L1(Γ) and:∫

ϕ(Γ)

g ds =

∫
Γ

|Com(∇ϕ)n|g ◦ ϕ ds,

where Com(M) is the cofactor matrix of a d × d matrix.

Remark: The integrand

|Com(∇ϕ)n|= |det(∇ϕ)||∇ϕ−Tn|

is sometimes called the tangential Jacobian of the diffeomorphism ϕ.
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The implicit function theorem

Let us recall the implicit function theorem; see [La], Chap. I , Th. 5.9.

Theorem 13 (Implicit function theorem).
Let Θ,E ,F be Banach spaces, V ⊂ Θ, U ⊂ E be open sets. and F : V × U → G be
a function of class Cp for p ≥ 1. Let (θ0, u0) ∈ V × U be such that F(θ0, u0) = 0
and assume that:

duF(θ0, u0) : F → G is a linear isomorphism.

Then there exist an open subset V ′ ⊂ V of θ0 in Θ and a mapping g : V ′ → U of
class Cp satisfying the properties:

1. g(θ0) = u0,

2. For all θ ∈ V ′, the equation F(θ, u) = 0 has a unique solution u ∈ E , given by
u = g(θ).
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The Lax-Milgram theorem

Theorem 14 (Lax-Milgram theorem).
Let V be a Hilbert space, and let (u, v) 7→ a(u, v) and v 7→ `(v) be a bilinear and a
linear form on V , respectively, such that:

• a is continuous;

• a is elliptic (or coercive): there exists α > 0 such that:

∀u ∈ V , a(u, u) ≥ α||u||2;

• ` is continuous.

Then the variational problem

Search for u ∈ V s.t. ∀v ∈ V , a(u, v) = `(v)

has a unique solution in V .
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Surfaces and curvature (I)

At first order, in the neighborhood of a point p ∈ Γ, a surface Γ behaves like a plane,
the tangent plane,

• With normal vector n(p),

• Which contains the tangential directions to Γ.

n(p)

�

• p
v
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Surfaces and curvature(II)

• At second order in the neighborhood of p ∈ Γ, the surface Γ has one curvature
in each tangential direction.

• The principal directions at p are those tangential directions v1(p) et v2(p)
associated to the lower and larger curvatures κ1(p) et κ2(p).

• The mean curvature κ(p) is the sum κ(p) = κ1(p) + κ2(p).

• p

n(p)

v1

v2

�
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