How to install modules in Julia ?

Installing is easy ! julia> Pkd.

Overview of famous Julia modules

Plotting:

Winston.jl for easy plotting like MATLAB PyPlot.jl interface to Matplotlib (Python) The JuliaDiffEq collection for differential equations The JuliaOpt collection for optimization The JuliaStats collection for statistics And many more! Find more specific packages on GitHub.com/svaksha/Julia.jl

L Norm norm(v) norm(v) Inverse inv(a) inv(a)
Solve syst.

function Ei(x, minfloat=1e-3, maxfloat=100) f = t -> exp(-t) / t # inline function if x > 0 return quadgk(f, -x, -minfloat)[1] + quadgk(f, minfloat, maxfloat)[1] else return quadgk(f, -x, maxfloat)[1] end end X = linspace(-1, 1, 1000) # 1000 points Y = [Ei(x) for x in X] # Python-like syntax! « Julia,
θ (t) + b θ (t) + c sin(θ(t)) = 0 For b = 1/4, c = 5, θ(0) = π -0.1, θ (0) = 0, t ∈ [0, 10]
How to?

Use packages! Example of a computation that cannot be vectorized Smoothing of a signal {u } :

y = ay + (1 -a)u , k ∈N
Parameter a tunes the smoothing (none: a = 0, strong a → 1). Iteration (for loop) cannot be avoided. min j, such that ∥r∥ ≤ j @variable(m, j) @constraint(m, norm(res) <= j) @objective(m, Min, j)

(SOCP problem ⟹ ECOS solver) i ∑ i 2 2 « Julia,

«

 Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 14 Many packages, and a quickly growing community Julia is still in development, in version v0.6 but version 1.0 is planned soon! « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 15

 fft(a) , ifft(a) fft(a) , ifft(a) Very close to MATLAB for linear algebra! 2 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 20 3. Scientific problems solved with Julia Just to give examples of syntax and modules 1. 1D numerical integration and plot 2. Solving a 2 order Ordinary Differential Equation nd « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 21 3.1. 1D numerical integration and plot Exercise: evaluate and plot this function on [-1, 1] : my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 22 using QuadGK

 DifferentialEquations.jl function for ODE integrationWinston.jl for 2D plotting nd ′′ ′ ′ « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 25 using DifferentialEquations b, c = 0.25, 5.0 y0 = [pi -0.1, 0] # macro magic! pend2 = @ode_def Pendulum begin dθ = ω # yes, this is UTF8, θ and ω in text dω = (-b * ω) -(c * sin(θ)) end prob = ODEProblem(pend, y0, (0.0, 10.0)) sol = solve(prob) # solve on interval [0,10] t, y = sol.t, hcat(sol.u...)' « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 26 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 27 Examples 1. Iterative computation: signal filtering 2. Optimization: robust regression on RADAR data « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 28 Ex. 1: Iterative computation Objective: show the efficiency of Julia's Just-in-Time (JIT) compilation but also its fragility... Note: you can find companion notebooks on GitHub « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 29 Iterative computation: signal filtering The classical saying: « Vectorized code often runs much faster than the corresponding code containing loops. » (cf. MATLAB doc) does not hold for Julia, because of its Just-in-Time compiler.

 my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 30 Signal filtering in Julia function smooth(u, a) y = zeros(u) y[1] = (1-a)*u[1] for k=2:length(u) # this loop is NOT slow! y[k] = a*y[k-1] + (1-a)*u[k] end return y end « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. numba.jit 50 ms since 2012 *on a VM which adds an overhead of 20% to 40%, (so that 70 ms → 100 ms) (Matlab and Python implementations) function y = smooth(u, a) y = zeros(length(u),1); y(1) = (1-a)*u(1); for k=2:length(u) y(k) = a*y(k-1) + (1-a)*u(k); end end Python (optionally with Numba's jit decorator) @numba.jit # <-factor ×100 speed-up! def smooth_jit(u, a): y = np.zeros_like(u) y[0] = (1-a)*u[0] for k in range(1, len(u)): y[k] = a*y[k-1] + (1-a)*u[k] return y « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 33 Conclusion on the performance For this simple iterative computation: Julia performs very well, much better than native Python but it's possible to get the same with fresh Python tools (Numba) more realistic examples are needed « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 34 Regression choice: least squares regression min r Reformulated as a Second-Order Cone Program (SOCP):

 Datatype Array of any type multi-dim doubles array Array

	2. Main differences in MATLAB File ext. Comment # blabla... % blabla... [1 2; 3 4] [1 2; 3 4] Size size(a) Nb Dim ndims(a) Last a[end] ones(2, 3, 5) ones(2, 3, 5) Ones a(end) zeros(2, 3, 5) zeros(2, 3, 5) Zeros ndims(a) a .^ 3 Element-wise ^a ^ 3 size(a) Element-wise x a .* b a .* b a ./ b a ./ b Element-wise / syntax between Julia and 2. Main differences in syntax between Julia Julia MATLAB Help ?func help func Julia MATLAB Tranpose a.' a.' Julia MATLAB Maximum max(a) max(max(a)) ? and MATLAB Ref: CheatSheets.QuanteCon.org Julia MATLAB And a & b a && b Or a | b a * b a * b Matrix x a || b Conj. transpose a' a' Random matrix rand(3, 4) rand(3, 4)
	Identity	eye(10)	eye(10)
	Range	range(0, 100, 2) or 1:2:100	1:2:100
	« Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 19

Ref: CheatSheets.QuanteCon.org « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 16 Indexing a[1] to a[end] a(1) to a(end) Slicing a[1:100] (view) a(1:100) (copy) Operations Linear algebra by default Linear algebra by default Block Use end to close all blocks Use endif endfor etc « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 17 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 18

 Your mission, if you accept it... 1. Padawan level: Train yourself a little bit on Julia ↪ JuliaBox.com ? Or install it on your laptop! And read introduction in the Julia manual! 2. Jedi level: Try to solve a numerical system, from your research or teaching, in Julia instead of MATLAB 3. Master level: From now on, try to use open-source & free tools for your research (Julia, Python and others)…

	Regression choice: least absolute deviation Solve! JuMP: summary Conclusion (1/2) Conclusion (2/2)
	min Reformulated as a Linear Program (LP) |r | min t , such that -t ≤ r ≤ t @variable(m, t[1:n]) @constraint(m, res .<= t) @constraint(m, res .>= -t) @objective(m, Min, sum(t)) i ∑ i i ∑ i i i i julia> solve(m) [solver blabla... ⏳] :Optimal # hopefully julia> getvalue(a), getvalue(b) (-1.094, 127.52) # for least squares Observations: least abs. val., Huber least squares A modeling language for optimization, within Julia: Thanks for joining ! Sum-up gives access to all classical optimization solvers I hope you got a good introduction to Julia very fast (claim) It's not hard to migrate from MATLAB to Julia gives freedom to explore many variations of an optimization Good start: problem (fast prototyping) docs.JuliaLang.org/en/stable/manual/getting-started More on optimization with Julia: Julia is fast! JuliaOpt: host organization of JuMP Free and open source! Optim.jl: implementation of classics in Julia (e.g., Nelder-Mead) Can be very efficient for some applications! JuliaDiff: Automatic Differentiation to compute gradients, thanks to Julia's strong capability for code introspection Thank you ! !

my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 46 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 47 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 48 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 49 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 50 « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 51

.jl.m

Fragility of Julia's JIT Compilation

The efficiency of the compiled code relies on type inference. An order of magnitude difference vs julia> @time smooth1(u, 0.9); 0.212018 seconds (30.00 M allocations: 457.764 MiB ...)

julia> @time smooth2(u, 0.9); 0.024883 seconds (5 allocations: 176 bytes)

Fortunately, Julia gives a good diagnosis tool julia> @code_warntype smooth1(u, 0.9); ... # ↓ we spot a detail y::Union{Float64, Int64} ...

Regression as an optimization problem

The parameters for the trend (a, b) should minimize a criterion J which penalizes the residuals r = y -= ya.x + b:

where ϕ is the penaly function, to be chosen: How to solve the regression problem?

Option 1: a big bag of tools A specific package for each type of regression:

« least square toolbox » (→ MultivariateStats.jl) « least absolute value toolbox » (→ quantile regression) « Huber toolbox » (i.e., robust regression → ??) ... res (« residuals ») is an Array of 300 elements of type JuMP.GenericAffExpr{Float64,JuMP.Variable} , i.e., a semi-symbolic affine expression. Now, we need to specify the penalty on those residuals.